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Abstract—In this paper, we increase the availability and
integration of devices in the learning process to enhance the
convergence of federated learning (FL) models. To address
the issue of having all the data in one location, federated
learning, which maintains the ability to learn over decentralized
data sets, combines privacy and technology. Until the model
converges, the server combines the updated weights obtained
from each dataset over a number of rounds. The majority of
the literature suggested client selection techniques to accelerate
convergence and boost accuracy. However, none of the existing
proposals have focused on the flexibility to deploy and select
clients as needed, wherever and whenever that may be. Due to
the extremely dynamic surroundings, some devices are actually
not available to serve as clients in FL, which affects the
availability of data for learning and the applicability of the
existing solution for client selection. In this paper, we address
the aforementioned limitations by introducing an On-Demand-
FL, a client deployment approach for FL, offering more volume
and heterogeneity of data in the learning process. We make
use of the containerization technology such as Docker to build
efficient environments using IoT and mobile devices serving as
volunteers. Furthermore, Kubernetes is used for orchestration.
The Genetic algorithm (GA) is used to solve the multi-objective
optimization problem due to its evolutionary strategy. The per-
formed experiments using the Mobile Data Challenge (MDC)
dataset and the Localfed framework illustrate the relevance
of the proposed approach and the efficiency of the on-the-fly
deployment of clients whenever and wherever needed with less
discarded rounds and more available data.

Index Terms—IoT, Federated Learning, Privacy, Client Se-
lection, On-Demand Client deployment, Containers, Docker,
Kubernetes, Kubeadm.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) is the brain of smart sys-
tems which became the core of our daily lives through

close interactions. With endless opportunities when using
AI technologies, researchers look forward to develop robust
and intelligent models to serve the community [1]. Being
the main pillar of smart technologies, data generated by
smart devices should be collected from various entities and
locations while maintaining top of the line privacy during

data collection, transfer, training, and models deployment
in production. Researchers try to maximize the quality of
service (QoS), security [2], and communication quality in
future smart cities [3]. Today’s users have access to mobile
and edge devices [4], which provide vast amounts of data
that can be used in numerous AI applications [5]. However,
privacy concerns are limiting the public’s access to such data,
particularly when it comes from individual smartphones or
Internet of Things (IoT) devices, where researchers try to
optimize multiple aspects related to fog and IoT devices
using these data [6]. Additionally, the restriction on sharing
private data has an impact on the process of developing and
refining AI systems.

The recently used FL scheme [7] helps mobile devices
train machine learning models using their own data. The
process includes selecting a group of accessible devices to
take part in a learning phase, which is repeated numerous
times until the model converges. The clients communicate
the new weights to the server at the end of each round,
where they are aggregated to create the overall model. The
mechanism used by default to choose the clients who will
take part in each round is randomness. However, selecting
some clients could result in dropping out before finishing
the learning rounds when working with devices that have
restricted capabilities and resources. Additionally, a high
volume of transferred updates may make communication
between the clients and the server expensive and slow.
Choosing a trustworthy group of customers in this situation
can assist reduce redundant gradient information and im-
prove network congestion [8]. Additionally, the distribution
of classes in federated learning is unbalanced, with some
classes outnumbering others. Therefore, selecting clients
with similar class labels may lead to biased and flawed
models [9].

The literature provides solutions for client selection that
handle the majority of the aforementioned issues using a
variety of approaches. However, none of the prior work
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proposes on-demand client deployment in the context of
federated learning, by deploying clients instantly in ex-
tremely dynamic situations. Devices with poor learning
resources and capabilities are missing out on the oppor-
tunity to participate in learning. However, new devices
can easily and effectively participate in learning thanks to
containerization technologies. Moreover, smart devices are
busy at specific period of the day [10]. The availability and
resources needed in the area of interest can thus be provided
anytime, anyplace, through the on-demand system. A tool for
efficiently creating Kubernetes clusters is called Kubeadm.
These clusters can be created using any resource-constrained
device with the help of a master node.

Containerization technology is more lightweight [11] than
virtual machines. For that, the containerization technology
has been used to deploy some services on fog devices near
the IoT users [12] for maximizing the quality of services.
By suggesting an on-demand and on-the-fly client deploy-
ment method for federated learning based on Kubeadm and
Docker, we take advantage of containerization technologies
in this work. Due to the limited number of available clients,
our suggested architecture enables a rapid deployment of
new clients to participate in environments with data short-
ages. Moreover, our plan takes into account the device
motions and locations, which have a significant impact
on the quantity and heterogeneity of the data generated.
Additionally, the on-the-fly deployment configures users for
learning by taking into account their areas of interest. To
illustrate the contributions and advantages of our approach,
we use the MDC dataset [13], to represent real life sim-
ulation. The LocalFed [14] helps in applying FL models
and to be integrated with the proposed genetic algorithm
solution. We take real life scenarios that require on the fly
client deployment to serve some machine learning models.
First, we assume that there are a considerable number of
devices moving (i.e., a lot of relevant data) in a client
environment without any learning capabilities. Deploying
containers on devices situated in these locations is quite
advantageous in this regard to utilize such a vast volume
of created data. Second, we assume that the environment
is not entirely set up for learning and embedding volunteer
client devices that are active in the neighborhood. In this
situation, while taking into account our objective functions
and limitations, our on-the-fly deployment technique enables
proficient clients to engage effectively in the learning process
and environment. Such scenarios motivate the work of [15]
where more intelligent resource provisioning is required
in such areas. The tests conducted in this paper produced
encouraging outcomes in terms of fewer rounds, higher
volume and heterogeneous data, improved accuracy in the
early stages, less discarded rounds in the learning, and
deployment of on-demand models and clients anywhere,
anytime. The contributions of this paper are summarized as
follows:

1) An innovative method of on-demand client deploy-
ment and selection that addresses the issue of client

availability in pre-configured FL areas and places with
a shortage of clients with the necessary capabilities
and resources for learning.

2) An effective deployment and orchestration of services
and models for machine learning on the IoT and
Mobile devices of the recently created volunteering
clients.

