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Abstract—Low-resolution infrared-based human activity
recognition (HAR) attracted enormous interests due to its
low-cost and private. In this paper, a novel semi-supervised
crossdomain neural network (SCDNN) based on 8 × 8 low-
resolution infrared sensor is proposed for accurately identifying
human activity despite changes in the environment at a low-cost.
The SCDNN consists of feature extractor, domain discriminator
and label classifier. In the feature extractor, the unlabeled and
minimal labeled target domain data are trained for domain
adaptation to achieve a mapping of the source domain and
target domain data. The domain discriminator employs the
unsupervised learning to migrate data from the source domain
to the target domain. The label classifier obtained from training
the source domain data improves the recognition of target
domain activities due to the semi-supervised learning utilized in
training the target domain data. Experimental results show that
the proposed method achieves 92.12% accuracy for recognition
of activities in the target domain by migrating the source and
target domains. The proposed approach adapts superior to
cross-domain scenarios compared to the existing deep learning
methods, and it provides a low-cost yet highly adaptable solution
for cross-domain scenarios.

Index Terms—human activity recognition (HAR), low-
resolution infrared array sensor, cross-domain recognition.

I. INTRODUCTION

THE era of the Internet of Things (IoT) arrived, the
elements of smart and convenient can be common sight in

people’s life [1]. Human Activity Recognition (HAR) system,
an import part of IoT technology, become one of the research
hotspots in recent years. The tasks such as power operation and
factory operation, some dangerous activities can be detected
by HAR system to protect the safety of workers or avoid
accidents. In a smart home scenario, human utilize HAR
system to interact with electrical equipment or monitor their
health.

The existing approaches to achieve HAR mainly resort
to computer vision and kinds of sensors. The computer vi-
sionbased approaches [2]–[7] were common and widespread
way of implementing HAR, however, reliance on cameras to
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acquire data is heavily influenced by light and obscuration.
More importantly, smart homes were often less receptive to
the approach due to privacy concerns. Researchers utilized
smartphones or wearable devices to recognize human activities
in [8]–[13], but they were not always carrying equipment.
Channel state information (CSI)-based HAR methods [14]–
[16] received a lot of attention in recent years due to its
nonintrusive sensing properties. The CSI signal acquisition
requires more than two devices of intel 5300NICs or Atheros,
both of them need a serial connection to a PC for data
acquisition. It is not a convenient solution in terms of either
device acquisition or deployment.

Recently, infrared sensors are proposed as a new HAR
schemes because of its convenient deployment and lightin-
dependent [17]–[19]. Low-resolution infrared sensors, in par-
ticular, are cheaper than higher-resolution sensors and offer
privacy protection. Jeong et al. [20] interpolated 8 × 8
low-resolution infrared sensor data and utilized the higher
dimensional data obtained from the interpolation to recognize
human activity. Mashiyama et al. [21] proposed a method
for activity recognition utilizing a AMG8833, a 8 × 8 low-
resolution infrared array sensor. The temperature distribution
obtained from the sensor is analysed and classified into five
basic states, no event, stopped, walking, sitting and emergency.
Burns et al. [22] employed two 32 × 31 infrared sensors
for person behaviour detection from both the top and side
directions. The limited dimensionality of the data collected by
low-resolution sensors makes feature extraction more difficult.
It is doubtless a great challenge to achieve high accuracy for
low-resolution infrared array sensors. With the addition of
deep learning, it is possible to employ low-resolution infrared
to achieve higher accuracy of HAR. Fan et al. [23] utilized an
8 × 8 infrared array sensor with a deep learning approach to
detect the activity of human falling. Munkhjargal et al. [24]
proposed a device-free and unobtrusive indoor human pose
recognition system based on low-resolution infrared sensors
and deep convolutional neural networks (DCNN). They also
utilized DCNN and low-resolution infrared sensors recognized
yoga poses to provide an IoT-based yoga training system
for yoga practitioners [25]. Shih et al. [26] fused multiple
low-resolution infrared images and employed a deep learning
algorithm to recognize human activity. Nevertheless, there are
some limitations with these methods. The traditional deep
learning requires massive amounts of data for training, which
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is labor intensive for data collection. The traditional deep
learning models were solidified, and the original models no
longer were applicable to the new environment when the
environment changed. The data must be re-collected and the
model must be re-trained in the new environment. Yin et al.
[27] acquired and filtered low-resolution infrared data from
different environments to reduce the effect of environmental
changes on the data. The approach still had to be trained in
large amounts of data and cannot essentially find a solution
to the impact on environmental changes. The cross-domain
problem caused by environmental changes became a key
constraint on the utilize of low-resolution infrared for HAR.
Cross-domain research achieved well results in the field of
imaging, and transfer learning is hot in cross-domain. Finn
et al. [28] selected data from a new environment to train the
parameters of the model explicitly, allowing a small number of
gradient steps to produce excellent generalization performance
on the task. Lima et al. [29] extracted deep knowledge of
CNN models from large datasets and then transfered it by
fine-tuning to a limited number of remotely sensed (RS)
images on a marine frontier identification task. Alshalali et
al. [30] utilized a pre-trained CNN model and fine-tuned the
model based on an extreme learning machine (ELM) for target
recognition and image classification applications. TL-GDBN,
a growing dynamic Bayesian network with transfer learning,
was proposed by Wang et al. [31] to initialize and pre-train
the basic deep belief network (DBN) structure with a single
hidden layer to accelerate the learning process and improve
model accuracy. Tao et al. [32] fine-tuned the pre-trained
hierarchical stacked sparse self-coding (SSAE) network and
limited training samples from the source domain to the tar-
get domain utilizing a limited number of labeled samples
selected from the source and target domains via an active
learning strategy. Mohammadi et al. [33] employed infrared
cameras for collecting human activity data and proposed a
sleep monitoring method incorporating supervised learning
mechanisms in transfer learning to analyse human posture and
movement. The transfer learning approaches described above
solved the cross-domain problem to a certain extent, but they
were model migration approaches that requiring supervised
learning of data collected in a new environment to achieve
model migration. The method to model migration, with a large
amount of data to be collected and annotated in the new
environment, is not an efficient and cost effective method.
Ganin et al. [34] proposed the domain adversarial neural
network (DANN) to study minist datasets in images across
domains. The approach to training unlabeled data in new
environments to achieve data migration provided a new idea
of cross-domain research.

