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Abstract—With the advancement of vision-based artificial in-
telligence, the proliferation of the Internet of Things connected
cameras, and the increasing societal need for rapid and eq-
uitable security, the demand for accurate real-time intelligent
surveillance has never been higher. This article presents Ancilia,
an end-to-end scalable, intelligent video surveillance system for
the Artificial Intelligence of Things. Ancilia brings state-of-the-
art artificial intelligence to real-world surveillance applications
while respecting ethical concerns and performing high-level
cognitive tasks in real-time. Ancilia aims to revolutionize the
surveillance landscape, to bring more effective, intelligent, and
equitable security to the field, resulting in safer and more secure
communities without requiring people to compromise their right
to privacy.

Index Terms—Surveillance, artificial intelligence, IoT, com-
puter vision, application, real-world, real-time, edge, anomaly.

I. INTRODUCTION

There is a growing need for effective and efficient surveil-
lance technologies that can be deployed to protect our cities,
people, and infrastructure. For example, in Itaewon, South
Korea, a holiday celebration left over 150 dead due to severe
overcrowding, with many blaming the tragedy on careless
government oversight [1]. In Moore County, North Carolina,
directed attacks against two power substations left over 45,000
residents without power for days as technicians rushed to
restore power and authorities struggled to find the source of
the attacks [2]. With enough forewarning through smart video
surveillance, they could have been prevented.

With the recent emergence of the Artificial Intelligence
of Things (AIoT), some surveillance solution providers have
started adding basic forms of artificial intelligence to their
systems. However, their methods are still naive and unable
to enhance security in a truly meaningful way [3]. This is
because, while a lot of research is conducted on tasks that
would benefit surveillance systems, most works focus on
algorithmic improvements in a lab environment instead of
paying attention to factors that are prevalent in real-world
scenarios [4], [5]. Most research focuses on a single algorithm
and how to tweak it to get the best possible results on readily
available datasets that often do not reflect a real surveillance
environment. Few works explore how different algorithms af-
fect the performance of other downstream algorithms in multi-
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algorithm systems. Few still explore the effects of noise (both
data derived and the system produced) in end-to-end accuracy.
Beyond this, real-world intelligent surveillance necessitates
real-time performance. The cognitive abilities of advanced
artificial intelligence are only helpful if they can be provided
to security personnel quickly enough to take appropriate action
before it is too late.
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Fig. 1. Conceptual overview of Ancilia.

In this article, we present Ancilia, the first end-to-end
scalable, intelligent video surveillance system able to perform
high-level cognitive tasks in real-time while achieving state-
of-the-art results. Ancilia takes advantage of the prevalence of
cameras in the Internet of Things (IoT) and uses localized
servers to integrate with existing IoT camera ecosystems,
facilitating processing on the edge. Current IoT methods often
use cloud computing, which can introduce latency and privacy
concerns, or they require custom sensors with high processing
power. Ancilia offers a solution to utilize existing IoT sensors,
minimizing the need for expensive infrastructure upgrades and
reliance on cloud processing. Ancilia is device agnostic; As
long as video from the camera can be accessed, Ancilia can
provide intelligence. Shown in Fig. 1, Ancilia exists within
three logical and physical segments: the edge, the cloud, and
user devices. The edge uses a plethora of advanced artificial
intelligence algorithms processing data received from cameras
to facilitate intelligent security. Using a single workstation to
perform edge processing, Ancilia can monitor up to 4 cameras
in real-time at 30 FPS, or up to 8 cameras at 15 FPS, in
scenarios with both medium and heavy crowd density. Ancilia
performs high-level cognitive tasks (i.e. action recognition,
anomaly detection) with ∼ 1% deviation in accuracy from
current State-of-the-Art (SotA).
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Ancilia is designed from the ground up to respect the pri-
vacy of the people and communities being surveilled. Ancilia
does not store any personally identifiable information in any
databases and does not make use of invasive artificial intelli-
gence techniques such as facial recognition or gait detection.
Ancilia strictly provides pose and locational information for
high-level tasks (i.e. action recognition, anomaly detection),
as opposed to identity information, which is common. Ancilla
looks at what a person is doing, not who they are. This allows
Ancilia to act as a buffer to help remove biases based on
race, ethnicity, gender, age, and socio-economic factors, which
can lead to a reduction in the unnecessary conflict between
authorities and marginalized communities that has become
increasingly problematic. After data is processed on edge and
sent to the cloud for communication and service management
with user devices. A mobile app allows user devices to receive
data from the cloud, including alerts when potential security
concerns arise.

In summary, this article has the following contributions:
• We present Ancilia, the first end-to-end scalable real-

world intelligent video surveillance system capable of
performing high-level cognitive tasks in real-time while
achieving SotA accuracy.

• We analyze the ethical concerns of intelligent video
surveillance, both from a privacy and fairness perspective,
and illustrate how Ancilia’s design is purpose-built to
address them.

• We perform an end-to-end empirical evaluation of Ancilia
using two high-level cognitive tasks directly related to
intelligent surveillance, action recognition, and anomaly
detection, investigating the trade-off in accuracy required
to achieve real-time performance.