3) Formulating the deployment as a multi-objective opti-
mization problem.

4) Implementing the Genetic Algorithm (GA) to gain
from its evolutionary strategy while solving the
deployment problem.

The rest of this paper is organized as follows. In section
II, we present the literature review. In section III, we
present the architecture and methodology of the proposed
client deployment approach. Section IV represents our On-
Demand-Fl Formulation. In section V, we present the genetic
algorithm. In section VI, we illustrate the experiments and
the evaluation of obtained results followed by the conclusion
in section VII.

II. LITERATURE REVIEW

Recently, researchers have made significant contributions
to federated learning’s communication, cost, security, pri-
vacy, and accuracy [16]. In this section, we provide an
overview of the recent related work in the literature.

The authors of [17] emphasized the significance of manag-
ing IoT resources while installing services on them utilizing
lightweight technology like Docker containerization. A fog-
formation on-demand architecture was given by the authors
in [12]. Fog devices often have specified locations and
conduct specific services. The authors used containeriza-
tion technology to deploy containers quickly and install
the required services on the devices in order to increase
device availability. Additionally, based on this design, fog
devices can now be installed and made available to use
whenever and wherever volunteers are located. The devel-
opers of [18] extended on this architecture by proposing
an on-demand micro-services deployment with the lowest
possible cost while maintaining reachability between the
desired customers and the accessible vehicular fog clus-
ters. Furthermore, the authors in [19] tried to operate the
placement of services proactively using Deep Reinforcement
Learning. We make use of this architecture in our work to
dynamically allocate and deploy prepared clients to take part
in a federated learning round using containers.

In [8], the authors find a solution to the issue of a
bottleneck when there are a lot of customers in FL. The
authors suggested a system that only chooses a few clients
that are carrying representative gradient data to send changes
to the server. Submodularity was used by the writers of this
research to encourage the diversity of the chosen clients,
which helped them achieve their goals. According to [20],
it is not necessary to select a maximum number of clients
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throughout each round as most of the proposed client selec-
tion approaches concentrate when selecting the maximum
number of clients who can update their models. We can
reduce training loss and increase accuracy by choosing fewer
clients in the early rounds and more in the latter ones. The
authors of [21] suggested a dynamic optimization based
on a trade-off between increasing selection and lowering
participant clients’ energy usage.

Using optimization techniques, some strategies [22] try
to balance the trade-off between the client consumption
and the learning rate. The authors in [23] developed a new
sampling technique that combines customers into pools for
easy selection and summarizes their attributes in a single
floating point. In addition, the suggested model achieves
50–80% faster convergence in a high-class imbalance and a
low-data environment. Authors in [24] attempted to improve
the routing protocols’ level of service and privacy. They were
successful in segmenting the routing domain into advanta-
geous subdomains, and federated reinforcement learning is
used to maintain privacy. The authors in [25] proposed an ef-
fective FL-based algorithm for anomaly detection. Multiple
local deep reinforcement learning models were used to build
the FL, which prevents privacy leakage while also suggesting
a leaking technique to boost prediction. Additionally, authors
of [26] utilized FL and Blockchain to offer a trustworthy
and secure energy solution for trade between numerous
businesses. The authors in [27] suggested deep federated
learning for health care data. Recently, researchers started to
focus on healthcare systems [28]. For instance, in order to
diagnose COVID-19, [29] suggested a clustered FL method.

For selecting clients, the authors of [30] suggested a multi-
criteria model. The system takes into account the clients’
resources to forecast the amount of time needed to complete
the jobs without stopping the process until convergence.
Additionally, according to a report by [10], IoT and mobile
devices can get quite active at certain times of the day. As a
result, the number of clients participating in the FL process
significantly relies on the time of day, with a low number
during the day and an increase of 4x at night that may
result in the discarding of certain learning rounds. In order
to guarantee a balanced, impartial model, the developers in
[31] suggested a new scheduling architecture based on the
historical participation of each edge device.

The authors of [8], [22], and [30] considered resource
capacities. [10], [20], and [21] all focused on the trade-
off between the amount of clients chosen in each round,
while [10] and [30] also considered the time of day for
choosing clients, and communication costs were taken into
account by the authors in [30]. Authors in [24], [25], [26],
and [27] target the use of FL in applications without taking
into consideration the availability of enough clients.

If there are not enough clients available to participate
in FL, none of the methods for selecting and optimizing
client selection described previously is applicable. In this
paper, we focus on the issue of client availability in various
areas. To the best of our knowledge, no prior research

work has focused on the ability to execute machine learning
models in environments that are not set up for training or
do not have the flexibility to add new devices. Furthermore,
none has provided the ability to deploy clients instantly
whenever and wherever there are volunteer devices. This
paper concentrates on areas with lots of data that helps
improve the model, while making more clients available for
learning.

III. ARCHITECTURE AND METHODOLOGY

In this section, we present our on-demand FL architec-
ture, followed by descriptions of the functionalities in each
component of the proposed architecture.

A. Architecture Overview

Mobile and IoT devices provide a lot of data in a highly
dynamic environment, including photos, location histories,
the whereabouts of autonomous vehicles, and captured im-
ages. Full access to such data would allow for the devel-
opment of powerful machine learning models that could
provide reliable and intelligent services. However, security
and privacy are major concerns for data owners. FL has
been suggested in this context as a decentralized solution
that combines intelligence with privacy. It comprises of a
machine learning model that is shared by a number of clients
and uses locally learned data. Initially, the server generates
a model to serve a certain task and then asks a random set
of clients of size K×C to participate in each round and ex-
change parameters with the server, where K is the number of
available clients, and C is the portion of clients considered.
The chosen model is then trained on each selected client’s
local data, and the new derived parameters are sent to the
server. The server then combines the gathered parameters
and calculates a FedAvg to build upon and improve the
overall model. Multiple rounds of this technique are carried
out to improve convergence and precision. However, failing
from or report later the new parameters causes the server to
end the round, which could slow down or stop the learning
process altogether. Therefore, the chosen clients must be
available throughout a FL training round. The quantity of
resources that are accessible throughout the entire round
serves as the definition of this availability. Additionally, a
learning environment must be set up by connecting to the
server, gathering the necessary materials, installing them,
and beginning the training procedure.

