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Abstract—Internet-of-Things (IoT) networks require massive
connections in dense areas. Therefore, a resource efficient multiple
access scheme seems inevitable to enable immense connectivity
where multiple devices have to share the same resource block.
Non-orthogonal multiple access (NOMA) has been considered as
the strongest candidate in recent years. However, in this paper,
by considering the practical implementation, we first provide a
true power allocation (PA) constraint with finite alphabet inputs
for conventional downlink NOMA and demonstrate that it cannot
support massive connections in practical systems. To this end, we
propose bit-interleaved multiple access (BIMA) scheme in downlink
IoT networks. The proposed BIMA scheme implements bitwise
multiaccess interleaving and deinterleaving at the transceiver ends
and there are no strict PA constraints, unlike conventional NOMA,
thus allowing a high number of devices in the same resource block.
We provide a comprehensive analytical framework for BIMA by
investigating all key performance indicators (KPIs) to present
both information-theoretic (i.e., ergodic capacity [EC] and outage
probability [OP]) and finite alphabet inputs (i.e., bit error rate [BER])
performance metrics with both instantaneous and statistical channel
ordering. In addition, we define Jain’s fairness index and proportional
fairness index in terms of all KPIs. Based on the extensive computer
simulations, we reveal that BIMA outperforms conventional NOMA
significantly, with a performance gain of up to 20-30 dB in terms of
KPIs in some scenarios. In other words, compared to conventional
NOMA schemes, the same KPIs are met in BIMA with 20-30 dB less
transmit power, which is quite promising for energy-limited use cases.
Moreover, this performance gain becomes greater when more IoT
devices are supported. BIMA provides a full diversity order for all
IoT devices and enables the implementation of an arbitrary number
of devices and modulation orders, which is crucial for IoT networks
where a huge number of devices should be supported in a single
resource block in dense areas. In addition to the overall performance
gain, BIMA guarantees a fairness system where none of the devices
gets a severely degraded performance and the sum-rate is shared in
a fair manner among devices. It guarantees QoS satisfaction for all
devices. Finally, we provide an intense complexity and latency analysis
for BIMA and demonstrate that it provides lower latency compared
to conventional NOMA receivers, since it allows parallel computation
at the receivers and no iterative operations are required. We show
that compared to conventional NOMA receivers, BIMA reduces
latency by up to 350% for specific IoT devices and 170% on average.

Index Terms—bit-interleaved, fairness, IoT networks, low latency,
massive connection, multiple access, NOMA, ultra-dense networks
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I. INTRODUCTION

Wireless communication technologies have improved consider-
ably in recent decades. The evolution of wireless communications
has been driven by the demands of users, customers, and clients and
by technological developments. For instance, with the introduction
of smart living areas (e.g., cities, agriculture, factories, etc.), wireless
access has moved beyond personal communication: it is now called
Internet of everything (IoE) [1]–[3]. In order to enable smart living
areas, wireless infrastructure needs to support ultra-dense networks
where a massive number of nodes (e.g., sensors, smart-watches,
tablets, etc.) have wireless access, which is called massive machine
type communication (mMTC)—one of the three major concepts of
5G and beyond. This is driven by the Internet of Things (IoT) [4],
[5]. Recently, the number of IoT devices has increased exponentially.
The most recent vendor reports [6] show that 14.6 billion IoT
connections exist in wireless infrastructure by 2022 and with a
13% annual grow rate, it will reach 30.2 billion by 2027. This
will be almost equal to 40% of total wireless access at that time.
Furthermore, these IoT networks have small operating areas (e.g., a
building and a factory), unlike traditional cellular networks, and
these small areas trigger a challenging resource allocation and
interference management problem since massive numbers of devices
should be served within these small areas. In the wireless spectrum,
physical radio resource blocks (RB) (i.e., time and frequency) are
limited and costly. For instance, in 5G new radio (NR) standards
[7], with a 20 MHz bandwidth (i.e., maximum bandwidth in LTE
legacy ), a maximum number of 92 RBs1 can be allocated to users
within a subframe. However, in massive IoT applications (e.g.,
smart agriculture), thousands of sensor or control nodes may require
wireless access. In these cases, whether we need more bandwidth,
that is costly or more complex resource allocation (RB scheduling
algorithms in layer 2) solutions are required. Therefore, it is not pos-
sible to allocate each IoT device to an orthogonal resource to avoid
interference, since a massive number of devices need to be served
in small, dense areas. For this reason, more than one IoT devices
should share a resource block to enable mMTC. In this regard, non-
orthogonal multiple access (NOMA) is seen as a strong candidate
for IoT networks [8] since it allows multiple devices to share the
same resource blocks by splitting them into the power domain. In
this way, the spectral efficiency of the network increases and it
becomes possible to serve multiple devices with the number of more
than the available resource blocks [9]. Accordingly, NOMA is seen
as an enabler for ultra-dense networks, and tremendous efforts have
been devoted to integrating NOMA in IoT applications [10]–[15].

1Although it is available 106 PRBs, only 92 of them can be assigned to users
due to usage of broadcast and control signaling [7].
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A. Related Work and Motivation

In the literature, NOMA schemes have been shown to be spec-
trally efficient and superior to orthogonal multiple access schemes
in terms of capacity and outage performance [16], [17] and their
implementation with recent technologies (e.g., integrated terrestrial-
satellite communications [18] ) has attracted a remarkable attention.
However, in these capacity and outage performance evaluations, a
perfect successive interference canceler (SIC) is generally assumed
[16]–[21] or an imperfect SIC effect is modeled as a coefficient
(constant or Gaussian random variable) [22]–[25]. Moreover, ca-
pacity and outage performances have been analyzed only in terms
of information-theoretic perspectives where the transmitted signals
are assumed to have infinite alphabets (a.k.a., Gaussian inputs);
therefore, the transceivers/baseband blocks have not been consid-
ered in those analysis. However, in practical scenarios, baseband
signal processing techniques (e.g., an in-phase and quadrature
[IQ] modulation and demodulation) are required for wireless
communications. Therefore, the practical systems take their values
from finite alphabet inputs such as a M-level quadrature-amplitude
modulation (M-QAM) constellation. In this regard, once a baseband
transceiver is implemented, it has been shown that the imperfect
SIC cannot be modeled only by a coefficient, and NOMA networks
have a degradation of error performance (bit error rate, BER) for
both downlink [26], [27] and uplink [27], [28] scenarios. These
studies led other researchers to investigate the BER performance of
NOMA systems with finite alphabet inputs to reflect their practical
implementations. Then, it is not as tremendous as ergodic rate and
outage probability analysis, but a considerable amount of studies are
devoted to investigate the BER performance of NOMA networks for
various fading channels in both downlink and uplink scenarios [29]–
[39]. In particular, the authors in [27] showed that the SIC detector
suffers from the error floor in uplink NOMA and may not be the
optimal detection algorithm for uplink NOMA unlike downlink
NOMA schemes. Then, the joint maximum-likelihood detector is
proposed for uplink NOMA and it is proved to be optimal solution
and is capable of error floor in uplink NOMA [37]–[39]. On the
other hand, in the BER analysis of the downlink NOMA studies [27],
[29]–[36], the number of users2 is limited to only two or three. This
is because the BER performance of users degrades (e.g., some users
may have BER value of 1) as the number of users increases due to
SIC operations, although NOMA can serve more users theoretically.
Moreover, in most studies [27], [29]–[35], the modulation orders
in the transceiver have been selected as binary phase-shift keying
(BPSK) and/or quadrature phase-shift keying (QPSK). If the modula-
tion orders increase in the NOMA schemes, the BER performance of
the devices become worse. Furthermore, the higher the modulation
orders, the more difficult it becomes to detect symbols at the
receivers; this is because the total constellation after superposition at
the transmitter scatters too much. Indeed, this scattering causes a non-
detectable constellation and a conceptual flaw in downlink NOMA
schemes. Therefore, the power allocation (PA) constraint becomes
too strict in practical scenarios and, contrary to PA optimization
studies in terms of various constraints [40]–[43], no device can detect
symbols if this strict PA constraint is not satisfied. In [31], it was
shown that the PA of one of the users should be higher than 0.9 even