In this paper, a novel semi-supervised cross-domain neural
network (SCDNN) is proposed for HAR utilizing a low-
resolution infrared array sensor. Only one 8 × 8 low-resolution
infrared array sensor is utilized in the signal acquisition. The
employment of low-resolution infrared sensors both reduces
hardware costs and protects human privacy. The DANN is
applied in low-resolution infrared for HAR to adapt the
changing environment. With the training of DANN, the in-
frared signals of the new environment (target domain) and

the original environment (source domain) are mapped into the
same feature space, and the classifier trained on the source
domain is directly employed to classify the infrared signals in
the target domain. The SCDNN is an improvement on the
DANN. The difference is the cross-domain data migration
method in SCDNN employs unlabeled and a tiny minority
labeled target domain data for data migration. Unsupervised
and semi-supervised learning mechanisms are leveraged in
SCDNN to perform domain adaptation training on source and
target domain data. The proposed method achieves accurate
recognition of human activities in the target domain. We
summarize the main contributions of our work as follows:

• A cross-domain low-resolution infrared HAR method is
proposed. In contrast to traditional deep learning methods
applied to source domain data exclusively. The source
and target domain data are mapped into a unified feature
space. A high accuracy HAR result is obtained for a novel
environment. The problem of degradation of recognition
accuracy due to environmental changes in traditional
methods is tackled.

• The proposed HAR approach is a low-cost training
method. A large amount of data acquisition and annota-
tion work is not essential in the novel environment. There
is a small-scale unlabeled and tiny minority labeled data
is necessary for the adaptive training.

• The idea of cross-domain is applied to HAR in low-
resolution infrared. A semi-supervised learning mecha-
nism is employed in training. Superior spatial feature
mapping is achieved for the source and target domain
data. The SCDNN model trained with small-scale target
domain data achieves accurate recognition for human
activities in the novel environment.

• A single 8 × 8 low-resolution infrared sensor is utilized to
collect data. There are 8 categories of activities classified
accurately, which cover static, dynamic activities and
similar activities. A recognition accuracy of 92.12% is
achieved in cross-domain scene.

The rest of this paper is organized as follows. In Section II,
we describe the proposed principle of HAR method based on
SCDNN. The experimental results and analysis are shown in
section III. Section IV draw conclusions from the results and
discuss about our future work plan.

II. SYSTEM OVERVIEW

The system framework of the proposed cross-domain based
low-resolution infrared HAR approach is shown in Fig. 1.
The proposed method consists of 3 steps, infrared signals
acquisition and processing, model training and activity recog-
nition. The signals acquisition is divided into source and target
domain data acquisition. The data collected in scene I is
employed as the source domain data and the scene II is utilized
as the target domain data. The data is collected and sent to
the server for data processing. The same data segmentation
and filtering is performed on the source and target domain
data. The source domain data are all labeled and divide into a
training set and a validation set. A small-scale target domain
data is selected as the training set and the rest as the test set.
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Fig. 1: Schematic diagram of HAR method based on SCDNN.

