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Abstract—In the Internet-of-Things (IoT), massive sensitive
and confidential information is transmitted wirelessly, making
security a serious concern. This is particularly true when
technologies, such as non-orthogonal multiple access (NOMA),
are used, making it possible for users to access each other’s
data. This paper studies secure communications in multiuser
NOMA downlink systems, where each user is potentially an
eavesdropper. Resource allocation is formulated to achieve the
maximum sum secrecy rate, meanwhile satisfying the users’ data
requirements and power constraint. We solve this non-trivial,
mixed-integer non-linear programming problem by decomposing
it into power allocation with a closed-form solution, and user
pairing obtained effectively using linear programming relaxation
and barrier algorithm. These subproblems are solved iteratively
until convergence, with the convergence rate rigorously analyzed.
Simulations demonstrate that our approach outperforms its
existing alternatives significantly in the sum secrecy rate and
computational complexity.

Index Terms—Internet-of-Things (IoT), non-orthogonal multi-
ple access (NOMA), untrusted user, user pairing, power alloca-
tion.

I. INTRODUCTION

THE increasing number of Internet-of-Things (IoT) de-
vices connected to wireless networks has made IoT

the dominant communication paradigm for connecting the
physical world to the Internet [1]. Ericsson predicted that
around 5.9 billion cellular IoT devices will be deployed by
2026 [2]. These devices collect and process data, and make
intelligent decisions, improving efficiency, productivity, and
convenience. However, the rapid expansion of IoT has brought
challenges, including wireless resource scarcity and security
and privacy concerns. It is crucial to address these issues
in order to ensure satisfactory wireless communication and
protect the security and privacy of IoT devices.

In the IoT scenarios, the adoption of non-orthogonal multi-
ple access (NOMA) could potentially improve the connectivity
and efficiency of massive IoT devices [3]. In contrast to
orthogonal multiple access (OMA) in the time, frequency,
and code domains, a NOMA transmitter can allocate differ-
ent transmit powers for different receivers within the same
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resource block, according to the channel conditions of the re-
ceivers. Supposition coding (SC) is adopted at the transmitter.
Successive interference cancellation (SIC) is deployed at the
receivers. However, the broadcast nature of radio and the use
of SIC at the receivers make NOMA susceptible to attacks
launched by external and internal eavesdroppers [4].

To address these security concerns, physical layer secu-
rity (PLS) techniques have been considered a promising ap-
proach [4]. PLS can be computationally effective compared
to other forms of security, such as cryptography, because
they rely on simple operations that can be performed at
the physical layer, such as power allocation [5]. PLS is
more appropriate for low-cost IoT devices that often have
limited computing resources and energy constraints [6]. By
using simple and efficient PLS techniques, IoT devices can
achieve strong confidentiality of their communications without
incurring high computational or energy costs [7]. Some other
recent studies, e.g., [1], [8], [9], also attempted to improve
the secrecy performance of NOMA-based IoT systems in the
presence of external eavesdropping.

It is possible for some users to eavesdrop on the signals
intended for other users by executing the SIC, since users
in a NOMA system share the same resource block. Most
studies have been under a two-user setting: Some assumed
far users untrusted [10], [11], and others assumed near users
untrusted [12], [13]. Several studies [14]–[16] considered both
users were untrusted. Different from the two-user settings
in [14]–[16], the authors of [17] proposed a decoding order-
ing criterion for untrusted multiuser NOMA with persistent
power allocation. The authors considered all users share the
same resource block, leading to fast growing interference and
complexity at the receivers with the increase of users.

In this paper, we investigate multiuser NOMA systems
for IoT applications in the presence of untrusted users. User
pairing and power allocation are optimized jointly to maximize
the sum secrecy rate of the systems. To the best of our knowl-
edge, user pairing and power allocation, which are critical
to multiuser NOMA, have never been jointly considered in
untrusted multiuser NOMA systems in the literature.

The key contributions of this paper are:

• We study a new problem to maximize the sum secrecy
rate of multiuser NOMA with untrusted IoT users, by
jointly optimizing power allocation and user pairing.

• To effectively maximize the sum secrecy rate of all IoT
devices, we adopt alternating optimization to circumvent
the non-convexity of the new problem and decouple user
pairing and power allocation.
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• Given user pairing, we derive analytically the optimal
power allocation in closed form. Then, we develop user
pairing obtained effectively using linear programming
relaxation and the barrier method.

• Rigorous analyses are conducted for the convergence rate
and complexity of our algorithm, confirming the validity
of the algorithm.

Our approach addresses the challenges of interference and
implementation complexity in untrusted multiuser NOMA
systems, and has the potential to improve the security and per-
formance of these systems. Extensive simulations demonstrate
that the approach has superior secrecy performance, compared
to existing schemes, and that joint consideration of user pairing
and power allocation is critical for achieving this performance.

The remainder of the paper is arranged in the following
way. In Section II, the related works are reviewed. Section III
defines the system setting. In Section IV, the problem state-
ment is provided, and the solution is delivered. In Section
V, simulation results are analyzed to show the merits of our
solution. Finally, this article is concluded in Section VI.

Notations: Upper- and lower-case symbols stand for matri-
ces and vectors, respectively; T denotes transpose; 4 stands
for component-wise less than; ∪ and ∩ stand for the union
and intersection operations, respectively; ∇ denotes gradient.
Tab. I summarizes notations used in this paper.

II. RELATED WORK

Most of the existing NOMA security studies have focused
on external eavesdropping. Secure transmissions in a NOMA-
based IoT system were investigated in [1]. The system offered
the users different communication requirements. The authors
of [8] studied the secrecy performance of cooperative NOMA-
assisted IoT and derived the security outage probability under
either a single- or multi-antenna setting. The authors of [9]
jointly designed beamforming vector, power and subcarrier
allocation to improve the worst-case sum secrecy rate in a
multicarrier NOMA-assisted IoT system.

