
ar
X

iv
:2

30
4.

06
05

9v
2 

 [
cs

.C
V

] 
 5

 D
ec

 2
02

3
This article has been accepted for publication in IEEE Internet of Things Journal. This is the author’s version which has not

been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3263290

Efficient Deep Learning Models for

Privacy-preserving People Counting on

Low-resolution Infrared Arrays
Chen Xie, Member, IEEE, Francesco Daghero, Member, IEEE, Yukai Chen, Member, IEEE, Marco Castellano,

Luca Gandolfi, Andrea Calimera, Member, IEEE, Enrico Macii, Fellow, IEEE, Massimo Poncino, Fellow, IEEE,

and Daniele Jahier Pagliari Member, IEEE

©2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for
more information.

Abstract—Ultra-low-resolution Infrared (IR) array sensors
offer a low-cost, energy-efficient, and privacy-preserving solution
for people counting, with applications such as occupancy mon-
itoring and visitor flow analysis in private and public spaces.
Previous work has shown that Deep Learning (DL) can yield
superior performance on this task. However, the literature was
missing an extensive comparative analysis of various efficient DL
architectures for IR array-based people counting, that considers
not only their accuracy, but also the cost of deploying them
on memory- and energy-constrained Internet of Things (IoT)
edge nodes. Such analysis is key for system designers, since
it helps them select the most appropriate DL model given the
constraints of their target hardware. In this work, we address
this need by comparing 6 different DL architectures on a novel
dataset composed of IR images collected from a commercial
8x8 array, which we made openly available. With a wide
architectural exploration of each model type, we obtain a rich
set of Pareto-optimal solutions, spanning cross-validated balanced
accuracy scores in the 55.70-82.70% range. When deployed on a
commercial Microcontroller (MCU) by STMicroelectronics, the
STM32L4A6ZG, these models occupy 0.41-9.28kB of memory,
and require 1.10-7.74ms per inference, while consuming 17.18-
120.43 µJ of energy. Our models are significantly more accurate
than a previous deterministic method (up to +39.9%), while
being up to 3.53x faster and more energy efficient. So, our work
serves also as a demonstration that DL can not only achieve
higher accuracy, but also higher efficiency compared to classic
algorithms for this type of task. Further, our models’ accuracy is
comparable to state-of-the-art DL solutions on similar resolution
sensors, despite a much lower complexity. All our models enable
continuous, real-time inference on a MCU-based IoT node, with
years of autonomous operation without battery recharging.

Index Terms—Infrared Sensors, People Counting, Edge Com-
puting, Deep Learning, Microcontrollers, Energy Efficiency

I. INTRODUCTION

C. Xie, F. Daghero, A. Calimera, M. Poncino and D. Jahier Pagliari are
with the Department of Control and Computer Engineering, Politecnico di
Torino, Turin, 10129, Italy, e-mail: name.first surname@polito.it.

Y. Chen is with IMEC, Leuven, 3001, Belgium, e-mail:
yukai.chen@imec.be.

M. Castellano and L. Gandolfi are with ST Microelectronics S.r.l.,
Cornaredo, 20010, Italy, e-mail:name.surname@st.com.

E. Macii is with the Interuniversity Department of Regional and Ur-
ban Studies and Planning, Politecnico di Torino, Turin, 10129, Italy, e-
mail:enrico.macii@polito.it

Manuscript received January XX, XXXX; revised January XX, XXXX.
Copyright (c) 20xx IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

DEEP learning (DL) has recently received attention in

many Internet of Things (IoT) applications, ranging from

embedded computer vision to time series forecasting, due to its

remarkable predictive performance [1]–[5]. A direct execution

of DL-based prediction tasks on extreme-edge IoT nodes

such as smart sensors can provide unique benefits compared

with traditional cloud-based approaches, by eliminating the

need of transmitting large amounts of raw data through a

wireless network link [1], [6], [7]. Specifically, on-device

execution makes the IoT node responsive even in bad or no-

connectivity conditions, with a predictable latency. Moreover,

the only information (optionally) transmitted to the cloud is

the aggregated output of the DL model, e.g., a class label.

This is beneficial for confidentiality, as it reduces the risk of

accidental or malicious leakage of sensitive raw data (e.g.,

images, audio, video, etc) [1], [6].

However, DL algorithms originally designed for the cloud

are energy-hungry and require high computational complexity,

far beyond the capacity of memory- and energy-constrained

IoT nodes, which are typically based on battery-operated and

resource-limited Microcontrollers (MCUs). Bridging this gap

in order to successfully deploy DL applications at the extreme

edge requires a thorough selection of the employed models

and of the corresponding hyper-parameters [5].

Among the IoT applications that benefit from DL, people

counting is increasingly popular due to its vast number of

use cases in public safety, urban planning and commercial

assistance [8]. Practical tasks range from monitoring the

occupancy of indoor work spaces, museums and hospitals, to

analysing the people flow statistics at the entrance of shops,

supermarkets and other public places, to monitoring social

distance violations or safety norms infringements especially

in the context of the COVID-19 pandemic [9]–[11].

There exist a wide range of technical solutions based on

IoT for people counting, mainly split into two categories:

instrumented and uninstrumented [12]. The former approaches

exploit the transceivers present in devices already owned by

(or given to) users, such as smartphones, smartwatches, or

tags [13]. However, these methods are heavily limited by

voluntary participation and instrumental equipment, and are

hard to apply in most real-world scenarios, especially in public

places. On the other hand, uninstrumented solutions are free

of the individuals’ participation and rely on external sensors,

such as proximity sensors, optical cameras, infrared arrays

1

http://arxiv.org/abs/2304.06059v2


INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 2

etc [12], [14]–[16]. Among these, infrared beam sensors and

passive infrared sensors are inexpensive and simple to use, but

rely on specific conditions such as object motion, and cannot

easily distinguish multiple nearby people, which makes them

often inaccurate [17]. As computer vision and video analy-

sis techniques keep improving, vision-based people counting

solutions are thus progressively replacing them. Most current

vision-based approaches use optical cameras, processing each

frame with a Machine Learning (ML) algorithm to recognize

and locate individuals [18]–[20]. While effective, they face

severe privacy issues, since sensitive details of individuals such

as facial information and body morphology are also recorded

and processed.

In this scenario, low-resolution infrared (IR) array sensors

offer a promising alternative, with advantages in terms of

low energy consumption, low cost and privacy preservation.

The latter is due to the fact that IR arrays only detect body

temperatures, and given their low spatial resolutions (typically

8x8 or 16x16 thermal pixels), they can only capture the rough

body shapes, hiding all privacy-sensitive details of individuals.

While other works have studied the combination of IR array

sensors with DL models for people counting [21]–[24], they:

i) target higher resolution arrays, which simplifies the task but

results in higher cost, higher energy consumption, and lower

privacy and ii) consider a single type of DL model.

In this work, we perform the first detailed exploration and

comparison of multiple DL model families for people counting

based on a single, ultra-low-resolution (8x8) IR array. We

focus on efficient models, deployable on MCU-class platforms.

The following is a summary of our main contributions:

• We compare multiple efficient DL models for predicting

the people count based on data from a single 8x8 IR array.

For each type of model, we perform an extensive archi-

tecture exploration, obtaining a rich set of Pareto-optimal

solutions in terms of performance and complexity.

• Analyzing the results of our exploration, we derive some

interesting guidelines on the best type of model to prefer

based on the target accuracy range and cost metric

(model size or operations count). Overall, our models

span a 55.70%-82.70% range in balanced accuracy, with

parameters and operation counts varying in 0.4k-2.4k

and 2.9k-20k respectively. The best balanced accuracy

is up to 39.9% higher than the one of a state-of-the-

art deterministic algorithm [25], and comparable with

previous DL solutions on similar resolution data [21].

• We deploy some of the found models on a commer-

cial MCU by STMicroelectronics, the STM32L4A6ZG,

obtaining model size, inference latency, and inference

energy values ranging in 0.41-9.28kB, 1.10-7.74ms and

17.18-120.43µJ respectively. Our models are up to 3.53x

faster and more energy efficient than [25], while also

being significantly more accurate. Furthermore, all of

them allow real-time inference at 10 frames per second

with very low energy consumption, which would permit

years of continuous operation without battery recharging.

The rest of the paper is structured as follows: Section II

provides the background and overviews the related work on

Fig. 1. People counting with IR array sensors: problem formulation. Depend-

ing on the work, the prediction function f̂(X) can be obtained either with
a rule-based deterministic algorithm or learned from data using ML/DL, and
the predicted person count ŷt can be either a scalar or a class label.

person counting applications based on IR sensors at edge.

Section III presents a detailed description of the target dataset

and of the various considered DL models, and describes

the architecture exploration and deployment flow. Section IV

reports the experimental results, and Section V concludes the

paper.