Only a tiny minority training set is labeled and the remainder
is left unlabeled.

The source domain data is trained in SCDNN model for
supervised learning. The validation set of the source domain
optimizes the label classifier in training to obtain superior
results in classifying human activities. The source domain data
and the unlabeled target domain data are fed into the domain
discriminator for unsupervised learning training, with the aim
of making the target domain data closer to the source. The
label classifier learns the distribution features of the target
domain data as the labeled target domain data is learned
supervised. The aim of the training is the label classifier can
discriminate the category of the source domain data, and the
domain discriminator unable to distinguish the data source. If
it is difficult for the domain discriminator to separate the data
sources, the source and target domain data are well mapped
into the same space. Test data from the target domain is
mapped in the feature extractor and fed into the label classifier
to classify the activities of human.

III. METHODOLOGY
A. Data Collection

The Grid-EYE AMG8833, an 8 × 8 low-resolution infrared
array sensor manufactured by Panasonic, is employed in the
person behaviour recognition method proposed in this paper.
The appearance and structure of the AMG8833 can be referred
to in Fig. 2. It contains a total of 64 thermocouples in 8
horizontal and 8 vertical directions. The temperature range
for detection is between -20◦C and 80◦C with a tolerance
of ±2.5◦C. The AMG8833 is capable of detecting objects
within a range of 7m. An ESP8266 is utilized as a micro-
processor to obtain the measured temperature values via an
I2C bus connection with the AMG8833. The infrared signals
of different activities are captured by the AMG8833 and sent
to the ESP8266. Infrared signals are sent to the server via
UDP utilizing the WiFi serial communication of the ESP8266.
The microprocessor sends the infrared signals out at a rate
of m frames/s. Each frame of the infrared signal is an 8
× 8 matrix. The infrared signals are captured in 2 separate
scenarios, scene I and scene II. The signals captured in the 2
scenes are employed as source domain data and target domain
data respectively.

B. Data Preprocessing

Human activities occur over a period of time. The timeseries
infrared signal is normally utilized to reflect human activities.
The dimensions of different activity samples needs to be
consistent during the training process. In this work, the length
of each sample is set to m frames. The acquisition process
of the infrared signal is continuous, but each behaviour is not
necessarily divisible by m after L consecutive frames are ac-
quired. The data for each behaviour need to be acquired several
times. It is laborious for data processing. A script is designed
to automatically segment the data for this problem. Infrared
signals are not divisible by m are weed out. By entering a
sample length m in the script, the data is automatically divided
into L|m samples.

Infrared signals are subject to interference during the ac-
quisition process. The interference mainly comes from noise
generated by changes in ambient temperature. Background
subtraction is employed to obtain denoised data. Background
subtraction is a more widely applied category method in
current motion target detection techniques. It extracts the target
region using the differential operation of different images. The
difference image is obtained by subtracting the current frame
image from a continuously updated background model. Motion
targets are extracted in the differential images. In this paper,
the 8 × 8 IR sensor utilizing AMG8833 consists of an array
of 64. Human activity is not detected by all 64 arrays at the
same time. The minimum temperature value in the array can
be assumed to be the temperature value of the background
model. The 64 IR signal values in each frame are sorted from
maximum to minimum. The array value with the minimum
value, Tmin, is selected. As mentioned above, Tmin can be

Fig. 2: The 8×8 pixel low-resolution infrared array sensor of
the Grid-EYE AMG8833 module.
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Fig. 3: The heat map comparison of infrared signals before and after data processing. (a) The heat map of the original
infrared signal. (b) The heat map of the infrared signal after noise reduction.

assumed as the ambient temperature of the current frame, i.e.,
the background model. As shown in Eqs. (1):

Ha = Hb − Tm (1)

Where, Hb =

 T 11 · · · T 18

...
. . .

...
T 81 · · · T 8n

, Tm =

 Tmin · · · Tmin

...
. . .

...
Tmin · · · Tmin

 are the before processing and

background model, respectively. Ha is the IR signal of each
frame after background subtraction processing.