Figure 1 provides an illustration of the proposed frame-
work’s architecture. From a collection of constrained de-
vices, Kubernetes clusters may be effectively built using the
Kubeadm tool. In this work, we suggest creating the cluster
on-the-fly using the server and the devices that are willing
to volunteer. The server or service provider, orchestrators or
small servers, and user devices make up the three levels that
constitute the architecture. In the following section, we go
over how each layer fits into the overall architecture flow.

According to our architecture, the server is in charge of
providing clients with container images, managing the global
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Kubeadm Cluster
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IoT Devices

Local Weights
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Updated Model

Figure 1. Overall Architecture.

model, and keeping a safe connection with the lower levels.
Additionally, with the help of the orchestrator, the server is
in charge of making decisions as they arise regarding the
participation of nodes in cluster formation. The Kubeadm
clusters must be created by the orchestrators, who are also
in charge of managing container deployment, tracking device
movements in their area, and adding new clients to the
cluster. In cases of high mobility, the orchestrators are
also in charge of handling client deployment and selection
as well as sending requests to the server for container
deployment on clients. The orchestration layer’s key benefits
are its ability to reduce the risk of a single point of failure
and to speed up operations, especially in highly dynamic
circumstances. Additionally, having an orchestrator for each
client group manages server resources and helps cut down
on network connection overhead. For FL, when data is used
without sharing, the volunteering fog devices act as clients.
With the help of lightweight containers and our on-demand
architecture, clients may execute a machine learning model
whenever and wherever they want. The related service will
not be running on any device besides those taking part in
the FL rounds.

Each node in our design has its components built and
pushed to the Docker Hub repository to create images
that can be installed on participating clients. The Kubeadm
Containerization Required Modules must run on all the
nodes in our architecture (i.e., Server, Orchestrator and Fog
nodes). On the server, the Aggregator, Client Deployment,
Kubeadm Environment Initializer, Oracle Engine, Commu-
nication Manager, and Orchestrator Manager are all in use.
Both the orchestrator and the client devices run the Client
Profiler. The orchestrator is used to operate the Client
Manager and the Client Deployment components. Finally,
the Fog Client and the Learning Respond components run
on the client nodes.

Servers Kubeadm containerization required modules
Communication manager
Oracle Engine
Aggregator
Kubeadm Environment Initializer
Orchestrator Manager
Client Deployment 

Kubeadm containerization required modules
Client Profiler
Client manager
Client Deployment 

Kubeadm containerization required modules
Client Profiler
Fog client
Learning respond

Orchestrator

Constrained Device

Figure 2. Overall Node Architecture Per Layer.

The below subsection describes the functionalities of each
sub-component represented in Figure 2

B. Communication Manager
The communication between the server, orchestrator, and

deployed clients is handled by this component. In our ar-
chitecture, the server sends a request to the deployed clients
to establish a connection in order to exchange messages,
broadcast the revised model weights, and exchange updated
parameters. The handling of communication is a critical
aspect to take into consideration in FL [32].

C. Oracle Engine
This component is responsible for selecting and building

the best machine learning model that fits the environment
[33], which is later sent to the clients.

D. Aggregator
In order to optimize the federated aggregation function,

the aggregator must aggregate the newly received weights
in order to update the global model. Additionally, the ag-
gregator verifies the number of updated weights received, as
constrained devices may malfunction or indicate delays. As
a result, this component takes that into account and discards
the round if the number of updated weights received falls
below a certain limit set by the server. Moreover, different
aggregator functions yield to different results [34]. This
component is responsible to detect and select the best one
based on the previous experience in each area.

E. Client Profiler
With the help of this module, the orchestrator is able

to get an overview of all the devices that are willing to
offer their services by gathering data on their battery life,
disk size, memory, CPU usage, location history, and average
time spent in a given area. This module updates the data
about resources and volunteers. Using the updated list, better
cluster formation and placement choices are made.
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F. Kubeadm Containerization Required Modules

The Kubeadm tool aids in the quick and secure con-
struction of Kubernetes clusters. Docker, which must al-
ways be running on all devices, is supported by Kubeadm.
Kubeadm’s capacity to function on a variety of machines is a
plus. The command line known as Kubectl must be deployed
in order to manage communications, keep clusters alive, and
verify the condition of devices and services. Images are
fetched, initialized, and started after the client devices and
the orchestrator/master node have been set up.

G. Kubeadm Environment Initializer

On the mini-servers that are accessible in each area,
the server first starts by initializing a few orchestrators.
The first orchestrators are chosen based on client device
motions that the server has only just begun to collect. The
orchestrators are then in charge of carrying out this task.
In an area where there are many devices that are willing to
volunteer, the server first tries to push orchestrators there.
Additionally, the server determines if the day is a weekend
or a weekday so that it can determine earlier on where to
place some orchestrators. In the context of this article, we
assume that a list of potential mini-server orchestrators is
accessible. In summary, the server (1) chooses the locations
where Kubernetes clusters will be created and some of its
devices will receive container deployments, and (2) when
the orchestrator node is initially configured, adds some
willing devices to the cluster. All of the devices that can
volunteer in the region where the orchestrator is created are
prompted by the server to join the Kubeadm cluster. The
Kubeadm environment is now prepared to push services
as needed without any setup lag. Additionally, the Master
node must always be active alongside the volunteers. The
cluster collapses if the master node is down. From this point
forward, in the event that the first orchestrator goes down,
the orchestrator or master node must always select a different
available mini-server in the area to switch to. As a result,
there is no longer a need to start again with a fresh Kubeadm
cluster and waste time initializing everything. We presume
that each region has an enough number of mini-servers.
If no mini-servers are accessible, the module may select a
client device to act as an orchestrator for a brief period of
time while taking into account its profile information. This
process should be written as a multi-objective optimization
problem, which is outside the scope of this study but will be
taken into account in subsequent work. For now, we consider
that the chosen nodes to serve as orchestrators are suitable
to run the tasks.

