

Edinburgh Research Explorer

CubeLearn

Citation for published version:
Zhao, P, Lu, CX, Wang, B, Trigoni, N & Markham, A 2023, 'CubeLearn: End-to-end Learning for Human
Motion Recognition from Raw mmWave Radar Signals', IEEE Internet of Things Journal, vol. 10, no. 12, pp.
10236-10249. https://doi.org/10.1109/JIOT.2023.3237494

Digital Object Identifier (DOI):
10.1109/JIOT.2023.3237494

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Internet of Things Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1109/JIOT.2023.3237494
https://doi.org/10.1109/JIOT.2023.3237494
https://www.research.ed.ac.uk/en/publications/389238a8-564e-4c36-af96-026bf586a29f

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 1

CubeLearn: End-to-end Learning for Human Motion
Recognition from Raw mmWave Radar Signals

Peijun Zhao†, Chris Xiaoxuan Lu‡, Bing Wang⋆, Niki Trigoni†, and Andrew Markham†

Abstract—mmWave FMCW radar has attracted huge amount
of research interest for human-centered applications in recent
years, such as human gesture and activity recognition. Most
existing pipelines are built upon conventional Discrete Fourier
Transform (DFT) pre-processing and deep neural network clas-
sifier hybrid methods, with a majority of previous works focus-
ing on designing the downstream classifier to improve overall
accuracy. In this work, we take a step back and look at the
pre-processing module. To avoid the drawbacks of conventional
DFT pre-processing, we propose a complex-weighted learnable
pre-processing module, named CubeLearn, to directly extract
features from raw radar signal and build an end-to-end deep
neural network for mmWave FMCW radar motion recognition
applications. Extensive experiments show that our CubeLearn
module consistently improves the classification accuracies of
different pipelines, especially benefiting those simpler models,
which are more likely to be used on edge devices due to
their computational efficiency. We provide ablation studies on
initialization methods and structure of the proposed module, as
well as an evaluation of the running time on PC and edge devices.
This work also serves as a comparison of different approaches
towards data cube slicing. Through our task agnostic design, we
propose a first step towards a generic end-to-end solution for
radar recognition problems.

Index Terms—mmWave radar, end-to-end neural network,
motion recognition

I. INTRODUCTION

mmWave FMCW radar was mainly used on high-end cars
and military vehicles many years ago, due to its bulky size and
high cost. With the recent development in low cost single-
chip mmWave radar, (e.g., TI mmWave sensors), more and
more possibilities have been explored in indoor applications,
such as vital sign monitoring [1], gesture recognition [2], [3],
fall detection [4], [5], and human activity recognition (HAR)
[6]–[8]. As mmWave radars are less obtrusive than cameras,
they have significant potential for domestic applications, where
concerns about privacy dominate.

Typical methods for FMCW radar gesture or activity recog-
nition follow a two-stage pipeline: radar signal pre-processing,
typically with Discrete Fourier Transform (DFT), and a data-
driven classifier for task-specific recognition purposes. In the
classical radar processing chain, there are a number of different
levels of data representations, ranging from Range Profile
signatures, Range-Doppler and Range-Angle maps 1 , micro-

†Department of Computer Science, University of Oxford, United Kingdom
(firstname.lastname@cs.ox.ac.uk)

‡Department of Informatics, University of Edinburgh, United Kingdom
(xiaoxuan.lu@ed.ac.uk, Corresponding Author)

⋆Department of Aeronautical and Aviation Engineering, Hong Kong Poly-
technic University. This work was finished when he was with University of
Oxford.

1We use the term ‘maps’ to refer to 2D and 3D representations, which will
be introduced in Section IV in detail.

Fig. 1. We propose CubeLearn, a learnable pre-processing module to replace
conventional DFT and build end-to-end deep neural networks for mmWave
FMCW radar motion recognition tasks.

Doppler signature, to point clouds. For gesture recognition
and activity recognition tasks, maps and point clouds are the
most widely adopted data representations [9], [10]. Point cloud
generation relies on hand crafted parameters, and generating
point clouds requires receiver array which is not available in
some radar configurations (e.g., SISO radar). Besides, point
cloud can hardly capture find-grained movements like finger
gestures, which makes it a less universal approach. As a result,
most previous works are based on maps + neural network
classifier hybrid pipelines.

DFT serves as a very efficient way to extract Range,
Doppler and Angle-of-Arrival (AoA) information from the
raw radar signal to generate different maps. However, it also
has limitations like using non-adaptive basis and resolution
limitations. To overcome such limitations, researchers have
been trying to use end-to-end deep neural networks for radar
applications in recent years. The difficulty here lies in that the
raw radar ADC samples are complex values corresponding
to the downmixed baseband, and both the magnitude and the
phase are important. In previous works on end-to-end learning
for radar applications, either only the real part is used [11],
[12], which loses some information; or the real part and the
imaginary part are treated as two channels [13], which loses
the physical meaning, and using a specific network structure
could make it less universal.

In this work, we explore replacing DFT pre-processing with
a complex-weighted learnable pre-processing module named
CubeLearn to improve motion classification accuracy, which
is evaluated on human gesture and activity recognition tasks.
To the authors’ best knowledge, this is the first work to use
stacked complex linear layers to replace DFT pre-processing
for FMCW radar pipelines, and the first in-depth evaluation
of a purely end-to-end radar network. Our intuition is that by

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 2

making the entire network learnable and data-driven, we can
allow the network to better focus on important radar features,
leading to higher overall accuracy. In particular, significant
performance improvements are observed for those simpler
models, indicating that our proposed CubeLearn module could
be especially helpful for low-end radars (e.g., with single
Tx/Rx, or limited memory/computational ability) to achieve
recognition performance close to a more sophisticated radar.
Besides, compared to previous end-to-end works where the
proposed methods are designed for specific applications, our
work proposes a more generic method for different radar
recognition tasks.

Our contributions in this work are listed as follows:
• We propose CubeLearn, a learnable pre-processing mod-

ule based on complex neural networks to replace the
conventional DFT pre-processing, allowing the network
to focus on task-specific radar signatures.

• Through extensive evaluation, we show that our pro-
posed method can increase the accuracy of different
gesture/activity recognition pipelines and accelerate the
training process.

• We also provide a detailed, in-depth exploration of the
impact of different pre-processing and classifier combi-
nations, in terms of task accuracy and computational load
on both PC and Raspberry Pi devices.

• We release the code of the proposed CubeLearn mod-
ule and our own collected dataset to encourage further
research on this topic 2.

In the rest of the paper, we first discuss related work,
mmWave radar background and commonly seen pipelines.
Then we present our proposed CubeLearn module in Sec-
tion V. In Section VI we introduce the dataset collection
and experiment configuration, followed by evaluation in Sec-
tion VII. In the remaining sections we provide extensive
ablation study and complexity analysis, and a discussion on
model selection, robustness and possible ways to utilize the
elevation data as well. Section XII finally concludes the paper.

II. RELATED WORK

A. mmWave Radar Map Based Human Gesture/Activity
Recognition

Pre-processing Classifier Related Works
1D Profile R + A + D LSTM [14]

2D Map

D-T 2DCNN [7], [15]–[18]
R-D 2DCNN-LSTM [3], [19]
R-D 2DCNN-TCN [20]
R-D ANN [21]

R-D + R-A 2DCNN-LSTM [22]
R-T + D-T 2DCNN [23]
R-T + A-T 2DCNN [24]

3D Map R-D-T 3DCNN [25], [26]
R-D-A 2DCNN + LSTM [27]

TABLE I
MAP BASED MMWAVE FMCW RADAR GESTURE AND ACTIVITY
RECOGNITION. R: RANGE; A: ANGLE; D: DOPPLER; T: TIME.

mmWave radar based human gesture/activity recognition is
one of the most studied areas in mmWave sensing. Main-
stream recognition methods are based on 1D/2D/3D data

2https://github.com/zhaoymn/cubelearn

representations. Recent works on mmWave radar based human
gesture/activity recognition are summarized in TABLE I. As
introduced in Section III, conventional DFT pre-processing
is used to extract Range (R), Doppler (D) and AoA (A)
information from the raw radar data cube. In most cases
the Range-Doppler Map, Range-Angle Map or micro-Doppler
signature is directly used as neural network input [7], [15]–
[20], [22]–[26], as they are fixed-sized and can be processed
similarly to images. Other works manually extract features and
feed them into the downstream classifier [14], [21], [27].