• We perform an exhaustive system-level evaluation of
Ancilia’s real-time performance and scalability across
different classes of hardware and increasing scenario
intensities, displaying how Ancilia is able to meet real-
time intelligent security needs in different contexts.

II. RELATED WORK

There has been a plethora of research regarding the use
of artificial intelligence for video surveillance [4], [6]–[8].
[9] proposes the use of region proposal based optical flow to
suppress background noise and a bidirectional Bayesian state
transition strategy to model motion uncertainty to enhance
spatio-temporal feature representations for the detection of
salient objects in surveillance videos. [10] proposes the use
of a person detector, tracking algorithm, and mask classifier
for tracking pedestrians through surveillance video streams.

In [4], it is determined that in order to address the latency
concerns of real-time video surveillance, a shift towards edge
computing is needed. Nikouei et al. [11]–[13] explore the
feasibility of using low-power edge devices to perform object
detection and tracking in surveillance scenarios. They argue
that in worst case 5 FPS is high enough throughput for tracking
humans in surveillance applications, and as such computation
can be pushed to the edge. However, their results show that
even light weight convolutional neural networks can prove

problematic for low-power devices, often reducing throughput
below the 5 FPS threshold. [14] proposes a system using low-
power embedded GPUs to perform detection, tracking, path
prediction, pose estimation, and multi-camera re-identification
in a surveillance environment, while placing a focus on real-
time execution and the privacy of tracked pedestrians. [15]
proposes a similar system, focusing solely on object detec-
tion, tracking, and multi-camera re-identification to increase
throughput. [16] proposes using a combination of lightweight
object detection models on the edge and more computation-
ally expensive models in the cloud, splitting computation
between the two to provide real-time video surveillance in
a construction site environment. [17] proposes the use of
background detection, vehicle detection, and kalman filter [18]
based tracking for parking lot surveillance and determining lot
occupancy. [19] proposes a system that uses object detection,
person tracking, scene segmentation, and joint trajectory and
activity prediction for pedestrians in a surveillance setting.

The future of intelligent surveillance is heading towards
systems able to perform high-level cognitive tasks. A recent
survey focusing on real-world video surveillance [4] asserts
that while the domain of video surveillance is comprised
of understanding stationary object, vehicles, individuals, and
crowds, the ability to determine when anomalous events oc-
cur is paramount for intelligent surveillance systems. Other
research has supported this assertion [6]. [20] utilizes the
Infinite Hidden Markov Model and Bayesian Nonparametric
Factor Analysis to find patterns in video streams and detect
abnormal events. [21] proposes active learning and fuzzy
aggregation to learn what constitutes an anomaly continually
over time, adapting the scenarios not seen in standard datasets.
[22] proposes a system to detect suspicious behaviors in a
mall surveillance setting, using lightweight algorithms such
as segmentation, blob fusion, and kalman filter based tracking
[18]. AnomalyNet [23] is a recently proposed recurrent neutral
network with adaptive iterative hard-thresholding and long
short-term memory that works directly off pixel information to
eliminate background noise, capture motion, and learn sparse
representation and dictionary to perform anomaly detection in
video surveillance.

III. ETHICAL CONCERNS

Video surveillance has always been associated with social
and ethical concerns, whether in traditional form or more
recent intelligent formats. Respecting citizens’ privacy and
autonomy while improving public safety and security are the
most well-known and enduring ethical issues in this context
[24]–[27]. Developing a successful smart video surveillance
solution that addresses the public safety problem and engages
the community up to a certain level is only possible by
considering these concerns.

There is rising attention among scholars to the issue of
incorporating privacy concerns at the design level, referred to
as ”privacy by design” [28]. The source of discrimination and
privacy violation in many data-driven and AI-based systems,
such as Smart video surveillance technology, is using Personal
Identifiable Information (PII) [29], [30]. Using PII, such as
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actual footage of people’s daily activities at any stage of the
technology, can increase the risk of privacy violation. There is
a long-lasting debate on the ethical challenges of using facial
recognition technologies in different sectors and how using
this technology can result in privacy violation [31]–[34].

The approaches used to perform high-level cognitive tasks
in intelligent video surveillance, such as action recognition and
anomaly detection, can be grouped into two distinct categories
based on the data used [35]. The first category directly utilizes
pixel data. A common example is facial recognition [36],
where algorithms look at images of people’s faces to identify
them. These algorithms can perform well with sufficient
historical data, but are often seen as intrusive and increase
the risk of identifying personal demographic information [33].
The second category only leverages processed information,
such as pose data in the case of Ancilia, which tends to de-
identify personal demographic information [37]. This is not a
complete removal of PII, as some works have been able to
identify individuals purely by gait [38] or silhouette [39], but
it significantly reduces the risk to privacy compared to pixel-
based approaches.

Similarly, avoiding facial recognition technologies does not
guarantee the system is entirely privacy persevering. Storing
images of pedestrians is another source of ethical violation.
From the discrimination perspective, using any form of PII
can contribute to the issue of marginalization in policing
systems [40]. Therefore, an essential step in designing a non-
discriminatory system is to ensure the system is not dependent
on PII. This requires a specific approach toward the design of
such technology in the choice of algorithm, the type of data
used, and the storing of such data.