II. BACKGROUND AND RELATED WORKS

People counting based on visual data is typically formulated

as an object recognition problem [34]. Several sensor types

have been utilized to implement both single- or multi-sensor

systems for this task [11], [35]. When considering this kind of

sensor, the problem reduces to a classification or regression on

image-like data, as shown in Fig. 1. Namely, at time instant t,

and calling xt the latest IR frame (i.e., “image”) collected, the

input to the recognition model is either a single frame Xt = xt

or a window of consecutive frames X = {xt−W+1,...,xt},

where W is the window size (W = 3 in the figure). The

output is the predicted people count ŷt = f̂(Xt), obtained

either as a continuous scalar, then rounded to the nearest

integer (regression formulation), or as a categorical value

corresponding to one in a set of possible counts (classification

formulation). The input/output relationship f̂(X) can be either

obtained with a deterministic rule-based algorithm or learned

from a training dataset using ML/DL approaches.

A summary of the most relevant literature works on people

counting with multi-pixel IR arrays is reported in Table I.

In particular, we report the sensor model and resolution,

its position, the target dataset, the counting algorithms, and

the IoT device considered in each work for deployment. In

detail, prior works leverage both deterministic algorithms [11],

[25]–[28], [30], classic ML models [32] or DL [21]–[24].

Among deterministic approaches, [11] implemented a novel

real-time pattern recognition algorithm to process data sensed

from doorway-mounted low-resolution IR array sensors to

determine the number of people in a room. Similarly, [26] also

takes advantage of a doorway-mounted sensor, combined with

a body extraction and localization algorithm, and background

determination. [27] proposed a similar lightweight determin-

istic solution based on a single array sensor positioned on a



INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 3

TABLE I
STATE-OF-THE-ART PEOPLE COUNTING SOLUTIONS BASED ON INFRARED ARRAYS

Work Sensor Positioning Dataset Algorithm Deployment Target

Perra et al. [11] Grid EYE (8x8) Door Private Deterministic Z-Uno

Mohammadmoradi et al. [26] Grid EYE (8x8) Door Private Deterministic Raspberry Pi Zero

Wang et al. [27] MLX90641 (12x16) Door Private Deterministic ESP8266

Rabiee et al. [28] Grid EYE (8x8) Ceiling Private/Nagoya-OMRON Dataset [29] Deterministic -

Singh et al. [30] MLX90621 (16x4) Ceiling/Side Wall Private Deterministic Arduino Uno

Panasonic [25] Grid EYE (8x8) Ceiling LINAIGE [31] (*) Deterministic STM32L4 (*)

Chidurala et al. [32]

Grid EYE (8x8)
MLX90640 (32x24)
Lepton (80x60)

Ceiling Private

Naive Bayes
KNN
SVM
RF

Raspberry Pi 3

Bouazizi et al. [21] MLX90640 (32x24) Ceiling Private CNN Raspberry Pi 3

Gomez et al. [22] Lepton (80x60) Wall Private CNN NXP LPC54102

Metwaly et al. [23] MLX90640 (32x24) Ceiling Private

FNN
CNN
GRU

STM32F4/F7

Kraft et al. [24] MLX90640 (32x24) Ceiling Thermo Presence [24] CNN Raspberry Pi 4

Xie et al. [10] Grid EYE (8x8) Ceiling LINAIGE [31] CNN (2 variants) STM32L4

Xie et al. [33] Grid EYE (8x8) Ceiling LINAIGE [31] Wake-up Trigger + CNN STM32L4

This Work Grid EYE (8x8) Ceiling LINAIGE [31]

CNN (4 variants)
CNN-LSTM
CNN-TCN

STM32L4

(*) These entries refer to our deployment of the method described in [25].

door, to monitor trajectories of objects entering and exiting a

room, and estimate the indoor people count accordingly. While

interesting due to their use of a single, low-resolution sensor,

these works solve a simplified and limited-scope version of the

generic people counting problem. In fact, they only permit the

counting of people entering/exiting a room through a doorway.

A more general deterministic method based on a ceiling-

mounted sensor is described in [25]. This solution is based on

the separation of moving thermal objects from the background

by means of smoothing, linear interpolation and hot area

labeling and clustering. After that, threshold-based human

detection is performed on each labeled thermal object to

determine if it corresponds to a person or not. The reference

background image is updated regularly to automatically filter

stationary warm objects.

Furthermore, multi-sensor deterministic solutions have also

been explored. Specifically, [28] proposed a people flow count-

ing algorithm to monitor occupancy in smart buildings. To

achieve this goal, multiple low-resolution sensors are deployed

in connection points between different building areas, in order

to count the number of people moving across adjacent zones.

The work of [30], instead, presents a framework to count

people indoors based on two deterministic algorithms. Their

method requires three 16x4 thermal sensors deployed at dif-

ferent locations, pointing to x, y, and z directions respectively.

Among classic ML works, [32] considers three ceiling-

mounted IR arrays with different resolutions (8x8, 32x24,

80x60). It applies several preprocessing and feature extraction

steps (active pixel and active frame detection, connected

components analysis, statistical features), and then compares

multiple classification algorithms for people counting. The

considered algorithms are Naive Bayes, K-Nearest Neighbors

(KNN), Support Vector Machines (SVM) and Random Forests

(RFs). On a private dataset, they show that, for the lowest-

resolution array, the best score is achieved with a RF.

Lastly, several DL-based solutions have been proposed. The

authors of [21] use a Convolutional Neural Network (CNN)

with 9 convolutional layers and 1 dense layer to process data

from a ceiling-mounted, 32x24 pixels IR sensor to locate

and count people indoors. Optionally, their proposed method

allows the collection of lower-resolution samples (down to

8x6 pixels) to reduce sensor costs, thanks to the usage of

a separate 8-layer CNN for frame upscaling. [22] developed

a head detection and people counting algorithm for wall-

mounted sensors, based on a small-sized CNN model, and

targeting a limited-memory low-power platform deployment,

but focusing on a relatively high-resolution 80x60 pixels

array. [23] considered Feedforward Neural Networks (FNNs),

CNNs and Gated Recurrent Units (GRU) for indoor occupancy

estimation, based on ceiling-mounted 24x32 resolution IR

arrays. The work of [24] also adopts a ceiling-mounted 24x32

resolution IR array, and leverages an encoder-decoder CNN

architecture (a simplified version of U-Net) to reconstruct the

position of people in the frame.

Most recently, in our previous work of [10], we applied, to

our knowledge for the first time, a DL model directly to the

output of an ultra-low-resolution (8x8) array. However, that

work considered a simplified version of the people counting

problem, where the goal was simply to detect if the area

covered by the sensor contained 2 or more people, in the

context of social distance monitoring to combat the spread

of COVID-19. The same task variant was tackled also in [33],

where an additional deterministic wake-up-trigger was used

to avoid useless invocations to the CNN when no people are

present in the frame, further reducing the energy consumption

of the system.

All aforementioned data-driven (ML or DL) works suffer

from important limitations: [32] and [21] only focus on de-

ploying person counting on a high-end mobile Central Process-

ing Unit (CPU), and they do not report detailed deployment



INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 4

results in terms of memory occupation of the models, inference

latency, and energy consumption. [22] and [23] focus on

relatively high-resolution arrays, which are more costly and

power-consuming, besides possibly allowing the identification

of users, thus reducing privacy. [21] supports low-resolution

sensors only through an auxiliary CNN model for frame

upscaling, which contributes to the total inference complexity.

Furthermore, the excellent results obtained by many of these

works [22], [23], [32] are tainted by unfair data splitting, based

on a random sampling at the level of individual frames or

sliding windows. As explained in Sec. III, this unrealistically

oversimplifies the task. The only work that performs a realistic

data split at the session level is [21]. Lastly, as mentioned, [10]

and [33] focus on a simplified task variant.

In this work, we study for the first time the application of

DL methods to a people counting problem based on the output

on a single, ceiling-mounted, ultra-low-resolution IR array

(only 8x8 pixels). With an extensive architectural exploration

of six families of efficient DL models, and many different

hyper-parameters settings, we show that DL can not only

provide significantly better counting performance compared

to a deterministic algorithm, but also obtain benefits in terms

of energy consumption, and latency.

III. MATERIALS AND METHODS

A. Motivation

The goal of this work is to perform a detailed exploration

and comparison of various DL model families for people

counting based on a single, ultra-low-resolution (8x8) IR array.

We focus on this setup due to its several practical advantages

with respect to multi-sensor or higher-resolution alternatives,

including better privacy preservation, lower overall system

cost, and lower power consumption, especially for processing,

as shown in our results of Sec. IV. In fact, intuitively, process-

ing multiple and/or higher resolution images requires a higher

number of operations, regardless of the specific algorithm

employed, which is critical for ultra-low-power systems that

need to operate for years on battery power.