2User refers to an IoT device in this paper. Thus, the terms “user” and “(IoT)
device” are used interchangeably throughout this paper.

in a case involving two users with 16-QAM. The strict PA constraint
triggers another problem, namely user unfairness, where the perfor-
mance of nodes is affected dramatically and one user experiences
degraded performance. To address this, some studies [44]–[49] have
examined fairness in NOMA networks, and a few algorithms have
been proposed to this end. However, as in almost all NOMA studies,
only information-theoretic issues were considered, and no practical
implementation issues (e.g., constellation-based constraints for finite
alphabet inputs) were discussed. In addition, the aforementioned
studies [44]–[49] are also limited by only considering two-user
networks. This strict PA constraint (i.e., unfairness) also manifests
itself with increasing numbers of users; therefore, in three-user
[29], [30] and four-user [50] NOMA networks, the authors consider
QPSK and BPSK, respectively. Neither the modulation order can be
increased in a three-user network nor the number of served users in
a single resource block can be improved with any modulation order.
The aforementioned fairness evaluations trigger another discussion
that is the reasonable signal-to-noise ratio (SNR) regime to imple-
ment NOMA. Due to intentionally created inter-user-interference
(IUI), the performance of NOMA systems are SNR-limited. In other
words, the NOMA schemes can outperform OMA counterparts (i.e.,
interference-free) in only very low SNR regions. In NOMA schemes,
one (or all) users have an interference-limited performance (i.e., error
floor or capacity upper bound) where its (their) performance is not
improved even though the received SNR is increased. Therefore,
NOMA is not suitable for indoor IoT applications where the SNR
is generally high due to low distances from AP to IoT devices.

As explained above, NOMA networks lack high reliability, since
all users experience a degradation in BER performance due to IUI.
For this reason, many studies have been devoted to improving the
BER performance of NOMA for uplink [51]–[53] and downlink
[53]–[56] networks. These studies are mostly based on constellation
designs with rotation and/or phase shift. In [51], the authors proposed
to rotating the constellation in a two-user uplink NOMA scheme.
The achievable rate analysis was provided for the proposed system,
and the PA was optimized using the variational approximation
method. The BER simulations were also presented for QPSK
in the scenarios considered, and a subtle performance gain was
observed. Then, in [52], the authors investigated the optimum inter-
constellation rotation based on minimum Euclidean distance for
a two-user uplink NOMA. They provided an SNR-independent
optimization in addition to eliminating the error floor of error perfor-
mance. Another study focused on improving BER performance was
undertaken by the authors in [53], who proposed joint power and
rotation optimization for MIMO-NOMA with two users and 4-QAM
for both uplink and downlink cases. Their approach demonstrated
better BER performance than traditional NOMA schemes. NOMA
with phase rotation was proposed in [54] where joint multi-device
detection was also proposed for two-user downlink NOMA. The
proposed scheme was evaluated with convolutional codes and SIC-
based soft decision Viterbi decoding. The authors presented BER
performance improvements for the QPSK-QPSK and QPSK-16-
QAM constellations. Unlike constellation rotation, an interference
alignment and independent component analysis-based semi-blind
two-user downlink NOMA scheme was proposed in [55] where
the phase of one of the devices was arranged according to the
other user’s symbols. The proposed scheme was evaluated for
4-QAM (i.e., QPSK) constellations, and the symbol error rate
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(SER) performance was demonstrated by simulations. However,
all aforementioned studies only considered two-user networks
and lower modulation orders for the devices. To the best of the
authors’ knowledge, the only study with more than two users (i.e.,
four and six) was the work in [56] where the authors apply a
coordinate (a.k.a., component) interleaving for the π/4 rotated 4-
pulse amplitude modulation (4-PAM) signals which is inherited
from the signal space diversity technique in literature [57]. In [56], 4-
PAM signals of each users are rotated with π/4 on counter clockwise
and then in-phase and quadrature components of each IQ symbols
are interleaved among I-Q coordinates (e.g., in a two user scenario,
both components of the first user’s symbol are mapped into only
in-phase whereas both components of the second user’s symbol are
mapped into only quadrature domain with related PA coefficients).
Therefore, half of the devices were assigned to an in-phase domain,
while the other half was assigned to a quadrature domain, so that
the IUI decreased by half in each domain. However, the modulation
orders of the devices are still limited by 4-PAM, and the proposed
scheme in [56] cannot be used with two-dimensional modulation
schemes, so it is unlikely to be implemented in standards.

On the other hand, the performance improvement studies
in NOMA [51]–[56] aim to optimize the constellation after
superposition coding. In other words, they try to obtain an optimized
super-constellation for multi-user cases. This reminds us another
efficient technique used in digital video broadcasting (DVB)
communication called hierarchical modulation (HM) [58], a.k.a,
embedded modulation [59]. In HM, the data sequence is divided
into two parts and named as high priority (HP) and low priority
(LP) bits. Then, according prioritizing, a merged super-constellation
is generated at the transmitter. In DVB standards [60], the HP has
2 bits and LP has 4 bit; therefore, in HM, a 64-QAM constellation
is generated where 2 HP bits define the each quadrant in I-Q
domain wheres 4 LP bits map the exact point in each quadrant. In
this regard, the HP bits can be recovered with QPSK demodulator
whereas a 64-QAM demodulator is needed for LP bits. The
performance of HM has been well-investigated by researchers
[61]–[64]. However, its usage is limited in DVB and not considered
in other applications. Besides, there are also some limitation for
HM. The HM is mainly considered as a data partition according
to their importance (e.g., entropy) rather than as a multiple access
scheme. The usage as a multiple access scheme is limited by only
2 DVB subscribes. Besides, there is a severe unfairness in HM
since the HM is created according to prioritizing level. E.g., LP
data may have up to 15 dB performance loss compared to HP data.
This unfairness issue limited the usage of HM in DVB rather than
mission critical wireless applications where the reliability is crucial;
thus, preventing researchers from HM in wireless applications
where the channel impairments already causes performance loses.

In addition to user unfairness and BER performance degradation,
the other disadvantage of NOMA is the latency at the receivers
due to iterative SIC decoding. Hence, a NOMA design without
SIC detection was proposed in [65] and [66] for slow fading and
block fading channels, respectively. In [65], a lattice-partition-based
model was proposed, and for a two-user downlink NOMA, the
proposed scheme was appropriate for a wide range of outage
probability targets regions. Along similar lines, in [66], the authors
used an algebraic rotating lattice design, which allowed the
receivers to be reduced to single-device detection without an SER

performance degradation. In both schemes [65], [66], performance
evaluations were presented for only two-user networks and the
given methods can not be extended for larger networks. Although
iterative operations have not been completely eliminated in [56], the
required SIC operations are halved as interference in each domain
is limited by half. However, in multi-device networks, the receiver
latency still remains to be resolved.

As we can see from the above discussions, NOMA suffers from
BER degradation caused by IUI. Due to the PA constraints, users
encounter dramatic unfairness, where one user may experience
severe performance limitations, although overall performance
seems to be improved. Moreover, due to iterative SIC operations,
the receivers have high latency. Evidently, conventional NOMA
networks cannot be an optimal solution for IoT networks due
to BER degradation, user unfairness, and high receiver latency.
Therefore, an alternative multiple access scheme is clearly needed
to enable IoT networks for when a massive number of devices need
service in an ultra-dense area, such that multiple devices are allowed
in a single resource block. To this end, in this paper, we propose bit-
interleaved multiple access (BIMA) to enable massive connection
in IoT networks. The proposed BIMA overcomes all problems
in NOMA, e.g., latency, unfairness, and reliability, etc., where all
devices have better and fair performances compared to conventional
NOMA. Furthermore, with the proposed BIMA, none of the
devices requires a SIC detector, so it has lower receiver latency.