There are many types of 2D and 3D data representations,
such as the Range-Doppler Map used in [3], [19]–[22]. To
form a range-Doppler map, we need to transmit multiple
chirps, and the duration is called ‘Coherent Processing Interval
(CPI)’. The CPI dimension (T) can be used as a separate
dimension for the neural network to extract temporal in-
formation [3], [19], [20], [22], [27], or use together with
other dimensions to be processed as part of the data map
[15], [16], [25], [26]. In our work we consider different map
based pipelines in previous works, together with other possible
combinations, as our baselines.

B. End-to-end mmWave Radar Gesture and Activity Recogni-
tion Methods

Researchers have also been trying to build end-to-end neural
networks for radar applications. The main difficulty of design-
ing an end-to-end structure is to handle the complex input. The
magnitude and phase information are both important in the raw
IF signal, as we need to extract the distance, velocity and AoA
information from the frequency and phase of the raw signal.

Sakamoto et al. proposed converting the I/Q data received
by CW radar receiver into an image for hand gesture recogni-
tion with convolutional neural networks [28]. Complex valued
convolutional neural networks are also proposed to extract
information from radar micro-Doppler signatures for activity
recognition [29]. Zhao et al. proposed treating the real and
imaginary part as two separate channels which is processed
similar to images with real-valued convolutional layers for
human activity classification [13]. There are also some works
that use real-valued input. Stadelmayer and Santra proposed
using a parametric convolutional neural network (2D Sinc Fil-
ter and 2D Wavelet Filter) [11] to extract Range and Doppler
information from raw radar data. Ye et al. proposed using two
real-valued convolutional layers with Fourier initialization for
human-activity classification [12], [30] on Continuous-wave
radar data. However, their methods lose half of the information
from the imaginary part.

To the authors best knowledge, this work is the first to
use stacked complex linear layers to replace the conventional
DFT pre-processing to directly extract information from raw
mmWave FMCW radar data, and to build end-to-end deep
neural network together with downstream deep classifier which
directly takes raw radar complex data cube as input for
recognition tasks.

III. MMWAVE FMCW RADAR BACKGROUND

In a typical FMCW radar configuration, a CPI consists of
multiple chirps, which are short periods of signals whose fre-

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 3

quency increases linearly with time. We use Texas Instruments
IWR6843 mmWave radar in this work, which features a 3
transmitter, 4 receiver MIMO antenna array, but we note that
our architecture is easily generalizable to different antenna
configurations. For each chirp, typically a single transmitter
is activated (with the TDM-MIMO [31] principle), and the
received signals at each receiver antenna are mixed with the
transmitting signal followed by low-pass filters to produce
an intermediate frequency (IF) signal that is further sampled
by analog-digital converter (ADC). For each CPI, mmWave
radar generates a raw data cube, with the three axes namely
corresponding to: samples in a chirp, chirp loops, and Tx-Rx
pairs.

In conventional processing, DFT is used to extract range,
Doppler and AoA information along the 3 dimensions of
the raw radar data cube, respectively. As the transmitting
frequency increases linearly with time during a chirp, the
reflection from a target at a certain distance introduces a
corresponding frequency component in the IF signal, which
equals to the round trip time multiplied by the frequency slope
of the chirp. We can estimate the distance to different targets
by extracting different frequency components with DFT, which
produces a ‘Range Profile’. The phase of a peak corresponding
to a certain target in the Range profile changes across chirps
if the target is moving, due to the slight round-trip distance
change, and we can apply another DFT across chirps to extract
the phase variation in order to infer the radial velocity of the
object, which is often called ‘Doppler DFT’. Furthermore, the
AoA of the target introduces phase differences at the antennas
in the receiver array because of the slight difference in the total
length the signal travels. This can also be estimated with DFT,
which is called ‘Angle DFT’. Transforming the information
from the sampled time/space domain to the frequency domain
is the key for extracting range, Doppler and AoA information
in FMCW radar data processing.

IV. GESTURE AND ACTIVITY RECOGNITION MODELS

As discussed in the previous section, the mmWave radar
is able to produce a raw data cube for each CPI, with 3
axes as sample, chirp and virtual antenna, respectively, and
range, Doppler and AoA information can be extracted from
these three dimensions. To represent the information on these
three dimensions. We often adopt maps as a straightforward
data representation. Peaks in the maps correspond to detected
targets. For example, a peak in the 2D Range-Doppler maps
represents a target at a certain distance with a certain radial
velocity. Since in this work we are studying gesture/activity
recognition, which typically lasts several CPIs, we have an
additional CPI dimension. As a result, with different combi-
nations of information from three dimensions in the data cube,
together with the CPI dimension, we supply 2D, 3D or 4D data
as input to the downstream neural network classifier.

In this study, we evaluate two types of commonly adopted
neural network classifiers: CNN and CNN-LSTM. The archi-
tecture of the two types of classifiers is shown in Fig. 2. We
use three convolutional layers, each followed by batch normal-
ization, activation (ReLU), and max-pooling. The output of the

2D/3D CNN

Batchnorm

Relu

Maxpool

2D/3D CNN

Batchnorm

Relu

Maxpool

2D/3D CNN

Batchnorm

Relu

Maxpool

L
in

e
a

r

L
in

e
a

r

L
in

e
a

r

2D/3D

Input Prediction

(a) CNN classifier

2D/3D CNN

Batchnorm

Relu

Maxpool

LSTM

2D/3D CNN

Batchnorm

Relu

Maxpool

2D/3D CNN

Batchnorm

Relu

Maxpool

L
in

e
a

r

L
in

e
a

r

3D/4D

Input Prediction

(b) CNN-LSTM classifier

Fig. 2. Two types of downstream classifier architectures we use in this work.

convolutional layers is flattened, followed by either LSTM and
two fully connected layers, or three fully connected layers, to
produce the prediction.

Data Cube Slicing Pre-processing Classifier
first Tx-Rx pair and first chirp R-T 2DCNN

first Tx-Rx pair, range aggregation D-T 2DCNN
first chirp, range aggregation A-T 2DCNN

first Tx-Rx pair R-D-T 3DCNN/2DCNN-LSTM
first chirp R-A-T 3DCNN/2DCNN-LSTM

whole cube, range aggregation D-A-T 3DCNN/2DCNN-LSTM
whole cube R-D-A-T 3DCNN-LSTM

TABLE II
MAP BASED MMWAVE FMCW RADAR GESTURE AND ACTIVITY

RECOGNITION.

The CPI can sometimes be used as one dimension in the
map, e.g., in a Range-Doppler-Time Cube, which can be fed
into 3DCNN classifier, or used as sequence timestamps, to
act as input into LSTM. We use TABLE II to summarize
possible data slicing, pre-processing and downstream classifier
combinations. Note that since we are using FMCW radar,
for Doppler-Time, Angle-Time and Doppler-Angle-Time pre-
processing, we still extract Range information first, and then
estimate Doppler and/or AoA information for each Range bin,
then sum along the Range axis. Some of the combinations have
appeared in previous works, as we discuss in Section II, and
in these works the selection of the pipeline is largely based
on the target application and radar configuration.

V. LEARNABLE PRE-PROCESSING

A. Problems with Conventional DFT pre-processing

For raw radar signals, the information of the targets is
not encoded in certain data points, but rather hidden in the
phase and magnitude variation of the raw signal. For example,
the distances to the targets are encoded in the frequency
components of a single chirp, and the Doppler and AoA
information are hidden in the phase variation, either from time
domain (chirps) or spatial domain (receiver array).

To expose such information, the pre-processing is often
performed with conventional signal processing techniques,
typically through DFT, as discussed before. The DFT can
be viewed as a linear transformation of the raw radar data
from the time/spatial domain to the frequency domain. Linear
transformation can be viewed as change of basis. In DFT, the
data is represented with equally spaced Fourier bases in the
frequency domain, and the information corresponding to the
targets is directly exposed. The pre-processed output can be
largely regarded as 2D/3D images to be fed into downstream
neural networks based on architectures widely explored in the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 4

computer vision area. Note that though DFT is a reversible
operation, in previous pipelines the phase information of the
transformed data is lost before feeding into the downstream
classifier because of the modulus operation.

Though conventional DFT pre-processing is simple, effi-
cient and straightforward, there are two issues which impact
its utility:

(a) Fixed Fourier bases cannot best
capture target information, and carry
information not related to the target.

(b) Resolution limitation makes it
hard to capture find-grained move-
ments.

Fig. 3. Limitations of the conventional DFT pre-processing.