Fig. 3(a) shows a 3D hotspot map of a frame from raw
infrared signal data in standing, and Fig. 3(b) shows the
hotspot map after background subtraction processing on the
basis of Fig. 3(a). The comparison shows the infrared signal
after data processing has more prominent features. The noise
reflected of other objects, such as fluctuations in the sensor
itself and random noise generated in the environment. These
noises tend to signal mutations. The Butterworth filter is
employed as a further processing approach after the data
is processed by Background subtraction. It is proved as an
effective filter, the Butterworth filter, to filter out the noise
reflected by other objects [35]. More distinctive features of
the data are shown on the processed data. The data processed
by Background subtraction and Butterworth filter is utilized as
input for model training. Nevertheless, the data processing ap-
proaches described above limited effectiveness and are difficult
to apply especially when the environment is highly variable. It
is necessary to design a cross-domain infrared signal feature
extraction approach.

C. Semi Supervised Cross-Domain Neural Networks
The SCDNN proposed in this paper is a cross-domain

transfer learning network improved on the basis of DANN.
DANN is a domain migration method designed on the Gen-
erative adversarial network (GAN) [36] networks. Traditional

machine learning ensures the training and test sets have similar
distributions, otherwise the trained classifier results in poor
performance on the test set. The purpose of the proposed
method is to map source and target domain data with different
distributions into the same feature space. Mapping is the
process to find some kind of transformation criteria. The
difference between the source and target domain data in the
feature space is increasingly smaller. The trained classifier
in the source domain can be directly utilized to classify the
data in the target domain. Schematic diagram of SCDNN is
shown in Fig. 4. It contains of 3 parts, feature extractor, label
classifier and domain discriminator. The feature extractor is
the orange part in the diagram. Its role is to map the data
into a specific feature space. It aims to achieve both the label
classifier to discriminate between active categories and the
domain discriminator to confuse whether the data comes from
the source or target domain. The source and target domain
samples are employed as input.

In the training process, the input data is initially fed into the
feature extractor to extract feature information. It is passed into
the domain classifier subsequently. In the domain classifier, the
information is judged to be from the source or target domain
and the loss is calculated. During the training process, the
domain classifier categorizes the input information into the
correct domain as much as possible. The feature extractor, in
contrast, is trained with the opposite objective as the gradient
inversion layer incorporated. With the adversarial structure, the
training purpose is achieved i.e., it is difficult for the domain
discriminator to distinguish which domain the data originates
from. Meanwhile, the information extracted by the feature
extractor is fed into the label classifier for categorization, and
the loss is calculated. The loss of the labeled classifier is
reduced and the accuracy of classification is improved by the
back-propagation mechanism. The accuracy of classification
is well-balanced under the supervised and semi-supervised
training. The Sigmoid is utilized as the activation function
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Fig. 4: The structure of SCDNN.

for the feature extractor and its output is:

Gf (x;W,b) = sigm(Wx+ b) (2)

Where, x are the source and target domain samples, W is the
weight, and b is the bias term. The annotated data in the source
domain is fed into the feature extractor and the output is fed
into the label classifier shown in green. The label classifier
initially classifies the source domain data and sorts out the
correct labels as possible. For sample (xs, ys), xs are the
source domain sample, and ys are the label corresponding to
xs. The output of the label classifier can be expressed as:

Gl (Gf (xs);V, c) = softmax (VGf (xs) + c) (3)

The activation function of the label classifier is Softmax. The
input Gf (xs) is the output obtained after the source domain
is processed by the feature extractor, V and c are the weights
and bias terms respectively. The negative log likelihood as
loss function, and the loss of the label classifier Ll for source
domain data is:

Ll (Gl (Gf (xs)) , ys) = log
1

Gl (Gf (xs))ys

(4)

The feature extractor and the label classifier form a feed-
forward neural network. The optimization objective function
for the source domain data is:

min
w,b,V,c

[
1

n

n∑
i=1

Li
l(W,b,V, c) + λ ·R(W,b)

]
(5)

Li
l(W,b,V, c) denotes the label classification loss of the i-

th sample, R(W,b) is a regulariser, λ is a regularisation
parameter. λ ·R(W,b) aims to prevent the label classification
network from overfitting. The blue part of the diagram shows
the domain discriminator. Domain classifier is utilized to
classify the source of the data (from the source or target
domain). It is important to note that unsupervised learning is
applied here. The unlabeled source domain and the unlabeled
target domain (no activity category labels, only data source
labels) are processed by the feature extractor and fed into the
domain discriminator for data source classification. The output
of the domain discriminator is expressed as:

Gd (Gf (xm);u, z) = sigm
(
u⊤Gf (xm) + z

)
(6)

where xm represents a mixture of samples in the source and
target domains, u, z are the weights and bias terms, and
the activation function is sigmoid. The loss for the domain
discriminator Ld is:

Ld (Gd (Gf (xm)) , di) = di log
1

Gd (Gf (xm))

+ (1− di) log
1

Gd (Gf (xm))

(7)

Where, the negative log-likelihood is employed as the loss
function. di denotes the binary label of the i-th sample, which
is utilized to indicate whether the sample belongs to the source
or target domain. The aim is to make it difficult to classify
whether the data comes from the source or the target domain.
In other words to achieve a similar distribution of features
between the source and target domain data. Feature extractor
and domain discriminator are connected by a gradient reversal
layer (GRL). The GRL automatically reverses the direction of
the gradient during back propagation and achieves a identity
transform during forward propagation. If the gradient reversal
layer is considered as a function R(x), its forward and back
propagation can be expressed as:

R(x) = x (8)

dR
dx

= −M (9)

where, M represents an identity matrix. During backpropa-
gation, the gradient of the domain classification loss is auto-
matically inverted before backpropagating to the parameters of
the feature extractor, implementing an adversarial loss similar
to that of GAN. The aim of the domain discriminator is to
maximise domain classification loss and confuse the target
domain data with the source domain data. The objective of the
label classifier is to minimise activity classification loss and
achieve accurate classification on human activity. Therefore,
the objective function of the domain discriminator is:

max
u,z

[
1

n

n∑
i=1

Li
d(W,b,u, z)

]
(10)

However, there is a discrepancy between the classes of
the source domain and the classes of the target domain. In
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Fig. 5: The layout of the experimental environment. (a) Secne I (Source domain). (b) Secne II (Target domain).

DANN, only unsupervised learning is used to achieve the
mapping of the source domain to the target domain data. It
means that it is difficult for the network to extract features
between the different categories of the target domain data.
The effectiveness of DANN in classifying target domain data
is limited. To solve the above problem, this paper incorporates
a semi-supervised learning mechanism in SCDNN. A tiny
number of target domain samples are labeled for training. The
annotated target domain samples (xlt, ylt) are input to the
feature extractor for data mapping and the output is obtained
as:

Gf (xlt;W,b) = sigm(Wxlt + b) (11)

Then it is fed into the label classifier for classification, giving
the output:

Gl (Gf (xlt) ;V, c) = softmax (VGf (xs) + c) (12)

The Loss of label classification for the labeled target domain
data is:

Ll (Gl (Gf (xlt)) , ylt) = log
1

Gl (Gf (xlt))ylt

(13)

The objective function of xlt is the same as Eqs. (4). The Loss
calculated by Eqs. (3) (6) and (12) are both back-propagated
through gradient descent to achieve iterative updates of the
network parameters. Labeled classifier in SCDNN benefits
from the addition of semi-supervised learning, the features
of the target domain samples can be extracted. SCDNN
enables better distinction the different activities of the target
domain. After the above training steps, test set xtt is fed
into the network for testing. Test set is mapped in the feature
extractor and classified in the label classifier. The output after
classification is:

yt = Gl (Gf (xtt) ;V, c)

= softmax (VGf (xtt) + c)
(14)

The output value yt is a one-dimensional vector with element
values corresponding to the probability value of each activity.
Index of the maximum value in the vector is employed as the
final output i.e. the label of the corresponding activity. Test set

is tested in each training generation. The results of the model
and tests are saved.

IV. IMPLEMENTATION AND EVALUATION

A. Experimental Setup and Data Description

The method proposed in this paper is validated in two
typical indoor environments, as shown in Fig. 5. Fig. 5(a)
shows scene I in a relatively empty scene with a detection
area of approximately 6.6m2, a rectangle of 3.3m and 2m
in length and width respectively. The low-resolution infrared
sensor was mounted approximately 3m above the ground. 8
types of activities infrared signals were collected as source
domain data in scene I. Fig. 5(b) shows scene II , the target
domain data was collected here. The target domain is an
enclosed space of 3.5m in length and 3.3m in width, with
an area of approximately 12m2. The same 8 activities were
performed in the target domain as in the source domain and
the corresponding infrared signals are acquired. The infrared
signals were transmitted at 20 frames/s via the I2C bus to
the ESP8266, and the TPLINK WDR7660 router sends the
infrared signals from the ESP8266 to the server for training
and testing. The hardware configuration of the server as
follows: Intel Core i9-7920X CPU, 64G RAM and NVIDIA
GeForce GTX 1080Ti GPU. Windows 10 operating system
was utilized on the server side, a deep learning framework
based on Pytorch 1.8.1, and Python 3.6.4 was employed for
network construction and programming.