B. Contributions

The main contributions of this paper are summarized as follows.
• Firstly, for practical implementations of conventional NOMA,

we present a true PA constraint with finite alphabet inputs of
M-QAM constellations to ensure reliable signal detection at
the receivers. In doing so, we prove that conventional NOMA
can not support multiple devices (not more than three or
four) in a single resource block. Therefore, it cannot be a true
candidate for ultra-dense networks such as IoT applications.

• For downlink of the dense IoT networks, we propose BIMA,
where the information of the devices are concatenated in
bitwise by using multiaccess interleaver (MI) rather than
symbol-wise superposition coding like conventional NOMA.
Thanks to MI at the transmitter and deinterleaving at the
receiver ends, the overall multiaccess communication is
completed by a single IQ signal. In BIMA, we create an
additional orthogonal dimension (i.e., constellation points) to
distinguish users’ signals (likewise modulation portioning or
hierarchical modulation). Therefore, it can be considered as the
fourth (constellation) dimension to allow orthogonal multiple
access (along with time, frequency, and code division multiple
access schemes). Nevertheless, the BIMA distinguishes from
OMA legacy since it requires only one physical radio resource.
Therefore, it is a single resource multiple access scheme
likewise NOMA. In BIMA, since an interference-free trans-
mission is achieved and no interference mitigation technique
(i.e., SIC) is required at the receivers. We also demonstrate
that there is no power constraint with the proposed BIMA.

• We analyze the proposed BIMA in terms of all key
performance indicators (KPIs). We derive closed-form
expressions of ergodic capacity (EC), outage probability
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(OP), and bit error rate (BER) for both instantaneous and
statistical channel ordering schemes. All derived expressions
are validated via computer simulations.

• We also discuss fairness in BIMA and demonstrate that
BIMA offers higher fairness in terms of all KPIs compared
to conventional NOMA schemes. To assess the fairness, we
first define the well-known Jain’s fairness index and then,
we propose two modified Jain’s fairness indexes to evaluate
reliable communication rather than only sum rate. We also
introduce a proportional fairness index in terms of all KPIs
to demonstrate the performance difference among devices.

• Based on extensive simulations, we show that BIMA
outperforms conventional NOMA in terms of all KPIs.
For all KPIs, the BIMA offers a monotonously increasing
performance w.r.t. transmit power that is not the case in
conventional NOMA where error floors or upper bounds
occurs due to IUI. In some cases, BIMA saves up to 20-30 dB
transmit power to achieve the same KPIs with conventional
NOMA which is a significant gain in especially energy-limited
use-cases. Besides, in both instantaneous and statistical
channel ordering cases, we show that BIMA offers the full
diversity order for all users in terms of all KPIs. Furthermore,
BIMA has no limiting constraint for either the number of
devices or the modulation order. In the numerical evaluation,
we also show that BIMA always offers fair communication
and converges to the maximum value in a high SNR regime.

• We also analyze the receiver complexity and latency of BIMA
and present comparisons with conventional NOMA (with SIC
receivers). We demonstrate that BIMA provides much less
receiver latency. Besides, this gain increases with the number
of the devices.

C. Notation

Throughout this paper, |.| denotes the absolute value of a
scalar/vector and

(
.
.

)
is used for the binomial coefficient.ˆdenotes

the estimated symbol or index. CN(µ,σ) is a complex Gaussian
distribution that has independent real and imaginary random
variables with the µmean and the σ

2 variance. Q(z) is the Marcum-

Q function, which is given by Q(z)=
∞∫
z

1√
2π

exp(−z2/2)dz.

D. Organization

The rest of the paper is organized as follows. In Section
II, we present system models for both conventional NOMA
and the proposed BIMA. The detection at the receivers, the
signal-to-interference plus noise ratio (SINR) definitions, and the
channel ordering schemes are also given in this section. Then in
Section III, theoretical analysis for all KPIs is presented and the
closed-form expressions are derived. In Section IV, we define Jain’s
fairness index and proportional fairness index in terms of all KPIs
to present a comprehensive evaluation. In Section V, computer
simulations are presented to validate the theoretical analysis and to
compare with benchmarks. In Section VI, receiver complexity and
latency analyses are conducted, and comparisons with conventional
NOMA are presented. Finally, Section VII concludes the paper
with discussions and considerations for future work.

II. SYSTEM AND CHANNEL MODELS

In this paper, we consider a downlink scenario where a transmitter–
access point (AP)– sends data to L IoT devices, as shown in Fig.
1. All nodes are assumed to have a single antenna3, and the channel
fading coefficient between each node is a flat-fading Rayleigh
channel. To enable the massive connectivity within a resource-
limited dense network, a resource-efficient multiple access (e.g.,
(NOMA) scheme) is required; thus, the AP transmits all devices’
symbols at the same resource block (i.e., frequency, time, code).

In order to present a comprehensive performance evaluation and
comparison, we define both conventional NOMA and the proposed
schemes in the following. We chose NOMA as the benchmark
scheme since it is seen as the strongest candidate for IoT networks
to support massive connectivity since the number of devices is
much more than available orthogonal radio resource blocks.

A. Conventional NOMA

In the conventional NOMA scheme, the AP implements a
superposition coding after modulating all devices’ symbols. To this
end, the total superposition coded symbol at the transmitter becomes

xsc=

L∑
i=1

√
αixi, (1)

where αi is the power allocation (PA) coefficient for the ith IoT
device. Without loss of the generality, we assume αi<αi+1 and∑L
i=1αi = 1. In (1), xi is the baseband modulated symbol of ith

IoT device withMi-ary modulation.E
[
|xi|2

]
=1, ∀i. The received

signal at the each IoT device is given by

yi=
√
Pxschi+ni, i=1,2,...,L, (2)

where P is the transmit power of the AP. hi and ni are the flat
fading channel coefficients between the AP and ith IoT device
and the additive Gaussian noise at the receiver i, respectively.
hi∼CN(0,σ2

i ) and ni∼CN(0,N0) are defined.
1) Detection at the IoT devices: Since the PA coefficient of the

Lth IoT device is greater than any of the others, the Lth IoT device
detects its own symbols by pretending the symbol of the other IoT
devices as noise. Thus, the maximum likelihood (ML) detection
at the Lth IoT device is given as

x̂L=argmin
k

∣∣∣yL−√PαLhLxL,k∣∣∣2, k=1,2,...,ML, (3)

where xL,k denotes the kth point in theML-ary constellation.

3To make it easier to follow for readers, in this paper, we present BIMA with
a single-input single-output (SISO) case. However, BIMA could be implemented in
any antenna configuration, e.g., single-input-multiple-output (SIMO), multiple-input
single-output (MISO), multiple-input multiple-output (MIMO) or it can be easily
used with other physical layer techniques. The interplay between BWNOMA and
other physical layer techniques (e.g., MIMO or cooperative communication) is
considered as a future work. Besides, the home devices in the Fig. 1 are given just
for better illustration. However, the proposed BIMA is not application-limited and,
any kind of smart devices (e.g., smart factory devices, human body network devices,
etc.) can be supported by BIMA.



5

M
u

lt
ia

cc
e

ss

In
te

rl
e

av
in

g

IQ
 M

o
d

u
la

to
r10101..001

IoT Dev. 1 Data

10101..001

10101..001

10101..001

IoT Dev. 2 Data

IoT Dev. 3 Data

IoT Dev. L Data

M
u

lt
ia

cc
e

ss

D
e

In
te

rl
e

av
in

g

IQ
 

D
e

m
o

d
u

la
to

r

IoT Dev. 1 Data

10101..001

IQ
 

D
e

m
o

d
u

la
to

r

M
u

lt
ia

cc
e

ss

D
e

In
te

rl
e

av
in

g

IoT Dev. 2 Data
10101..001

IQ
 

D
e

m
o

d
u

la
to

r

M
u

lt
ia

cc
e

ss

D
e

In
te

rl
e

av
in

g

IoT Dev. 3 Data

10101..001

IQ
 

D
e

m
o

d
u

la
to

r

M
u

lt
ia

cc
e

ss

D
e

In
te

rl
e

av
in

g

IoT Dev. L Data
10101..001

Access Point (AP)

IoT Device #1

IoT Device #2

IoT Device #3

IoT Device #L

. . .. . .