Ancilia addresses this by not storing any PII or sending any
PII across the network. Such data is destroyed after it is used.
Ancilia utilizes pose-based methods for all high-level cognitive
tasks, severely limiting the amount and quality of PII used
by such algorithms. This allows such processing without any
potential for gender, ethnicity, or class-based discrimination.
As such, Ancilia is able to address many of the privacy
concerns regarding intelligent video surveillance while also
addressing the ethical issue of discrimination.

IV. ANCILIA ALGORITHMIC FRAMEWORK

The algorithmic core of Ancilia is separated into two
conceptual systems: the local nodes containing the algorithmic
pipeline of each camera and the global node that handles
all processing that requires understanding of multiple camera
perspectives. These two systems make up the algorithmic core
of Ancilia and are the basis on which all higher understanding
is achieved. A visual representation of this algorithmic core
can be seen in Fig. 2.

A. Single Camera Vision Pipeline

As seen in Fig. 2, the local algorithmic pipeline starts when
an image is extracted from the camera. The image is first
run through an object detector to locate people, vehicles,
animals, and other important objects in the scene. This is
important not only because it acts as the basis for the rest

of the algorithmic pipeline but also because it can be used
for basic situational awareness. Sometimes, just the presence
of a certain object in a scene is noteworthy, like a person
in an unauthorized location, a bag left unattended, or the
presence of a firearm. Ancilia uses YOLOv5 [41] for this
purpose (however, it can be any detector). Please note that
many objects of interest are not included in the default weights
provided by the YOLOv5 authors. However, other works have
trained the architecture for classes such as firearms [42]–
[44], and custom weights can always be trained to match the
target application. The locational coordinates of persons are
sent to a tracker, where tracklets are created, matching each
person with their previous detections in prior images. Ancilia
utilizes the version of ByteTrack [45] without frame similarity.
In this configuration, ByteTrack does not perform feature
extraction, which results in a notable reduction in computation.
As shown in [45], locational similarity is sufficient for single
camera tracking. The tracking allows for understanding how
a person moves throughout a scene, which is vital for many
surveillance applications. It also allows Ancilia to understand
which poses belong to which persons over time, which is
vital for many high-level tasks that provide much-needed
situational awareness. Image crops of the people detected in
the image are also sent to a human pose estimator, where two-
dimensional pose skeletons are created. Ancilia uses HRNet
[46] for extracting 2D skeletons. Using pose data for higher-
level tasks has two major benefits over simply using raw pixel
data. First, pose data is of much lower dimensionality than
pixel data, making it much less computationally expensive and
allowing the Ancilia to function in real-time. Second, pose
data helps us remove the appearance-based PII information
inherent in pixel data, making it harder for high-level tasks
to form unintended biases based on ethnicity, gender, age,
or other identity-based metrics. Works such as [47], [48] try
to identify subjects based on their poses, in a line of work
called Gait Recognition, but as discussed in Sec. III, pose-
based approaches are shown to be more privacy preserving
compared to their alternatives.

B. Multi-Camera Person Re-identification

While the tracker tracks people within a single camera,
locational information cannot accurately re-identify a person
across multiple cameras. For this, the same person crops that
are sent to the human pose estimator are also sent to a person
re-identification feature extractor, where an abstract feature
representation is created for each person. Only one feature
representation is created for each person during a single batch,
and only when the quality of the representation can be assured,
as poor quality representations are detrimental to accurate
multi-camera person re-identification. Ancilia uses a feature
representation filtering algorithm to verify two qualities for
person crops. First, a person crop must contain a high-quality
view of the person. To this end, the filter algorithm uses the
2D pose skeleton and verifies that at least 9 keypoints were
detected with at least 60% confidence. The filter algorithm
looks at the overlap (i.e. Intersection of Union) of the bounding
boxes generated by the object detector. An individual’s bound
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Fig. 2. Ancilia algorithmic details. N local nodes are connected to a single global node on the edge. The final analyses are transferred to the cloud node to
feed the application on the user device. Multiple edges may be connected to the could, though this figure only shows one edge for clarity. BBP , BBO , IDL,
P , C, FL, D, FD , IDG, I , SA, R, and AR refer to bounding boxes for pedestrians, bounding boxes of objects, local identities, poses, person crops that
passed selection, features from the local node, data from the downstream tasks, features from the database, global identities, information from the database,
completed statistical analysis, requests from users, and requested attributes respectively.

box must have an Intersection over Union (IoU) of no more
than 0.1 with any other person. If those two conditions are met,
the person crop is determined to be of high enough quality to
produce an adequate feature representation. If more than one
crop is deemed suitable for a single person during a 15 frame
window, the one with the most confident pose is selected. The
features created by the feature extractor are sent to the global
node for multi-camera person re-identification. Ancilia uses
OSNet [49] to extract feature representations.