Lack of adaptive transformation bases. The conventional
DFT is a universal solution for extracting frequency domain
information, and is not designed specifically for certain tasks.
In the DFT, all the Fourier transformation bases are equally
spaced and fixed, so the transformed data points might not
best represent the target, as illustrated in Fig. 3(a). Note also
the redundancy, as the part of the conventional DFT output
that we are actually interested in only occupies a fraction
of the whole pre-processing output. The non-informative part
of the output may contain multipath reflections, noise and
environmental reflections. Sending this information into the
downstream neural network will lead to a higher computational
cost, and even worse, can make the neural network learn fake
features and overfit to the training data. It is possible to have
a specific DFT for each task, with different FFT lengths, non-
uniform frequency spacings or frequency masks such that the
domain transformation can focus more on relevant features
corresponding to specific tasks. However, this means that we
must choose specific parameters for each task, which relies on
the experience of the developer and it is very time-consuming
to tune these hyper-parameters.
Limited resolution. Another problem is that while the DFT
is complete and invertible, it has an inherent resolution limita-
tion, which makes it hard for the DFT transformation output to
represent the target properties on certain tasks, as demonstrated
in Fig. 3(b). For example, the Range resolution of mmWave
radar is typically >5cm, which makes it difficult to distinguish
between two fingers in hand gesture recognition. Also, the
resolution limitations of Doppler and AoA make it hard
to capture fine-grained movements, e.g., movements of two
adjacent fingers. Note that such problem could not be simply
fixed by ‘Zero Padding’ in the time domain, as ‘Zero Padding’
in time domain corresponds to interpolation in frequency do-
main, which does not increase the resolution. This is because
the resolution is a function of the raw signal bandwidth.
Generally speaking, the resolution limitation is inherent to the
transmit waveform. However, with additional prior knowledge,
we are able to achieve better resolution i.e. super-resolution

techniques. For example, with the number of signal sources
as a prior knowledge, Multiple Signal Classification (MUSIC)
algorithm can identify two targets that are not separable with
DFT processing [32]. In our case, the neural network model is
trained with training data, which inherently carries rich prior
knowledge. As a result, with additional information, it can
potentially overcome the resolution limitation of DFT based
processing.

B. CubeLearn Module Architecture

To deal with the above-mentioned limitations of conven-
tional DFT pre-processing, in this work we present CubeLearn
module to replace the DFT pre-processing, which can be
trained together with the downstream classifier in an end-to-
end way, and aim to learn the best domain transformation for
a specific task in a data-driven manner.

A neural network does not suffer from the limitations of
conventional DFT. Through end-to-end training, the network
is able to learn the transformation bases that best suit the
target task. In addition, with prior knowledge acquired from
training data, the neural network could be able to achieve
better resolution. In fact, recent research has shown that
super-resolution of Range, Doppler and AoA can be achieved
through deep neural networks for raw radar signals [33],
[34]. Furthermore, the pre-processing module could be trained
to extract more informative features, rather than noise and
environmental reflections, potentially carrying more useful
information to the downstream classifier.

Fig. 4. CubeLearn Architecture.

The architecture of our proposed CubeLearn module is
shown in Fig. 4. The basic idea behind the design is to follow
the conventional DFT processing method, as introduced in
Sec. III, but in a learnable way. As the raw radar signal
is complex-valued, we use complex linear layers to directly
consume the raw radar signal as input. Instead of processing
all the information in the raw radar data cube in one layer, we
use a stacked hierarchy of complex linear layers, each layer
replacing a certain step in conventional DFT pre-processing
(i.e., Range, Doppler and AoA). This is because if we are
to use a single complex layer, there would be too many
parameters, making the neural network significantly more
complex.

As we are using FMCW radar, the first step is to extract
Range information from each chirp with a complex linear
layer. This can be followed by other complex linear layers
to extract Dopper and AoA information for different ranges.
We can also aggregate the Doppler and AoA information at
different ranges by calculating the sum along the Range axis.
In conventional DFT pre-processing, the order of performing
DFT on different dimensions of the input raw data cube does

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 5

not affect the output. As a result, though we are following the
conventional DFT pre-processing to organize the complex lin-
ear layers, the order of the linear layers could also potentially
be swapped, which could be studied in future work.

To make the proposed CubeLearn module fairly act as a
drop-in for the conventional DFT, we calculate the absolute
(modulus) value before feeding the processed data into the
downstream neural network classifier.

C. CubeLearn Module Weight Initialization

The DFT is a linear transformation from the time domain to
the frequency domain. This can be represented by a complex
linear layer with no bias in a neural network. We use DFT
pre-processing as prior knowledge to initialize our proposed
CubeLearn module, and let the neural network adjust the
weights to adapt to a specific task through end-to-end training.
The complex linear layer output can be represented as:

output[k] =

M−1∑
m=0

w(k,m)input[m] (1)

and we initialize the weights as

w(a, b) = e−j 2π
N ab (2)

which exactly represents DFT. The bias of the complex linear
layers are set to 0.

For Doppler and AoA transformation layers we also need
to shift the upper half and the lower half of the weights, since
we want zero speed and zero AoA (i.e. in front of the sensor)
initially to be in the middle of the learned map.

Note that though we initialize the complex layers as DFT,
through end-to-end training the transformation is very likely
to no longer be Fourier Transform once trained.

D. Effect of CubeLearn Module

To better show the effects of our proposed CubeLearn
module compared to the conventional DFT pre-processing and
validate our assumptions, in this part we demonstrate how the
proposed CubeLearn module adaptively adjust the weights,
by visualizing the output of both the conventional DFT pre-
processing module and the CubeLearn module through the
training process. We use t-SNE, a widely adopted method for
dimension reduction and data visualization [35]. Without loss
of generality, we use D-T pre-processing + 2DCNN classifier
model on Hand Gesture Recognition task here as an example.
Detailed definition of the task as well as the description of the
dataset is introduced later in Section VI. There are 12 hand
gestures in total, however, to make the figures more clear, we
only visualize the pre-processed output of 6 gestures.

In Fig. 5, we first visualize the output of the conventional
DFT pre-processing in Fig. 5(a), and then the change of the
output of the proposed learnable D-T pre-processing module
in Fig. 5(b)-(d). From the Fig. 5(a) we can clearly see that,
although in local regions, the output from certain classes
appears to be denser, indicating that the conventional DFT
extracts some common properties of the same class samples,
on the whole, the features from different classes still tend

(a) Conventional DFT (b) CubeLearn, Epoch = 1

(c) CubeLearn, Epoch = 4 (d) CubeLearn, Epoch = 15

Fig. 5. t-SNE visualization of the extracted features. Different colors represent
different gestures.

to mix together. This shows that the conventional DFT pre-
processing is not ideal for effectively extracting features from
the raw radar signal. With the output from conventional
DFT pre-processing, it could be quite challenging for the
downstream classifier to produce accurate predictions.

On the other hand, we can see from Fig. 5(b)-(d), with
the use of the CubeLearn module, the extracted features of
different classes become more distinguishable as the training
proceeds. This shows that during end-to-end training, the
optimizer is able to adjust the weights in the CubeLearn
module to produce more informative outputs. As the outputs
of the pre-processing module become more distinguishable, it
greatly reduces the burden of the downstream classifier, and
makes the task of achieving a higher accuracy simpler. In later
sections, we provide a further evaluation and discussion of the
strengths and limitations of the proposed CubeLearn module.

VI. EXPERIMENT SETUP

We conduct extensive experiments on three most com-
monly seen interaction tasks with mmWave radar, including
hand gesture recognition, arm gesture recognition and human
activity recognition. As there is no existing public dataset
that contains raw complex radar data available for the above
tasks, we collected our own dataset for evaluation. We try to
follow existing publications on experiment settings and ges-
ture/activity set designs. To understand the evaluation results,
we provide the design of tasks, hardware settings, and software
implementation details in this section.

A. Experiment Design

In this part we introduce our design of the hand gesture set,
arm gesture set and activity set in our experiment.

1) Task 1: Hand Gesture Recognition (HGR): For hand
gesture recognition, we follow the gesture set design of several
previous works [3], [16], [20] and define our gesture set used
in this work. Our gesture set design is shown in Fig. 6. The
hand gesture set contains: (a) Pinch Index; (b) Pinch Pinky;
(c) Slide Right; (d) Slide Left; (e) Rub Forward; (f) Rub
Backward; (g) Rotate Left; (h) Rotate Right; (i) Fist; (j) Swipe
Left; (k) Swipe Right; (l) Zoom Out. The palm is facing the
sensor at the beginning of each gesture, and the gestures are

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 6

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 6. Hand Gesture Set Design.