Another potential security threat in a NOMA system comes
from internal users. A simple two-user setting has been
actively studied. ElHalawany et al. [10] studied the secrecy
outage probability in a two-user NOMA system under the
assumption that the far user was untrusted. In [11], two opti-
mal relay selection schemes were designed, and closed-form
expressions of the secrecy outage probability was derived.
Zhang et al. [12] proposed an optimal decoding order of SIC
and a jammer-aided cooperative jamming scheme for NOMA
systems to defend against a stronger, near-user eavesdropper
to improve the secrecy rate of the systems. In [13], a secure
beamforming and power allocation strategy was designed to
evaluate the secrecy outage probability of the systems in the
presence of an untrusted near user. Unlike [10]–[13], the
authors of [14]–[16] treated both far and near users as the
untrusted users. Specifically, the authors of [14] proposed an
optimal decoding order to maximize secrecy fairness of a
NOMA system. Hota et al. [15] analyzed the ergodic rate
and the ergodic secrecy rate of a two-user untrusted NOMA
system with imperfect SIC. Amin et al. [16] studied the

TABLE I: Notation list

Notations Descriptions
D The disc-shaped area centered at the BS
sk The data symbol designed for user k
s Transmit signal
pk The transmit power assigned for user k
gk The Rayleigh fading channel coefficient of user k
dk The distance between user k and the BS
hk The channel impulse response of user k
σ The standard deviation of the AWGN

γm,n The SNR of user m decoded by user n
wk The AWGN at user k
Rs

n The secrecy rate of user n
Rm,n The achievable rate of user m decoded by user n

xm,n
User pairing indicator; if user m and n share the same
resource block, xm,n = 1. Otherwise, xm,n = 0

X
The matrix of user pairing of which the (m,n)-th
element is xm,n

x
The vectorization of the elements above the main
diagonal of X in the row-major order

X̂
The continuous relaxation of X with the (m,n)-th element,
x̂m,n ∈ [0, 1], indicating how likely user m and n are
paired to share a resource block.

x̂
The vectorization of the elements above the main
diagonal of X̂ in row-major order

pm,n The transmit powers for paired users m and n
p The vectorization of (pm + pn) in row-major order
1 A vector with all one entries
0 A vector with all zero entries
w The Lagrange variable
I The identify matrix
A A = [I,−I,p]T

K (x,w) The Karush-Kuhn-Tucker (KKT) matrix
S The upper bound of

∥∥K (x,w)†
∥∥
F

L
The Lipschitz constant satisfying: ∀ (xi,wi),∥∥(xi,wi)

∥∥
F

6
∥∥(x(0),w(0)

)∥∥
F

N The number of iterations for user pairing to converge
ζ, τ The control factors in backtracking line search
ε The error tolerance of user pairing
ξ The control factor of the step size for user pairing
η The tolerance level of the overall algorithm
δF The indicator function on the feasible domain F

secrecy rate maximization of the a trusted decode-and-forward
relay-assisted NOMA system by optimizing power allocation.
These designs provided secure communication by addressing
the potential for internal eavesdropping in NOMA.

Compared with a two-user setting [14]–[16], the security of
a multi-user untrusted scenario is a more realistic and challeng-
ing problem. The most relevant, existing study [17] proposed a
decoding order strategy for multi-user untrusted NOMA with
fixed power allocation. However, excessive devices sharing the
same resource block may lead to severe co-channel interfer-
ence. To this end, an adequate user pairing strategy, in coupling
with effective power allocation, is critical. In [18] and [19], a
Gale-Shapley algorithm-based and a Simplex method-based
approaches were developed and dedicated to user pairing,
respectively. Compared to the user pairing strategies devel-
oped in [18] and [19], our approach delivers effective user
pairing solution using logarithmic barrier method in couple
with closed-form optimal power allocation, hence achieving
improved efficiency and accuracy.

III. SYSTEM MODEL

In this paper, we investigate a multiuser downlink NOMA
system with a base station (BS) and 2K untrusted users. The
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users are untrusted in the sense that each user in the system
may act as a potential eavesdropper and may attempt to inter-
cept the confidential messages transmitted by other users to its
own advantage. The users are dispersed within a disc-shaped
area D centered at the BS. The BS and users are equipped
with omnidirectional antennas. The direct link between the
BS and each user experiences Rayleigh fading [20]. In order
to reduce complexity, we divide the users into K pairs, with
each pair occupying a different resource block. This allows
us to consider the system in manageable chunks and design
efficient resource allocation strategies.

At the BS, the transmit signal for the users at each pair is

s =
√
pmsm +

√
pnsn, (1)

where sk (k = m,n) is the data symbol destined for user
k with unit energy E[|sk|2] = 1, and pk represents the
corresponding transmit power assigned for user.

The received signal of user k is given by

yk = hk (
√
pmsm +

√
pnsn) + ωk, (2)

where hk = gkd
−α
k with gk being the Rayleigh fading

coefficient, dk the distance of user k from the BS, and α the
path loss; wk is the zero-mean additive white Gaussian noise
(AWGN) with variance σ2.

Assume the paired user with |hm|2 < |hn|2. By following
the NOMA principle, user n with a higher channel gain first
decodes the signal of user m, and then executes SIC to decode
its own signal. User m with poor channel gain first decodes its
own signal and then executes SIC to decode user n’s signal.
As such, we have

γm,n =
pm|hn|2

pn|hn|2 + σ2
, γn,n =

pn|hn|2

σ2
, (3)

γm,m =
pm|hm|2

pn|hm|2 + σ2
, γn,m =

pn|hm|2

σ2
, (4)

where γm,n is the signal-to-interference-plus-noise-ratio
(SINR) of user m decoded by user n, and γn,m is the other
way around.

Then, the achievable rates of the paired users are

Rn,n = log2 (1 + γn,n) ; (5)
Rm,m = log2 (1 + γm,m) . (6)

The secrecy rate Rsn of user n is defined as

Rsn = max {Rn,n −Rn,m, 0} . (7)

Here, Rn,m = log2 (1 + γn,m) is the eavesdropping rate of
user m on user n’s message. A positive secrecy rate can be
awarded since |hm|2 < |hn|2.