C. higher Level Tasks

To help preserve privacy from a system perspective, sensi-
tive information is kept on the local machine by executing all
high-level tasks on the local node. These tasks have access to
the object, tracking, and pose data generated in the previous
steps. Since the decision of which high-level tasks are needed
is highly application dependent, we do not consider these
tasks to be part of Ancilia’s algorithmic core, but instead an
extension to be customized based on intended use. In this
paper, we use action recognition and anomaly detection as
two common examples of high-level tasks that are highly
relevant to intelligent surveillance. For action recognition, we
choose PoseConv3D [50] and CTR-CGN [51], two state-of-
the-art networks that can utilize the 2D human pose skeletons
provided by Ancilia. For anomaly detection, we use GEPC
[52] and MPED-RNN [53], which are based on 2D human
pose skeletons.

There are many works that use pixel-based methods for
these tasks that achieve superior accuracies than SotA posed-
based methods, such as I3D [54], MVIT [55] and Stargazer
[56]. Argus [57] is a good example of a system that em-
ploys pixel-level information, with a subsequent evaluation
conducted on a real-world surveillance dataset called Meva
[58]. However, due to the privacy benefits discussed in Sec. III
and the computational benefits of using lower-dimensional

pose data, we have opted to stick with pose-based methods
for Ancilia.

V. SYSTEM DESIGN

Beyond the algorithmic design, Ancilia can be analyzed
from a system-level design and implementation perspective.
The local node in particular has a complex system design, as
seen in Fig. 3. The global node and cloud are much simpler,
as shown in Fig. 2.

A. Parallelism

A key design objective of Ancilia is to achieve higher
efficiency by balancing throughput and latency. Ancilia uses
pipelining to take advantage of process parallelism, divid-
ing tasks into six separate stages of a pipeline system
(S1, S2, ..., S6). Each stage is implemented as a separate pro-
cess, which executes concurrently with other processes as soon
as it receives its required input. These stages communicate
with each other using queues to utilize memory resources
better and enable fast inter-process communication. While
pipelining is a well-known technique for optimization, the
overhead associated with its implementation means a balance
needs to be found. Figure 3 shows a detailed view of the
system design on the local node. Each pipeline stage is sepa-
rated by a queue with a size limit of λ elements, preventing
any potential overflow from uneven execution speed between
pipeline stages. By default, Ancilia uses a λ value of 1. As
is common, Ancilia offloads highly parallel tasks that rely on
neural networks (i.e. object detection, pose estimation, feature
extraction, and many high-level tasks) to Graphics Processing
Units (GPUs) for execution.

B. Data Batching

Batching is another technique Ancilia implements to better
utilize hardware resources. Generally, batching is able to
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Fig. 3. A detailed view of system design in Ancilia’s local nodes. β and δ refer to different batch sizes. λ refers to the queue size. FL and D represent local
features and data received from downstream tasks respectively.

greatly increase the throughput of a system at the cost of end-
to-end latency. However, many high-level tasks (e.g. action
recognition, anomaly detection) require multiple video frames
worth of input data (often called a window) before they can
start processing, so the latency that would be incurred by
batching input frames is already inherent in these high-level
task, as long as the frame batch and high-level task window
are of the same size. In other words, if a high-level task needs
X number of frames before it can start processing, having a
batch size of X frames will ensure the task gets all the frames
it needs simultaneously, incurring no additional latency for the
task. If the window size of the high-level task is larger than
the batch size multiple batches will be needed to be processed
to receive output from the high-level task. Further, as frame
batching ultimately increases the throughput, the end-to-end
latency is decreased when compared processing each frame
sequentially. While object detection works on entire frames, all
other neural networks in Ancilia work off individual objects.
These objects are batched together before being input to the
network, greatly increasing hardware utilization. There can be
multiple object batches within a single frame batch, based on
how many of the relevant objects are detected in the video.

C. Local Node

1) S1 - Preprocessing: Once the local node receives the
video stream from the camera, the preprocessor is responsible
for all basic image processing necessary before sending the
frames through the algorithmic core. That includes any nec-
essary resizing, frame dropping, and/or color channel reorder-
ing. Frame dropping is a dynamic machanism that ensures
the framerate fed to the pipeline matches the throughput of

the pipeline. For example, if the frame source (i.e. camera)
produces 60 FPS, but Ancilia can only run at 30 FPS, only
every second frame from the source will be passed through
preprocessing. After preprocessing, frames are batched in
sequential segements of size β1. Ancilia sets β1 = 15. This
is done to balance throughput and latency, as discussed in
Sec. VI-D, as well as to more closely match the window size
of the high-level tasks, requiring only two batches to complete
before these tasks can produce an output. This is also suitable
because most modern security and IoT cameras record video
at either 30 or 60 FPS.

2) S2 - Object Detection: The batched frames are sent
to the object detector, which outputs a list of objects with
class labels and bounding box coordinates. Bounding boxes
for pedestrians are sent to the tracker, while bounding boxes
for other objects are passed through the system for use in high-
level tasks and statistical analysis. A crop of each pedestrian
from the original frame is passed through to the pose estimator
at later stages.

3) S3 - Tracking: At the tracker, bounding boxes for pedes-
trians are unbatched to fit the tracker’s sequential operation.
The tracker groups the pedestrians and either matches them
with previously seen pedestrians or assigns them a unique
local ID. Afterwards, the pedestrians are once again batched
by frame, back to the original batch size of β1 = 15 frames,
and sent to the pose estimator.