In the experiment, the infrared signals were collected in
the source domain (as in Fig. 5(a)) and the target domain (as
in Fig. 5(b)) for the 8 activities of lying, squatting, sitting,
standing, waving, walking, stooping and empty. Fig. 6 shows
the 8 activities in the target domain and the corresponding
3D infrared signal thermograms. The infrared signals were
acquired by the experimenter at different locations within the
detection area. The source domain data were collected at 20◦C
and the target domain data were collected at 17◦C, 20◦C and
23◦C. The experiment was conducted with 4 individuals, 2
males and 2 females. There were 7,240 acquisitions in the
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Fig. 6: Five activities in the target domain and the corresponding 3D infrared signal thermograms.
(a) Lying. (b) Squatting. (c) Sitting. (d) Standing. (e) Waving. (f) Walking. (g) Stooping. (h) Empty.

source domain and target domain respectively. In the source
and target domains, 72,400 frames of IR data were acquired
separately. Every 10 frames were taken as a sample, with 7,240
samples in the source domain and the same for the target
domain.

The parameters of the feature extractor, label classifier and
domain discriminator in SCDNN are shown in Tables I, II
and III. Each contains 10 frames of infrared signal samples
converted to 1 × 20 × 32 inputs. Feature extractor consists
of 2 convolutional layers and 2 pooling layers. The first
convolutional layer has a kernel size of 5 × 9 and the kernel
size of the second convolutional layer is 3 × 5. The activation
functions after the convolutional layers are both ReLU. Label
classifier is connected by 2 fully connected layers and the
output layer is 8 neuron nodes corresponding to 8 activities.
Domain discriminator is connected to the feature extractor by
a fully connected layer, and the softmax activation function
classifies the source and target domain data. The number of
training generations is 1000, the batch size is set to 128 and
the learning rate is 0.001. To validate the effectiveness of the
SCDNN network, the identical target domain test set is fed
into the SCDNN and the non-crossed domain model (a normal
deep learning model with merely the label classifier module
in Table II).

TABLE I: Parameters for feature extrator.
Layer name Input size Kernel size Output size Activation function

Convolutional
layer 1 1× 20× 32 5× 9 1280× 16× 24 ReLU

Max pooling
layer 1280× 16× 24 2× 2 1280× 8× 12 -

Convolutional
layer 2 1280× 8× 12 3× 5 1280× 6× 8 ReLU

Max pooling
layer 500× 6× 8 2× 2 500× 3× 4 -

TABLE II: Parameters for label classifier.
Layer name Input size Output size Activation function

Fully connected
layer 1 6000 1000 ReLU

Fully connected
layer 2 1000 500 ReLU

Output layer 500 8
(8 activities) Softmax

TABLE III: Parameters for domain discriminator.
Layer name Input size Output size Activation function

Fully connected
layer 1 6000 1000 ReLU

Output layer 1000 2
(2 domains) Softmax
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Fig. 7: The Receiver-operating-characteristic curve
corresponding to the different activities of SCDNN and

non-cross-domain approaches in scene II.
(a) SCDNN approach. (b) Non-cross domain approach.

B. Evaluation of SCDNN

For the target domain samples, 4 samples are randomly
selected from the 8 activities to be labeled, 3,480 as unlabeled
samples and 1,488 as test samples. The model trained on the
labeled data in scene I is tested utilizing the test set in scene
II. They are trained on 1,000 epochs. The receiver operating
characteristic curve (ROC) is an assessment metric utilized
to evaluate the sensitivity and specificity of the model. The
area below the ROC curve is defined as the AUC, and the
area closer to 1.0 indicates that the method is more realistic
and the model is more effective. As shown in Fig. 7, the
ROC of SCDNN is compared with the non-cross domain
approach. In Fig. 7(a), the AUC values of all 8 human activities
exceed 0.93, and the micro-average reaches 0.97. Conversely,
the AUC of the non-cross domain approach even fails to
exceed 0.6 for all activities except waving and walking. It
shows that the non-cross domain approach performs extremely
weakly in the strange scenario (Scene II). The SCDNN still

Fig. 8: Confusion matrix for the test results of
the SCDNN in scene II.

achieves accurate recognition for the 8 activities in cross-
domain scenarios with strong robustness. Fig. 8 shows the
confusion matrix results for the test set. As can be seen from
the figure, it can be seen that the accuracy for lying, squatting,
standing, waving and empty in the test set reaches 97.79%,
91.71%, 92.27%, 95.03% and 98.34% respectively. The accu-
racy for sitting, walking and stooping achieved around 87%.
The average accuracy for the 8 activities reached 92.12%.
Most noteworthy, compared to the 5,944 samples utilize in
the source domain, only 3,480 unlabeled samples in total and
only 4 labeled samples for each activity are taken in the target
domain. Despite the use of a small-scale target domain data,
a high accuracy of HAR is achieved. The above results show
that SCDNN recognizes the cross-domain activities of human
and achieved transfer from the source domain to the target
domain. High accuracy HAR in target domain is obtained at
a lower cost.