IV. PROBLEM STATEMENT AND PROPOSED SOLUTION

In this section, power allocation and user pairing are op-
timized in an attempt to achieve the maximum sum secrecy
rate under the data rate and transmit power constraints. Let
xm,n ∈ {0, 1} denote the binary scheduling variables. If

user m is served together with user n, we have xm,n = 1.
Otherwise, xm,n = 0. The considered problem is cast as

max
xm,n,pn,pm

2K∑
m=1

2K∑
n=m+1

xm,nR
s
n (8a)

s.t. Rm,m > xm,nRm, (8b)
Rn,n > xm,nRn, (8c)∑2K

m=1

∑2K

n=m+1
xm,n (pn + pm) 6 P, (8d)

xm,n ∈ {0, 1} , 1 6 m,n 6 2K, (8e)
xm,n = xn,m, 1 6 m,n 6 2K, (8f)∑2K

m=1
xm,n = 1, 1 6 n 6 2K, (8g)∑2K

n=1
xm,n = 1, 1 6 m 6 2K, (8h)

where P is the total transmit power of the BS; Rm and Rn are
the achievable rates of user m and user n in an OMA system,
respectively, and

Rm=
1

2
log2

(
1+

pm,n|hm|2

σ2

)
;Rn=

1

2
log2

(
1+

pm,n|hn|2

σ2

)
.

Here, pm,n is the transmit power for each pair of users, i.e.
pm,n = pm + pn. The coefficient 1

2 is due to the fact that
conventional OMA results in a multiplexing loss of 1

2 .
The problem presented in (8) is a mixed-integer nonlinear

programming (MINLP) problem, which is typically NP-hard
and intractable to solve the global optimal solution. The key
difficultly in solving (8) arises from the binary scheduling vari-
ables, achievable data rate constraint, and objective function.
To improve the tractability, in this paper, we decouple Problem
(8) into the subproblem of power allocation and user pairing,
and solve the subproblems separately in an alternating manner.

A. Power Allocation Optimization

First, we optimize the transmit power of each user pn
and pm for given user pairing xm,n. The power allocation
subproblem is given by

max
pn,pm

2K∑
m=1

∑
n∈Sm

Rsn (9a)

s.t. Rm,m > Rm, (9b)
Rn,n > Rn, (9c)∑2K

m=1

∑
n∈Sm

(pn + pm) 6 P, (9d)

where Sm = {n |xm,n = 1}. Despite the non-convexity of the
subproblem, we can derive its closed-form solution, as follows.

According to (9b), we have

pn 6
σ2

|hm|2

√1 +
pm,n|hm|2

σ2
− 1

 . (10)

Similarly, according to (9c), we have

pn >
σ2

|hn|2

√1 +
pm,n|hn|2

σ2
− 1

 (11)
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The first-order partial derivative of Rsn with respect to
(w.r.t.) pn is

∂Rsn
∂pn

=
1

ln 2

(
|hn|2σ2 − |hm|2σ2

)
(pn|hn|2 + σ2)(pn|hm|2 + σ2)

, (12)

which is always non-negative, given |hm|2 < |hn|2. As a
result, Rsn is an increasing function of pn, and the optimal
value of pn, denoted by p∗n, is given by

p∗n =
σ2

|hm|2

√1 +
pm,n|hm|2

σ2
− 1

 . (13)

By substituting p∗n into the objective function (9a), we obtain

Rsn =log2

1 +
|hn|2

|hm|2

√1 +
pm,n|hm|2

σ2
− 1


− 1

2
log2

(
1 +

pm,n|hm|2

σ2

)
. (14)

Then, Problem (9) can be equivalently rewritten as

max
pm,n

2K∑
m=1

∑
n∈Sn

Rsn (15a)

s.t.
∑2K

m=1

∑
n∈Sn

xm,npm,n 6 P. (15b)

Taking the second-order derivative of Rsn w.r.t. pn yields

d2Rsn
d p2m,n

= −
|hm|2|hn|2 ln 2

4σ4
(

1 +
|hm|2pm,n

σ2

) 3
2

< 0. (16)

Therefore, we can drawn the conclusion that (15a) is concave
in pm,n. In turn, Problem (15) exhibits convexity and can be
efficiently solved taking the Lagrange multiplier method. The
Lagrange function of Problem (15) is

L(pm,n,υ)=−
2K∑
m=1

∑
n∈Sn

log2

(
1+
|hn|2

|hm|2
(√

1+
pm,n|hm|2

σ2
−1
))

+
∑2K

m=1

∑
n∈Sn

1

2
log2

(
1 +

pm,n|hm|2

σ2

)
+υ
∑2K

m=1

∑
n∈Sn

(pm,n − P ), (17)

where υ > 0 is the dual variable corresponding to (15b).
After taking the first-order partial derivative of (17) w.r.t.

pm,n, the KKT conditions of (15) are given by

∂L(pm,n, υ)

∂pm,n
= α3− |hn|

2−|hm|2

|hn|2
α2− |hm|

2
(|hn|2−|hm|2)

2 ln 2σ2υ|hn|2
,

where α =

√
pm,n|hm|2

σ2 + 1 > 1.
Since the optimal solution to Problem (15) satisfies

∂L(pm,n,υ)
∂pm,n

= 0, we define f(α) : R+ → R as

f(α) = α3 − |hn|
2 − |hm|2

|hn|2
α2 − |hm|

2
(|hn|2 − |hm|2)

2 ln 2σ2υ|hn|2
.

Note that f(α) = 0 holds at the optimal pm,n. Taking the
first-order derivative of f(α) w.r.t. α, we have

df(α)

dα
= 3α

[
α− 2

3

(
1− |hm|

2

|hn|2

)]
. (18)

Then, setting df(α)
dα = 0 yields two roots:

α1 = 0, α2 =
2

3

(
1− |hm|

2

|hn|2

)
<

2

3
. (19)

We can analyze the number of positive roots of f(α) = 0
based on the monotonicity of f(α). Since f(α1) < 0, f(α2) <
0, and α1 < α2, according to the monotonicity of a cubic
function, there is only one positive root of f(α) = 0:

α =
3
√
am,n

3 · 3
√

4
+

3
√

4(|hn|2 − |hm|2)
2

3 3
√
am,n|hn|4

+
|hn|2 − |hm|2

3|hn|2
, (20)

where am,n is given by

am,n = 4− 4|hm|6

|hn|6
+|hm|2

(
27

ln 2σ2υ
− 12

|hn|2

)

+
3|hm|4

|hn|4

(
4− 9|hn|2

ln 2σ2υ

)
+ 3
√

3
|hm|

(
|hn|2 − |hm|2

)
|hn|4 ln 2σ2υ

×
√

8 ln 2σ2υ
(
|hn|2 − |hm|2

)
+ 27|hn|4|hm|2. (21)

We solve (20) using Formula of Cardano [21] and choose
the positive root. The Formula of Cardano is a widely-used
approach for solving cubic equations.