Fig. 1. The illustration of an IoT network enabled by BIMA.

However, the ith IoT device needs to implement an iterative
successive interference canceler (SIC)4 to detect its own symbols
such that it first detects all jth IoT devices’ symbols (i.e., j =
i+1,i+2,...,L) and subtracts these symbols from the received signal.
Therefore, the detection process at the ith IoT device is given by

x̂i=argmin
k

∣∣∣y(L−i+1)
i −

√
Pαihixi,k

∣∣∣2, k=1,2,...,Mi, (4)

where

y
(L−i+1)
i =y

(L−j+1)
i −

√
Phi
√
αjx̂j, j=i+1,i+2,...,L, (5)

where y(1)
i ,yi and

x̂j=argmin
k

∣∣∣y(L−j+1)
i −

√
Pαjhixj,k

∣∣∣2, k=1,2,...,Mj. (6)

2) Power Allocation Constraint: In the literature, great efforts
have been devoted to optimizing the PA coefficient under different
constraints, such as sum-rate maximization, outage probability,
energy efficiency, etc., [40]–[43]. To the best of the authors’
knowledge, all of the aforementioned studies optimize PA by
considering the theoretical Shannon limit, and no transceiver
(i.e., baseband signal processing) is considered. However, in
practical systems, the transmitted signals take their values from
finite alphabet inputs such as M-QAM constellation alphabet.
These aforementioned PA optimization algorithms do not consider
practical systems (e.g., finite alphabet inputs). For instance, with
an M-QAM alphabet, they do not guarantee successful decoding at

4Please note that in conventional NOMA schemes, a joint maximum-likelihood
detection (JMLD) can be also implemented where an exhaustive search is performed
to obtain all users’ symbols at once rather than iterative SIC algorithm. However,
in the open literature, it is proven that in the downlink NOMA, SIC and JMLD
have exactly the same performance [36] unlike in the uplink JMLD outperforms SIC
[37]–[39]. Therefore, in this paper, we also perform SIC for conventional NOMA
since the majority of downlink NOMA schemes consider SIC.

the receivers. While they may appear optimal from an information-
theoretic perspective, the IoT devices can not detect their symbols
when transceivers are implemented. Therefore, for practical
applications, a PA constraint should be defined to ensure successful
decoding for IoT devices. To this end, we revisit [67], and according
to the ML decision rule for detecting symbols correctly with finite
alphabet inputs, the practical PA constraint is given as follows.

Theorem 1: Regardless of the channel ordering, in conventional
NOMA, to make it practical (i.e., with finite alphabet inputs), the PA
coefficient of the ith user should be higher than weighted sum of the
jth user’s PA coefficients ∀j, j=1,2,...,i−1. Otherwise, with an M-
ary modulation-demodulation implementation, none of the signals
becomes detectable at the receivers. This detectable PA constraint
includes M-ary modulation order value for each user and is given as

αi>(Mi−1)
(∑i−1

j=1

√
αj

Mj−1(
√
Mj−1)

)2

, (7a)

s.t α1>0, (7b)
s.t
∑L
i=1αi=1, (7c)

where (7a) ensures a detectable signal design at the receivers by
SIC detectors given in (4)-(6), (7b) ensures a positive PA value for
each user and (7c) limits the total transmit power.

Proof: Please see Appendix A.
3) Signal-to-Interference-plus-Noise Ratio (SINR): Since the

symbols of the IoT devices are conveyed through a broadcast
channel (simultaneously on the same resource block), the
IoT devices encounter an inter-user-interference (IUI). When
considering the decoding processes, the signal-to-interference plus
noise ratio for the ith IoT device is given by

SINR
(conv)
i =

ραi|hi|2

ρ|hi|2
L∑

j=i+1

αjδj+ρ|hi|2
i−1∑
p=1

αp+1

, (8)



6

where ρ=P/N0 and δj, |xj−x̂j|2 are defined. In (8), the first and
second terms in the denominator denote the effects of the imperfect
SIC and IUI of the devices with lower SIC orders, respectively.
We should note that the imperfect SIC effect used in this paper is
a more accurate model than those used in existing studies, since it
includes the actual difference between the transmitted and detected
symbols of other IoT devices rather than defining a constant and/or
independent random variable.

B. Bit-Interleaved Multiple Access (BIMA)
Although conventional NOMA is capable of serving multiple

IoT devices, the PA constraint for successful decoding (7) limits the
number of devices. Otherwise, none of the IoT devices can detect
their own symbols since there is no PA coefficient that satisfies (7)
with multiple IoT devices. Also, even in the case of two IoT devices,
the constellation of IoT devices is limited by 16-QAM; otherwise,
the IoT devices cannot detect symbols with higher modulation
orders. To overcome this constraint, a new resource-efficient
multiple access technique is required to enable massive connection
in dense areas. In this regard, we propose bit-interleaved multiple
access (BIMA) where we implement a bitwise multiaccess
interleaving and deinterleaving at the transceiver ends. In the BIMA,
the information bits of all IoT devices combined in bitwise (i.e.,
concatenated and interleaved) as a new data sequence. It is given as

bbw=interlv([b1,b2,...,bL]), (9)

where interlv() denotes random interleaving. bi is the information
bits of the ith IoT device and each of them has log2(Mi) bits.

Therefore, the total interleaved data has
L∑
i=1

log2Mi bits. The data

is then modulated5 by an IQ modulator and transmitted to the IoT
devices simultaneously. Since all users’ information is transmitted
in a single IQ symbol without any interference, the proposed BIMA
can be seen as an orthogonal multiple access scheme. However,
we create a fourth dimension (i.e., interleaved constellation points)
in addition to physical orthogonal radio resources (i.e., time and
frequency). To this end, the proposed BIMA is an orthogonal
multiple access scheme. However, it differs from OMA legacy since
it uses only one radio resource whereas the other OMA schemes
require multiple physical radio resources for multiple access. In this
regard, BIMA can have an important role when the physical radio
resources are not enough. For instance, in ultra-dense networks (e.g.,
IoT applications), the BIMA has a great potential since the number
of devices vastly exceeds the number of available radio resources.

The signal received at each IoT device is given by

yi=
√
Pxbwhi+ni, i=1,2,...,L, (10)

where xbw is the modulated symbol byMbw-ary modulation. bbw is
mapped into xbw which is a point in aMbw-ary modulation constel-

lation. Mbw =
L∏
i=1

Mi and E
[
|xbw|2

]
= 1. The obtained Mbw-ary

5This paper proposes BIMA as a new multiple access technique for IoT
networks. Therefore, to focus on the conceptual design in deeply, we do not present
error-correcting channel coding here. However, as being in all practical systems,
a channel coding can be implemented before modulation which will definitely
improve the BER performance of BIMA. Nevertheless, please note that coding gain
has a similar effect in all communications systems since it is related to bit correction
according to used channel coding algorithm and it does not depend on the multiple
access schemes. The performance improvement with the coded systems is clear to
a researcher in the field; thus, is beyond the scope of this paper.

constellation in BIMA has the same size as the total constellation that
is obtained after superposition coding in NOMA (1). However, the
total constellation in NOMA has an irregular structure due to power
allocation that may cause an undetectable signal as already discussed
in Theorem 1 and Appendix A. On the other hand, BIMA has a
regularMbw-ary constellation so that a simple detection algorithm
can be used as being in all interference-free (e.g., OMA) schemes.