As anticipated in Sec. I, the main motivation for this study

is that, to our knowledge, such an extensive comparison of

DL models has not been performed before for this particular

task. Therefore, we believe that it serves two related pur-

poses: on the one hand, it provides a useful guidance for

system designers that want to use this kind of sensor, for

selecting an appropriate family of DL models based on the

required accuracy and on the hardware memory, latency and

energy constraints; on the other hand, it serves as a practical

demonstration of the fact that DL can not only achieve higher

accuracy, but also higher efficiency, compared to a classic

algorithm [25].

B. Dataset

There exists several public datasets containing IR array

thermal images. However, most of them have been collected by

relatively high-resolution sensors from 160 x 120 to 640 x 480,

Fig. 2. Sensor mounting and example of the IR frames.

targeting applications such as pedestrian detection, and intel-

ligent driving [36]–[39]. One public dataset containing low-

resolution IR images is described in [40], and employs three

wall-mounted sensors pointing in different directions, targeting

human activity recognition tasks. Another low-resolution IR

dataset containing 16x16 IR sensor arrays is described in [29],

in this case for a ceiling-mounted sensor and specifically

tailored for activity recognition. However, in this dataset at

most one person appears in the frame, which deviates from

the original people counting purpose. The dataset in [24] is

instead dedicated to people counting applications, with up

to 5 people in one frame. Each frame is annotated with the

people’s locations, which can be simply converted into counts,

but the dataset is collected with a relatively high-resolution

array (24x32 pixels). None of these datasets are suitable for

experimenting on low-cost, energy-efficient people counting

on ultra-low-resolution IR arrays. Indeed, as shown in Table I,

most literature on this task uses privately-collected data.

Given this scenario, we collected and made openly available

a new dataset called LINAIGE (Low-resolution INfrared-array

data for AI on the edGE) [31]. LINAIGE targets specifically

people counting and presence detection tasks in indoor envi-

ronments, and its first version was described in our previous

work of [10]. The dataset includes IR samples collected with

a Panasonic Grid-EYE (AMG8833) sensor [25] outputting a

8 x 8 array, at 10 Frames Per Second (FPS). Each frame is

associated with the corresponding people count label. During

data collection, the sensor was ceiling-mounted as shown in

Fig. 2a, and positioned in different indoor environments such

as offices, laboratories and corridors, using a lens with a view

angle of 60°. Volunteers passed in the view range of the

sensor by walking, standing, running, etc, during a number of

data collection sessions. Some examples of collected frames

and corresponding people counts are shown in Fig. 2b. As

detailed in [10], depending on the sensor height in different

environments, the maximum distance between in-frame people

varies in [1.53:2.04] m and the counting area is up to ≈ 2

m2. People counting on larger areas can be simply achieved

by combining the outputs of multiple sensors, appropriately

positioned. With respect to the original dataset described

in [10], this work is based on a new version with improved

data quality. Namely, we removed the very rare frames with



INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 5

> 3 people (0.66% of the total), which were present only

in one session, complicating the training and cross-validation

of ML/DL models. Further, we also removed the shortest

session (session 4 in [10]) which contained only 196 frames,

i.e. around 20s worth of data, and unrealistically altered the

recognition performance metrics. After these changes, the new

dataset contains 25110 samples, split into 5 sessions. Each

session is associated with a timestamp, environment name and

room temperature.

IR frames have been labelled using a semi-automatic

method: a data collection system based on a single-board

computer named Raspberry Pi 3B has been set up, including

both the IR sensor and an optical camera, pointing in the

same direction and collecting synchronized frames. Optical

frames have been then processed with a pre-trained object

detection model (Mask R-CNN [41]) to automatically count

the number of people in them, and associate the same count

to the corresponding IR frame. The results have been double-

checked by a human labeller to correct CNN mispredictions.

Further, the human labeller also associated each frame with

a binary confidence measure, which can be used to exclude

frames for which it was difficult to assess the exact people

count due to the imperfect alignment of the viewing angles

between the IR sensor and the optical camera. More details

on the labelling are found in [10].

In all experiments of this work, we excluded “hard-to-label”

frames from training and testing, both for our method and

for state-of-the-art comparisons. Moreover, in contrast to [10]

where a simple per-session train/test split was used, here we

adopt a per-session Cross Validation (CV) approach, to make

our model evaluation independent from the characteristics of

a specific test session. The cross validation strategy is shown

in Table II. Given that Session 1 is significantly larger than

all others (17958 frames versus a maximum of 2202 for other

sessions, and 71% of the total data), we always kept it in the

training set. Sessions 2, 3, 4 and 5 have been rotated as the test

set in different iterations, with all other data in the training set,

yielding 4 CV folds. This leave-one-session-out CV strategy

ensures the fairness of model evaluation, by making sure that

test frames correspond to a different environment, date-time,

and room temperature setting compared to training frames.

This is close to a realistic scenario, in which the system is

likely to be tested in a different environment from where it

was trained. In contrast, a purely random per-frame split would

cause a leakage of information between training and testing,

oversimplifying the problem.

C. Model Architectures

We considered six families of DL models to predict the

people count in IR frames, exploring some of the key hyper-

parameters of each. A graphic representation of all considered

models is shown in Fig. 3.

1) Single-frame CNN: The first considered architecture is

a simple CNN, which is known to be effective in many

image-based pattern recognition tasks. The general template

of the considered CNNs is shown in Figure 3a; it includes up

to 2 Convolutional (Conv) layers with Rectified Linear Unit

(ReLU) activation, 1 optional Max Pooling layer and up to

2 Fully Connected (FC) layers. The first FC layer has 64

hidden units and a ReLU activation, while the output layer

has a number of neurons equal to the possible count “classes”

(from 0 to 3 people, corresponding to 4 output neurons,

in our experiments). Furthermore, compared to our previous

work of [10], which focused on a simpler social distancing

problem, we added Batch Normalization (BN) layers after

each Conv layer to improve the classification performance.

Utilizing this template as a starting point, a vast architecture

exploration was performed, by eliminating/retaining layers

which are enclosed in dashed boxes in Fig. 3a. Namely, we

considered architectures with:

• 1 or 2 Conv layers, each followed by BN;

• 1 or 2 FC layers;

• 0 or 1 Max Pooling layers;

Besides varying the number of layers, we also explored the

number of feature maps (i.e., channels) in each Conv layer,

considering values in {8, 16, 32, 64}. Conv. and Pooling kernel

sizes are fixed at 3x3 and 2x2 respectively. The input processed

by this CNN model is a single IR array frame Xt = xt, with

a tensor shape (8, 8, 1). In total, we evaluate 48 different

Single-frame CNN variants.
2) Multi-channel CNN: While the previous model consid-

ers a single IR array frame as input, all other models try to

exploit the temporal information enclosed in a sequence of

consecutive frames to improve the people counting accuracy.

The rationale is that considering a sliding window of IR frames

as input can reveal information on people movement, which

in turn can improve the prediction accuracy in complex cases.

For instance, Fig. 4 shows that a single hot area (highlighted

by a purple box in the last frame) can be correctly associated

with two people close to each other, rather than with a single

person, by observing the movement of the two people (red and

orange cycles) in preceding frames.

The first and simplest mechanism that we considered to

process multiple IR frames consists in feeding them to a

CNN as different input channels. Specifically, calling W the

length of the sliding window, a tensor with shape (8, 8, W) is

formed by stacking IR frames Xt = {xt−W+1,...,xt} along

the channels axis. The tensor is then associated with the

people count label of the last frame yt for training and testing.

These inputs and outputs are also used for all the other multi-

frame architectures described in the following. The template

of the Multi-channel CNN model is shown in Fig. 3b. We

explored the same hyper-parameters settings considered for

Single-frame CNNs in terms of the number of layers, and

the number of Conv channels. In addition, we also varied the

window size W in {3, 5, 7, 9}. This exploration is interesting

because, intuitively, with a too-short window the advantages of

accessing past frames are limited, whereas a too-long window

will provide useless information (too far in the past), while

increasing the time and memory complexity of the first Conv

layer.
3) Majority Voting CNN: Majority voting is a simple yet

effective ensemble learning approach that takes advantage

of multiple classification results to generate final predictions

with lower variance [42]. In recent years, several literature



INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 6

TABLE II
DATASET STATISTICS AND CROSS VALIDATION STRATEGY.

Train Fold Test Fold

Session Sample N.
People Counts Statistics [%]

Session Sample N.
People Counts Statistics [%]

0 1 2 3 0 1 2 3

1, 3, 4, 5 23529 26.07 43.49 23.61 6.83 2 1581 14.86 30.68 54.46 0

1, 2, 4, 5 23591 22.37 44.03 26.84 6.77 3 1519 71.89 21.72 5.66 0.72

1, 2, 3, 5 22908 25.3 41.85 26.17 6.67 4 2202 26.02 51.27 19.16 3.54

1, 2, 3, 4 23260 24.69 43.02 26.08 6.20 5 1850 33.78 38.38 18.92 8.92

(a) Single-frame CNN (b) Multi-channel CNN

(c) Majority Voting CNN (d) Concatenated CNN

(e) CNN-LSTM (f) CNN-TCN

Fig. 3. Model Architectures considered in this work

!