When xm,n = 1, by substituting α =

√
pm,n|hm|2

σ2 + 1 into
(20), the optimal power allocation, denoted by p∗m,n, can be
obtained in closed-form, as given by

p∗m,n =
σ2

|hm|2

 3
√
am,n
3
√

4
+

3
√

4
(
|hn|2 − |hm|2

)
3 3
√
am,n |hn|4

+
|hn|2 − |hm|2

3 |hn|2

)
− 1

]
, (22)

Moreover, according to (13) and (22), the optimal pm, denoted
by p∗m, can be obtained since p∗m = p∗m,n − p∗n. By adjusting
the dual variable υ until

∑2K
k=1 p

∗
k = P, ∀k = 1, · · · , 2K, we

obtain the optimal transmit power p∗k, ∀k.

B. User Pairing Optimization

Given the power allocation p∗n and p∗m, we can relax the
binary variables xm,n∈{0, 1} into continuous variables x̂m,n ∈
[0, 1]. Problem (8) can be recast as

max
xm,n

2K∑
m=1

2K∑
n=1

x̂m,nR
s
n (23a)

s.t. Rm,m > x̂m,nRm, (23b)
Rn,n > x̂m,nRn, (23c)∑2K

m=1

∑2K

n=m+1
x̂m,n (pn + pm) 6 P, (23d)
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0 6 x̂m,n,6 1, 1 6 m,n 6 2K, (23e)
x̂m,n = 0, (23f)∑2K

m=1
x̂m,n = 1, 1 6 n 6 2K, (23g)∑2K

n=1
x̂m,n = 1, 1 6 m 6 2K, (23h)

Here, x̂m,n ∈ [0, 1] can be interpreted as how likely users m
and n are assigned to form a NOMA group and share the same
resource block.

By vectorization, Problem (23) is rewritten as

max
x̂

rTs x̂ (24a)

s.t. x̂ 4 b, (24b)

pT x̂ 6 P, (24c)
− x̂ 4 0, (24d)
Dx̂ = 1, (24e)

where x̂∈RK(2K−1) and p ∈ RK(2K−1) are the vectoriza-
tion of the elements above the main diagonal of X̂ and
{pm + pn} in the row-major order, respectively. Then, the[
1
2 (4K −m) (m− 1) + n−m

]
-th elements of x̂, p, rs ∈

RK(2K−1), and b ∈ RK(2K−1) are x̂m,n, pm + pn, Rsn
and min

{
Rm,m

Rm
,
Rn,n

Rn
, 1
}

, respectively. Moreover, the n-

th row of D ∈ R2K×K(2K−1), denoted by dTn , satisfies
dTn x̂ =

∑2K
m−1 x̂m,n, according to constraints (23g) and (23h).

By combining (24b), (24c), and (24d), Problem (24) can be
further rewritten as

max
x̂

rTs x̂ (25a)

s.t. Ax̂ 4 u, (25b)
Dx̂ = 1, (25c)

where A = [I,−I,p]
T ∈ R[2K(2K−1)+1]×K(2K−1) and u =[

bT ,0T , P
]T ∈ R2K(2K−1)+1.

The logarithmic barrier and Simplex methods [19] are
widely adopted by various Linear Programming (LP) solvers,
e.g., CVX Toolbox [22]–[24]. Since D is sparse, the barrier
method is more effective than the Simplex method in solving
sparse LP problems [25].

We utilize the logarithmic barrier method [26] to solve
Problem (25). In the method, the optimization problem is
modified by adding a logarithmic barrier function to the
objective function. The barrier function penalizes the con-
straints, encouraging the optimization to move towards feasible
solutions [26]. The barrier function is typically the sum of the
negative logarithms of the variables that define the feasible
region. The barrier function we choose is

φ (x̂) = −
2K(2K−1)+1∑

i=1

ln
(
ui − aTi x̂

)
, (26)

where ui ∈ R and ai ∈ RK(2K−1) are the i-th rows of u and
A, respectively.

Let t > 0 denote the parameter (or step size) of the
logarithmic barrier method. Problem (25) is then rewritten as

min
x

g (x̂) = −trTs x̂ + φ (x̂) (27a)

s.t. Dx̂ = 1. (27b)

Let yi = 1
ui−aT

i x̂
be the i-th element of y∈ R2K(2K−1)+1 and

w ∈ R2K be the Lagrange multiplier associated with (27b).
In each iteration of the logarithmic barrier method, we

update t by t := ξt, which regulates the accuracy of using (27)
to approximate (25). Here, ξ > 1 is a preconfigured coefficient.
Given the fixed t, the infeasible start Newton method [27], [28]
is adopted to solve (27) iteratively.

The infeasible start Newton method starts by evaluat-
ing the primal and dual Newton steps ∆w ∈ R2K and
∆x̂ ∈ RK(2K−1). Given t, the primal and dual Newton steps
of Problem (27) are given by

K (x̂,w) ·
[

∆x̂
w + ∆w

]
= −

[
−trs + Ay

Dx̂− 1

]
, (28)

where K (x̂,w) is the Karush-Kuhn-Tucker (KKT) ma-
trix [29] and is given by

K (x̂,w) =

[
ATdiag (y) A DT

D 0

]
(29)

We utilize the LU decomposition [30] to solve (28) for ∆x̂ and
∆w, so that we can avoid computationally expensive matrix
inversions [31]. Let L,U ∈ RK(2K+1)×K(2K+1) denote the
lower and higher triangular matrices, respectively, and

LU = K (x̂,w) . (30)

By using the forward and back substitution algorithms [32],
we can derive ∆x̂ and ∆w.

Define J : RK(2K−1) × R2K → RK(2K−1) × R2K as

J (x̂,w) =
(
∇g (x̂) + DTw,Dx̂− 1

)
. (31)

The Frobenius norm of J (x̂,w) is given by∥∥J (x̂,w)
∥∥
F

=

√∥∥∇g (x̂) + DTw
∥∥2
F

+
∥∥Dx̂− 1

∥∥2
F
.
(32)

Next, we utilize backtracking line search to produce the step
size by s := τs for updating x̂ and w, i.e.,

x̂ := x̂ + s∆x̂ and w := w + s∆w (33)

until
∥∥J(x̂+s∆x̂,w+s∆w)

∥∥
F
6(1−ζs)

∥∥J(x̂,w)
∥∥
F
. (34)

Here, τ ∈ (0, 1) and ζ ∈ (0, 12 ) are preconfigured coefficients.
Upon the stopping criterion (34) is satisfied, the updated x̂

and w are substituted into (28) and (29) to update ∆x̂ and ∆w,
followed by the updating of x̂ and w using (33). This repeats
until

∥∥J (x̂,w)
∥∥
F

is smaller than a predefined, sufficiently
small threshold, e.g., ρ, and (27b) is satisfied.