(a) (c) (e)

(b) (d) (f)

(g) (i) (k)

(h) (j) (l)

Fig. 7. Arm Gesture
Set Design.

based on the right hand and are performed 20cm away in front
of the sensor, as shown in Fig. 8(b).

Note that our hand gesture set design is much more difficult
than the hand gesture sets in most of the previous works on
hand gesture recognition with mmWave radar, as our gesture
set only involves hand movement, mostly fingers, and does
not include forearm movement.

2) Task 2: Arm Gesture Recognition (AGR): We design 12
commonly used gestures based on several previous works on
radar arm gesture recognition [2], [36], as shown in Fig. 7.
The gestures only involve right arm gestures and are performed
1.5m away in front of the radar, as shown in Fig. 8(c). The arm
gesture set contains: (a) Side Lift; (b) Side Down; (c) Front
Lift; (d) Front Down; (e) Forearm Lift; (f) Forearm Down; (g)
Push; (h) Pull; (i) Swipe Right; (j) Swipe Left; (k) Diagonal
Lift; (l) Diagonal Down.

3) Task 3: Human Activity Recognition (HAR): Another
commonly seen application is human activity recognition
(HAR). Different from HGR and AGR, HAR usually involves
continuous movements, which means the activities do not have
a certain ‘start time’ and ‘end time’. Instead of trying to
identify each start time as we do in gesture recognition, we
simply cut the data into equal-length samples. We also follow
the design in previous works [6], [7], [18], excluding those
we believe that are not appropriate for participants to perform
(e.g., crawling) or those that are too physically demanding
(e.g., jumping) for typical smart-home applications. We in-
clude the following 6 activities in our dataset: (a) Marching
on the spot; (b) Jogging on the spot; (c) Clapping; (d) Waving
right hand; (e) Sweeping the floor with the right hand; (f)
Rubbing left arm with right hand. The activities are performed
2m away in front of the radar in our data collection, as shown
in Fig. 8(d).

B. Data Collection Setup

In this paper we use a commercial-off-the-shelf Texas
Instruments IWR6843ISK mmWave sensor carried by
MMWAVEICBOOST, and DCA1000EVM for raw data
streaming. The sensor is mounted on a tripod, with a height
of around 110cm, as shown in Fig. 8(a). Raw radar data is
streamed and stored in PC continuously. For hand gesture
and arm gesture recognition, the starting time of each action
is logged and the data corresponding to each action is later
extracted from the raw data file according to the starting time
with a length of 1 second (10 CPIs).

We configured the radar with the following parameters: the
starting frequency of each chirp is configured to 60.25 GHz
with a frequency slope of 60 GHz/ms; the sampling rate is set
to 107 samples per second and we take 256 ADC samples at
each receiver antenna during a chirp; the period of each CPI
is 100ms, containing 128 chirp loops where the 3 transmitters
are activated one by one.

(a) device setup

Backend

PC

20cm

(b) hand gesture

data collection

(c) arm gesture

data collection

(d) activity data

collection

TI IWR6843

DCA1000EVM
1.5m

2m
1.1m

1.1m

Fig. 8. Experiment Settings.

We invite 8 participants for data collection3, including 4
males and 4 females, aged 26 to 55, with height approximately
from 160cm to 175cm, and bodyweight approximately from
45kg to 90kg. For each participant, we collected 30 samples
per hand/arm gesture, and 1 minute of activity, which is also
cut into 30 samples. The background environment of data
collection could vary across participants, but the experiment
settings are the same. The data from the 8 participants are
divided into two parts: 6 people are used as ‘in-set’ users,
whose data is used for training and ‘in-set’ testing; the
remaining 2 people are ‘out-of-set’ users, whose data is used
to test the generalization abilities of the trained model. For
‘in-set’ users, 15 of the 30 samples of each gesture/activity is
used for training, 5 used for validation and the remaining 10
used for testing, while for ‘out-of-set’ users, all 30 samples of
each gesture/activity are used for testing.

C. Neural Network Implementation

We implement the neural networks with PyTorch. The
complex layers are implemented based on an open-source
Python module called CplxModule4. For Range and Doppler
transformations, we configure the output size of the linear
layer to be the same as the input size. We only use azimuth
AoA information in this work, and for extracting AoA infor-
mation, we configured the output size to 64 instead of the input
size 8, so that the pre-processed data can be better fed into
the convolutional layer for further feature extraction. For D-
A-T and R-D-A-T pre-processing, we use the first half of the
raw data on sample and chirp axes because of GPU memory
limitation. This does not lose much information on Range and
Doppler dimensions, as we will discuss in Section X.

For the implementation of the neural network classifiers, we
use the same settings for each model. The kernel size for the
convolutional layers are set to 3 and the channels are set to
4, 8, and 16, respectively. We apply max-pooling operation
of size 2 on each dimension after each convolutional layer
excluding the CPI dimension. The LSTM is set to have a
hidden size of 512. The output size of the three fully-connected
layers is set to 512, 128 and 12/6 (depending on the number
of classes), respectively.

3The study has received ethical approval CS C1A 021 018
4https://github.com/ivannz/cplxmodule

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 7

We use the cross-entropy loss to train the network. The neu-
ral networks are trained with Adam optimizer. Each model is
trained for 30 epochs, and the best weights are saved according
to validation accuracy and loss (accuracy is prioritized than
loss).

VII. EVALUATION

In this section we first evaluate the accuracy of DFT pre-
processing based pipelines and CubeLearn based pipelines on
HGR task, then extend to AGR and HAR tasks. Some of the
pipelines with conventional DFT pre-processing are widely
adopted by previous works on related topics, e.g., D-T pre-
processing + CNN classifier [7], [15]–[18] and R-D-T pre-
processing + CNN-LSTM classifier [25], [26], etc. As a result,
they also serve as a comparison to previous related works.

We also evaluate the trained models on the ‘out-of-set’ users
whose data is not included in the training. Generalization
accuracy tends to be lower, as recognition accuracy can be
impacted by the shape and size of the user’s hand/body, how
the user performs the action, as well as the environmental
noise. This situation can certainly be mitigated by collecting
more training data with various users and environments, or
adopt transfer learning and life-long learning techniques. As
our main aim here is to evaluate the generalization ability of
our proposed CubeLearn based methods against conventional
DFT pre-processing based pipelines, we do not focus on
improving the generalization ability of a specific model/task
here.

Besides validating the performance of our proposed Cube-
Learn module, this section also serves as a comparison be-
tween pre-processing and classifier combinations on different
tasks.

A. Hand Gesture Recognition Evaluation

Fig. 9. Hand Gesture Recognition Accuracy.

We first evaluate our proposed CubeLearn module against
conventional DFT on HGR task. The results are shown in
Fig.9.

1) Impact of CubeLearn Module:
We can see from the figure that, with CubeLearn, the

model is able to have consistently better or at least compa-
rable performance than the DFT pre-processing counterparts.
This is especially pronounced on simpler models, e.g., R-
T pre-processing + 2DCNN classifier, A-T pre-processing +
2DCNN classifier and the widely adopted D-T pre-processing
+ 2DCNN classifier, with over 10% of accuracy improvement

for the latter two models. Even for some of the models
that already have a reasonably high recognition accuracy
(≥ 90%) with conventional DFT pre-processing, our proposed
CubeLearn module is usually able to further improve attained
accuracies by around 1 ∼ 5%. These results show that our
proposed CubeLearn module is a powerful tool to boost recog-
nition accuracy on motion recognition tasks with mmWave
radar.

2) Impact of the Combination of Pre-processing and Clas-
sifier: For ‘in-set’ testing, we generally have better perfor-
mance with higher dimensional pre-processing. R-D-A-T pre-
processing based model achieves the best testing accuracy of
97.36% with conventional DFT and 98.06% with CubeLearn.
And also, two-dimensional pre-processing (R-D-T, R-A-T
and D-A-T) have significantly better performance than one-
dimensional pre-processing (R-T, D-T, A-T). Higher dimen-
sional pre-processing inherently has more informative features,
and the additional information can be utilized to better distin-
guish between different hand gestures. Also for R-D-T, R-
A-T and D-A-T pre-processing, we find that 2DCNN-LSTM
classifier behaves better than 3DCNN classifier, probably
because the LSTM can better track the temporal relationships
between frames in a gesture sample through the explicit latent
feature space.