C. Impact of unlabeled target domain data

The number of unlabeled target domain samples is a key
parameter in SCDNN. Different numbers of unlabeled samples
are selected for experiments to verify the impact of the
number of unlabeled samples. The number of labeled target
domain samples is fixed at four for each activity to ensure the
uniqueness of the variables. As shown in Fig. 9, the accuracy
of the training set is over 97%. As the number of unlabeled
samples increased from 1,160 to 3,480, the accuracy of the
test set improved from 86.71% to 92.12%. The accuracy of the
test set reaches its highest as the unlabeled samples at 3,480.
Overfitting appeared after continuing to increase the number
of unlabeled samples. The unlabeled samples are increasing
while the test set accuracy is decreasing. During the increase
from 3,480 to 5,944, the accuracy rate decreased from 92.12%
to 90.45%. The expansion of training samples also leads to an
increase in training costs. The results implicate a small-scale
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Fig. 9: The relationship between number of unlabeled target
domain data and recognition accuracy.

of unlabeled samples achieve accurate HAR. It is appropriated
to choose 3,480 unlabeled target domain samples for training.

D. Impact of labeled target domain data

Similar to the unlabeled samples, the number of labeled
samples, important part of SCDNN, is worth exploring. Differ-
ent numbers of labeled samples are employed as experimental
subjects to research their effects on experimental results. To
fix the remaining variables, the number of unlabeled samples
is set to 3,480. The number of randomly selected labeled
target domain samples from each activity are: 0, 2, 4, 6, 8
and 10, and the results are shown in Table IV. The precision
of the test set improves from 66.79% to 79.58% to 92.48%
as the number of labeled samples increase from 0 to 4. It
can be seen that there is a significant difference in the results
between samples with and without labels. With the addition
of the labeled samples, the effect on the results are clearly
positive. As described in Chapter III, the model is enabled
to obtain the variability between the different activities in the
target domain and optimised the network due to the inclusion
of the labeled samples. It is the unlabeled samples do not have.
From Table IV, it can be observed that the Accuracy, Recall
and F1-score are higher with the labeled sample compared
to the unlabeled sample. With 4 labeled samples, the three
evaluation indicators are relatively balanced and exceed 92%.
These results demonstrate that the performance of the model
is excellent for the labeled samples of 4. The precision

TABLE IV: Comparison of results with different
labeled data.

Performance Number of labeled data
0 2 4 6 8 10

Precision(%) 66.79 79.58 92.48 93.74 94.62 95.52
Recall(%) 64.23 76.87 92.13 93.65 94.54 95.27

F1-score(%) 64.50 78.90 92.17 93.63 94.16 95.38

Fig. 10: The Precision-recall curve in different number of
labeled target domain data.

increased from 92.48% to 95.52% as the labeled samples are
added further up. The labeled samples and precision show
a clear positive correlation. Increasing the labeled sample
from 4 to 10 limited improvement in precision. The precision
increases by only 3.04% over the course of the sample growth,
asymptotically reaching the extreme value. More data being
labeled is undoubtedly more costly. On the contrary, although
the labeled samples only increase from 2 to 4, the precision
increases by 12.9%. Most notably, the precision of the test set
reach 92.48% when the labeled samples for each activity are
only 4. Fig. 10 shows a plot of the Precision-recall (PR) curve
corresponding to different numbers of labeled target domain
data. Average Precision (AP) is computed as the area under
the PR curve. AP is utilized to evaluate the comprehensive
performance for different numbers of labeled target domain
data in the SCDNN framework. The APs over 92% for all
cases with the labeled data exceeding 2. It indicates that the
proposed approach yields a good trade-off between precision
and recall with high AP for labeled target domain data more
than 2. And APs are not significantly distinct from 4 to 10.
In conclusion, the above results illustrate that a small-scale
labeled target data are required to accurately recognize human
activities in the SCDNN framework. For the sake of precision
and training cost, it is more appropriate to 4 labeled samples
for each activity.