Let L and S denote constants satisfying: ∀ (x̂i,wi), i = 1, 2,∥∥K(̂x1,w1)−K(̂x2,w2)
∥∥
F
6L
√∥∥x̂1−x̂2

∥∥2
2
+
∥∥w1−w2

∥∥2
2
;
(35)

S >
∥∥∥K (x̂,w)

†
∥∥∥
F
. (36)

The step size s, obtained by backtracking line search, satisfies
s < 1 in the damped Newton phase if

∥∥J (x̂,w)
∥∥
F

>
1

S2L [26]. Hence,
∥∥J (x̂,w)

∥∥ is reduced in each iteration [33].
Once the damped Newton phase has reasonably converged,
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i.e.,
∥∥J (x̂,w)

∥∥
F

6 1
S2L , the logarithmic barrier method

enters the quadratically convergent phase, where the step size
is s = 1 and the error converges quadratically to zero [34].
This allows the algorithm to find a high-precision solution in
relatively few iterations.

When the infeasible start Newton method converges, t is
updated by t := ξt and then the infeasible start Newton
method restarts. This repeats until 1

tK (2K − 1) < ε, where
ε indicates the approximation accuracy of (27) with regards
to (25). The output of the logarithmic barrier method is the
continuous relaxation of user pairing, i.e., X̂.

Finally, given the continuous X̂, we utilize a greedy method
that iteratively chooses the most probable pairs. U is initialized
to be empty, i.e., U = ∅ initially. In each iteration, we
choose and record the pair {m,n} with the largest x̂m,n from
unrecorded pairs, i.e., U ∩ {m,n} = ∅, since users m and
n have the highest pairing probability among all users not
recorded in U yet.

The algorithm of user pairing is summarized in Alg. 1,
where x̂∗ denotes the optimum of (25).

C. Algorithm Summary

The overall algorithm is illustrated in Alg. 2, which consists
of two phases (i.e., power allocation and user pairing) operat-
ing in an alternating manner. In the power allocation phase, we
utilize (13) and (22) to obtain the transmit power of each user
with a given fixed user pairing strategy X. In the user pairing
phase, Alg. 1 is executed to produce the user pairing strategy
given the fixed transmit powers of all users. The user pairing
strategy is then input to the power allocation to start the next
iteration of the power allocation and user pairing phases. Let
oq and η denote the sum secrecy rate in the q-th iteration of
Alg. 2 and the tolerance, respectively. If |oq − oq−1| < η, Alg.
2 returns the user pairing strategy X and transmit power of
each user pn, n = 1, · · · , 2K.

D. Convergence Analysis

1) Convergence of User Pairing: We analyze the conver-
gence rate of the LP relaxation in Alg. 1. According to [26,
eq. (11.13)], the LP in Alg. 1 requires NLP iterations to adjust
the parameter t and guarantee the desired accuracy level of ε:

NLP =

⌈
log

(
K (2K − 1)

εt(0)

)
/ log (ξ)

⌉
, (37)

where t(0) is the initial value of t.
In each of the LP iterations, backtracking line search is

carried out to search for the step size s. According to [26],
the backtracking line search in the damped Newton phase
uses fewer than Nl =

⌈
log
(
S2Lκ

)
/ log

(
1
τ

)⌉
iterations to

choose the step size s. Here, κ =
∥∥J (x̂(0),w(0)

)∥∥
F

, where
x̂(0) and w(0) are the initial x̂ and w, respectively. According
to [35], the damped Newton phase takes ND =

⌈
S2Lκ/ζτ

⌉
iterations to achieve

∥∥J (x̂,w)
∥∥
F

6 1
S2L before the com-

mencement of the quadratically convergent phase. In the
quadratically convergent phase, according to [33], it takes
NQ =

⌈
log2

(
1− log2

(
S2Lρ

))⌉
iterations to obtain the

Algorithm 1: User Pairing

Data: Initialize t = t(0), ξ > 1, ε > 0, ρ > 0, control
factors in backtracking line search ζ ∈ (0, 0.5),
τ ∈ (0, 1), pairing set U = ∅, X = 0

/* logarithmic barrier-based approach
to obtain the assignment */

1 while 1
tK (2K − 1) < ε do

/* Using infeasible start Newton
method to compute (27) with the
given t */

2 s := 1
3 while Dx̂ = 1 &&

∥∥J (x̂,w)
∥∥
F
6 ρ do

4 Calculate ∆x̂ and ∆w in (28)
/* Backtracking line search to

obtain step size s */
5 while

∥∥J (x̂ + s∆x̂,w + s∆w)
∥∥
F
>

(1− ζs)
∥∥J (x̂,w)

∥∥
F

do
6 s := τs

7 x̂∗ := x̂ + s∆x̂ and w := w + s∆w

// update x̂ and t
8 x̂ := x̂∗

9 t := ξt
10 obtain the assignment x̂.
/* greedy-based approach to obtain

the user pairing strategy */
11 for m = 1, · · · , 2K − 1 do
12 for n = m+ 1, · · · , 2K do
13 if U ∩ {m,n} = ∅ then
14 Choose the largest element x̂m,n and set

xm,n = 1
15 U = U ∪ {m,n}
16 Set x̂m,n0 = x̂m0,n = −∞ for

n0 = 1, · · · , 2K, and m0 = 1, · · · , 2K
17 else
18 continue

19 return the user pairing strategy X = {xm,n}

solution to Problem (27). Overall, the infeasible start Newton
method takes NN iterations per LP iteration:

NN = NlND +NQ

=

⌈
log
(
S2Lκ

)
log
(
1
τ

) ⌉⌈S2Lκ

ζτ

⌉
+
⌈
log2

(
1−log2

(
S2Lρ

))⌉
.