Fig. 4. Example of the IR frames sequence corresponding to 2 people moving
close to each other.

works have applied this technique, using either different

classifiers [43], multiple instances of the same model trained

differently [44] or a single trained model fed with different

inputs [45]. In our work, we follow the latter approach,

applying majority voting (i.e., mode inference) to the W

predictions obtained by executing a Single-frame CNN on

each frame of the sliding window. A high-level scheme of

this solution is shown in Fig. 3c. The clear advantage of

this technique, from the point of view of edge inference, is

that it requires approximately the same memory as a single-

frame CNN, while possibly improving the prediction accuracy

by filtering-out occasional mispredictions. The latency/energy

cost for inference, instead, is roughly W times higher than that

of a single-frame model. We consider again W values in {3,

5, 7, 9}. Note that majority voting requires an odd window

size; thus, for fairness of comparison, all other multi-frame

architectures have been tested only with odd W values.

To make our architectural exploration tractable, we consider

the majority-voting models obtained using Pareto-optimal

Single-frame CNNs as individual predictors. More specifically,

we apply majority voting on top of all single-frame CNNs

found in the Pareto front in terms of people counting accuracy

versus model size or versus number of operations.

4) Concatenated CNNs: While the main advantage of

majority voting is that it does not require extra trainable

parameters, its main drawback is that it cannot assign dif-

ferent importance to the various IR frames in the sliding

window. Intuitively, more recent frames should be given more

importance to determine the people count, especially with

large W . Although this could be approached by a weighted

voting mechanism, such solution requires a difficult hand-

tuning of the weights assigned to each frame. Thus, our

next considered DL model exploits a feature concatenation

approach to overcome this limitation [46], [47]. Specifically,

as illustrated in Fig. 3d, each frame of the sliding window

is individually fed into a feature extractor module to extract

time-independent features. Then, all outputs are flattened and

concatenated into a unique feature vector, and further pro-

cessed by two FC layers to generate the final prediction. In this

way, the training process can automatically assign appropriate

weights to different frames’ features. We consider the Conv

and Pooling layer configurations (i.e., the part highlighted by

an orange box in Fig. 3a) found in each Pareto-Optimal Single-

frame model as possible feature extractors for concatenated

CNNs. Furthermore, besides exploring the usual 4 values of



INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 7

W , we also vary the number of neurons in the first FC layer

in {8, 16, 32, 64}. Altogether, given N Pareto-optimal feature

extractors, we evaluate a total of 4*4*N Concatenated CNNs.

5) CNN-LSTM: The next multi-frame model explicitly con-

siders the time dependency between frames, replacing the

simple feature concatenation with a Long-Short Term Memory

(LSTM) cell. Several works have considered CNN-LSTM

models to combine spatial and temporal information [48]–

[50]. The closest work to ours is [29], which applied a

CNN-LSTM for human activity recognition based on a 16x16

IR array. These works have demonstrated the remarkable

performance achieved by CNN-LSTMs. However, LSTM cells

are less hardware-friendly than CNNs [51] (see Sec. III-C6).

Therefore, it is interesting to compare this model with other

architectures, considering the trade-off between complexity

and performance.

Our CNN-LSTM template is shown in Fig. 3e. The W

feature extractor outputs are flattened and fed to the LSTM

cell sequentially. One or two FC layers are then connected

to the last hidden state produced by the LSTM to generate

the output prediction. We apply the same feature extractors

selection strategy illustrated above for Concatendated CNNs.

Moreover, we vary W as before, and we also explore the

number of hidden units in the LSTM cell, with values in {8,

16, 32, 64}. Again, given N Pareto-optimal feature extractors,

a total of 4*4*N CNN-LSTM architectures are evaluated.

6) CNN-TCN: The last type of model considered is based

on Temporal Convolutional Networks (TCN) [51] which have

recently emerged as a more hardware-friendly alternative

to LSTMs, and have been applied to several edge-relevant

tasks [5], [52]. TCNs are simply 1D CNNs, with the peculiar-

ity of using causal convolution, which is appropriate for time-

series processing. Compared to LSTMs, these networks exhibit

more data reuse and are more resilient to integer quantization,

both of which are advantageous for edge deployment [51].

Therefore, our last architectural template is built by combining

the outputs of the usual 2D CNN feature extractors applied to

single IR frames with a single TCN layer, as shown in Fig. 3f.

The TCN output is then flattened and fed to 1 or 2 FC layers

to generate a prediction. We fix the 1D Conv kernel size at

3x1, and the dilation at 1. Besides varying W as in previous

models, we explore the number of output channels of the

TCN layer, considering values in {8, 16, 32, 64}. Therefore,

with N feature extractors, also in this case we explore 4*4*N

architectures.

D. Training and Deployment Flow

All models are trained with the leave-one-session-out CV

strategy described in Sec. III-B. At first, we perform a standard

floating point model training with Keras/TensorFlow 2.0 [53],

for a maximum of 500 epochs per fold. We optimize a cate-

gorical cross-entropy loss function using the ADAM optimizer,

with an initial learning rate of 10−3. A learning rate reduction

of factor 0.3 is applied when the training loss is stagnating,

with a patience of 5 epochs. Early-stopping is applied after 10

non-improving epochs. Given the strong class imbalance of

the LINAIGE dataset (see Table II), we apply class-dependent

weights to the loss during training, which are computed as the

inverse of the class frequencies.

After this initial floating point training, we quantize the

parameters, inputs, outputs, and intermediate activations of

the resulting models to 8-bit integers, using the TensorFlow

Model Optimization (TFMOT) API. This step is important to

further reduce the memory occupation, latency, and energy

consumption of the models, when deployed on constrained

MCU-based IoT nodes [54]. We then apply quantization-

aware training (QAT) [55] to recover the accuracy drop due

to quantization as much as possible. We use the same training

protocol described above, with the only two differences that

the initial learning rate is set to 5 × 10−4 and the learning

rate scheduling and early stopping patience values are set to

10 and 20 epochs respectively. Note that the QAT of LSTM

cells is not supported by the TFMOT API yet. Therefore, the

CNN-LSTM models are directly deployed in floating point to

the MCU. This turns out to be a major practical limitation of

CNN-LSTMs.

The trained and quantized models are then converted into

TensorFlow Lite (TFLite) format [53]. Lastly, we utilize the X-

CUBE-AI toolchain 7.2.0 [56] to convert the TFLite files into

optimized C language implementations for our deployment

target, i.e., the ultra-low-power STM32L4A6ZG MCU by

ST Microelectronics, which is based on a 32-bit Cortex-M4

core [57]. The latency and energy results refer to the MCU

running at 80MHz, with a supply voltage of 1.8V.

IV. EXPERIMENTAL RESULTS

A. Setup

To evaluate the performance of our models, we mainly

consider the Balanced Accuracy (Bal. Acc.) metric, i.e., the

average of recall on each class. Compared to the standard

accuracy (Acc.), i.e., the fraction of correct predictions, which

we also report for completeness, the Bal. Acc. is more suitable

for class-unbalanced datasets. Moreover, we also measure the

F1-Score (F1), defined as the harmonic mean of precision

and recall. Since ours is a multiclass problem, we compute

the weighted average of the F1 on each class. Lastly, we

also report the Mean Absolute Error (MAE) and the Mean

Squared Error (MSE) between ground truth and predicted

people counts. We consider MAE and MSE although our task

is a classification, because they allow taking into account the

significance of errors: e.g., for a frame with a ground truth

people count of 3, a model that outputs 2 makes a “smaller”

error compared to one that outputs 1. All metrics are reported

as the mean ± standard deviation over the 4 CV folds, where

each fold is weighted by the number of its test samples over

the total test samples.

To estimate the hardware-independent computational com-

plexity of each model, we consider the number of parameters

as a proxy for model size, and the number of Multiply-and-

Accumulate (MAC) operations, i.e., the dominant operations

in DL inference, as a proxy for energy and latency. We then

deploy on the target MCU a selection of Pareto-optimal models

in the Bal. Acc. versus parameters and MACs planes. For

deployed models, we derive the total memory occupation,



INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 8

30 40 50 60 70 80 90
Test Session 3 Bal.Accuracy [%]

0

20

40

60

80

Te
st

 S
es

sio
n 

2 
Ba

l.A
cc

ur
ac

y 
[%

]
Variance Analysis for Float all Models

Grid EYE API
Single-frame
Multi-frame-3
Multi-frame-5

Multi-frame-7
Multi-frame-9
Majority-3

Majority-5
Majority-7
Majority-9

Concat-3
Concat-5
Concat-7

Concat-9
CNN-LSTM-3
CNN-LSTM-5

CNN-LSTM-7
CNN-LSTM-9
CNN-TCN-3

CNN-TCN-5
CNN-TCN-7
CNN-TCN-9

Fig. 5. Results in terms of balanced accuracy versus number of parameters and number of MAC operations for all considered models. All models (left), and
isolated Pareto fronts (right).

as well as the total clock cycles, energy consumption and

latency per prediction, from measurements on the real hard-

ware, i.e, the STM32L4A6ZG MCU by ST Microelectronics.