4) S4 - Pose Estimation: At the pose estimator, the object
batching is performed on the person crops, with a batch size
of β2 = 32. These batches are fed to the pose estimator, which
outputs human pose skeletons for each person crop. Then the
pedestrian bounding boxes, person crops, local IDs, and human
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pose skeletons are once again batched by frame and combined
with the object bounding boxes from the object detector. Select
data (pedestrian bounding boxes, person crops, local IDs, and
pose skeletons) is sent to crop selection and feature extraction,
while the de-identified data (pedestrian bounding boxes, object
bounding boxes, local IDs, and pose skeletons) is sent to each
high-level task as per their request.

5) S5 - Feature Extraction and High-level Tasks: Before
feature extraction, crop selection filters out low-quality person
crops based on bounding box overlap and keypoint confidence,
as described in Sec. IV. By default, crops with an IoU higher
than 0.1 or with 9 or more keypoints with confidence below
60% are discarded. These thresholds can be adjusted to best
suit the target application. Out of the remaining crops only
a single crop with the highest overall keypoint confidence for
each person is selected. The remaining crops are batched, with
a dynamic size of β3 based on the number of persons in the
scene. Feature extractor receives the batch of β3 crops. Once
features are extracted, they are sent for transfer to the global
node. Each high-level task receives data at the granularity of
a frame batch with size β1, and sends data to the global node
at the granularity that task operates at (δ0, δ1, ..., δn). Only de-
identified data is sent to the high-level tasks, keeping in line
with the ethical concerns mentioned in Sec. III and Sec. IV.
Each high-level task has its own process and works in parallel
with other tasks as well as with crop selection and feature
extraction in stage 5 of the pipeline.

6) S6 - Transfer: Communication is completely decoupled
from the pipeline, so once the data is sent, the local node
pipeline continues to function as normal without needing a
response from the global node. Importantly, no identifiable
information is ever sent to the global node, keeping in line
with the privacy and ethical concerns mentioned in Sec. III.

D. Global Node

All received data is stored in a relational database on the
global node. The matching algorithm described in Sec. IV
compares the received features with existing features in the
database over the period T and assigns a global ID based on
the results. The default value for T is set to 1 hour, but this
should be changed to suit the needs of the application. An
assortment of algorithms performs statistical analysis using
the relational database, as detailed in Sec. IV. The analysis
is transmitted to the cloud node using APIs provided by the
cloud service provider. By default, Ancilia uses Amazon Web
Services, but this can be altered based on user/application
needs. The cloud (e.g. Amazon Web Services (AWS)) receives
analyzed data from the global node.

VI. EXPERIMENTAL RESULTS

A. Algorithmic Core

The algorithmic core of Ancilia consist of multiple algo-
rithms, each of which works off of data generated by the
previous algorithms. As these algorithms leverage imperfect
neural networks, they generate noise that accumulates through
the system. To understand the source of this noise, we must
first look at the accuracy of each of these core algorithms

TABLE I
ACCURACY OF ANCILIA’S ALGORITHMIC CORE NETWORKS IN

ISOLATION. SOTA ALGORITHMS REPRESENT THE HIGHEST
PERFORMANCE CURRENTLY ACHIEVABLE WHEN COMPUTATION AND

LATENCY ARE NOT A CONCERN.

Task Method Performance Dataset

Ancilia’s Algorithmic Core

Object
Detection

YOLOv5 [41] 49.0 (mAP) COCO [59]

Tracking ByteTrack [45] 77.8 (MOTA) MOT20 [60]
Pose

Estimation
HRNet [46] 75.1 (AP) COCO [59]

Person
ReID

OSNet [49] 88.6 (Top-1) DukeMTMC [61]

State-of-the-Art Algorithms

Object
Detection

Internimage [62] 65.0 (mAP) COCO [59]

Tracking SOTMOT [63] 77.9 (MOTA) MOT20 [60]
Pose

Estimation
ViTPose [64] 81.1 (AP) COCO [59]

Person
ReID

Centeroids-ReID [65] 95.6 (Top-1) DukeMTMC [61]

in isolation. Table I shows the accuracies of the algorithmic
core’s four main tasks: object detection, pedestrian tracking,
human pose estimation, and person re-identification. The table
also shows the accuracies of the top SotA models in each
task. These SotA methods are not suitable for intelligent
surveillance applications, as their excessive computation and
vast parameters make real-time execution impossible, but the
comparison allows us to see the maximum potential allowable
by current research and the accuracy loss incurred to keep
Ancilia performing in real-time.

Object detection sees the biggest hit to accuracy, with a 16%
drop from SotA. This is intuitive, as YOLOv5 [41] is not only
the largest model in the algorithmic core, but also the only
one that operates on the raw camera stream. So while larger
models are available and would be able to produce higher
accuracy, even a slight increase in model size or computation
would result in a noticeable decrease in throughput. Human
pose estimation sees a decrease in accuracy for a similar
reason, though much smaller in scale at only 6%. While
HRNet [46] is not run on the raw camera stream, it is run
individually for each person detected by the object detector.
As such, maintaining a small model size is preferable. Person
re-identification sees a slightly larger drop in accuracy than
human pose estimation at 7%. While this is partly due to
using a lightweight model, OSNet [49], the SotA model for
person reID is also lightweight. However, the SotA uses a
centroid based retrieval method not suitable for pen-set reID,
of which most surveillance scenarios are. Pedestrian tracking
sees almost no drop in accuracy, approximately 0.1%. This
stems from the comparative ease of tracking pedestrians in
a single camera, where a simple, lightweight algorithm like
ByteTrack [45] see almost no performance difference from
the top of the line SotA approaches.