3) Generalization to Out-of-set Users:
When encountering out-of-set users, our proposed Cube-

Learn can still achieve better performances than DFT pre-
processing for the majority of the models.

Having a closer investigation we can observe that the
CubeLearn tends to further increase the generalization abil-
ity on more generalizable models, as these models capture
more features that represents the underlying physical model,
rather than some special properties of the training data. For
example, in D-A-T + 2DCNN-LSTM classifier, with DFT pre-
processing module the model is able to have around 63%
of testing accuracy on ‘out-of-set’ subjects, and the proposed
CubeLearn module can improve the accuracy to around 72%.

Comparing across different models, we find that the models
with Doppler information have better generalization abilities.
This is because Doppler information is invariant to the lo-
cation where the gesture is performed, as long as the ges-
ture or activity is oriented towards the radar. As CubeLearn
can extract more distinguishable Doppler features through a
learnable complex linear layer, the generalization abilities of
Doppler-based models tend to further improve compared to
conventional DFT pre-processing counterparts.

However, with the strong feature extracting ability of the
CubeLearn module, some specific characteristics of the train-
ing samples could also be extracted and carried over, which
sometimes makes it harder for the model to generalize to
previous unseen subjects. For example for R-T pre-processing
+ 2DCNN classifier, although CubeLearn can attain better
test performance with ‘in-set’ users, it generalizes less well
than conventional DFT pre-processing, as the Range feature
itself is inherently not able to generalize well on ‘out-of-set’
subjects, as the conventional DFT based pre-processing model
achieving less than 30% accuracy. Luckily when solving real-
world problems, we would most likely pick models that use

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 8

features with strong generalization ability, and in these cases,
CubeLearn module could also be beneficial to the testing
accuracy on ‘out-of-set’ users.

With respect to radar data cube slicing, differently from ‘in-
set’ testing, higher dimensional pre-processing does not always
lead to better generalization performance. For example, the
D-A-T + 3DCNN model has better generalization ability than
R-D-A-T + 3DCNN-LSTM model, also because that the R-D-
A-T features overfit to the training subjects. This could also
be a function of the training set size - a dataset of hundreds of
users would likely generalize well, even for higher dimensional
models.

B. Generalization to AGR and HAR Task

Fig. 10. Arm Gesture Recognition Accuracy.

Fig. 11. Human Activity Recognition Accuracy.

We further evaluate our proposed method against conven-
tional DFT on the other two tasks, and the results are shown
in Fig. 10 and Fig. 11. AGR task is similar to HGR task,
where each gesture is represented by a sequence of frames, but
it is much easier as the movements are bigger which makes
them more obvious to mmWave radar. HAR is fundamentally
different as it mainly involves recognizing continuous and
repetitive movements.

From the ‘in-set’ testing result we can see that, the model
performances on AGR and HAR are generally better than HGR
task. Still, our CubeLearn module can consistently improve
the performance of different pipelines, by extracting the most
informative features from the raw radar signal cube. The
proposed module can be extremely beneficial sometimes, e.g.,
increasing the accuracies of some of the simpler models (R-T,
D-T, A-T) by almost 15% to 20%. This is an important finding,
as R-T and D-T are the most basic signals which all FMCW
radars will support, regardless of the number of antennas,
and they are more computational efficient for edge devices.
This means that a simpler radar (with respect to hardware

configuration) could achieve the performance of a much more
sophisticated device, merely through the use of CubeLearn.

Different from HGR/AGR case, in HAR task we find that
using LSTM in the downstream classifier does not always
yield better performance. For example when using R-A-T
pre-processing, the 3DCNN classifier has better performance
than the 2DCNN-LSTM classifier. This suggests that the
LSTM might be better at recognizing gestures than continuous
motion, and for continuous motion recognition, both classifiers
are worth trying.

The accuracies for ‘out-of-set’ test are also higher as the
tasks themselves are less challenging to generalize due to
their more pronounced motion. The accuracies of some models
on ‘out-of-set’ subjects are comparable to the accuracies on
‘in-set’ subjects, such D-T + 2DCNN in HAR task. By
analyzing the ‘out-of-set’ test results, we can arrive at a
similar conclusion as in the HGR task, i.e., our proposed
CubeLearn module can be beneficial for most models, and
Doppler features are more important for motion recognition
than Range or AoA features.

C. Convergence Analysis

(a) HGR: D-T pre-processing + 2DCNN classifier

(b) HAR: R-D-T pre-processing + 3DCNN classifier

Fig. 12. Visualization of the training processes.

We further compare the convergence speed of methods
based on DFT pre-processing and CubeLearn. We visualize
the training process, including the training accuracy/loss and
the validation accuracy/loss, for D-T pre-processing + 2DCNN
classifier on HGR task and R-D-T pre-processing + 3DCNN
classifier on HAR task in Fig. 12. In both cases, the model
with CubeLearn is able to converge in fewer epochs, typically
within 15 epochs, with loss decreasing and accuracy increas-
ing much faster. Furthermore, from Fig. 12 (b) we can see
that, though the models converge to approximately the same
training loss and accuracy, completely fitting the training set,
there is a constant validation loss/accuracy difference between
the models, which shows the network with the CubeLearn
module can actually better learn the physical model behind
the task. Note that this shows that the superior performance
of the CubeLearn module is not merely because of more
trainable parameters, as in this case CubeLearn based model

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 9

and conventional DFT based model both completely fit the
training data, while the CubeLearn based model still yields
better performance on the validation/testing set.

VIII. ABLATION STUDY

A. Impact of Complex Layer Learning Rate

The learning rate of the CubeLearn module controls the
speed at which the complex layer weights vary, which can
be set differently from the learning rate of the neural net-
work classifier. With a higher CubeLearn module learning
rate, the weights of the complex linear layers change faster
during training - the coupling between the pre-processing and
classification networks could cause the system as a whole to
converge to a sub-optimal set of weights. To find the optimal
learning rate for the complex layers (or the ratio between the
learning rates of the CubeLearn module and the classifier),
in this part we study the impact of the CubeLearn module
learning rate on the model overall accuracy. We use the D-T
pre-processing + 2DCNN classifier model on HGR task here
for demonstration. The learning rate of the neural network
classifier is set to 0.0003 for all the cases. Each model is run
multiple times. The result is shown in Fig. 13.

Fig. 13. Test accuracy V.S. different learning rates.

Fig. 14. Loss and Accuracy curve. Red: Training; Green: Validation.
Darker color represents higher CubeLearn module learning rate.

From the results we can see that, both ‘in-set’ and ‘out-of-
set’ testing, with the increase of the CubeLearn module learn-
ing rate, the model accuracy first increases, then decreases.
Note that when the learning rate is 0, the model degenerates to
a conventional fixed DFT pre-processing + 2DCNN classifier
model. With the learning rate from 0.00005 to 0.0001, the
optimizer is able to adjust the weights of the CubeLearn
module to achieve better model accuracy, for ‘in-set’ and ‘out-
of-set’ subjects test. With the learning rate further increasing,
the model is likely to overfit to the training subjects, and
even to the training samples. As shown in the figure, the

generalization accuracy begins to decrease when the learning
rate of the CubeLearn module is larger than 0.001, which
shows that the model is overfitted to the training subjects. The
‘in-set’ test accuracy is able to be maintained at a relatively
high level until the learning rate reaches 0.03. When the
learning rate is larger than 0.03, the model further overfits
to the training samples, leading to an accuracy degradation on
the ‘in-set’ test as well.

Fig. 14 shows the training and validation loss and accuracy
curve of the models with different CubeLearn module learning
rates. We can see that for training set, with a higher learning
rate the model is able to converge at a smaller training loss,
and larger training accuracy. However, a suitable learning rate
could make the model converge faster. For validation set, either
a learning rate that is too small or too large yields sub-optimal
performance, and the smallest loss and highest accuracy can
only be achieved with a proper learning rate of the complex
layers, which is 0.001 in this case. Note that the optimal
learning rate ratio between the CubeLearn module and the
neural network classifier can vary for different pre-processing
and classifier combinations as well as on different tasks.