Concerning memory occupation, both the model size and the

total Flash usage are measured. In particular, model size is

obtained from the X-CUBE-AI toolchain when generating

C code for our DL models, while Flash usage is evaluated

using the STM32CubeIDE [58] during deployment. The CPU

cycles per inference, which determine the total latency, are also

measured using STM32CubeIDE, and in turn used to compute

the energy consumption based on the average active power of

the MCU from the datasheet. We consider the STM32L4A6ZG

MCU working at 80MHz clock frequency, with 1.8V supply

voltage [57]. The latency and energy consumption estimates

for each architecture have been obtained running the models

and the baselines 1000 times, and reported as the mean ±
standard deviation, as shown in Table IV.

Our main baseline for comparison is [25], i.e., the only

publicly available people counting solution based on a ceiling-

mounted IR array with the same resolution sensor as ours.

We compiled and executed the code of [25], written in C

language, on our target MCU, using the same compilation

flags of our models, and we tested it on the LINAIGE dataset.

Furthermore, we also compare with [21]–[24], [32], although

only qualitatively, since those works target different datasets

and hardware platforms.

B. Architecture Exploration

Figure 5 shows the results of our architecture exploration.

In particular, the top (bottom) graphs show the results before

(after) 8-bit quantization. For each data precision and target

cost metric (MACs or parameters), we report both the entire

set of considered models (left), and a “zoom” on the Pareto

frontier (right), highlighted by a black dashed line. The people

counting performance is reported in terms of the average Bal.

Acc. over the CV test folds. Each marker shape refers to one

model type, whereas colors correspond to different sliding

window sizes W . Note that LSTM-based models are not

present in Fig.5b because their quantization is not supported by

TFMOT. The performance of our comparison baseline of [25]

is shown by a horizontal red line.

The complete graphs show the breadth of our architectural

exploration, which includes models that span more than two

orders of magnitude in terms of MACs (2.9k-364k) and pa-

rameters (0.4k-153k). When considering only Pareto-optimal

models, the MACs range is 2.9k-14k for float models and 2.9k-

20k for quantized models, while parameters vary in 0.4k-2.4k

and 0.4k-1.6k respectively. The Bal. Acc. spanned by these

models ranges in 55.70-82.70% for float models and 62.88-

82.17% for quantized ones.

All Pareto-optimal models outperform the deterministic ap-

proach of [25], showing the benefit of data-driven methods for

this task. Moreover, all 6 considered model families are present



INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 9

in at least one Pareto front, demonstrating that focusing on

a single architectural template would be sub-optimal. Single-

frame CNNs are only achieving optimal trade-offs in the

lowest end of the accuracy range. At the same time, models

with W = 9 are rarely on the frontier, highlighting at the same

time the importance of processing a sequence of IR frames to

achieve high accuracy, and the fact that too long sequences

stop providing useful information and lead to over-fitting.

Lastly, comparing Fig. 5a and Fig. 5b, shows that quantization

does not cause relevant accuracy drops, and rather yields a

Bal. Acc. increase on most models, especially the lowest

complexity ones. This is due to its well-known regularizing

effect [55], which again helps to reduce overfitting.

Going more into the details of each chart, we note that

each Pareto front is formed by a different combination of

model types, showing that different architectures are preferable

for optimizing the model size or the number of operations.

Specifically, when considering the Bal. Acc. versus MAC

graphs, Single-frame and Multi-channel CNNs (crosses in the

charts) occupy most of the Pareto front, for both float and

8-bit models. In contrast, when considering the number of

parameters as a cost metric, the front is mainly composed of

Majority voting (squares) and Concatenated CNNs (circles).

This is expected, since for W > 1, Multi-channel CNNs

require additional MACs only in the first Conv layer, whereas

all subsequent layers remain identical to the case of W = 1.

In contrast, Majority-voting and Concatenated CNNs repeat

the execution of the entire network, or feature extractor, on

each frame, which makes the total MACs grow almost linearly

with W . Therefore, these models “pay” the Bal. Acc. benefits

deriving from a larger W with a much larger number of

operations. Vice versa, since the weights used to process each

IR frame are shared, the cost increase in terms of model size is

lower. Specifically, it is near-zero for Majority-voting CNNs,

and limited to the final FC layers for Concatenated CNNs.

Accordingly, when considering the parameters as a cost metric,

these models are able to outperform multi-channel CNNs and

reach the Pareto frontier.

Predictably, the most complex models (CNN-LSTM and

CNN-TCN) appear in the high-accuracy part of the Pareto

curves. Namely, the most accurate floating point model is a

CNN-LSTM, reaching 82.7% Bal. Acc. with ≈ 14k MACs

and 2.38k parameters, whereas two CNN-TCN appear in the

MACs-related Pareto front for quantized models, close to the

top. However, in general, most instances of these two types

of model suffer from over-fitting, achieving sub-optimal per-

formance, while incurring a high cost in terms of MACs and

parameters, as shown by the fact that they mostly occupy the

right side of the complete charts. Overall, we can conclude that

simple and efficient solutions to combine multiple IR frames

(multi-channel, mode inference, and feature concatenation) are

preferable for this relatively simple task and small dataset.

Table III reports a summary of all considered DL models,

highlighting the features and requirements of each type based

on our results. The table reports only qualitative trends, since

the exact numerical results could change for different sensors

or datasets. Specifically, for each model type, we summarize

our Pareto analysis on both floating point and quantized

TABLE III
SUMMARY OF THE CHARACTERISTICS OF THE CONSIDERED DL MODELS.

Model Best For Bal. Acc. Target Max Input Win.

Single-frame Latency/Energy Low 1

Multi-frame Latency/Energy Mid 3

Majority Memory Whole Range 7

Concat Memory Mid 7

CNN-LSTM Memory High 9

CNN-TCN Latency/Energy High 3

implementations, reporting: i) whether a given model is most

effective for memory reduction or for latency/energy reduction,

depending on whether it is found more frequently on the

parameters or MACs Pareto frontier respectively (Best For

column); ii) the accuracy range for which such model is prefer-

able (Bal. Acc. Target column), which also implicitly defines

the corresponding resource range (memory or latency/energy);

iii) The maximum IR frames window length that yields Pareto-

optimal results for that model family (Max Input Win.). Ap-

proximately, Low, Mid, and High Bal. Acc. ranges correspond

to < 75%, 75% − 80% and > 80% respectively. The table

provides, at a glance, a general guidance for system designers.

For instance, it shows that single-frame CNNs are a good

choice when the objective is to obtain a fast and energy-

efficient inference, and very high accuracy is not required.

Similarly, it shows that Majority voting is a very effective

solution for memory reduction, across the whole accuracy

range, or that CNN-LSTMs are the only models for which

a window length > 7 is useful for improving accuracy, etc.

C. Deployment

We have selected 5 floating point and 5 quantized architec-

tures from the Pareto curves derived in Sec. IV-B to deploy on

the target MCU. Namely, we deployed: i) the model achieving

the best balanced accuracy (Top); ii) the smallest model overall

(Size-L) and the one requiring the least number of MACs

(MAC-L); iii) the smallest/fewest-MAC models that achieve

a Bal. Acc. drop < 5% with respect to Top (Size-H/MAC-H).

Table IV shows the detailed deployment results for these

architectures on the STM32L4A6ZG MCU. Quantized models

are denoted with a “-Q” suffix. Besides people counting

accuracy metrics, we also report the memory occupation,

energy consumption and inference latency of each model.

In particular, for what concerns memory, we report both

the model size and the total occupied Flash, which also

includes code size. The same quantities are also reported

for [25] for comparison. The rightmost column summarizes

the architecture of each deployed neural network. Namely, the

symbols inside the square brackets indicate the model type,

using the same marker shape of Fig. 5 (e.g., N corresponds

to a CNN-LSTM). The number in brackets corresponds to the

value of W . Then, the sequence of layers in the model is

encoded as follows: “Cn” corresponds to a Conv layer with

n output channels, with implicit BatchNorm and ReLU, “FC”

is a fully-connected layer, “P” a max. pooling layer, “Lm” a

LSTM cell with hidden size m, and “Cat” a concatenation.

As shown, all quantized models, as well as most floating-

point models (except Size-L and MAC-L) greatly outperform



INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 10

TABLE IV
DETAILED EVALUATION AND DEPLOYMENT RESULTS OF SELECTED ARCHITECTURES.