H. Client Manager

The functions of the client manager operating on the
orchestrator nodes are covered in this section. The orches-
trator must first keep an eye on its clients’ movements. An
orchestrator will ask the server to deploy containers and
some of the chosen clients in its area if it sees significant

Figure 3. Average Data Volume during the process of learning before and
after deploying on-demand new clients.

movement in the area. High movements generate a large
amount of data, which helps a model be better trained.
The client manager also keeps track of how many rounds
each user has served. Our technique prevents starvation
in client selection for subsequent rounds by keeping track
of how many rounds a client has participated in overall.
Additionally, this module handles a node’s remaining time
in the cluster and examines its average staying time in a
region to help us reach our training goal. When making
the selection in the following round, it’s crucial to take the
cluster’s average remaining time into account. Additionally,
the client manager notifies the server of the availability of
any new client devices that enter the area.

I. Orchestrator Manager

The responsibilities of the orchestrator manager operating
on the server are covered in this section. It first records
the clients who have chosen and used orchestrators. These
statistics show how users behaved in a specific location.
Additionally, selecting the node as an orchestrator raises
some security issues, but this subject is outside the purview
of this work. We assume that the server has confidence
in the accessible mini-servers. To aid in the selection of
the orchestrator, the orchestrator manager uses the historical
data of users who have already trained some models [18].
The movements of the clients should be taken into account
when choosing the orchestrators. The server also considers
whether it is a weekend or a weekday, and on weekends it
deploys some orchestrators in areas with certain mountain-
ous terrain where people may be more active. The server
performs this at regular intervals, and each orchestrator
tracks its clients’ movements after that. In order for the
server to determine the areas of interest, this module also
handles requests from orchestrators to deploy additional
containers in their area. Additionally, this module is in
charge of choosing clients from various areas in order to
guarantee data heterogeneity and manage class imbalance.
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J. Fog Client

The volunteer devices are running this module. Sending a
request to the orchestrator with its profile information is one
of its functions. Additionally, this component keeps track of
the machine learning algorithm that is operating on each end
and notifies of any changes to the orchestrators.

K. Learning respond

This module is responsible of preparing the data set of
the learning service as data fetching, data pre-processing,
and splitting the data into train and test.

L. Client Deployment - Decision Module for Selecting and
Deploying Volunteering Clients

This module is triggered by the orchestrators to efficiently
deploy clients in an area. The efficient deployment of clients
is applied while taking into consideration different criteria,
which is considered multi-objective problem. This problem
is presented and implemented in sections IV and V.

IV. CLIENT DEPLOYMENT PROBLEM

In the first part of this section, we define our multi-
objective optimization problem for client selection and mod-
els’ deployment. Followed by mathematical representations
of the input, output, constraints, and objective functions.

A. Problem Definition

Given a set of available volunteering devices
C1, C2, . . . , Cn along with their utilities for learning
U1, U2, . . . , Un, we have to find the best portion of
clients to deploy in each learning round while taking
into consideration different aspects in terms of resource
consumption, priority, area location, availability, and
movements. Selecting the best set of clients and optimally
deploy them for learning is complex.

In the single Knapsack problem [35], items with different
weights and values are given, in addition to the Knapsack
capacity. The main objective is to pick items that maximise
the profit formula while taking into consideration weight
limits. In multi-objective Knapsack optimization, there are
p objective functions simultaneously, where the objective
is to maximize the profit in all cases subject to different
constraints.

Given b items with characteristics like: weights, volume,
and profit, we need to select some items that maximise the
total profit p without exceeding the knapsack capacities.

The mathematical representation of a multi-objective
knapsack with numerous constraints is shown in Eqn (1).

max(zk(x)) =

b∑
i=1

cikxi (1)

x ∈ X where X is the set of feasible solutions, and zk(x)
represents the kth objective function. cik represents a profit
of item i under the kth objective function.

subject to:
b∑

i=1

wi
jxj ≤Wi (2)

Where xi is = 1 if Xi is picked in the solution. W
represents the overall knapsack capacity and wi

j represents
a weight / cost of item i.

Theorem 1: Our multi-objective optimization problem is
NP-Hard

The multi-objective optimization problem described in
section V can be proved to be NP-Hard by a reduction
to the famous Knapsack Problem, specifically to the multi-
objective knapsack problem as shown below:

Proof: Given an instance of a client deployment problem,
we reduce it to knapsack as follow:
Clients are the items of a knapsack, the features of a
client such as priority, movements, availability, and resources
capacity, are passed to the objective functions to represent
the fitness of a client (value of an item). The weights
of an item are represented as the cost of selection, such
that the client must have enough time to finish a round
Cavailabilityi ≥ T , certain movement patterns, and resources
consumption. In conclusion, the objective is to maximize the
fitness (profit) of selected clients subject to constraints listed
later in this section.

This reduction yields that our client deployment problem
is NP-Hard.

B. Problem Formulation

The objective of our problem is to optimize the number
of active deployed clients, diversity of the data, the volume
of the data, quality of learning, and serving on-demand
requests.

1) Input Data:
In our problem formulation, we have a set C of available
host devices in different areas. Containers should be
deployed on a portion of these hosts to be included in a
learning round. The set of available hosts is represented as
a matrix C ∈ Rn×6 corresponding to six input features.
Each host is offering its resources as CPU, memory, disk
space, battery life, availability, and area location as follows:

Ci =
[CCPUi

, Cmemoryi
, Cdiskspacei , Cbatteryi

, Cavailabilityi
, Careai

]
∀i ∈ {1, . . . , n} where :

CCPUi
: CPU availability on Ci.

Cmemoryi
: Memory availability on Ci.

Cdiskspacei : Disks pace availability on Ci.
Cbatteryi : Battery level on Ci.

Cavailabilityi : Availability time of Ci in a specific area
location.

Careai
: Current area location of Ci.