B. High-level Tasks

To better understand how the noise generated by the al-
gorithmic core effects overall performance, and thus how
well Ancilia performs in the realm of real-world intelligent
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surveillance, we examine the performance of two high-level
cognitive surveillance tasks when running on Ancilia. For
Ancilia to be a benefit to intelligent surveillance tasks, we
must ensure that excess false alarms or missed positive events
do not occur. To assess this, we choose action recognition
and anomaly detection, as these tasks can utilize the human
pose information generated by the algorithmic core, resulting
in faster and less biased inference. Since both these methods
utilize temporal batches of human poses for each individual,
these experiments will directly reflect the quality of the object
detection, tracking, re-identification, and pose estimation data
generated by Ancilia.

1) High-level Task - Action Recognition: We select two
state-of-the-art action recognition models, PoseConv3d [50]
and CTR-GCN [51], and train them using data generated with
Ancilia. For each model, we train and test with full (30 FPS)
and half (15 FPS) throughput on NTU60-XSub [66]. Both
models use a window size of 30 and are trained for 24 epochs
using Stochastic Gradient Descent (SGD) with a momentum of
0.9 and Cosine Annealing scheduling. PoseConv3d and CTR-
GCN have weight decay of 3e−4 and 5e−4 and an initial
learning rate of 0.4 and 0.2, respectively.

TABLE II
TOP-1 AND TOP-5 ACCURACIES ON NTU60-XSUB [66] IN FULL AND
HALF THROUGHPUT MODES FOR POSECONV3D [50] AND CTR-GCN

[51].

Model Data FPS Top-1 (%) Top-5 (%)

PoseConv3D [50]
[67]

15 91.96 99.47
30 92.76 99.57

Ours
15 88.79 98.82
30 91.99 99.28

CTR-GCN [51]
[67]

15 86.36 98.46
30 83.07 98.26

Ours
15 81.58 97.52
30 80.44 97.2

The results of these experiments can be seen in Tab. II.
We report the Top-1 and Top-5 accuracy and compare the
results using data generated by Ancilia to the original data
available through the PYSKL toolbox [67]. We can see that
Ancilia is able to provide data of comparable quality to the
original; action recognition as a high-level task in Ancilia sees
around 1% drop in accuracy compared to the original data
using PoseConv3D [50] at full throughput, and around 3% at
half throughput. Using CTR-GCN [51], Ancilia sees a 2.5%
drop at full throughput and a 4.8% drop at half throughput,
compared to the original data. From this we can infer that
PoseConv3D is more robust to noise than CTR-GCN, however
both performed reasonably well with data generated from
Ancilia, demonstrating its efficacy for intelligent surveillance
applications.

Another interesting observation is that CTR-GCN [51]
actually performed noticeably better at half throughput than
at full throughput. This means that CTR-GCN is more suited
to taking advantage of the higher temporal window allowed
when using half throughput. This is something to consider
when choosing an action recognition model when a real-time
throughput of 30 FPS cannot be guaranteed.

2) High-level Task - Anomaly Detection: Using the Shang-
haiTech dataset [68] we train two state-of-the-art anomaly
detection models, GEPC [52] and MPED-RNN [53], using
both data generated by Ancilia and the data provided by the
original authors. The same training strategy from Sec. VI-B1
is used, with both models trained in full (20 FPS) and half (10
FPS) modes. GEPC is trained for 25 epochs with a window
size of 30 and stride of 20 using Adam optimizer with a
learning rate of 1e-4, weight decay of 1e-5, and batch size
of 512. MPED-RNN is trained with an input window size of
30, a reconstruction window of 12, and a prediction window of
6. The model is trained for 5 epochs using the Adam optimizer
with a learning rate of 1e−3 and a batch size of 265.

TABLE III
AUC ROC, AUC PR, AND EER ON SHANGHAITECH DATASET [68] IN

FULL AND HALF THROUGHPUT MODES FOR GEPC [52] AND MPED-RNN
[53].