(38)

Moreover, the greedy method used for the discretization of
user pairing in Alg. 1 takes Ng iterations to obtain the discrete
assignment strategy:

Ng =

2K−1∑
m=1

(2K −m) = K (2K − 1) . (39)

2) Convergence of Overall Algorithm: We can interpret
Alg. 1 as a mapping Q̃ from X̂ to X, i.e., Q̃ : R2K×2K →
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Algorithm 2: Overall Algorithm
Data: Initial oq = +∞, oq−1 = −∞, counter q = 0,

tolerance η > 0
1 while |oq − oq−1| < η do

// record the previous sum secrecy
rate

2 oq =
∑2K
m=1

∑2K
n=m+1 xm,nR

s
n

// power allocation phase
3 Use (13) and (22) to obtain the optimal power

allocation p∗m,n
// user pairing phase

4 Use Alg. 1 to obtain the pairing strategy
X = {xm,n}
// update the counter

5 q := q + 1
// record the sum secrecy rate

6 oq =
∑2K
m=1

∑2K
n=m+1 xm,nR

s
n

7 return the user pairing strategy X = {xm,n} and the
power allocation {pn}, m,n = 1, . . . , 2K

R2K×2K . In this case, the problem solved by Alg. 2, i.e.,
Problem (8), can be rewritten as

min
xm,n,x̂m,n,pm,pn

−2tr(RT
s X) =−2tr(RT

s Q̃(X̂)) (40a)

s.t. Rm,m > x̂m,nRm, (40b)
Rn,n > x̂m,nRn, (40c)∑2K

m=1

∑2K

n=m+1
x̂m,n (pn + pm) 6 P, (40d)

0 6 x̂m,n,6 1, 1 6 m,n 6 2K, (40e)
x̂m,n = 0, (40f)∑2K

m=1
x̂m,n = 1, 1 6 n 6 2K, (40g)∑2K

n=1
x̂m,n = 1, 1 6 m 6 2K, (40h)

where Rs ∈ R2K×2K is the secrecy rate matrix whose (m,n)-
th element is the secrecy rate of user n against the potential
eavesdropping by user m.

We can further interpret Alg. 2 as a mapping Q : R2K ×
R2K×2K ×R2K×2K → R, which maximizes the sum secrecy
rate. Then,

Q
(
p̄, X̂,X

)
= −2tr(RT

s Q̃(X̂)) + δF

(
p̄, X̂,X

)
(41)

where p̄ = {pn,∀n} is the vector of the transmit powers; and
the indicator function δF

(
p̄, X̂,X

)
is given by

δF

(
p̄, X̂,X

)
=

{
0, if

(
p̄, X̂,X

)
∈ F

+∞, otherwise.
(42)

Here, F is the feasible domain of (40) defined by (40b)–(40h).
As a result, Alg. 2 can be interpreted to solve (40) using

the Block Coordinate Descent (BCD). In each iteration, the al-
gorithm sequentially solves subproblems minp̄Q

(
p̄, X̂,X

)
,

minX̂Q
(
p̄, X̂,X

)
, and minXQ

(
p̄, X̂,X

)
. The conver-

gence of each of the subproblems has been confirmed, since

Section IV-A shows the semi-closed solution p̄ and Sec-
tion IV-D1 analyzes the convergence of X̂ and X. The overall
convergence rate of Alg. 2 is established in the following,
starting with a few definitions.

Definition 1 (Semi-algebraic set [36]–[38]). A subset of Rn,
denoted by D, is called semi-algebraic if there exists finite
U, V ∈ N, such that

D = ∪Uu=1 ∩Vv=1

{
z ∈ Rn

∣∣∣pu,v (z) = 0, qu,v (z) > 0
}

(43)

where pu,v (z) and qu,v (z) are real polynomial functions for
u = 1, · · · , U and v = 1, · · · , V .

Definition 2 (Semi-algebraic function [39]–[41]). Let D ∈ Rn
and E ∈ Rm be two semi-algebraic sets. A mapping F : D →
E is semi-algebraic if its graph

{(z,o) ∈ D × E |o = F (z)} ⊂ Rn × Rm (44)

is a semi-algebraic set.

Lemma 1. The function Q(·) is semi-algebraic.

Proof. Please refer to Appendix A.

With the aid of Lemma 1, the convergence rate of Alg. 2
can be established:

Theorem 1. When S and L exists, there exist constants
C, %, q0 > 0, satisfying the following inequality

η 6 Cq−
1
% (45)

after q > q0 iterations of the overall algorithm, where η > 0

is the tolerance. In other words, q ∼ O
(

1

η%

)
.

Proof. See Appendix B.

E. Complexity Analysis
1) Power Allocation: Since (13) and (22) provide the

closed-form power allocation strategy per user group, the
complexity, denoted by TPA, depends linearly on the number
of user groups, K; i.e., TPA = O (K).

2) User Pairing: We analyze the computational complexity
of solving (25) using the logarithmic barrier method. As
discussed in Sec. IV-D1, the desired accuracy ε is achieved
after NLP logarithmic barrier method iterations. In each of the
iterations, the infeasible start Newton method is performed.

The infeasible start Newton method also iterates. In each
iteration of the damped Newton phase of the infeasible start
Newton method, computing (28) through the LU decom-
position takes TLU = 2

3 [K (2K + 1)]
3

+ 2 [K (2K + 1)]
floating operator points (FLOPs) [30]. The complexity of the
backtracking line search is T1 = O

(
K2
)

per step. As a
result, the backtracking line search in the damped Newton
phase is Ts=NlT1 =O

(
log
(
S2Lκ

)
K2/ log

(
1
τ

))
. Moreover,

updating x̂ and w in Line 6 of Alg. 1 incurs Tx̂ = 2K(2K−1)
and Tw = 4K FLOPs [42]. Hence, the complexity of the
damped Newton phase is

TD = ND (TLU+Ts + Tx̂ + Tw)

= O

(
S2Lκ log

(
S2Lκ

)
ζτ log

(
1
τ

) K2+
16

3
K6

)
.