Each client has a utility input from matrix U ∈ Rn×4,
which corresponds to four input features. Each utilization
Ui represents the CPU, memory, battery, and disk space

6



Figure 4. Average number of class labels during the learning process before
and after deploying new on-demand clients.

consumption of the service on hosts extracted from the
google cluster workload dataset [36] for a client Ci

Ui = [UCPUi , UMemoryi , UBatteryi , Udiskspacei ]

UCPUi
: CPU consumption of client Ci.

UMemoryi
: Memory consumption of client Ci.

UBatteryi
: Battery consumption of client Ci.

Udiskspacei : Disk space consumption of client Ci.

The orchestrators are responsible to monitor and report
the movements of clients represented in an array of
Movements Movementsi ∈ R illustrating the rate of
visiting areas of each client in addition to an array Ak ∈ R
∀k ∈ {1, . . . ,m}, where m is the number of area locations.
Ak represents if orchestrators on-demand request to deploy
clients in specific areas by having a value of 1 if requested
and 0 otherwise.

2) Output Data:
A set of chosen clients participating in a learning round
represented in K as a one-dimensional array. Kj represents
a client device in the output array, where j is the device
number, ∀j ∈ {1, . . . , n} Kj ∈ 0, 1. If Kj is chosen to
be deployed in a learning round will have a value of 1
otherwise, it is 0.

3) Constraints:
Resource constraints: A client Ci is selected if its resource
capabilities do not reach their full capacity after deployment.
The hosting capacity is represented as: CPU, memory, disk
space, and battery level along with the learning utilization
consumption in terms of CPU, memory, disk space, and
battery consumption. When the FL service is deployed on
a client, each client Ci has a utilization Ui that represents
how much that service uses from the resources of that client.
Below is the mathematical representation of this constraint:

UCPUi ×Ki ≤ CCPUi (3)

Umemoryi
×Ki ≤ Cmemoryi

(4)

Udiskspacei ×Ki ≤ Cdiskspacei (5)

UBatteryi ×Ki ≤ CBatteryi (6)

∀i ∈ {1, . . . , n} i.e. for all available clients Ci and their
utilization Ui.

Minimum availability time: This is to avoid devices
dropping from a learning round due to their movements and
staying period in an area/cluster. For that, the server decides
on a parameter T ∈ N that represents the minimum time
needed for one round. Therefore, a client can be deployed
and selected if Cavailabilityi , which is the staying time of
Ci in its area, is greater than T .

∀i ∈ {1, . . . , n} Cavailabilityi
≥ T (7)

Minimize client starvation: One of the features that our
model uses to optimize the deployment is client movements.
This feature is monitored by the orchestrators and recorded
as a counter for each client visiting a specific place. Based
on this, choosing always high movements clients leads to
similar selection every round. Henceforth, to avoid repetition
in selection, the server chooses a threshold to determine the
percentage of clients with high movements. A client is in
high movement if MovementsCi

is greater than MaxT ,
where MaxT is the threshold to determine if a client is in
high movement.

n∑
i=1

Ki ≤Mt ∀i ∈ 1, .., n, MovementsCi
≥MaxT (8)

Where Mt is the portion of clients to be selected with high
movements.

Applying priorities to clients: Each client has a priority
number from 1 to t, where t is a value between 1 and 10.
Our model prioritizes the clients based on their contribution
to learning by giving them more priority based on their
local accuracy if not deployed. A higher priority means that
this client must be deployed first.

Weights summation: to provide more flexibility in pri-
oritizing the objective functions, the method of adjustable
weights [37] helps by multiplying each objective by a
decimal value between 0 and 1 where their sum (9) is equal
to 1.

Wf1 +Wf2 +Wf3 +Wf4 +Wf5 = 1 (9)

4) Objective Functions:

In a federated learning (FL) application, the global objec-
tives are to maximize the number of clients that can complete
FL rounds without system crash while minimize the number
of rounds. In our proposed architecture, we present the
objectives of the selection and placement solution in the FL
context as follows:
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1) Minimize the number of deployed clients: The objec-
tive is to minimize the number of deployed clients in
the learning phase.

F1 = min((

n∑
i=1

Ki)×Wf1) (10)

Where Wf1 is the weight of this objective function.
Minimizing the number of active hosts saves
energy and resource consumption, which means
less battery, CPU, and memory consumption of the
overall available clients. This results in increasing
the availability of fog devices, and thus, other
services or applications can use the extra amount
of available hosts in an area. Moreover, in FL, the
server and client devices struggle with the high rate
of exchanging parameters and updating weights.
Following this objective, the high congestion on the
network is decreased. As already discussed in [20], it
is unnecessary to select a maximum number of clients
to participate in each round. Selecting fewer clients at
the early stages and more clients in later rounds helps
improving the training loss while reaching higher
accuracy.

2) Maximize the volume of data: clients frequently visit-
ing places in a specific period of time, generate more
data than others having fewer movements or records of
visiting places. Therefore, the objective is to maximize
the deployment of clients generating high volumes of
data. This objective is expressed as follows:

F2 = max((

n∑
i=1

Ki ×MovementsCi
)×Wf2) (11)

Where Wf2 is the weight of this objective function.
In any machine learning algorithm, the more data
there is, the better the model performs. Choosing
clients with high movement in an area results in
generating a large volume of data to be used, thus
a better performance is achieved. Clients with high
movements indicate a high frequency of visiting
places monitored by the orchestrators in each area.

3) Maximize the quality of learning: We aim to maximize
the accuracy of the model at early stages by choosing
high-value clients based on their contribution to the
model.

F3 = max((

n∑
i=1

Ki × CPi
)×Wf3) (12)

Where Wf3 is the weight of this objective function
and Cp is the priority factor of each client.
Checking the local accuracy and having a history of
score of the un-deployed clients helps in extracting
useful information about the kind of data these
clients have. A higher accuracy means that the
client’s testing data is somehow good for the model.