B. Impact of Weight Initialization Method

The initialization of the weights in the stacked complex lin-
ear layers affects the model accuracy as well as convergence.
In this part we try different weight initialization strategies,
including: (1) Log-DFT initialization, where the weights are
initialized with Fourier Transform bases more focusing on the
low frequency part (LDFT); (2) Default Random initialization
(He Initialization [37]) for both real and imaginary parts of the
complex weights (Rand); (3) Random Non-uniform Discrete
Fourier Transform bases initialization, where the initialize
weights are based on random Fourier Transform bases (sorted)
(NUDFT); (4) Target Focus initialization, where the infor-
mation (e.g., distance, velocity, AoA) regarding the target is
known and the bases of the Fourier initialization are generated
close to the target frequency with normal distribution (TF).

We compare the complex linear layers initialization methods
with two most common models: D-T pre-processing + 2DCNN
classifier on HGR task and R-D-T pre-processing + 3DCNN
classifier on HAR task. The evaluation result is shown in
Fig. 15, where we can see that the model generally is not
very sensitive to the weight initialization method, and is able
to converge in each case.

(a) D-T + 2DCNN classifier (b) R-D-T + 3DCNN classifier

Fig. 15. Initialization Method Ablation Study.

Log-DFT initialization focuses on the low frequency part,
which produces slightly better generalization accuracy for the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 10

HGR task, because in the Range domain, the high frequencies
correspond to distant targets, which is the background environ-
ment in this case. However, we observe a slight performance
downgrade for the HAR task, because the user is 2 meters
away from the sensor in the HAR task, which is approximately
in the middle of the frequency spectrum rather than low-
frequency part. With the Log-DFT initialization focusing on
the low-frequency part, there are in fact fewer bases initially
focus on the target. As a result, Log-DFT might be beneficial
for recognizing targets that are close to the sensor, however,
this type of initialization needs careful design.

We find that with random initialization, the model has
worse ‘in-set’ and ‘out-of-set’ accuracy. Especially for the
HAR case, the accuracy drops to below 80% and the ‘out-
of-set’ generalization accuracy even drops to below 40%. For
HGR the ‘out-of-set’ generalization accuracy also drops sig-
nificantly. Using random initialization basically means giving
up the prior knowledge about radar signal processing, which
is not desirable, especially when the number of samples in the
training set is limited.

The Random NDUFT initialization is theoretically quite
similar to DFT bases initialization, for the bases are sampled
with uniform distribution across the frequency spectrum and
re-organized from low frequency to high frequency. However,
from the result we see that this kind of initialization is not as
stable as uniform DFT bases initialization, with slightly worse
average performance.

Target focus initialization is very hard to use in practice,
since it requires prior knowledge of the location, velocity and
AoA of the target, and a lot of engineering effort. Interestingly,
we do not observe better performance even with careful
parameter tuning.

In conclusion, in practice it is reasonable to simply use DFT
bases to initialize the weights of the complex linear layers due
to their simplicity, high accuracy and stable performance.

C. Impact of Network Structure

We further conduct an ablation study of the pre-processing
module structure. We also use the D-T pre-processing +
2DCNN classifier model on HGR task and R-D-T pre-
processing + 3DCNN classifier model on HAR task here, as
they are the most commonly seen models in previous works.
Besides, learnable D-T pre-processing can be directly com-
pared to RadarNet [12] and learnable R-D-T pre-processing
can be directly compared to 2D Sinc/Wavelet Filters [11].
As mentioned in Section II, RadarNet and 2D Sinc/Wavelet
Filters are two previously proposed methods for end-to-end
radar signal processing.

We compare the performance of our proposed structure to
the following variations: (1) Adding Activation between Com-
plex Linear Layers (ModReLU [38], CReLU [39], zReLU
[40]); (2) Learnable Non-uniform Discrete Fourier Transform
(NUDFT), where we constrain the learned weights to still
represent Fourier Transform bases; (3) Log after Modulus
(Log), where the log operation is applied after taking the
modulus to represent power spectrum as in [12], [41]; (4)
Clutter Removal (CR), where we subtract the chirp average

from the raw radar data cube before feeding it into the
network; (5) Fully-Complex Network (FC), where we do not
take modulus after pre-processing, and use a fully complex
version of the downstream classifier; (6) RadarNet [12]; and
(7) 2D Sinc Filters and 2D Wavelet Filters [11].

As RadarNet [12] is designed for CW radar rather than
FMCW radar, we first do Range DFT on the raw radar
data, and then apply the pre-processing module introduced in
RadarNet for Doppler estimation on each Range bin, then sum
along the Range axis. Besides, we use log operation instead of
tanh which is suggested in the original paper, as the network
does not converge when using tanh in our case. For Sinc
and Wavelet Filters [11], we apply it on each CPI and use
the CPI number as an additional dimension, since the radar
configuration is different in this work. Besides, we find that
the hyper-parameters greatly impact the Sinc/Wavelet Filter
performance, so we try different combinations and select the
best one. Both RadarNet and Sinc/Wavelet Filters takes real-
valued data, and we disregard the imaginary part of the data.

(a) HGR: D-T + 2DCNN classifier

(b) HAR: R-D-T + 3DCNN classifier

Fig. 16. Structure Ablation Study.

The result is shown in Fig. 16. We can see that, adding
an activation function between the complex linear layers
decreases the model performance, especially the generalization
ability. This is probably because in the stacked complex
linear layers, extracting the Doppler information through the
transformation of the latter complex linear layer relies on the
output phase information of the previous complex linear layer.
Adding a non-linear activation between the complex linear
layers, especially CReLU and zReLU, could result in the
valuable phase information being altered or lost.

NUDFT structure produces a slightly worse result than
CubeLearn, since the change of the weights is restricted and
not as flexible. As for adding the log operation after the Cube-
Learn module, we do not observe performance improvement.
In fact, for the HAR case, adding the log operation downgrades
the generalization ability, probably because the difference of
peak magnitude and average magnitude is smaller, making the
learned features less distinguishable.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 11

Clutter removal operation removes reflection of static targets
(e.g., background), and make the model learn properties of
the moving target, which increases the model generalization
ability in HAR case. On the other hand, as it actually cancels
out all the static information, including the information of the
target, for HGR task where the hand is very close to the
sensor and occupying a larger field of view, removing the
static information slightly decreases the model performance.
Besides, if we are to recognize the static target, e.g., in
static gesture recognition, clutter removal will certainly not
work. As a result, whether adding clutter removal is beneficial
or not depends on the task. For tasks to recognize moving
targets that are relatively further away, adding clutter removal
could increase the model generalization ability by removing
the background reflections. While recognizing partial static or
static targets, especially in cases where the target occupies a
large field of view and the reflection from the environment has
limited impact, adding clutter removal could possibly decrease
the performance.

Using the processing module in RadarNet lowers the ac-
curacy. This is because RadarNet only consumes the real
input, so it loses half of the information, which leads to
a worse accuracy. 2D Sinc Filters and 2D Wavelet Filters
also takes real-valued input, so the accuracy is not as good
as other structures. We find that compared to our proposed
CubeLearn with complex linear layers, 2D Sinc Filters and
2D Wavelet Filters are very easy to become overfitted to the
training samples, and are very sensitive to the layer parameters.
For ‘out-of-set’ test, we observe that 2D Wavelet Filters have
competent generalization abilities, much higher than 2D Sinc
Filters.

In conclusion, compared to other variations, our proposed
stacked complex linear layers achieve good and stable per-
formance. Adding clutter removal could possibly improve the
generalization abilities of the model in some tasks, but needs
to be used with caution.

IX. RUNNING TIME ANALYSIS

The Discrete Fourier Transform is usually implemented with
Fast Fourier Transform algorithm, which is very computation-
ally efficient (O(n log n)). Using the stacked complex linear
layers introduces more parameters in the network, which will
result in larger complexity and longer inference time. In this
part we analyze the running time of the proposed method
against classical hybrid baselines on PC and Raspberry Pi.
The experiment PC we use features an AMD Ryzen 3800X
CPU with 64GB memory, and Nvidia RTX2080Ti graphics
card, and the Raspberry Pi we use is Raspberry Pi 4 with
8GB main memory. For DFT based pre-processing, we use
‘torch.fft’ in ‘pytorch’ package for possible GPU acceleration
when testing on PC, and use ‘scipy.fftpack.fft’ in ‘scipy’
package on Raspberry Pi since ‘torch.fft’ is not supported on
ARM architecture. The structures of the neural networks are
discussed in Sec. VI-C. Note that the running time reported
in this section is based on models for HGR/AGR task.