1) Detection at the IoT receivers: Since the information bits of
the IoT devices are combined bitwise and transmitted as a single
IQ symbol, any of the IoT devices can detect the combined symbol
with a simple ML detector. Therefore, no iterative SIC decision is
required at any device. In the ML detector, the received signal at each
IoT device is compared with theMbw-ary modulation constellation,
and the point that has the minimum Euclidean distance is decided
as the detected symbol. The ML detection for BIMA is given as

x̂bw=argmin
k

∣∣∣yi−√Phixbw,k∣∣∣2,
k=1,2,...,Mbw, i=1,2,...,L,

(11)

where xbw,k denotes the kth point in the Mbw-ary constellation.
Then, the estimated IQ symbol (i.e., x̂bw) is de-mapped to b̂bw
according to Mbw-ary modulation constellation where b̂bw is the
bitwise representation of the detected symbol.

Next, each IoT device implements a deinterleaving operation to
obtain its own information bits. This is given as

bi=deinterlv
(
b̂bw

)
, (12)

where deinterlv() is the multiaccess deinterleaving operation at
each IoT device. It is assumed that IoT devices have knowledge of
the interleaving array used at the transmitter. After the deinterleaving
process, each IoT device extracts their own binary bits from the
whole data sequence. Thus, it is called multiaccess interleaving
(MI). This MI guarantees fairness in the proposed model; otherwise,
without an interleaving if we only concatenate data sequentially, the
information bits of one or more IoT devices may always be mapped
into adjutant points in the Mbw-ary constellation, and those IoT
device(s) may have poor performance6. Indeed, a similar unfairness
situation can be observed between HP and LP bits in DVB systems
once HM is implemented. Therefore, in this paper, we are motivated
by data prioritization-based super-constellation of HM in DVB
systems. However, we convert it into a novel multiple access
scheme and extend to enable massive connectivity in IoT networks.
Besides, motivated by the bit-interleaved coded modulation (BICM)
[68] in point-to-point communication, we resolve the unfairness in
BIMA. To this end, the proposed BIMA is a novel multiple access
scheme which foundations are based on well-matured techniques
such as HM and BICM [68]. The baseband operations on the
transceivers of the proposed BIMA are presented in Fig. 1.

6We use random interleaving in this paper since it is the simplest and most well-
known in the literature. Besides, it ensures that the information bits of all devices
are assigned random points in M-ary constellation thus guarantying user fairness.
Nevertheless, any other interleaving algorithm/array can be used. However, according
to used interleaving array, the performance of BIMA may differ. For instance, with the
linear interleaving, the performance of one of the devices will be increased whereas
for another device it will be degraded. This may cause a slight decay in user fairness
performance. The impacts of interleaving algorithms/arrays are left for future works.
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2) Power Design: The proposed BIMA has no constraint for the
transmit power since no IUI is introduced. There is no restriction
either modulations order. According, any number of the IoT devices
with any modulation order can be served, unlike conventional
NOMA.

3) Signal-to-Noise Ratio (SNR): Since only one IQ symbol is
transmitted in BIMA, IoT devices are not exposed to additional
interference. Thus, only the signal-to-noise ratio (SNR) is defined
in BIMA, and it is given for any IoT device as

SNR
(BIMA)
i =ρ|hi|2. (13)

C. Channel Ordering

In the literature, two different channel ordering schemes have
been considered in NOMA systems according to channel state
information at the transmitter (CSIT). These are instantaneous
channel ordering or statistical channel ordering. In this paper,
although channel ordering has no impact on the design of the
BIMA, to compare with conventional NOMA schemes, we evaluate
the proposed BIMA for both channel ordering schemes.

1) Instantaneous Channel Ordering (ICO): In this scheme, it is
assumed that perfect CSIT is available, and IoT devices are ordered
according to their instantaneous CSIT. Hence, considering the PA
in conventional NOMA schemes, |h1|2> |h2|2,...,|hL−1|2> |hL|2
where hi follows CN(0,σ2), ∀i.

2) Statistical Channel Ordering (SCO): Since perfect CSIT
is not always available, we can order channels according to their
second-order statistics (variances), since they change very slowly
compared to the instantaneous CSITs and can be obtained with
high accuracy. Therefore, in statistical channel ordering (SCO), it
is assumed that σ2

1>σ
2
2,...,σ

2
L−1>σ

2
L.

Please note that unlike the common belief for conventional
NOMA, according to Shannon’s theory, there is no
limitation that αi < αi+1 should be satisfied in case of
|h1|2 > |h2|2,...,|hL−1|2 > |hL|2 or σ2

1 >σ
2
2,...,σ

2
L−1 >σ

2
L. This

myth is discussed in detail in [69]. However, almost all studies in
conventional NOMA assume this order. Therefore, to be in line with
the majority of the NOMA studies, we assume the same in this paper.

III. PERFORMANCE ANALYSIS

In conventional NOMA systems, the performance analysis
studies are devoted to two categories. The first one is the information-
theoretic perspective analysis where the achievable/ergodic rate of a
NOMA system is analyzed according to Shannon limit [70] (e.g., by
using SINR) and the outage probability of the system is derived. In
those studies, none of the base-band operations (e.g., channel coding,
IQ modulator/demodulator) is implemented and the analysis is
given based on the received SINR at the receiver ends. These studies
present the performance limits of the system with infinite inputs
(a.k.a., Gaussian inputs). The Shannon’s theory shows the maximum
achievable performance with ideal techniques but it does not
reflect the performance of specific modulation or coding. In other
words, the Shannon’s formula is a mathematically non-constructive
theorem that defines the performance limits (mathematically
proven) which can be achieved by using optimal design but it
does not provide what type of signal processing techniques (e.g.,
coding and modulation) should be used to achieve these limits.

For instance, in standards, for data plane, low-density parity-check
codes (LPDC) and M-QAM are used for channel coding and
modulation/demodulation, respectively. However, it does not mean
that the SINR-based performance limits can be achieved with
those coding and modulation techniques. On the other hand, in the
second category, the bit error rate performance of NOMA systems
is analyzed where the NOMA systems take values from finite
alphabet inputs (e.g., M-QAM constellation alphabet) with/without
a channel coding as being in practical implementations. Therefore,
to reflect both perspectives, in this section, we also provide an
analysis for BIMA with three key performance indicators (KPIs)
(i.e., ergodic capacity, outage probability, and bit error probability)
according to both instantaneous and statistical channel ordering.

A. Ergodic Capacity

To obtain the ergodic capacity of BIMA, we should firstly derive
the individual achievable rate for each IoT device.

Theorem 2: The achievable rate of any IoT device is given by

Ri=
log2(Mi)

log2(Mbw)
log2(1+SNRi), i=1,2,...,L. (14)

Proof: In BIMA, all IoT devices receive one modulated
symbol without additional interference. According to the Shannon
formula [70], the achievable rate for a point-to-point communication
is given as log2(1+SINR). Therefore, the achievable rate of each
IoT device can be found as Theorem 2 where the coefficient
log2(Mi)

log2(Mbw) exists since the log2(Mi) bits belong to the ith IoT
device within the total log2(Mbw) bits.
By substituting (13) into (14) and then averaging over channel
fading coefficient, the ergodic rate of any IoT device is obtained as

Ci=
log2(Mi)

log2(Mbw)

∞∫
0

log2(1+ργi)fγi(γi)dγi, (15)

where γi, |hi|2 and fγi() is the probability density function (PDF)
of γi.

In order to obtain the ergodic rate of the ith IoT device, we need
to substitute the PDF of γi into (15), according to which channel
ordering scheme is implemented.

1) Instantaneous channel ordering: In case of ICO, the PDF of
γi is equal to the PDF of the ith maximum of exponential random
i.i.d. L variables. Hence, the PDF of γi is given by

fγi(γ)=L

(
L−1

L−i

)L−i∑
p=0

(−1)p
(
L−i
p

)
1

σ2
exp

(
−(i+p)γ

σ2

)
.