Update the local accuracies

Yes

No

Start

Create Random
Population

Evaluate Fitness Function /  
Return the max

Best set of solution

Selection of Parents

Crossover

Mutation

Generate New Population 

Success

Federated
Learning

Figure 5. GA flow of activities

Therefore, including their training data will boost the
model accuracy by deploying such clients at early
stages. Maximizing the accuracy of a model results in
better performance and quality decisions. In addition,
having the accuracy high at early stages (rounds)
helps real-time systems that are using the global
model.

4) Maximize the diversity of data: Federated learning
suffers from Non-IID data, Therefore, the objective
of this function is to maximize the diversity of data to
limit and minimize the effect of Non-IID clients.

F4 = max((

n∑
i=1

Ki ×Ri)×Wf4) (13)

Where Wf4 is the weight of this objective function,
and R is the difference between the rates of the
selected clients.
A high score of R indicates that selected clients are
from different areas. Data generated from such clients
is different and especially the output class features. A
diversity in the output class in each round also helps
the model to perform better on new testing data.
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Figure 6. Average number of available Clients

5) Maximize the serving requests: The objective is to
maximize serving the requests sent from the orches-
trators to deploy containers in some areas.

F5 = max((

n∑
i=1

Ki ×RT )×Wf5) (14)

Wf5 is the weight of this objective function and
RT is the average rate of clients selected from the
requested areas calculated from the input array A and
the selection output K.
The mini-servers / orchestrators monitor the average
movements and locations of the users. When having
high movements of clients in an area, the mini-server
sends a request to the server to deploy containers due
to high movement activities. The model should deploy
containers on clients located in the requested areas.

After having the optimization functions declared, the
multi-objective optimization problem becomes:

Y = f(x) = [f1(x), f2(x), f3(x), f4(x), f5(x)]

Where:

F1(X) = Number of active clients
F2(X) = Diversity of the data.
F3(X) = Mobility in an area.
F4(X) = Quality of learning.

F5(X) = Number of serving requests

subject to:

e1(x) : Processing resources.
e2(x) : CPU, memory, disk and battery resources.

e3(x) : Minimum availability time.
e4(x) : Avoid repetition and starvation of clients.

e5(x) : Clients with high priority first.
e6(x) : Sum of all objective function weights = 1.

V. GENETIC ALGORITHM FOR ON-DEMAND-FL

Multi-objective optimization problems are known to have
multiple solutions and not only one optimal solution, these

solutions are called Pareto solutions. It is very important to
obtain the Pareto set solution in a short period of time. For
that, using a Genetic algorithm (GA )[38] that is character-
ized by its evolutionary strategy is a good choice for such
problems [39]. GA imitates the natural selection process by
choosing the fittest set of solutions for the reproduction of
the next generations. Each chromosome in our GA solution
is represented in a K matrix. Each chromosome represented
as Kj illustrates the decision taken by the optimization
model if client Kj is deployed for a service by having a
value 1, and 0 otherwise. Kj ∈ [0 , 1].

Algorithm 1 Multi-objective genetic algorithm
Data: Set of available clients
Result: Pareto set approximation Pknown

1) Check if the problem has a solution
2) Initialize set of solutions P0

3) P ′0 = repair infeasible solutions of P0

4) Update set of non-dominated solutions Pknown from
P ′0

5) X ← 0
6) PX ← P ′0
while (stopping criterion is not met), do

7) MX = selection of solutions from PX ∪ Pknown

8) M ′X = crossover and mutation of solutions of MX

9) M ′′X = repair infeasible solutions of M ′X
10) increment X
11) Update set of solutions Pknown from M ′′X
12) PX = fitness selection from PX ∪M ′′X

Return: Pareto set approximation Pknown

The GA is presented in Algorithm 1. Our solution checks
if containers can be deployed on available client devices.
Next, a random sample of solutions P0 is initialized by
selecting clients to deploy. Afterwards, the obtained solution
is evaluated and repaired for any violations of the constraints.
The violations are repaired as shown in Algorithm 2. Repa-
ration is performed by moving containers to other client
devices if the machine learning exceeds (1) the resource
capacity of a client (2) the client’s staying period in a
particular area (3) the ”high movement” threshold decided by
the server. Non-dominated (Pareto) solution is generated in
Step 4 of the (GA). Afterward, normal selection, crossover,
and mutation operators are applied, infeasible solutions are
repaired, and finally, the Pareto set is updated if improve-
ments are possible. This process is repeated in multiple
iterations. In our GA algorithm, we use binary tournament
selection in order to choose individuals from populations.
The crossover method used is the one-point crossover where
the crossover is probabilistically applied for each parent,
controlled by a hyper-parameter. Moreover, for the mutation
phase, the bit string mutation is used. The approach gives
every gene a mutation probability of 1/L, where L is the
number of clients for deployment. This approach protects
the algorithm from falling in the local optimum, maximizes
the diversity and it gives a fair opportunity for clients with
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a low probability rate to engage with the mutation. The flow
of activities can be seen in Figure 5.

The complexity time of this algorithm can be divided into
multiple parts. First, we have the total number of popu-
lations, then initialize the base population, fix constraints,
calculate the fitness, selection of parent, cross-over, and
mutation. Let G, M , and N be the number of generations,
chromosomes, and the number of nodes respectively. In addi-
tion to that, let Cselection = O(N), Ccrossover = O(N×M)
and Cmutation = O(N × M) be the complexity time
of selection, cross-over and mutation process respectively.
Moreover, Let Cfitness and Cfix−violation be the complex-
ity time of calculating the cost (fitness value) and to fix
if any violations to our constraints respectively. Therefore,
the overall complexity time will be: O(G×(Cselection +
Ccrossover +Cmutation +Cfitness + Cfix−violation)).