Model Data FPS AUC ROC AUC PR EER

GEPC [52]
[52]

10 0.6906 0.5951 0.35
20 0.7372 0.6427 0.31

Ours
10 0.6888 0.5905 0.35
20 0.7223 0.6023 0.32

MPED-RNN [53]
[53]

10 0.6645 0.5733 0.37
20 0.7023 0.5869 0.36

Ours
10 0.6685 0.5661 0.37
20 0.6679 0.5487 0.37

The results of this experiment can be seen in Tab. III.
In line with current practices, we report Area Under the
Receiver Operating Characteristic Cure (AUC ROC), Area
Under the Precision-recall Curve (AUC PR), and the Equal
Error Rate (EER). With GEPC, we can see that Ancilia more
than measures up to the task, with only a 1.5% drop in AUC
ROC at full throughput and less than a 0.2% drop in AUC ROC
at half throughput. AUC PR shows a more substantial drop
of 4% at full throughput, but goes down to less than 0.5% at
half throughput. Equal Error Rates are almost identical, seeing
almost no change (less than 0.01) when using Ancilia. MPED-
RNN, which displayed lower overall accuracy in all regards to
begin with, sees a more significant drop in AUC ROC at full
throughput, losing 3.5%. However, at half throughput the AUC
ROC actually increases when using Ancilia, though only by
0.5%. The AUC PR results mirror that of GEPC, dropping
3.8% at full throughput and 0.7% at half throughput. The
Equal Error Rates are once again nearly identical. Being able
to perform a high-level task such as anomaly detection while
maintaining accuracies so close to current SotA in research,
demonstrates Ancilia’s ability to produce quality data, suitable
for intelligent surveillance applications.

C. Real-time System Performance

Algorithmic accuracy is vital for ensuring the information
provided by high-level cognitive tasks is beneficial for surveil-
lance applications. However, Ancilia’s ability to perform in
real-time is equally important. We conduct a series of ex-
periments, evaluating the runtime performance of Ancilia on
different hardware, with different scenario intensities, and for
increasing number of local nodes per hardware device. We
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Fig. 4. Throughput of Ancilia with respect to number of nodes across different crowd densities. Hardware details can be seen in Tab. IV.

TABLE IV
SYSTEM CONFIGURATIONS. STATS ARE PER CPU/GPU OF THE LISTED TYPE.

Processor GPUName Model Cores Clock Speed Model CUDA Cores VRAM
Server A 2× EPYC 7513 32 2.6 GHz 4× V100 5120 32 GB
Server B 2× Xeon E5-2640 v4 10 2.4 GHz 2× Titan V 5120 12 GB

Workstation Threadripper Pro 3975WX 32 3.50 GHz 3× A6000 10752 48 GB

TABLE V
AVERAGE THROUGHPUT AND LATENCY. DATA COLLECTED USING THE WORKSTATION WITH VARYING LOCAL NODE COUNTS.

Server A Server B WorkstationCrowd Density Nodes FPS Latency (s) FPS Latency (s) FPS Latency (s)

Normal

(70 detections
per second)

1 82.31 1.17 52.45 1.52 96.88 0.87
2 77.59 1.15 39.50 2.05 84.57 1.00
4 53.40 1.60 - - 56.27 1.58
6 33.43 1.99 - - 36.40 2.27
8 23.64 2.05 - - 26.60 2.84

Heavy

(216 detections
per second)

1 57.47 1.80 38.97 2.62 67.25 1.53
2 50.05 2.07 32.85 3.16 58.95 1.77
4 32.09 3.45 - - 33.99 3.98
6 18.51 4.17 - - 21.08 6.89
8 13.35 5.87 - - 15.48 9.54

Extreme

(744 detections
per second)

1 19.84 5.29 14.67 7.37 19.00 5.73
2 20.76 5.09 16.56 6.54 18.45 5.81
4 10.95 11.64 - - 10.29 12.49
6 6.25 20.70 - - 5.93 21.87
8 4.53 28.48 - - 4.18 31.19

focus on the performance of the local node, as the global node
is completely decoupled from the algorithmic pipeline and has
no noticeable effect on throughput or latency.

We choose three different hardware configurations for these
experiments: a high-end server, a lower-end server, and a high-
end workstation, as seen in Tab. IV. For our scenarios, we
use the DukeMTMC-video dataset [61] and pick three scenes
with different crowd densities: normal density, heavy density,
and extreme density. The distribution of detection density in
each scenario, as well as their effect on throughput, can be
seen in Fig. 5. Note that what is considered ”normal density”
will change based on application environment, which is why
we report on such a wide range. Each video lasts for 32k
frames, with 7k frames warm-up and cool-down. We test using
1, 2, 4, 6, and 8 local nodes on a single system, showing how
throughput and latency scale in such cases. Each experiment
is conducted three times, the throughput and latency averaged
across runs. The results of these experiments can be seen in
Tab. V and Fig. 4.

Under normal crowd density, Server A and Workstation are
both able to achieve over 50 FPS with up to four local nodes,
with an end-to-end latency of 1.60 and 1.58 seconds respec-

tively. This is well above FPS required by action recognition
and anomaly detection algorithms at full throughput, and the
latency is low enough to be suitable for most surveillance
applications where the main concern is to notify authorities in
time for appropriate response. Both Server A and Workstation
are able to handle 6 local nodes in the normal scenario while
maintaining above 30 FPS. Workstation is able to maintain
above 26 FPS while running all 8 local nodes, while Server A
drops to just below 24 FPS at 8 local nodes. Server B is able
to achieve over 50 FPS with a single node but falls just short
of 40 FPS while handling two nodes simultaneously. Due to
having only two GPUs with limited VRAM, Server B was
unable to run 4 or more nodes concurrently.