(46)
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Likewise, the complexity of the quadratically convergent phase
is given by

TQ = NQ (TLU+Tx̂ + Tw)

= O
(

log
(
1− log

(
S2Lρ

))
K2+

16

3
K6

)
(47)

Thus, the complexity of the logarithmic barrier method is

TLP =NLP (TD + TQ)

=O

 log
(
K2

εt(0)

)
log (ξ)

(
S2Lκ log

(
S2Lκ

)
ζτ log

(
1
τ

) +

log
(
1− log

(
S2Lρ

)))
K2+

32

3
K6

) (48)

The greedy method for discretization of the user pairing uti-
lizes double loops to search for discrete user pairing strategies.
Thus, the computational complexity is Tg = O

(
K2
)
. The

overall complexity of user pairing in Alg. 1 is TUP = TLP+Tg .
3) Overall Complexity: According to Theorem 1, it takes

q = O
(

1

η%

)
iterations for Alg. 2 to converge. Therefore, the

overall complexity is T = (TPA + TUP) q.

V. SIMULATION AND DISCUSSION

Extensive simulations are provided to gauge the proposed
scheme, where the users are distributed in a circular area with
radius l = 300 m and the BS is located at the center of the
area. The path loss exponent is set to 3. The bandwidth of each
resource block is 0.5 MHz. The receiver noise power spectral
density is −174 dBm/Hz.

To assess the merits of the proposed algorithm, we compare
the algorithm with the following alternative approaches:
• Equal power allocation (EPA): This mechanism allocates

the same transmit power for all users. The proposed user
pairing is used. By comparing our algorithm with the
EPA, we can assess the benefit of the proposed power
allocation strategy.

• Random pairing (RP): This mechanism randomly selects
user pairs. We use the optimal power allocation strategy
proposed in this paper to determine the transmit power
for each user.

• Gale-Shapley algorithm-based alternative: We take the
Gale-Shapley algorithm [18] to pair users, without con-
sidering their channel conditions. The optimal power
allocation strategy proposed in this paper is used to
determine the transmit power for each user.

• Simplex method-based alternative: We take the Simplex
method [19] to solve the LP problem in user pairing. The
optimal power allocation strategy developed in this paper
is adopted to specify the transmit power for each user.

By comparing the proposed algorithm with the RP-, Gale-
Shapley algorithm- and Simplex method-based alternatives, we
can evaluate the gain of the proposed user pairing algorithm.

Fig. 1 shows the evolution of the sum secrecy rate as the
number of iterations increases. It is observed that the sum
secrecy rate rises quickly and usually converges within 10
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Fig. 1: Sum secrecy rate against number of iterations with 2K = 6, 8, 10,
and P = 20 dBm.
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Fig. 2: Sum secrecy rate against user number with P = 20 dBm.

iterations. It is also noticed that the user number has a non-
negligible impact on the sum secrecy rate, especially when
there are many users. The reason is that more users lead to
stronger interference, hence penalizing the sum secrecy rate.
Our algorithm mitigates the interference by properly allocating
the power and pairing the users. These observations highlight
the importance of the proposed algorithm in multiuser NOMA
systems with many users.

Fig. 2 plots the sum secrecy rate as users increase in the con-
sidered system. We notice that the sum secrecy rate increases
with users under all five schemes. Our approach consistently
outperforms the benchmark schemes, EPA and RP, indicating
the algorithm can effectively allocate the powers and pair the
users to promote the sum secrecy rate. In order to verify the
user pairing algorithm delivered in this paper, we compare
our algorithm with the Gale-Shapley and Simplex methods.
We observe that the new user pairing is more effective than
the Gale-Shapley and Simplex algorithms. Although the gap of
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Fig. 3: Sum secrecy rate against transmit power with 2K = 8.
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the sum secrecy rate is small between the proposed algorithm
and the Simplex method, our algorithm is significantly more
computationally efficient than the Simplex method, as will be
discussed shortly.
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Fig. 5: Sum secrecy rate against ε with P = 20 dBm.

Fig. 3 shows that the sum secrecy rate increases with the
transmit power of the BS. This is expected because more trans-

mit power means that the users can transmit their messages
at higher levels, which improves the secrecy performance.
We also observe that our algorithm consistently outperforms
the benchmarks, EPA, RP, Gale-Shapley and Simplex based
algorithm. In other words, the new algorithm can effectively
allocate the power and pair the users, leading to improved sum
secrecy rate compared to alternative methods. In addition, we
see that the NOMA-based EPA outperforms the NOMA-based
RP, suggesting that NOMA systems are more sensitive to user
pairing than they are to power allocation. All this confirms
the effectiveness of our algorithm and the criticality of user
pairing in NOMA.

Fig. 4 demonstrates the relationship between the running
time and user number in the considered system. As anticipated,
the running time increases with users, since a larger number
of users require more time for the system to decide on user
pairing, extending considerably the running time. It is noticed
that our algorithm has the lowest complexity and the Simplex
method-based alternative has the highest, albeit they achieve
similar sum secrecy rates.

Last but not least, Fig. 5 presents the effect of the parameter
ε on the sum secrecy rate for various numbers of users in
Alg. 1. It is noticed that a larger ε value can cause a faster
decrease in the sum secrecy rate, as ε represents the tolerance
for errors in the proposed algorithm. However, a smaller
ε value can result in a higher computational complexity,
requiring more iterations to reach a satisfactory solution. Here,
we set ε = 1× 108 in order to balance the trade-off between
sum secrecy rate and running time.

VI. CONCLUSION

This paper studied a multiuser NOMA system with un-
trusted IoT devices, and drew up a joint power allocation and
user pairing problem in an attempt to achieve the maximum
sum secrecy rate of the system, subject to the data rate
requirements of individual users and the transmit power of the
BS. To effectively solve this MINLP problem, we decomposed
the problem between two subproblems: power allocation with
a closed-form solution, and user pairing solved using the loga-
rithmic barrier method. Simulations showed that our algorithm
offers superior secrecy performance to existing alternatives,
indicating that the algorithm is effective in improving the
secrecy of NOMA systems and that holistic consideration of
both user pairing and power allocation is critical.
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APPENDIX A
PROOF OF LEMMA 1

To prove Lemma 1, we first prove the mapping Q̃
(
X̂
)

=

X is semi-algebraic. To do this, we define U =
{(m1, n1) , · · · , (mK , nK)} to collect the indices chosen by
the greedy method in Alg. 1, and

xm1,n1
> · · · > xmK ,nK

; (49a)

xmk,nk
> xm′,n′ ,∀ (mk, nk) , (m′, n′) /∈ U. (49b)

Let U be the set of all possible U. The graph of Q̃
(
X̂
)

= X

can be given by

graph
(
Q̃
)

=
⋃

U∈U

{(
X̂,X

)∣∣∣xm,n = 1, xm′,n′ = 0,
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∀ (m,n) ∈ U, (m′, n′) /∈ U
}

(50)

=
⋃

U∈U

 ⋂
(m,n)∈U

{(
X̂,X

)∣∣∣xm,n = 1
}

⋂ ⋂
(m′,n′)/∈U

{(
X̂,X

)∣∣∣xm′,n′ = 0
} .