Model Bal. Acc. Acc. F1 MSE MAE Model Size Tot. Mem. Energy Latency Architecture

[%] [%] [kB] [kB] [µJ] [ms]

Top 82.70±6.15 84.34±7.84 0.85±0.07 0.18±0.09 0.16±0.08 9.28 82.38 80.26±0.10 5.16±0.0064 [N3] C8-P-C8-L16-FC
Size-H 76.25±5.54 78.13±9.08 0.79±0.08 0.24±0.09 0.23±0.09 2.97 68.73 54.96±0.01 3.53±0.0006 [•3] C8-P-C8-Cat-FC

MAC-H 77.62±5.98 78.04±8.18 0.80±0.07 0.27±0.11 0.24±0.09 5.7 42.95 29.25±0.01 1.88±0.0003 [×3] C8-P-C16-FC
Size-L 57.08±11.37 51.10±22.49 0.52±0.23 0.78±0.70 0.58±0.36 1.45 37.88 85.75±0.06 5.51±0.0036 [�5] C8-P-FC

MAC-L 55.70±11.86 50.35±21.31 0.51±0.21 0.81±0.68 0.59±0.35 1.45 37.59 17.18±0.01 1.10±0.0007 [×1] C8-P-FC

Top-Q 82.17±6.42 86.06±5.59 0.86±0.05 0.15±0.05 0.14±0.05 1.71 78.01 120.43±0.02 7.74±0.0010 [�5] C8-P-C8-FC-FC
Size-H-Q/MAC-H-Q 77.08±6.05 79.48±6.53 0.81±0.06 0.24±0.07 0.22±0.07 0.9 76.32 27.70±0.02 1.78±0.0010 [×3] C8-P-C8-FC

Size-L-Q 63.87±10.76 70.83±13.79 0.70±0.14 0.33±0.12 0.30±0.13 0.41 71.56 61.90±0.02 3.98±0.0010 [�3] C8-P-FC
MAC-L-Q 62.88±7.52 68.97±14.03 0.69±0.14 0.36±0.13 0.33±0.14 0.41 71.39 20.45±0.01 1.32±0.0007 [×1] C8-P-FC

[25] 42.77±14.50 57.54±11.50 0.56±0.12 0.61±0.21 0.49±0.14 - 20.07 60.34±0.005 3.88±0.0003 -

[25] in all considered accuracy metrics. In terms of balanced

accuracy, our models outperform [25] by 20.1%-39.4% and

12.9-39.9% for integer and floating-point data representations

respectively. Moreover, MAC-H and MAC-L in both imple-

mentations are faster and more energy efficient (from 2.06x to

3.51x) than [25], while still significantly outperforming it. For

example, MAC-H-Q is 2.18x times faster and more energy

efficient than [25], while also achieving +34.3% Bal. Acc.,

+21.9% Acc., 1.44x higher F1 Score, and 2.54x/2.22x lower

MSE/MAE.

The model size of all selected architectures is extremely

small, with the smallest one occupying only 0.408 KB. The

total memory, instead, is larger than [25], but this is mostly

due to the large code size of X-CUBE-AI libraries, which

contributes to up to 97% of the Flash occupation. As shown

in the table, the resulting memory depends on the types of

layers present in the model (e.g., the “Top” floating point

model requires more memory partly because of the additional

inclusion of LSTM-related code). Further, quantized models

have a larger code size compared to floating point ones

on average, probably due to the more complex logic for

handling scaling factors and re-quantization operations [55].

Nonetheless, all considered models can easily fit in memory-

limited IoT nodes, requiring 37.6-82.4kB of Flash, which

corresponds to 3.7%-8% of the 1MB available on the MCU

considered for our experiments.

All our models also have a latency < 10ms , which is

below the real-time constraint, considering the 10FPS acqui-

sition rate of our target dataset. Furthermore, considering a

small 1400mAh@3.7V battery, and ignoring non-idealities and

conversion losses for simplicity, a model such as MAC-H-Q

would be able to continuously run inferences at that frame rate

for more than 2 years without recharging.

D. Comparison with state-of-the-art ML/DL Approaches

Table V compares our work with the most relevant Machine

Learning and Deep Learning approaches for people counting

with IR array sensors. Of course, the comparison is only

qualitative, since most previous works have been tested on

private datasets, and deployed on different hardware. In the

table, besides the input frame size, we report the Acc., F1 and

MSE scores when available (other metrics were not considered

by previous works). All scores are directly taken from the orig-

inal papers. We also report the model size and the number of

operations (OPs) per inference, as two hardware-independent

TABLE V
COMPARISON WITH THE STATE OF THE ART.

Result Input Acc. [%] F1 MSE Size [kB] OPs

[21] 8x6 n.a. 0.88 n.a. 450 34·106

[22]∗,† 10x10 95.9 n.a. n.a. 13.6 117·103

[23]∗ 32x24 98.9 n.a. 0.01 400 400·103

[32]∗ 8x8 94.6 0.95 n.a. n.a. n.a.

[24]§ 32x24 94.1 n.a. 0.057 520.8 25·106

Top-Q 8x8 86.1 0.86 0.15 1.71 20·103

Top-Q∗ 8x8 95.3 0.95 0.05 20.1 80·103

(*) Train/test split based on random sampling, not per-session.
(§) Train/validation/test split based on sequences splitting in different locations,
not per-session.
(†) Numbers refer to the processing of a single 10x10 sliding window. This
approach also localizes people.

complexity metrics. For DL solutions, we approximate OPs

with the number of MACs, and when either Size or OPs are

not reported by the authors, we calculated them based on the

layers’ geometries. For [32], instead, estimating Size and OPs

was not possible, since the authors did not report the number

and maximum depth of the decision trees that compose their

best-performing RF.

We report two results for our work: the first one corresponds

to the “Top-Q” network of Table IV, found using the described

per-session CV approach. Additionally, since [22], [23], [32]

use a purely random sampling method to separate training and

test sets, we also report the best quantized results obtained with

such kind of splitting. Precisely, we repeat the architecture

search using a random 80%/20% train/test split, and report

the average test set results over 4 iterations. Note that the

resulting Top-Q∗ model has a different architecture from

Top-Q. Namely, it is a quantized CNN-TCN model with

the following structure: [�9] C8-P-C32-TCN32-FC-FC, where

TCNo refers to a TCN (1D Conv) layer with o output channels.

Our main reference for comparison among state-of-the-art

DL methods is [21], which uses a per-session split and a

similar input resolution. Compared to this work, we obtain

a comparable F1 Score with our Top-Q, but since our classi-

fication model is significantly smaller, and we do not need

an additional super-resolution network, we achieve a 263x

reduction in size and 1700x fewer OPs. The work of [24]

also uses a time-based data split, although simpler than ours:

they assign to different data buckets the frames collected in

the same location at different times. Their work achieves a

higher Accuracy than our Top-Q (94.1% vs 86.1%) but this is



INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 11

mostly due to the 12x higher resolution input. Furthermore,

their model requires about 130k floating point parameters,

resulting in a model size of 521kB, which is 304x more than

that of Top-Q. Similarly, the number of OPs is in the order of

millions, more than 1000x larger than Top-Q.

Since the dataset of [24] is publicly available, we also ran

two additional experiments on it. First, we down-sampled the

images to 8x8 resolution and excluded all samples with more

than 3 people to fairly compare with LINAIGE. Then, we

trained our “Top” model from Table IV using only the data

from [24] and maintaining our training protocol. We obtained

an accuracy of 72.6%, much lower than the one achieved

by their model, but acceptable given the lower resolution of

our inputs and the striking > 1000x complexity reduction.

Further, the dataset in [24] only contains ≈ 9k samples with

less than 3 people, versus the > 20k of LINAIGE. Thus,

we also tried to use the down-sampled data from [24] to

augment the LINAIGE training dataset in each CV fold. In this

case, the “Top” model improves in all classification metrics

on average (Acc. +4.8%, F1 +0.04, MSE -0.06, MAE -0.05)

except for the Bal. Acc (-1.2%) with respect to pure LINAIGE

training. This shows that, potentially, using a larger dataset

could further improve the results achieved by our efficient DL

models, especially the most complex architectures.

When considering a random data split, Top-Q∗ obtains

slightly lower accuracy and higher MSE compared to [23], but

uses a smaller-resolution input, and requires a 233x smaller

model and 20x fewer inference operations. It also achieves

comparable accuracy and F1 score with respect to the RF-

based approach of [32]. Lastly, [22] uses a model smaller than

Top-Q∗ to achieve a slightly higher accuracy on a 10x10 input.

However, the inputs processed by [22] are patches extracted

from a much higher resolution input (80x60), which is further

upscaled to 120x90 and 160x120. All three versions of the

image are then processed by the CNN in 10x10 sliding-

window patches. Therefore, the total number of inference

operations is huge for this solution (approximately 450·106

based on our calculations), which translates into very long

latencies and high energy consumption. Indeed, the authors

report a total latency of 63s and an energy of 2.2J, orders of

magnitude higher than those achieved by our models. It must

be underlined that [22] attempts not only to count people in the

frame, but also to localize their heads, which is significantly

different from our goal, and only possible due to their higher-

resolution input. Indeed, the 95.9% accuracy reported in the

table refers to head detection on a single 10x10 patch, whereas

the final counting accuracy is just 53.7%.