The result is summarized in TABLE. III. Not surprisingly,
the computation of complex linear layers is more expensive

Model PC Time (ms) Raspberry Pi Time (ms)
DFT CubeLearn DFT CubeLearn

R-T + 2DCNN 0.99 1.25 15.00 35.71
D-T + 2DCNN 1.05 1.65 77.41 484.13
A-T + 2DCNN 1.08 1.61 39.51 165.32

R-D-T + 2DCNN-LSTM 1.63 2.27 625.72 1018.70
R-D-T + 3DCNN 1.14 1.75 419.31 745.10

R-A-T + 2DCNN-LSTM 1.62 2.21 308.38 528.02
R-A-T + 3DCNN 1.15 1.69 222.17 357.00

D-A-T + 2DCNN-LSTM 3.18 5.29 1486.26 2456.30
D-A-T + 3DCNN 2.92 5.02 1626.13 2513.14

R-D-A-T + 3DCNN-LSTM 18.73 24.38 - -

TABLE III
RUNNING TIME ON PC AND RASPBERRY PI PER SAMPLE.

than FFT, as each layer is actually called multiple times
during inference. With GPU acceleration on PC, adding the
learnable complex layers would add 47.7% of inference time
for one sample on average (SD=15%). When running with
the ARM CPU on Raspberry Pi 4, the running time for
each sample increases 152.7% on average (SD=163.1%). The
computational cost grows exponentially with the number of
dimensions of the raw data cube used. For example, with
D-A-T or R-D-A-T pre-processing, the neural network has
to perform complex linear transformation on all three di-
mensions, which leads to a large increase in inference time.
However, in practice, complex models (e.g., D-A-T and R-
D-A-T pre-processing based models) are less likely to be
used on edge devices. For simpler models that can run real
time on edge devices, CubeLearn could greatly improve the
recognition accuracy, as shown in previous sections, with
acceptable complexity increase. Furthermore, we can have a
smaller input size with our proposed end-to-end network, to
achieve better performance and even smaller running time than
DFT baselines, as introduced in the next section.

X. IMPACT OF RAW DATA SIZE

(a) HGR: D-T + 2DCNN classifier (b) HAR: R-D-T + 3DCNN classifier

Fig. 17. Accuracy and inference time with different size of raw data input.

The raw radar signal contains repetitive patterns on ADC
samples in a chirp, and across chirps in a CPI. As a result, low-
ering the number of samples and chirp number in a CPI would
possibly still yield a similar level of recognition performance,
while making the neural network much more light-weight. In
this part we tested the performance of two models with various
input sizes: D-T pre-processing + 2DCNN classifier on HGR
task and R-D-T pre-processing + 3DCNN classifier on HAR
task, as well as the running speed on Raspberry Pi4. Note
that the running time of the R-D-T pre-processing + 3DCNN
classifier is different from the one reported in Section IX

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 12

because each sample lasts 2 seconds for HAR task, instead
of 1 second for HGR task which we studied previously.

The input here is actually a series of sample-chirp data
slices. For both axes, we try using the first 1/8, 1/4, ..., 7/8
of the data points on each dimension as input. As we have a
smaller size of the input, the size of the pre-processing module
and the neural network classifier is also smaller, which reduces
the computational complexity. The result is shown in Fig. 17,
the text beside each data point refers the ratio of the samples
and chirps we use for each CPI. To have a fair comparison,
each model is run multiple times.

We can see that the full-sized input actually contains re-
dundant information. With even 3/8 of the original input size
on sample and chirp dimension, we are still able to achieve
relatively high performance, better than full sized input with
conventional DFT pre-processing. For the HAR case, with 3/8,
1/2 or 5/8 size on each dimension of the original input, the
inference time on Raspberry Pi 4 of the CubeLearn based
model is smaller than conventional DFT pre-processing based
model with full-sized input, but achieves better classification
accuracy. Especially with 3/8 of size on both dimensions,
the accuracy could reach 98% while the inference time is
approximately 200ms.

In fact, for specific tasks, we can further reduce the com-
plexity and running time by, e.g., using fewer neurons to
represent the transformation output with the initialization of
only the Fourier bases corresponding to the distance and
velocity of the target. Besides, we can also utilize hardware-
level parallel, processing the data of the current CPI while
receiving the data for the next CPI. As a result, we believe
that with an optimized implementation as future work, our
proposed end-to-end model would execute in real-time on
resource constrained devices, with superior performance to the
DFT front-end.

XI. DISCUSSION

A. Model Selection

As we have discussed in Section VII, R-D-A-T pre-
processing + 3DCNN-LSTM classifier shows good accuracy
on different motion recognition tasks, especially with our pro-
posed learnable pre-processing module, as information from
all three dimensions (Range, Doppler and AoA) are utilized
for target classification. However, it mainly has two prob-
lems which limit its adoption. The first one is computational
complexity, which can be higher especially on edge devices
without GPU acceleration (an issue similarly shared by D-A-T
pre-processing). Another problem is that it requires multiple
receivers for AoA estimation, which is not always supported
by the hardware itself, so this type of model is best suitable
for MIMO radar with abundant computational resource.

Doppler information is the most important for motion recog-
nition. As a result, considering the complexity and accuracy on
both ‘in-set’ users and ‘out-of-set’ users, D-T or R-D-T pre-
processing can be good choices, especially for 1Tx-1Rx radar
configuration. Besides, D-T pre-processing can be extended
to other types of radar as well, e.g., Continuous-wave (CW)
radar.

B. Robustness

For learning based methods, including our proposed neural
network in this paper, the generalization ability, i.e., robustness
to different situations, is always an important concern. In
this paper, we make a preliminary investigation into this
topic by collecting data from different users and in different
environments. We suggest that more comprehensive research
on this topic can be done in future works.

C. Utilizing Elevation Angle Information

In this paper, we evaluated and compared models that are
based on Range, Doppler and Azimuth Angle information as
inputs. With a 2D MIMO attena array, the radar is also able to
capture elevation angle information, which can potentially be
used for human gesture/activity recognition as well. However,
in this case, the network design could be different. If we try to
utilize all the information simultaneously, i.e., range, Doppler,
azimuth angle and elevation angle, then we would need to
apply a 4D convolutional layer which is not commonly seen
in neural network architectures. Alternatively, we can explore
other network structures.

D. Other Structures

While the order of the linear layers is worth studying, other
structures for extracting information from raw radar signals
are also worth exploring. Transformer architecture [42] was
proposed in recent years, which has shown very good perfor-
mance on a wide variety of tasks like machine translation. With
positional encoding for different virtual antennas, we could
use the encoder part of the transformer model, potentially a
complex-weighted version, to extract Range, Doppler and AoA
features together into a latent embedding and directly perform
classification on the latent vector. In this way, we can get
rid of the downstream CNN/CNN-LSTM architecture as well.
We believe this is also a promising direction to study in future
work.

XII. CONCLUSION

In this paper, we propose CubeLearn, a learnable pre-
processing module to replace conventional Discrete Fourier
Transform (DFT) pre-processing in mmWave FMCW radar
gesture/activity recognition pipelines. We demonstrate that
through end-to-end training, our proposed CubeLearn module
is able to extract more distinguishable features than conven-
tional DFT pre-processing, which makes it easier for the down-
stream classifier to make correct predictions and improve the
overall model accuracy. We evaluate our proposed method on
our own collected dataset of hand gestures, arm gestures and
activities. Results show that for all the tasks and different pre-
processing/classifier combinations, the classification accuracy
can be consistently improved with the proposed CubeLearn
module, and the training is able to converge in fewer epochs.
We envision our proposed method as a small step towards
a universal feature extractor for end-to-end deep learning on
raw mmWave radar data. Future works would be focusing on
exploring more efficient end-to-end structures and improving
the model robustness.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 14, NO. 8, AUGUST 2021 13

REFERENCES

[1] A. Singh, S. U. Rehman, S. Yongchareon, and P. H. J. Chong, “Multi-
resident non-contact vital sign monitoring using radar: A review,” IEEE
Sensors Journal, 2020.

[2] S. Palipana, D. Salami, L. A. Leiva, and S. Sigg, “Pantomime: Mid-
air gesture recognition with sparse millimeter-wave radar point clouds,”
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies, vol. 5, no. 1, pp. 1–27, 2021.

[3] S. Wang, J. Song, J. Lien, I. Poupyrev, and O. Hilliges, “Interacting with
soli: Exploring fine-grained dynamic gesture recognition in the radio-
frequency spectrum,” in Proceedings of the 29th Annual Symposium on
User Interface Software and Technology, 2016, pp. 851–860.