Since (50) is semi-algebraic, Q̃
(
X̂
)

= X is semi-algebraic.
Next, we prove that the objective function of (40) is semi-

algebraic. The graph of (40a) is{(
p̄, X̂,X, z

) ∣∣∣−2tr(R
T
s X̂) = z

}
=
⋃

U∈U

(p̄, X̂,X, z
) ∣∣∣∣∣∣

∏
(m,n)∈U

p̌m,n = σ2z
∏

(m,n)∈U

q̌m,n


⋂ ⋂

(m,n)∈U

{(
p̄, X̂,X, z

)∣∣∣xm,n = 1
} (51)

⋂ ⋂
(m′,n′)/∈U

{(
p̄, X̂,X, z

)∣∣∣xm′,n′ = 0
}

⋂ ⋂
(m,n)∈U

{(
p̄, X̂,X, z

)∣∣∣ p̌m,n − σ2q̌m,n > 0
} ,

where p̌m,n and q̌m,n are given by

p̌m,n =
(
|hm|2 pn + σ2

)(
|hn|2 pn + σ2

)
; (52a)

q̌m,n = |hm|2 (pn + pm) + σ2. (52b)

According to [43, Corol. 4], the composition of semi-algebraic
function is semi-algebraic. Since the mapping Q̃

(
X̂
)

= X is
semi-algebraic, both (51) and the objective function of (40)
are semi-algebraic.

Further, we prove that the indicator function δF
(
p̄, X̂,X

)
is semi-algebraic. Specifically, we prove that the feasible
domain F is semi-algebraic as follows. We first show that
the feasible domain F1 defined by (40b) is semi-algebraic.
The set F1 is given by

F1 =
⋃

U∈U

{(
p̄, X̂,X

)∣∣∣Rm,m>Rm,x̂m,n=1,x̂m′,n′ =0
}

=
⋃

U∈U

 ⋂
(m,n)∈U

{(
p̄, X̂,X

)∣∣∣p̂m,n60, x̂m,n=1
}

⋂ ⋂
(m′,n′)/∈U

{(
p̄, X̂,X

)∣∣∣p̂m′,n′ 60, x̂m′,n′ =0
} ,

(53)

where p̂m,n is given by

p̂m,n =

[
(pm + pn)+

σ2

|hm|2

][
p2n−

σ2

|hm|2
(pm−pn)

]
.

(54)
We can find that (53) is semi-algebraic.

Similarly, the feasible domain F2 defined by (40c) is

F2 =
⋃

U∈U

{(
p̄, X̂,X

)∣∣∣Rn,n>Rn, x̂m,n=1,x̂m′,n′ =0
}

=
⋃

U∈U

 ⋂
(m,n)∈U

{(
p̄,X̂,X

) ∣∣∣p̃m,n60, x̂m,n=1
}

⋂ ⋂
(m′,n′)/∈U

{(
p̄,X̂,X

) ∣∣∣p̃m′,n′ 60, x̂m′,n′ =0
} ,

(55)

where p̃m,n is given by

p̃m,n = − |hn|2 p2n + (pm − pn)σ2. (56)

We can find that (55) is also semi-algebraic.
The feasible domain F3 defined by (40d)–(40h) is also semi-

algebraic, since these constraints are polynomial.
According to [44, eq. I.2.9.1], the intersection of semi-

algebraic sets is also semi-algebraic. Therefore, the feasible
domain of (40), which is given by

F = F1 ∩ F2 ∩ F2, (57)

is also semi-algebraic. As a result, δF
(
p̄, X̂,X

)
is semi-

algebraic, since the indicator function of a semi-algebraic set
is semi-algebraic [45].

As discussed above, both the objective function of (40)
and indicator function of feasible domain are semi-algebraic.
Since the finite sum of semi-algebraic functions is also semi-
algebraic [46], the mapping of the overall algorithm, i.e., (41)
is semi-algebraic. This proof is complete.

APPENDIX B
PROOF OF THEOREM 1

According to Lemma 1, the mapping of the overall al-
gorithm is semi-algebraic. Thus, Q has the KŁ property
[47]. Let p̄(q), X̂(q) and X(q) denote the p̄, X̂ and X
generated in the q-th iteration, respectively.

{
p̄(q)

}
is bounded

since |hn|, |hm| and σ are bounded. Similarly, both L and
s are bounded. Therefore, subproblems minp̄Q

(
p̄, X̂,X

)
,

minX̂Q
(
p̄, X̂,X

)
, and minXQ

(
p̄, X̂,X

)
converge in each

iteration of the overall algorithm. On the other hand, it
is easy to know that both X̂(q) and X(q) are bounded.
When the algorithm sequentially solves minp̄Q

(
p̄, X̂,X

)
,

minX̂Q
(
p̄, X̂,X

)
, and minXQ

(
p̄, X̂,X

)
, the sequence(

p̄(q), X̂(q),X(q)
)

generated by the algorithm is bounded.
According to [48], as a bounded sequence generated by the
function with KŁ property,

(
p̄(q), X̂(q),X(q)

)
converges to a

stationary point of (40).
Furthermore, let o∗ denote the optimum of the algorithm.

When S and L exists, it was shown in [48], [49] that there
exist constant C, %, and q0 > 0, satisfying

|oq − o∗| 6
C

2
q−

1
% , (58)
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after q > q0 iterations. Hence, we have

|oq − oq−1| 6 |oq − o∗|+ |oq−1 − o∗| 6 Cq−
1
% . (59)

We can choose η satisfying

|oq − oq−1| 6 Cq−
1
% 6 η. (60)

Hence, we have

q >

(
C

η

)%
. (61)

The number of iterations of the overall algorithm is given by

q ∼ O
(

1

η%

)
, (62)

which concludes this proof.
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