In summary, these comparisons show that our proposed

models achieve comparable counting accuracy with much

lower complexity on average, compared to state-of-the-art

solutions. This is particularly important for deployment at the

IoT edge, where devices have very tight memory budgets, and

extreme constraints in terms of energy consumption, being

typically battery powered and expected to operate for years

without recharging. The tiny and efficient DL models ex-

plored in this work could enable novel pervasive and privacy-

preserving people counting solutions in environments where

access to the power grid is not available, which would exclude

most of the energy-hungry state-of-the-art solutions.

V. CONCLUSION

We have conducted the first systematic study on efficient

DL architectures for person counting based on ultra-low-

resolution IR arrays, obtaining a wide range of trade-offs

between classification scores, memory occupation, latency and

energy consumption, and showing that different types of DL

models are preferable for different objectives. The resulting

Pareto-optimal models obtain counting accuracy scores that

are significantly higher than those of a publicly available

deterministic solution [25] (up to 82.70% balanced accuracy

vs 42.77%), and comparable with a state-of-the-art DL ap-

proach [21] (0.86 vs 0.88 F1-score), while reducing the latency

and energy requirements by up to more than 2x with respect

to the former, e.g. 1.78ms/27.70µJ vs 3.88ms/60.34µJ per

inference at approximately +34.3% balanced accuracy for our

method. Furthermore, our models enable continuous real-time

inference (< 10ms latency) on IoT edge devices based on

MCUs, with years of autonomous operation, while requiring

less than 100kB of memory.

ACKNOWLEDGMENT

This work has received funding from the ECSEL Joint

Undertaking (JU) under grant agreement No 101007321. The

JU receives support from the European Union’s Horizon 2020

research and innovation programme and France, Belgium,

Czech Republic, Germany, Italy, Sweden, Switzerland, Turkey.

REFERENCES

[1] J. Chen et al., “Deep learning with edge computing: A review,” Pro-

ceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.
[2] B. Jiang et al., “Wearable vision assistance system based on binocular

sensors for visually impaired users,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 1375–1383, 2019.

[3] K. Muhammad et al., “Cost-effective video summarization using deep
cnn with hierarchical weighted fusion for iot surveillance networks,”
IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4455–4463, 2020.

[4] A. Burrello et al., “Bioformers: Embedding transformers for ultra-low
power semg-based gesture recognition,” in 2022 Design, Automation &

Test in Europe Conference & Exhibition (DATE), 2022, pp. 1443–1448.
[5] M. Risso et al., “Lightweight neural architecture search for temporal

convolutional networks at the edge,” IEEE Transactions on Computers,
pp. 1–1, 2022.

[6] Z. Zhou et al., “Edge Intelligence: Paving the Last Mile of Artificial
Intelligence With Edge Computing,” Proceedings of the IEEE, vol. 107,
no. 8, pp. 1738–1762, 2019.

[7] W. Shi et al., “Edge Computing: Vision and Challenges,” IEEE Internet

of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.
[8] Y.-L. Hou et al., “People counting and human detection in a challenging

situation,” IEEE transactions on systems, man, and cybernetics-part a:
systems and humans, vol. 41, no. 1, pp. 24–33, 2010.

[9] P.-R. Tsou et al., “Counting people by using convolutional neural
network and a pir array,” in 2020 21st IEEE International Conference

on Mobile Data Management (MDM). IEEE, 2020, pp. 342–347.
[10] C. Xie et al., “Privacy-preserving social distance monitoring on micro-

controllers with low-resolution infrared sensors and cnns,” in Proceed-
ings of the 2022 IEEE International Symposium on Circuits and Systems

(ISCAS), ser. ISCAS 2022. IEEE, 2022.
[11] C. Perra et al., “Monitoring indoor people presence in buildings using

low-cost infrared sensor array in doorways,” Sensors, vol. 21, no. 12, p.
4062, 2021.

[12] C. Raghavachari et al., “A comparative study of vision based human de-
tection techniques in people counting applications,” Procedia Computer

Science, vol. 58, pp. 461–469, 2015.



INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 12

[13] W. Xi et al., “Electronic frog eye: Counting crowd using wifi,” in
IEEE INFOCOM 2014-IEEE Conference on Computer Communications.
IEEE, 2014, pp. 361–369.

[14] K. Hashimoto et al., “People count system using multi-sensing applica-
tion,” in Proceedings of International Solid State Sensors and Actuators
Conference (Transducers’ 97), vol. 2. IEEE, 1997, pp. 1291–1294.

[15] I. Udrea et al., “New research on people counting and human detection,”
in 2021 13th International Conference on Electronics, Computers and

Artificial Intelligence (ECAI). IEEE, 2021, pp. 1–6.

[16] M. B. Shami et al., “People counting in dense crowd images using sparse
head detections,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 29, no. 9, pp. 2627–2636, 2018.

[17] A. D. Shetty et al., “Detection and tracking of a human using the infrared
thermopile array sensor—“grid-eye”,” in 2017 International Conference

on Intelligent Computing, Instrumentation and Control Technologies

(ICICICT). IEEE, 2017, pp. 1490–1495.

[18] S. Basalamah et al., “Scale driven convolutional neural network model
for people counting and localization in crowd scenes,” IEEE Access,
vol. 7, pp. 71 576–71 584, 2019.

[19] V. Nogueira et al., “Retailnet: A deep learning approach for people
counting and hot spots detection in retail stores,” in 2019 32nd SIB-

GRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).
IEEE, 2019, pp. 155–162.

[20] S. D. Khan et al., “Person head detection based deep model for people
counting in sports videos,” in 2019 16th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2019,
pp. 1–8.

[21] M. Bouazizi et al., “Low-resolution infrared array sensor for counting
and localizing people indoors: When low end technology meets cutting
edge deep learning techniques,” Information, vol. 13, no. 3, p. 132, 2022.

[22] A. Gomez et al., “Thermal image-based cnn’s for ultra-low power people
recognition,” in Proceedings of the 15th ACM International Conference

on Computing Frontiers, 2018, pp. 326–331.

[23] A. Metwaly et al., “Edge computing with embedded ai: Thermal
image analysis for occupancy estimation in intelligent buildings,” in
Proceedings of the INTelligent Embedded Systems Architectures and
Applications Workshop 2019, 2019, pp. 1–6.

[24] M. Kraft et al., “Low-cost thermal camera-based counting
occupancy meter facilitating energy saving in smart buildings,”
Energies, vol. 14, no. 15, 2021. [Online]. Available:
https://www.mdpi.com/1996-1073/14/15/4542

[25] P. Industry, “Grid-eye application note on social distancing. people
detection and tracking with ceiling mounted sensors,” 2020.

[26] H. Mohammadmoradi et al., “Measuring people-flow through doorways
using easy-to-install ir array sensors,” in 2017 13th International Con-

ference on Distributed Computing in Sensor Systems (DCOSS). IEEE,
2017, pp. 35–43.

[27] H. Wang et al., “A lightweight people counting approach for smart
buildings,” in 2021 13th International Conference on Wireless Com-
munications and Signal Processing (WCSP). IEEE, 2021, pp. 1–5.

[28] R. Rabiee et al., “Multi-bernoulli tracking approach for occupancy
monitoring of smart buildings using low-resolution infrared sensor
array,” Remote Sensing, vol. 13, no. 16, p. 3127, 2021.

[29] T. Kawashima et al., “Action recognition from extremely low-resolution
thermal image sequence,” in Proceedings of the 14th IEEE International
Conference on Advanced Video and Signal Based Surveillance, Aug.
2017, pp. 1–6.

[30] S. Singh et al., “Non-intrusive presence detection and position tracking
for multiple people using low-resolution thermal sensors,” Journal of

Sensor and Actuator Networks, vol. 8, no. 3, p. 40, 2019.

[31] C. Xie et al., “Low-resolution infrared-array data
for ai on the edge,” 2022. [Online]. Available:
https://www.kaggle.com/datasets/francescodaghero/linaige

[32] V. Chidurala et al., “Occupancy estimation using thermal imaging sen-
sors and machine learning algorithms,” IEEE Sensors Journal, vol. 21,
no. 6, pp. 8627–8638, 2021.

[33] C. Xie et al., “Energy-efficient and Privacy-aware Social Distance Mon-
itoring with Low-resolution Infrared Sensors and Adaptive Inference,”
in 2022 17th Conference on Ph.D Research in Microelectronics and

Electronics (PRIME), Jun. 2022, pp. 181–184.

[34] X. Liu et al., “Detecting and counting people in surveillance appli-
cations,” in IEEE Conference on Advanced Video and Signal Based

Surveillance, 2005. IEEE, 2005, pp. 306–311.

[35] M. Stec et al., “Multi-sensor-fusion system for people counting appli-
cations,” in 2019 First International Conference on Societal Automation

(SA). IEEE, 2019, pp. 1–4.