(16)
Proof: See Appendix B.

By substituting (16) into (15), and with the help of [71, eq.
(4.337.2)], the ergodic rate of the ith IoT device with ICO is derived
as

C
(ICO)
i =− log2(e)log2(Mi)

log2(Mbw)
L

(
L−1

L−i

)
L−i∑
p=0

(−1)p
(
L−i
p

)
1

i+p
exp

(
i+p

ρσ2

)
Ei

(
−i+p
ρσ2

)
,

(17)

where Ei() is the exponential integral function, which is defined

as Ei(z)=
∞∫
−z

e−t

t dt [71, eq. (8.21)].
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2) Statistical channel ordering: In case of SCO, the PDF of
γi,∀i has exponential distributions. Hence, by substitution the PDF
of exponential distributions (i.e., fγi(γ)= 1

σ2
i
exp(−γ/σ2

i ) ), again
with the help of [71, eq. (4.337.2)], the ergodic rate of the ith IoT
device with SCO is derived as

C
(SCO)
i =− log2(e)log2(Mi)

log2(Mbw)
exp

(
1

ρσ2
i

)
Ei

(
− 1

ρσ2
i

)
. (18)

Finally, the ergodic sum rate of the BIMA for both channel
ordering schemes is given as

C(ICO)
sum =

L∑
i=1

C
(ICO)
i ,

C(SCO)
sum =

L∑
i=1

C
(SCO)
i .

(19)

B. Outage Probability

The outage event for an IoT device is defined as the probability
of the achievable rate being less than the target rate (QoS of that
IoT device). This can be defined mathematically as

Pi(out)=P(Ri<Ŕi), (20)

where Ŕi is the target rate (QoS requirement) of the ith IoT device.
By substituting (13) and (14) into (20), the OP of the ith IoT device
is given by

Pi(out)=P(γi<φi)=Fγi(φi), (21)

where φ= 1
ρ

(
2

log2(Mbw)Ŕi
log2(Mi) −1

)
is defined and Fγi(.) is the CDF

of γi.
1) Instantaneous channel ordering: In case of ICO, the CDF of

γi is equal to the CDF of the ith maximum of L i.i.d. exponential
random variables. Therefore, the OP of the ith IoT device is obtained
using the CDF of the ith maximum of L random variables as

P
(ICO)
i (out)=

L∑
j=L−i+1

L−j∑
p=0

(
L

j

)(
L−j
p

)
(−1)p

(
1−exp(−φi

σ2
)

)(j+p)

.
(22)

Proof: Please see Appendix C.
2) Statistical channel ordering: In case of SCO, the CDF of γi

is equal to the CDF of the exponential distribution. Therefore, the
probability of outage of the ith IoT device is obtained by using the
CDF of the exponential distribution (i.e.,Fγi(γ)=1−exp(− γ

σ2
i
)) as

P
(SCO)
i (out)=1−exp(−φi

σ2
i

). (23)

C. Bit Error Probability Analysis

To obtain the average bit error probability, we should firstly
derive the conditional bit error probability and then obtain average
according to channel ordering.

Theorem 3: The conditional bit error probability for each IoT
device is given as

Pi(e|γi)=


4(
√
Mbw−1)√

Mbwlog2Mbw
Q
(

3ργi
Mbw−1

)
, log4Mbw is integer,

4
log2Mbw

Q
(

3ργi
Mbw−1

)
, otherwise.

(24)
Proof: In the BIMA, thanks to MI at the transmitter, a single

IQ symbol is broadcast to all users as given in (10). Then, each user
implements an ML detection (11) and then applies a multiaccess
deinterleaving to obtain their own bits. The multiaccess interleaving
and deinterleaving are base-band operations in bitwise so they do
not affect the error probability of the detection. The conditional error
probability is driven by the ML decision. The transmitted symbol
to all IoT devices (i.e., xbw) turns out to be anMbw-ary modulated
symbol. Although there is no constraint for the modulation type in
BIMA and the system model is presented for arbitrary modulation
type in Section II, for BER analysis, we assume that M-QAM is
used since it is the most preferred one in the standards. Hence, the
error probability of ML decision for a M-QAM signal over a fading
channel is given as in Theorem 3 by [72]. In Theorem 3, the first
case defines the square M-QAM whenMbw is power of 4 whereas
the second case is given for a rectangular M-QAM.

The average bit error probability is obtained by averaging the
conditional bit error probability over γi, which is given by

Pi(e)=

∞∫
0

Pi(e|γi)fγi(γi)dγi. (25)

By using the alternative representation of Q(.) function (i.e.,
Q(x) = 1

π

∫ π/2
0

exp
(
− x2

2sin2θ

)
dθ) [73], the average bit error

probability is given by

Pi(e)=

4(
√
Mbw−1)√

Mbwlog2Mbw

1
π

π/2∫
0

Mγi

(
− g

sin2θ

)
dθ, log4Mbw is integer,

4
log2Mbw

1
π

π/2∫
0

Mγi

(
− g

sin2θ

)
dθ, otherwise,

(26)

where g, 3ρ
2(Mbw−1) .Mγi(.) is the moment-generating function

(MGF) of the random variable γi.
1) Instantaneous channel ordering: In case of ICO, the MGF of

γi is equal to the MGF of the ith maximum of L i.i.d. exponentially
distributed random variables. Therefore, the average bit error
probability of the ith IoT device is obtained by using the MGF of
the ith maximum of L random variables as

P
(ICO)
i (e)=

Ξ1
L(L−1
L−i)
π

π/2∫
0

L−i∑
p=0

(−1)p
(
L−i
p

)(
1

p+i− g

sin2θ
σ2

)
dθ,

log4Mbw is integer,

Ξ2
L(L−1
L−i)
π

π/2∫
0

L−i∑
p=0

(−1)p
(
L−i
p

)(
1

p+i− g

sin2θ
σ2

)
dθ,

otherwise,

(27)
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where Ξ1 ,
4(
√
Mbw−1)√

Mbwlog2Mbw
and Ξ2 , 4

log2Mbw
are defined for

simplicity of notation.
Proof: See Appendix D.

By computing the integral in (27), the average bit error probability
is derived in closed form as

P
(ICO)
i (e)=

Ξ1L
2

(
L−1
L−i
)L−i∑
p=0

(−1)p
(
L−i
p

)
1
p+i

(
1−
√

gσ2/(p+i)
1+gσ2/(p+i)

)
,

log4Mbw is integer,

Ξ2L
2

(
L−1
L−i
)L−i∑
p=0

(−1)p
(
L−i
p

)
1
p+i

(
1−
√

gσ2/(p+i)
1+gσ2/(p+i)

)
,

otherwise.

(28)

2) Statistical channel ordering: In case of SCO, the MGF of
γi is equal to the MGF of the exponentially distributed random
variable, which is given by

Mγi(s)=(1+s)−1. (29)

Hence, substituting (29) into (26), the average bit error probability
in case of SCO is derived as

P
(SCO)
i (e)=


Ξ1

2

(
1−
√

gσ2
i

1+gσ2
i

)
, log4Mbw is integer,

Ξ2

2

(
1−
√

gσ2
i

1+gσ2
i

)
, otherwise.

(30)

D. Benchmark (Conventional NOMA) Performance

The achievable rate in conventional NOMA is given by [17] as

R
(conv)
i =log2

(
1+SINR

(conv)
i

)
. (31)

The ergodic rate of the ith IoT device is obtained as

C
(conv)
i =E

[
R

(conv)
i

]
, (32)

where E[.] is the expectation operator. For both ICO and SCO, the
achievable rate is obtained by averaging over instantaneous channel
coefficients by using the PDFs of related schemes (eq. (16) and the
PDF of the exponential distribution for ICO and SCO, respectively).
However, averaging rates to obtain EC has more complicated
operations, since the imperfect SIC effect δj, |xj−x̂j|2 in (8) is
a discrete random variable. For instance, in case of 4-QAM, δj can
take values within [0,2,4] with priori probability of PEP(xj→ x̂j).
PEP(xj→ x̂j) defines the pairwise error probability when xj is
transmitted and detected as x̂j for the jth IoT device at IoT device i.