E. Comparison of methods

The proposed method in this paper utilizes SCDNN to
achieve high accuracy for HAR in target domain. To validate
the effectiveness of the model, the SCDNN is compared
with different algorithms. K-NearestNeighbor (KNN), CNN,
Long short-term memory (LSTM) and DANN are trained and
tested on the same data sets. To demonstrate the advancement
of the semi-supervised mechanism proposed in this paper,
another semi-supervised learning approach, TSVM, is involved
in this paper as a comparison [37]. The TSVM belongs
to the discriminative approach, a typical method in semi-
supervised learning. A maximum interval algorithm is used
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Fig. 11: Precision of different algorithms evaluation.

for training both labeled and unlabeled samples to learn the
decision boundary. The distance interval from the learned
classification hyperplane to the nearest sample is maximized.
Specifically, the TSVM employs a local search strategy to
perform iterative solving. The unlabeled samples are tagged
by the iterated model. Thus all samples are labeled. The initial
model is retrained based on the labeled samples. The model is
continuously adjusted by finding error-prone samples again.

The precision of the different activities for each algorithm
was compared in Fig. 11. As shown in the figure, the SCDNN
significantly superior precision than the other algorithms in
target domain for each activity. In Table V, the SCDNN also
outperforms the other algorithms in Accuracy, Recall and F1-
score. Traditional machine learning and conventional deep
learning algorithms present poor performance for HAR in
target domain. Some activities are even misidentified alto-
gether. The overall results are hardly satisfactory. Disappoint-
ingly, CNN and LSTM performed even worse than traditional
machine learning algorithms in crossdomain scenarios. It is
demonstrated that traditional deep learning algorithms are
difficult to be applied in cross-domain scenarios. Compared
to the traditional methods, the semi-supervised mechanism
based TSVM, DANN and SCDNN based on the cross-domain
idea perform significantly better than the other algorithms
both in overall performance and recognition for most activity.
The TSVM and SCDNN are both semi-supervised learning
algorithms. Due to the different semi-supervised mechanisms,
the semi-supervised of SCDNN approach based on generative
adversarial is significantly superior. Significantly, DANN is
an essential improvement over traditional deep learning al-
gorithms and machine learning algorithms. From Fig. 11, al-
though DANN is inferior to SCDNN, the overall recognition is
preferable to the other algorithms. As environmental changed
are complex, unsupervised learning fails to completely elimi-
nate the variability between target and source domain data. For
unsupervised learning, target domain samples lacking labels
are employed as reference. It also makes the labeled classifier
trained in source domain data not fully applicable to the
activity classification in the target domain. As a result, the

classification effect of DANN on different actions in the target
domain is not ideal. The SCDNN could effectively extract the
features of different activities in target domain by training
the labeled target domain data. A more accurate HAR is
achieved. In summary, the SCDNN proposed in this paper is
significantly superior to other algorithms both in recognition
effect of individual activities and various metrics.

TABLE V: Comparison with different methods.

Method KNN CNN LSTM DANN TSVM SCDNN
Accuracy(%) 26.32 19.51 18.86 66.23 63.82 92.12

Recall(%) 27.56 23.48 12.53 64.23 65.33 92.13
F1-score(%) 26.72 20.64 13.25 64.50 62.02 92.17

V. CONCLUSION
In this paper, a novel semi-supervised cross-domain neural

network (SCDNN) is proposed for HAR. The problem of mod-
els trained in the original environment not being applicable to
the changed environment is solved. Human activity data is
captured from an 8 × 8 low-resolution infrared array sensor.
In the data pre-processing phase, Background subtraction and
Butterworth filter are utilized to reduce the noise of the
original infrared signal. The SCDNN is introduced in the
training process. It achieves domain adaptation by unsuper-
vised learning to align the feature distribution of source and
target domain data. The feature extraction capability of the
network is enhanced through training tiny minority labeled
target domain data. In cross-domain situation, the results
indicate that the activities in target domain such as lying,
squatting, sitting, standing, waving, walking, stooping and
empty can be accurately differentiated with an accuracy of
92.12%. Different amounts of labeled and unlabeled target
domain data are experimented with, aiming to achieve the best
trade-off between performance and cost. Our approach yields
a superior performance compared with other deep learning
methods. The proposed method provides a low-cost and high-
accuracy sensing solution for cross-domain application. There
are several limitations of our proposed approach that can be a
fruitful direction for further research. The SCDNN is a cross-
domain approach proposed for typical office environments,
but its application in other environments is notable. The
suitability of SCDNN needs to be explored at high ambient
temperatures. The compatibility of the system with the outdoor
environment is notable to explore. It might be a good choice
to combine the AMG8833 with other sensors for the outdoor
environment. How to utilize a low-resolution infrared sensor
for the detection of a group of people is also a very interesting
direction to explore. The scheme is involved to the future work.
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