Heavy crowd density proves more challenging, with both
Server A and Workstation only able to achieve above 30 FPS
with up to 4 nodes. The end-to-end latency is also longer
than it was under normal crowd density, with all systems
seeing between a 50% to 100% increase in most cases, and
up to a 230% increase at the mose extreme. Server A and
Workstation are able to mainatin above 15 FPS at 6 and 8
nodes respectively, while Server A drops to just above 13
FPS at 8 nodes. Server B behaves similarly to how it did with
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Fig. 5. Distribution of detections for different crowd densities and its effect
on throughput. Data collected using the Workstation with a single local node.

normal crowd density, still able to maintain above 30 FPS for
up to 2 nodes, though with slightly low throughput. Assuming
only half throughput was needed for high-level tasks, Server
B would still be suitable for running up to two nodes.

With the extreme crowd density scenario, Ancilia begins to
struggle. None of the systems are able to achieve above 30
FPS even with a single camera, putting full throughput action
recognition out of reach. Server A is able to achieve above 20
FPS with 2 nodes (but notably not with 1) and Workstation fall
short even with 1 node. Both Server A and Workstation can
maintain above 10 FPS at 4 nodes, but both drop to around
6 and 4 FPS at 6 and 8 nodes, respectively. [69] argues that
5 FPS is suitable for tacking pedestrians, and while that is
true, high-level tasks that rely on detailed human motion, such
as action recognition and anomaly detection, often struggle
for accuracy when running below 10 FPS. Another issue is
with the increased latency. Running 6+ nodes, Server A and
Workstation have latencies over 20 seconds, which is suitable
for many surveillance applications, but might be too much for
those that require sharper response times. Combined with the
low throughput, it becomes difficult to recommend running
more than 4 nodes on a single system with Ancilia when
operating under extreme crowd density, expect for applications
where low throughput and high latency are not as much of a
concern. Server B is unable to achieve 30 FPS, but does stay
around 15 FPS for both 1 and 2 nodes, making it suitable for
half throughput in action recognition and anomaly detection.

Interestingly, with extreme crowd density we start to see
unusual behavior with both Servers having worse performance
with a singe node than they do with 2 nodes. This is likely
caused by the abundance of CPU resources available to them
with their dual CPU configuration and a single node being
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Fig. 6. Throughput and latency trends with respect to batch size across
different crowd densities. Data collected using Workstation with a single local
node.

TABLE VI
EFFECT OF DIFFERENT BATCH SIZES ON THROUGHPUT AND LATENCY.

Crowd Density Batch Size FPS Latency (s)

Normal

1 40.58 0.27
10 91.66 0.58
15 96.88 0.87
20 96.69 1.11
30 100.46 1.58

Heavy

1 21.13 0.42
10 66.35 1.14
15 67.25 1.58
20 67.73 2.03
30 69.62 3.02

Extreme

1 9.34 1.04
10 18.92 3.89
15 19.00 5.73
20 19.28 7.48
30 19.52 11.00

unable to fully utilize them. As such, the behavior of both
servers in the extreme crowd density scenario does not start to
match the expected behavior and mimic the other systems until
multiple nodes are being run simultaneously. This behavior
is not too concerning, considering it does not make sense
to purchase such a high-end server class machine for only
running a single local node, when a more latency focused
workstation would be both cheaper and more effective.

Overall, Ancilia is able to meet the needs of high-level cog-
nitive tasks while still achieving performance suitable for real-
time intelligent surveillance applications. Exact performance is
dependent on both the hardware used and the intensity of the
scene, but these results show that even for the most extreme of
scenarios, Ancilia can be used to provide intelligent assistance
to surveillance applications.

D. Effect of Batch Size on Real-time Performance

To understand the effect of batch size on end-to-end latency
and throughput, we test using a single node on Workstation
but varying the batch size. The results of this can be seen in
Fig. 6. As expected, both latency and throughput increase with
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batch size across all densities. The jump in throughput from a
batch size of 1 to a batch size of 10 is the most dramatic, with
diminishing returns using larger batch sizes, while increases
in latency tend to be more proportional. However, due to the
high-level tasks needing 30 frames, the end-to-end latency is
not directly representative of the latency of performing high-
level tasks.

Overall, a balance needs to be struck between throughput,
end-to-end latency, and batch size. Too high of an end-to-
end latency will effect the speed at which detected objects of
interest raise alarms, while a lower throughput can affect high-
level task accuracy, as seen in Sec. VI-B. Likewise, having too
small of a batch size means more batches need to be processed
before high-level tasks can operate. A batch size of 15 strikes
this balance well, with less than a second of end-to-end latency
of 0.87 seconds and a throughput of 96.88 FPS in normal
density, and only needing to process two batches for high-
level tasks. This proves similar for heavy and extreme crowd
densities as well, though the throughput is higher and latency
is lower, as expected.

VII. CONCLUSION

In this article we presented Ancilia, an end-to-end scal-
able intelligent video surveillance system for the Artificial
Intelligence of Things. Through empirical evaluation, Ancilia
has demonstrated its ability to bring state-of-the-art artificial
intelligence to real-world surveillance applications. Ancilia
performs high-level cognitive tasks (i.e. action recognition and
anomaly detection) in real-time, all while respecting ethical
and privacy concerns common to surveillance applications.
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