The outage probability of the ith IoT device is given by [17] as

P
(conv)
i (out)=P(R

(conv)
i <Ŕi)

=P

 ραiγi

ργi
L∑

j=i+1

αjδj+ργi
i−1∑
p=1

αp+1

<2Ŕi−1

. (33)

With some simplifications, the OP is derived as

P
(conv)
i (out)=Fγi

 ηiγi

ρ

(
αi−ηi

(
L∑

j=i+1

αjδj+
i−1∑
p=1

αp

))
.

(34)
where ηi,2Ŕi−1. The outage probability is derived by using the
appropriate CDFs according to the channel ordering scheme (eq.
(53) and the CDF of exponential distribution for ICO and SCO,
respectively). Nevertheless, we again need to consider δj and its
priori probabilities PEP(xj→ x̂j), as explained above.

Although the bit error probability has not been derived for
arbitrary modulation orders and numbers of IoT devices in the
literature, existing studies [27], [29]–[35] stipulate that the bit error
probability of conventional NOMA is given in the form of

Pi(e|γi)(conv) =

K∑
λ=1

νλQ(
√
ςλργi), (35)

where K, ςλ, and νλ change according to the number of IoT
devices and modulation order. For example, in a network of
two-user with 4-QAM, K = 5, ςλ = 1/2[−1,1,2,1,−1], ∀λ and
νλ=[

(√
α2+
√
α1

)2
,
(√
α2−
√
α1

)2
, α1,

(
2
√
α2+
√
α1

)2
,(

2
√
α2−
√
α1

)2
] and K = 2, ςλ = 1/2, ∀λ and

νλ = [
(√
α2+
√
α1

)2
,
(√
α2−
√
α1

)2
] are defined for the

first and second IoT devices, respectively [32].
Therefore, the average bit error probability in conventional

NOMA is given by

Pi(e)
(conv) =

K∑
λ=1

νλ
1

π

π/2∫
0

Mγi

(
− ςλρ

2sin2θ

)
dθ. (36)

For both channel ordering cases (i.e., ICO and SCO), it can be
calculated by using the MGFs of the related ordering given above.

IV. FAIRNESS

While improving the overall performance of the system, we also
need to consider fairness. Otherwise, one of the users may have
performance degradation which causes unfairness among users.
In other words, in system design, we cannot only consider overall
system performance, but we should also focus on the individual
performance of each node. In doing so, we need to ensure that
no IoT devices suffers performance degradation. Accordingly,
we evaluate the fairness of the proposed BIMA and provide two
different fairness metrics to evaluate an IoT device’s performance
against that of other devices and the overall system.

A. Jain’s Fairness Index

Jain’s fairness index is the most common metric for assessing the
fairness of a communications system, including NOMA schemes
[47], [48]. Jain’s fairness index is given as

JFIC=

(∑L
i=1Ri

)2

L
∑L
i=1R

2
i

, (37)
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where JFIC is defined as the value of the fairness index between 0-1
where 0 represents the most unfair situation and 1 the most fair. In
(37), we use the sub-index C to specify that this fairness index is
determined according to the achievable rate/capacity metric. We can
easily assess the fairness of both the proposed BIMA and conven-
tional NOMA by substituting (14) and (31) into (37), respectively.

Proposition 1: Although the fairness evaluation in (37) is the
most common metric in NOMA schemes, it does not consider the
issue of reliability perspective. It only considers achievable rates;
it does not focus on how achievable this communication is or how
much is guaranteed. Therefore, we transform Jain’s fairness index
into alternative forms to represent other KPIs. Considering the
outage probability (likewise given in [49]), we propose a novel JFI
that reflects reliability as

JFIOP=

(∑L
i=1(1−Pi(out))Ŕi

)2

∑L
i=1Ŕ

2
i

. (38)

In Proposition 1, JFIOP is defined as the value of the fairness
index in terms of the OP and the sub-index OP indicates it. Ŕi
determines the target rate for the ith IoT device, and Pi(out) is the
OP for the given target rate. Substituting (22) and (23) into (38),
we can find the fairness of BIMA for the ICO and SCO cases,
respectively. The fairness evaluation of conventional NOMA can
also be determined by substituting (34) into (38).

Proposition 2: Likewise, we can further modify the fairness
evaluation by also considering the BER metric to evaluate correctly
detection of achievable rate. Accordingly, we propose another JFI
in terms BER as

JFIBER=

(∑L
i=1(1−Pi(e))log2Mi

)2

∑L
i=1(log2Mi)2

. (39)

In Proposition 2, the sub-index BER indicates that the fairness is
measured by considering the BER performance metric. The fairness
index value for BIMA can be obtained by substituting (28) and (29)
into (39) for the ICO and SCO cases, respectively. In the same way,
the fairness for conventional NOMA is determined by substituting
(36) into (39).

B. Proportional Fairness Index
In the fairness evaluations in (37)-(39), we can measure overall

system fairness in terms of capacity, OP, and BER performance
metrics. However, we cannot evaluate changes in individual IoT de-
vices; thus, we cannot compare the performance of each IoT device.
And we cannot yet ascertain whether any IoT devices experience
performance degradation in terms of KPIs. To address this, we need
to introduce another fairness index to compare each IoT devices’
performances. To assess the individual performance, proportional
fairness index is commonly used in wireless communications. To
this end, we propose following fairness evaluations.

Proposition 3: We can safely say that the most unfair
situation occurs between the IoT devices with the worst and best
performances. In this regard, we define proportional fairness index as

PFIC=1−max(Ri)−min(Ri)

max(Ri)+min(Ri)
. (40)

In Proposition 3, the sub-index C again defines that fairness is
evaluated in terms of achievable rate/capacity. In (40), max(Ri)

and min(Ri) indicate the maximum and minimum achievable rates
among IoT devices, respectively. We can obtain the proportional
fairness index by substituting related values into (40) for both the
proposed BIMA and conventional NOMA (i.e., benchmark).

Corollary 1: As we can see in Proposition 3, once the IoT
devices perform similarly, the fairness index approaches its best
value (i.e., PFIC→1) whereas it gets its worst value (i.e., PFIC→0)
when the devices have large performance gaps. In (40), since we
compare the best and worst IoT devices, all other comparisons will
have better fairness, so it is not necessary to evaluate others.

As with Jain’s fairness index, we also need to evaluate the
proportional fairness index in terms of other KPIs (i.e., OP and BER).
Therefore, we propose two new fairness evaluations in the following.

Proposition 4: To reflect the reliability of the BIMA, the fairness
index in (40) can be defined as

PFIOP=1−max(1−Pi(out))−min(1−Pi(out))
max(1−Pi(out))+min(1−Pi(out))

. (41)

Proposition 5: And to consider the correct detection, in terms
of BER, it can be further defined

PFIBER=1−max(1−Pi(e))−min(1−Pi(e))
max(1−Pi(e))+min(1−Pi(e))

. (42)

In propositions 4 and 5, the sub-indexes OP and BER indicate
that the fairness indexes are evaluated in terms of OP and BER
performances, respectively. Both fairness values can be easily
obtained by substituting related values into (41) and (42) for BIMA
and conventional NOMA.

Corollary 2: We should note that both the OP and the BER
expressions are monotonically decreasing functions of SNR (besides
they have values less than 1), whereas EC is a monotonically
increasing function. Therefore, we modified the values of max
and min to max(1−Pi(out)) and min(1−Pi(out)) in (41), and
as max(1−Pi(e)) and min(1−Pi(e)) in (42). As we can see,
the value of the proportional fairness index approaches 1 when
IoT devices perform similarly, while it approaches to 0 when the
performance differs too much in both definitions.