[4] F. Jin, A. Sengupta, and S. Cao, “mmfall: Fall detection using 4-
d mmwave radar and a hybrid variational rnn autoencoder,” IEEE
Transactions on Automation Science and Engineering, 2020.

[5] B. Wang, L. Guo, H. Zhang, and Y.-X. Guo, “A millimetre-wave
radar-based fall detection method using line kernel convolutional neural
network,” IEEE Sensors Journal, vol. 20, no. 22, pp. 13 364–13 370,
2020.

[6] A. D. Singh, S. S. Sandha, L. Garcia, and M. Srivastava, “Radhar:
Human activity recognition from point clouds generated through a
millimeter-wave radar,” in Proceedings of the 3rd ACM Workshop on
Millimeter-wave Networks and Sensing Systems, 2019, pp. 51–56.

[7] K. Ahuja, Y. Jiang, M. Goel, and C. Harrison, “Vid2doppler: Synthe-
sizing doppler radar data from videos for training privacy-preserving
activity recognition,” in Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, 2021, pp. 1–10.

[8] A. Khamis, B. Kusy, C. T. Chou, M.-L. McLaws, and W. Hu, “Rfwash: a
weakly supervised tracking of hand hygiene technique,” in Proceedings
of the 18th Conference on Embedded Networked Sensor Systems, 2020,
pp. 572–584.

[9] S. Ahmed, K. D. Kallu, S. Ahmed, and S. H. Cho, “Hand gestures recog-
nition using radar sensors for human-computer-interaction: A review,”
Remote Sensing, vol. 13, no. 3, p. 527, 2021.

[10] X. Li, Y. He, and X. Jing, “A survey of deep learning-based human
activity recognition in radar,” Remote Sensing, vol. 11, no. 9, p. 1068,
2019.

[11] T. Stadelmayer and A. Santra, “Data-driven radar processing using a
parametric convolutional neural network for human activity classifica-
tion,” 2021.

[12] W. Ye, H. Chen, and B. Li, “Using an end-to-end convolutional network
on radar signal for human activity classification,” IEEE Sensors Journal,
vol. 19, no. 24, pp. 12 244–12 252, 2019.

[13] R. Zhao, X. Ma, X. Liu, and J. Liu, “An end-to-end network for
continuous human motion recognition via radar radios,” IEEE Sensors
Journal, 2020.

[14] X. Zheng, Z. Yang, K. He, and H. Liu, “Hand gesture recognition
based on range doppler-angle trajectory and lstm network using an
mimo radar,” in Eleventh International Conference on Signal Processing
Systems, vol. 11384. International Society for Optics and Photonics,
2019, p. 113840P.

[15] B. Dekker, S. Jacobs, A. Kossen, M. Kruithof, A. Huizing, and
M. Geurts, “Gesture recognition with a low power fmcw radar and a deep
convolutional neural network,” in 2017 European Radar Conference
(EURAD). IEEE, 2017, pp. 163–166.

[16] Q. Wu, D. Zhao et al., “Dynamic hand gesture recognition using fmcw
radar sensor for driving assistance,” in 2018 10th International Con-
ference on Wireless Communications and Signal Processing (WCSP).
IEEE, 2018, pp. 1–6.

[17] W. Jiang, Y. Ren, Y. Liu, Z. Wang, and X. Wang, “Recognition of
dynamic hand gesture based on mm-wave fmcw radar micro-doppler
signatures,” in ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp.
4905–4909.

[18] R. Zhang and S. Cao, “Real-time human motion behavior detection via
cnn using mmwave radar,” IEEE Sensors Letters, vol. 3, no. 2, pp. 1–4,
2018.

[19] Y. Wang, S. Wang, M. Zhou, Q. Jiang, and Z. Tian, “Ts-i3d based hand
gesture recognition method with radar sensor,” IEEE Access, vol. 7, pp.
22 902–22 913, 2019.

[20] M. Scherer, M. Magno, J. Erb, P. Mayer, M. Eggimann, and L. Benini,
“Tinyradarnn: Combining spatial and temporal convolutional neural
networks for embedded gesture recognition with short range radars,”
IEEE Internet of Things Journal, pp. 1–1, 2021.

[21] P. Goswami, S. Rao, S. Bharadwaj, and A. Nguyen, “Real-time multi-
gesture recognition using 77 ghz fmcw mimo single chip radar,” in
2019 IEEE International Conference on Consumer Electronics (ICCE).
IEEE, 2019, pp. 1–4.

[22] J.-T. Yu, L. Yen, and P.-H. Tseng, “mmwave radar-based hand gesture
recognition using range-angle image,” in 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring). IEEE, 2020, pp. 1–5.

[23] R. Huang, Z. Li, S. Wang, R. Wang, J. Li, and Z. Xu, “A rd-t network
for hand gesture recognition based on millimeter-wave sensor,” in 2020
IEEE 5th International Conference on Signal and Image Processing
(ICSIP). IEEE, 2020, pp. 308–312.

[24] Y. Wang, Z. Zhao, M. Zhou, and J. Wu, “Two dimensional parameters
based hand gesture recognition algorithm for fmcw radar systems,” in
International Conference on Wireless and Satellite Systems. Springer,
2019, pp. 226–234.

[25] P.-h. CHEN, Y.-j. BAI, and W. Jun, “Gesture recognition using lfmcw
radar and convolutional neural network,” DEStech Transactions on
Computer Science and Engineering, no. cscme, 2019.

[26] S. Hazra and A. Santra, “Short-range radar-based gesture recognition
system using 3d cnn with triplet loss,” IEEE Access, vol. 7, pp. 125 623–
125 633, 2019.

[27] S. Hazra and A. Santra, “Radar gesture recognition system in pres-
ence of interference using self-attention neural network,” in 2019 18th
IEEE International Conference On Machine Learning And Applications
(ICMLA). IEEE, 2019, pp. 1409–1414.

[28] T. Sakamoto, X. Gao, E. Yavari, A. Rahman, O. Boric-Lubecke, and
V. M. Lubecke, “Hand gesture recognition using a radar echo i–q plot
and a convolutional neural network,” IEEE sensors letters, vol. 2, no. 3,
pp. 1–4, 2018.

[29] X. Yao, X. Shi, and F. Zhou, “Human activities classification based on
complex-value convolutional neural network,” IEEE Sensors Journal,
vol. 20, no. 13, pp. 7169–7180, 2020.

[30] W. Ye and H. Chen, “Human activity classification based on micro-
doppler signatures by multiscale and multitask fourier convolutional
neural network,” IEEE Sensors Journal, vol. 20, no. 10, pp. 5473–5479,
2020.

[31] K. Rambach and B. Yang, “Mimo radar: time division multiplexing vs.
code division multiplexing,” 2017.

[32] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276–
280, 1986.

[33] M. Schutz, C. Decroze, M. Lalande, and B. Lenoir, “Neural networks to
increase range resolution of fmcw radar,” IEEE Sensors Letters, vol. 4,
no. 8, pp. 1–4, 2020.

[34] M. Gall, M. Gardill, T. Horn, and J. Fuchs, “Spectrum-based single-
snapshot super-resolution direction-of-arrival estimation using deep
learning,” in 2020 German Microwave Conference (GeMiC). IEEE,
2020, pp. 184–187.

[35] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[36] H. Liu, Y. Wang, A. Zhou, H. He, W. Wang, K. Wang, P. Pan, Y. Lu,
L. Liu, and H. Ma, “Real-time arm gesture recognition in smart home
scenarios via millimeter wave sensing,” Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 4, no. 4,
pp. 1–28, 2020.

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE international conference on computer vision,
2015, pp. 1026–1034.

[38] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary evolution recurrent
neural networks,” in International Conference on Machine Learning.
PMLR, 2016, pp. 1120–1128.

[39] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F.
Santos, S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal, “Deep
complex networks,” arXiv preprint arXiv:1705.09792, 2017.

[40] N. Guberman, “On complex valued convolutional neural networks,”
arXiv preprint arXiv:1602.09046, 2016.

[41] D. A. Brooks, O. Schwander, F. Barbaresco, J.-Y. Schneider, and
M. Cord, “Complex-valued neural networks for fully-temporal micro-
doppler classification,” in 2019 20th International Radar Symposium
(IRS). IEEE, 2019, pp. 1–10.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3237494

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Edinburgh. Downloaded on March 04,2023 at 09:27:25 UTC from IEEE Xplore. Restrictions apply.