[36] D. Olmeda et al., “Pedestrian detection in far infrared images,” Inte-

grated Computer-Aided Engineering, vol. 20, no. 4, pp. 347–360, 2013.
[37] FLIR, “Free flir thermal dataset for algorithm training,” 2018.
[38] S. Hwang et al., “Multispectral pedestrian detection: Benchmark dataset

and baselines,” in Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2015.
[39] R. E. Rivadeneira et al., “Thermal image super-resolution challenge -

pbvs 2020,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2020.

[40] Y. Karayaneva et al., “Infrared human activity recogni-
tion dataset - coventry-2018,” 2020. [Online]. Available:
https://dx.doi.org/10.21227/baja-1j59

[41] K. He et al., “Mask r-cnn,” 2017. [Online]. Available:
https://arxiv.org/abs/1703.06870

[42] L. Lam et al., “Application of majority voting to pattern recognition:
an analysis of its behavior and performance,” IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 27,
no. 5, pp. 553–568, 1997.

[43] D.-S. Lee, “Handprinted digit recognition: A comparison of algorithms,”
in Proceedings of the Third International Workshop on Frontiers in

Handwriting Recognition, 1993, pp. 153–164.
[44] M. Amin-Naji et al., “Cnns hard voting for multi-focus image fusion,”

Journal of Ambient Intelligence and Humanized Computing, vol. 11,
no. 4, pp. 1749–1769, 2020.

[45] A. Yazdizadeh et al., “Ensemble convolutional neural networks for mode
inference in smartphone travel survey,” IEEE Transactions on Intelligent

Transportation Systems, vol. 21, no. 6, pp. 2232–2239, 2020.
[46] F. Demir et al., “A new pyramidal concatenated cnn approach for

environmental sound classification,” Applied Acoustics, vol. 170, p.
107520, 2020.

[47] Q. Wu et al., “Concatenate convolutional neural networks for non-
intrusive load monitoring across complex background,” Energies,
vol. 12, no. 8, p. 1572, 2019.

[48] T.-Y. Kim et al., “Predicting residential energy consumption using cnn-
lstm neural networks,” Energy, vol. 182, pp. 72–81, 2019.

[49] J. Zhao et al., “Speech emotion recognition using deep 1d & 2d cnn
lstm networks,” Biomedical signal processing and control, vol. 47, pp.
312–323, 2019.

[50] V. Sciannameo et al., “A deep learning approach for Spatio-Temporal
forecasting of new cases and new hospital admissions of COVID-
19 spread in Reggio Emilia, Northern Italy,” Journal of Biomedical

Informatics, vol. 132, p. 104132, Aug. 2022.
[51] C. Lea et al., “Temporal Convolutional Networks: A Unified Approach

to Action Segmentation,” in Computer Vision – ECCV 2016 Workshops,
ser. Lecture Notes in Computer Science, G. Hua et al., Eds. Cham:
Springer International Publishing, 2016, pp. 47–54.

[52] A. Burrello et al., “Q-PPG: Energy-Efficient PPG-based Heart Rate
Monitoring on Wearable Devices,” IEEE Transactions on Biomedical

Circuits and Systems, p. 1, 2021.
[53] M. Abadi et al., “Tesorflow: Large-scale machine learning on heteroge-

neous systems,” 2015. [Online]. Available: https://www.tensorflow.org/
[54] F. Daghero et al., “Energy-efficient deep learning inference on edge

devices,” in Hardware Accelerator Systems for Artificial Intelligence

and Machine Learning, ser. Advances in Computers, S. Kim et al., Eds.
Elsevier, 2021, vol. 122, ch. 8, pp. 247–301.

[55] B. Jacob et al., “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), jun
2018.

[56] STMicroelectronics, “X-CUBE-AI, AI expansion pack for
STM32CubeMX,” https://www.st.com/en/embedded-software/x-cube-
ai.html.

[57] ——, “STM32L4A6ZG, Ultra-low-power Arm Cortex-
M4 32-bit MCU,” https://www.st.com/en/microcontrollers-
microprocessors/stm32l4a6zg.html.

[58] ——, “STM32CubeIDE, Integrated Development Environment for
STM32,” https://www.st.com/en/development-tools/stm32cubeide.htm.

https://www.mdpi.com/1996-1073/14/15/4542
https://www.kaggle.com/datasets/francescodaghero/linaige
https://dx.doi.org/10.21227/baja-1j59
https://arxiv.org/abs/1703.06870
https://www.tensorflow.org/


INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JANUARY XXXX 13

Chen Xie received the M.Sc degrees in Electron-
ics Engineering at Politecnico di Torino in 2020.
Since May 2020, she joined the EDA group in the
Department of Control and Computer Engineering
at Politecnico di Torino. Her main research in-
terests concern energy-efficient implementations of
machine learning algorithms and synthesis of smart
sensors.

Francesco Daghero is a PhD student at Politecnico
di Torino. He received a M.Sc. degree in com-
puter engineering from Politecnico di Torino, Italy,
in 2019. His research interests concern embedded
machine learning and Industry 4.0.

Yukai Chen earned his M.Sc. and Ph.D. degrees
in Computer Engineering from the Politecnico di
Torino, Turin, Italy, in 2014 and 2018, respectively.
He currently serves as a Senior Researcher at IMEC,
where he contributes to the System and Technol-
ogy Co-optimization Program. His primary focus
is on system-level power and thermal management
for High-Performance Computing Architectures. His
research interests encompass design automation for
non-functional property modeling, simulation, and
optimization, with particular emphasis on energy-

efficient design and design space exploration.

Marco Castellano received the Laurea degree from
the Univ. of Pavia, Italy (2005) and in 2009 a Ph.D.
in electrical engineering from Univ. of Pavia, Italy,
in a joint research center supported by the Univ. of
Pavia and STMicroelectronics. In 2008 he joined
STMicroelectronics in Cornaredo (Italy) working
in MEMS division as digital designer. His main
fields of interest include complex gesture recognition
algorithms implementation, FIFO, sensors, DSP and
compensations design. Since 2016, he leads a team
of digital experts working on co-design of controller

and related software for custom low-power application design. He has
authored several papers, conference contributions and patents on topics related
to algorithms integration.

Luca Gandolfi received the Laurea degree from
the Univ. of Pisa, Italy (2019). In 2019 he joined
STMicroelectronics in Cornaredo (Italy) working in
a R&D digital design team for the Analog MEMS
and Sensor Group. His research interest is in the
codesign of firmware and hardware for complex
algorithms in sensor systems.

Andrea Calimera took the M.Sc. degree in Elec-
tronic Engineering and the Ph.D. degree in Com-
puter Engineering from Politecnico di Torino. He
is currently an Associate Professor of Computer
Engineering at Politecnico di Torino. His research
interests cover the areas of electronic design au-
tomation, with emphasis on optimization techniques
for low-power and reliable integrated circuits, en-
ergy/quality management in embedded systems and
portable applications, novel computing paradigms,
and emerging technologies.

Enrico Macii is a Full Professor of Computer Engi-
neering with the Politecnico di Torino, Torino, Italy.
He holds a Laurea degree in electrical engineering
from the Politecnico di Torino, a Laurea degree
in computer science from the Università di Torino,
Turin, and a PhD degree in computer engineering
from the Politecnico di Torino. His research interests
are in the design of digital electronic circuits and
systems, with a particular emphasis on low-power
consumption aspects energy efficiency, sustainable
urban mobility, clean and intelligent manufacturing.

He is a Fellow of the IEEE.

Massimo Poncino is a Full Professor of Computer
Engineering with the Politecnico di Torino, Torino,
Italy. His current research interests include various
aspects of design automation of digital systems,
with emphasis on the modeling and optimization
of energy-efficient systems. He received a PhD in
computer engineering and a Dr.Eng. in electrical
engineering from Politecnico di Torino. He is a
Fellow of the IEEE.

Daniele Jahier Pagliari received the M.Sc. and
Ph.D. degrees in computer engineering from the
Politecnico di Torino, Turin, Italy, in 2014 and 2018,
respectively. He is currently an Assistant Professor
with the Politecnico di Torino. His research interests
are in the computer-aided design and optimization
of digital circuits and systems, with a particular
focus on energy-efficiency aspects and on emerging
applications, such as machine learning at the edge.


	Introduction
	Background and Related Works
	Materials and Methods
	Motivation
	Dataset
	Model Architectures
	Single-frame CNN
	Multi-channel CNN
	Majority Voting CNN
	Concatenated CNNs
	CNN-LSTM
	CNN-TCN

	Training and Deployment Flow

	Experimental Results
	Setup
	Architecture Exploration
	Deployment
	Comparison with state-of-the-art ML/DL Approaches

	Conclusion
	References
	Biographies
	Chen Xie
	Francesco Daghero
	Yukai Chen
	Marco Castellano
	Luca Gandolfi
	Andrea Calimera
	Enrico Macii
	Massimo Poncino
	Daniele Jahier Pagliari