Algorithm 2 Infeasible solution reparation
Data: Infeasible Solution K
Result: Feasible Solution

feasible = False; i = 0
while i ≤ n and feasible == False do

if Ki is overloaded then . check if overloaded
deploy the container on another capable client
in the same area location

if Ki.availability ≤ T then . check staying time
deploy the container on another not
chosen client with high movements record

if NN (nb of clients with high movement)≥ PE then
while NN ≥ PE do . nb of high movement

clients
swap (high move C, not high move C)

Return: Repaired solution

VI. EXPERIMENTS AND SIMULATION RESULTS

In this section, we provide first a description of the data
set used, the FL setup, the centralized model, the distribu-
tion of data over the clients, and the baseline approaches.
Afterward, we state our results followed by a discussion and
interpretation.

A. Dataset

The MOBILE DATA CHALLENGE (MDC) [13] dataset
is used in our learning. It consists of continuous records
illustrating the movements of clients recorded over a period
of time. We extracted from this dataset several features
to help us predict the next place the clients are heading
to. Global Positioning System (GPS) features were used to
cluster 20 places and 6 area locations in a specific region
on the map. Each area location contains different places.
Time features were extracted and represented in several
features like: day, month, year, weekend or weekday. We
added an important feature to track the duration of a visit
to a place by those users by calculating The duration of

stay. Furthermore, frequency and rate of visits are extracted
to track the locations of presence every month. Finally, the
label class is added, corresponding to the next place a client
visited in a specific duration of time.

B. Federated Learning Setup

In order to run FL processes, we used Localfed [14],
which is a FL framework based on the FedML framework
[40]. Localfed is known for its feasibility in applying FL
applications using built-in components. These components
are implemented in Python. It requires different parameters
to control the behavior of the model. The trainer manager is
responsible to define how the trainers are running, along
with passing some parameters to define the number of
epochs and loss. The aggregator instance is responsible to
merge the collected models into a global model. The metrics
component is responsible to test the model accuracy and loss
on testing data after each round. Moreover, Trainers-data-
dict defines the data of each client saved in dictionaries.
After that, we define some parameters like the number of
rounds, desired accuracy, train, and test data ratios.

Other components were added by us like Data Distribution
and Base Model. The Data Distribution component was
added to efficiently distribute the data to the clients. Since we
are dealing with real-life dataset and specifically user-based.
We assigned to each client the data of one user available
in the dataset. This was done to simulate real-life scenario
in which clients/users have the data on their side. The Base
Model component is added in order to run any machine
learning (ML) model under FL.

C. Centralized Model

Before having a global model to be shared with the clients,
we built a centralized model where the full training data
has been used together. After many rounds of tuning hyper-
parameters, Deep Neural Network [41] is used with three
hidden layers of size 128 and 256. ”Relu” and ”softmax”
activation functions are used. The input layer size is equal
to the number of features we have and the output layer
size is equal to the number of places in the dataset. The
Adam optimizer is used with “categorical-cross entropy” loss
function.

D. Distribution of Data Over Clients

There are 100 users in the dataset. Each client in our FL
model is assigned the data of one user in the dataset. The
data records fall between 200 and 1500 records. Since the
problem is a multi-class classification task, the target feature
defines the next place a user is going to by placing the Id
number of this place. This partition follows a Non-iid data
distribution since clients have different data partitions and
class labels. In each learning round, the portion of deployed
clients C is decided by the optimization model. The set C is
not static since having less number of clients at early stages
and more later is better for the learning process [20]. This
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Figure 7. Completed vs discarded rounds in 50 FL rounds

concept is implemented in our optimization model, so the
number of deployed clients in each FL round is decided by
the ”Client Deployment” component represented in section
IV.

E. Experiments and results

We compared our approach to some of previous work:
1) The static environment where constrained devices are

(1) available in pre-defined locations and (2) not
available to serve [12].

2) The original FL selection problem (VanillaFL) [7],
where clients participating in each round are randomly
chosen.

3) The centralized global model [41].
To prove the efficiency of our architecture, we conduct

multiple scenarios answering multiple questions:
1) How does the availability of learning devices affect

the learning process.
2) How does the on-demand client deployment help the

process of learning?
3) How many rounds did the global model take to con-

verge?
4) How many devices are able to participate and finish

their tasks without dropping out from the learning
round?

5) Is the network very congested?
6) How does diversity and volume of data help the

learning process while having a Non-iid dataset?
In order to conduct the analysis and comparison for all the
experiments, we applied the scenarios five times and took
their averages into reference.

1) We start with an environment rich in static and dy-
namic devices. In such places, devices are generating
a huge volume of data that can be used for learning.
However, most of these devices can be busy or do not
have enough capabilities to be used as clients in FL.
This results in postponing the process of learning or
even neglecting the chance of having a ML process
applied to them. On the other hand, as shown in
Figure 6, using containerization technology to deploy

Figure 8. Test Accuracy with respect to the number of rounds

docker containers on these machines results in having
more available devices in the area. The containeriza-
tion technology was proved to be efficient and more
lightweight [12] than virtual machines. For that, our ar-
chitecture can make use of any constrained devices in
this environment to serve as a client in each FL round.
We start by having zero available clients, and as can be
seen that by deploying containers on the volunteering
devices more devices are becoming available. It is also
noticed that the use of dynamic devices moving inside
and outside the environment (area). Such devices can
be used if reachable throughout the learning round.
This process is available in our architecture since
the ”Client Deployment” component deploys those
dynamic clients if their average staying period in this
area is greater than the threshold needed to finish a
learning round. Hence, this allows more diversity of
clients to choose from. Moreover, as shown in Figure
6, our architecture can make use of weak static and
dynamic devices in each area to make them available
for learning. Therefore, we can efficiently and on-
demand deploy clients in any environment having
volunteering devices.

2) Afterward, a scenario is taken where there is a need to
predict the next place users are heading to in particular
locations in order to advertise some products in the
destination place. As shown in Figure 8, we can see
a decrease in the number of FL rounds compared to
the random selection architecture. Since client devices
participate in a small number of rounds throughout the
day [7], our approach succeeds to have fewer rounds
to reach convergence while deploying clients at the
right time and location while taking into consideration
multiple constraints. In Figure 8 the blue line shows
an accuracy of 60% which is the centralized model to
represent the desired accuracy. We calculate the num-
ber of rounds our approach takes to converge versus
the default random client selection. To converge, our
approach took on average 6-8 learning rounds, while
this number was increased to 14-18 when using the
default method, taking into assumption that enough
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client devices exist. This clearly shows the importance
of choosing quality-based clients and applying our
objective functions.
In addition, it was reported in [30] that resource
utilization increases with the size of the dataset. In FL,
it is essential to take resources consumption and the
movement of clients into consideration to make less
number of client devices drop out from the learning
due to resource overwhelming or reachability issues
(for dynamic clients). Based on the available devices
in an area, our architecture tries to deploy a set of these
clients to participate in each round. As previously
explained, by using our architecture there is a higher
number of available clients. Therefore, there are more
clients to choose from along with higher diversity. The
number of deployed clients by the proposed model
starts with a small set of clients which is 5 and
increases this number in each round to reach 15-20.
The VanillaFL framework tries to take [K ×C] set of
clients. So a constant portion of clients is selected even
though they might not be ready or prepared for the
learning. On the other hand, our proposed architecture
filters the clients and deploys the best set of clients to
participate in each round if we have available clients,
otherwise, our architecture has the ability to use any
other constrained device to serve as a client.

3) Our approach succeeds to avoid any violation of
the previously mentioned constraints so any deployed
device has the ability to finish a learning round. On
the other hand, using the default selection method,
some of the selected clients did not respond back
to the server. This depends on the constraints that
our model takes into consideration and VanillaFL
does not. Having a large number of clients failing to
report back their updates yields the server to drop this
round, which makes the overall process takes longer.
Moreover, the constant number of selected clients by
the FLVanilla framework leads to have fewer available
clients to participate in other applications. On the other
hand, our architecture makes use of a small amount of
clients and makes the rest of the clients available for
other ML applications to be applied in these areas.
Our proposed model results in a few discarded rounds
out of the 50 rounds, compared to the default method
where the majority of the clients are misselected.

4) Besides, FL is famous with some network congestion,
where a huge volume of exchanging messages and
parameters must be done. Figure 8 shows that selecting
fewer clients per round reduces the total number of
rounds and the neglected rounds. Henceforth, our
approach achieves less communication rounds. More-
over, using our orchestrators to exchange and deal with
the deployed clients make the server less busy and
congested to run other models and applications at the
same time. As shown in Figure 7 we can see that the
number of used communication rounds on the network

Figure 9. The evolution of the testing accuracy in respect to the number
of available clients in Figure 10

Figure 10. Number of available clients per round

using our proposed model is greater than of VanillaFL.
The 10% of the discarded rounds while using our
proposed model results from: (1) if the client receives
an invitation to deploy a service having higher priority
than the ML service, or (2) if the deployed client
changes its destination or its usual staying period in
this place and area location. On the other hand, we can
see that more than 50% of the communication rounds
are discarded while using VanillaFL framework, due
to the random selection and the constant number of
clients that the framework should choose even when
we do not have such available or capable clients in
the area. Furthermore, the default static devices can
be far from the server and result in a long time to de-
liver the updates. Having close client devices supports
in lowering the number of discarded communication
rounds.
Figure 9 and 10 show a comparison between the pro-
posed architecture and the default one. Figure 9 shows
the evolution of the accuracy level with respect to the
number of clients present in Figure 10. Following the
analysis of figures, it can be concluded that a larger set
of available clients, yield the model to converge faster
compared to having few number of available devices.

5) In this part, we study the volume of data generated
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from our architecture and the diversity of clients. we
take a scenario where having high movements with
no available clients to participate in the learning. We
apply our architecture to deploy clients on-the-fly and
make use of the data generated. We can see in Figure
3 the increase in the volume of data available for
learning. This number is increasing while having the
ability to deploy volunteers to serve as clients. The
orchestrators play an important role while monitoring
the average movements and visited places by the users.
Once a high movement of devices is noticed in their
area, a request is sent to the server to favor this area
for some client deployments. Having high activities
of devices in a location leads to generating a large
volume of data that can be used in the learning. In
addition, having a heterogeneity of clients results in
having more diversity in the output class that we are
trying to predict at each end. This helps the model to
converge faster when having Non-iid data. As shown
in Figure 4, choosing clients from different areas
results in having more class labels, which makes the
model learns faster.

6) Our priority system proposed in Section IV plays a
great role in pushing the accuracy higher at early
stages. Checking the quality of data a user has (without
having access to the data) can be done by checking
the client’s contribution to the global model. If the
client is not selected and has some good local accuracy
compared to other clients, the type of data this client
has can be concluded. Higher local accuracy means
its testing data are somehow close to the data that the
model trained on. Therefore, deploying such clients
at early stages results in having more related training
data to the model, which will push the accuracy at
early stages as illustrated in Figure 8. In later rounds,
a priority algorithm running in the background helps
to prioritize the clients fairly.

7) Lastly, using FL supports in preserving the privacy of
clients participating in learning, where a 60% accuracy
is achieved in the centralized model and 50% in the
FL. The difference between the Federated and the
Centralized models is logical since the privacy and
data are not all in one place.

VII. CONCLUSION

The primary issues addressed in this article are client
availability and on-demand client deployment capability. We
solve these issues by making use of the volunteering devices
that are available everywhere in the designated regions. We
utilize Kubeadm and Docker to manage on-the-fly deploy-
ments and to set up clients everywhere we go, whenever
we need them. The server, the orchestrator, and the user are
the three layers that make up our framework. We propose
a multi-objective optimization solution to solve the client
deployment problem. A heuristic model based on Genetic
Algorithm (GA) is elaborated for solving the multi-objective

client/model deployment. The experimental findings show
the viability, efficiency, and improvement of applying the
on-demand client deployment, where less time is required
to achieve the desired precision compared with the default
selection framework and the centralized model. Real-world
scenarios are carried out to demonstrate the viability of client
deployment in static regions and the advantages of having
additional clients available in a learning environment. As
future work, we plan to extend our architecture and optimize
the client deployment by having multiple FL applications
running in our environment.
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