V. NUMERICAL RESULTS

In this section, we present computer simulations for BIMA in
terms of all KPIs (i.e., ergodic capacity, outage probability, and
bit error probability) to validate the derived theoretical expressions.
Then, we present fairness simulations for BIMA. For the sake of
comparisons, in all figures, we also give simulation results for con-
ventional NOMA. In this paper, we consider an ultra-dense network
(e.g., IoT application) where the number of devices is massive so
that it is not possible to have an orthogonal radio resource block (e.g.,
time and frequency) for each device. Therefore, inevitably one radio
resource block should be shared by multiple devices. In this regard,
the comparisons are given for BIMA and NOMA where both need a
single resource block to serve multiple users. The comparisons with
OMA schemes are beyond the scope of this paper since in that case,
we should also consider resource allocation (layer 2) algorithms.

A. Evaluation of Proposed PA in Conventional NOMA Networks

We begin by providing comparisons for conventional NOMA
schemes with the proposed PA and commonly used ones in the liter-
ature. The proposed PA coefficients of conventional NOMA, which
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TABLE I
PA OF THE CONVENTIONAL NOMA IN THE SIMULATIONS.

Commonly Used PA (αi)
L M Proposed PA (αi) Values Ref.

3 4 0.0261,0.1948,0.7791 0.1667,0.3333,0.5 [17]
3 16 0.0012,0.0588,0.9400 0.05,0.25,0.7 [50]
3 64 0.0001,0.0154,0.9845

4 4 0.0063,0.0473,0.1893,0.7571 0.1,0.2,0.3,0.4 [17]
4 16 0.0001,0.0037,0.0586,0.9377 0.02,0.05,0.18,0.75 [50]
4 64 0.0001,0.0037,0.0586,0.9377

satisfy the constraint in (7), are given in Table I. We also present the
commonly used PA for conventional NOMA in the literature. As
we can see, the benchmark PA coefficients are independent from the
constellation size and depend only on the number of IoT devices,
since all previous PA studies are based on SINR definitions and they
do not consider the constellation size. To evaluate the performance
of the proposed PA for conventional NOMA, in Figs. 2-4, we present
performance comparisons in terms of all KPIs between the proposed
and commonly used PA schemes for conventional NOMA. In the
comparisons, we assume that σi=0 dB, ∀i, and SCO is applied7.
As we can see, in only Fig. 2, where we consider L=3 andM=4,
the proposed PA and the first PA scheme in the literature [17]
perform similarly from an information-theoretic perspective (i.e.,
EC). However, in terms of the other two critical KPIs (i.e., OP and
BER), the proposed PA outperforms the PA in [17]. This can be
explained as follows. The PA in [17] assumes there to be perfect
SIC; however, the realistic imperfect SIC definition in (8), the PA in
[17] becomes ineffective and none of the symbols can be detected
at the receivers. On the other hand, the proposed PA and the PA
in [50] perform similarly in Figs. 2-3, where M = 4 for L= 3,4,
although the proposed PA still induces a slight performance increase.
However, the effectiveness of the proposed PA is proved in Fig. 4
with the increase of modulation orderM=16. In Fig 4, we can see
that none of the symbols are detectable with the PA in [50], whereas
with the proposed PA, we still ensure reliable SIC performance at all
receiver ends. But, even with the proposed PA, conventional NOMA
schemes are limited by the modulation order and the number of
IoT devices (which cannot support M ≥ 64 for L = 3,4 or any
modulation order for L≥ 5). In Table I, we can see that the PA
assigned to the first IoT device diminished with increasing numbers
of IoT devices or modulation orders. For example, when L=3 and
Mi=4 ∀i, the first IoT device gets only 0.0001 of the total transmit
power, which means a performance loss of 40 dB compared to
interference-free systems. This can also be observed for other IoT
devices when L is greater (e.g., when L=3 andMi=4 ∀i the first
and second IoT devices get ∼ 1E−6 and ∼ 2E−4 of the total
transmit power, which is equal to performance losses of 60 dB and
37 dB, respectively). Furthermore, for L≥5, it is almost impossible
to have a proper PA for any modulation order, which limits the usage
of conventional NOMA so that it will not allow massive IoT that
consists dozens of IoT devices requiring service with the same radio
resources. Therefore, the proposed BIMA becomes an enabling

7The performance comparisons can be extended for various channel conditions
and ordering cases. However, the proposed PA in (7) is independent from the channel
parameters, and it focuses fundamental theory on reliable SIC detection. Thus, the
results will be similar for all channel conditions. Due to space limitations, we skip
those comparisons.
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Fig. 2. PA comparisons for conventional NOMA when L=3, Mi =4 ∀i a) EC,
b) OP, Ŕi=Mi/L, c) BER.
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Fig. 3. PA comparisons for conventional NOMA when L=4, Mi =4 ∀i a) EC,
b) OP, Ŕi=Mi/L, c) BER.
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TABLE II
SUMMARY OF FIGURES IN THE NUMERICAL RESULTS.

Evaluation Metric
KPIs (i.e., EC, OP, BER) Fairness

L M ICO SCO ICO SCO

3 4 X(Fig. 5) 7 7 X(Fig. 11)
3 16 X(Fig. 6) 7 7 X(Fig. 12)
4 4 7 X(Fig. 7) X(Fig. 13) 7

4 16 X(Fig. 8) X(Fig. 9) X(Fig. 14) 7

5 4 X(Fig. 10) 7 7 X(Fig. 15)

technology to support massive IoT networks when more than five
IoT devices (L≥5) need support in the same resource block. As
demonstrated in the discussion and figures above, the proposed PA
in (7) is the most effective constraint in the literature. Therefore, in
the following comparisons, we will use the PA coefficients given
in Table I for conventional NOMA performance.

B. KPI Comparisons for BIMA and Conventional NOMA

Comprehensive simulations are presented here for BIMA with
various numbers of IoT devices8 (L = 3, 4, 5) and modulation
orders (Mi = 4, 16, ∀i). The simulation results are given for
both the ICO and SCO cases. In ICO simulations, we assume that
σ2
i =σ2 =0 dB and the channels are ordered as defined in Section

II as |h1|2> |h2|2,...,|hL−1|2> |hL|2. On the other hand, in SCO
cases, the channels are ordered according to second-order statistics
as σ2

1>σ
2
2,...,σ

2
L−1>σ

2
L where we assume σ2

i+1 =σ2
i +3 dB; and

σ2
L=0 dB. For the sake of comparison, in all figures, we also present

conventional NOMA performance. Please note that as demonstrated
in the previous subsection, the proposed PA algorithm outperforms
existing PA coefficients in the open literature. Therefore, in the com-
parisons, we use the proposed PA (i.e., coefficients are given in Table
I) for conventional NOMA. It is clear that the performance gain of
BIMA would be higher if we had used existing PAs in the open litera-
ture such as [17] or [50]. In all the OP comparisons, we set Ŕi= Mi

L .
In Table II, for ease of follow-up, we summarize the performance
comparisons in each figure.9 First, regardless of the number of IoT
devices, modulation orders, and channel ordering, the derived expres-
sions are perfectly matched with computer simulations of BIMA for
all performance metrics. Based on the extensive simulation results,
we can deduct the following remarks to evaluate performance of
BIMA and to compare those of the conventional NOMA.

Remark 1: BIMA outperforms conventional NOMA in terms of
sum-rate (i.e., Csum ≥ C(conv)

sum ). Besides, the achievable rate for
each IoT device in BIMA is not limited (i.e., lim

SNR→∞
Ci ≈∞) by

interference unlike conventional NOMA where, except for the first
IoT device, lim

SNR→∞
C

(conv)
i =c, i 6=1, where c is a constant which

changes according to PA.

8Please note that the number of IoT devices refers to the ones occupy/share a single
radio resource block. Nevertheless, the BIMA has high scalability and flexibility to
support immense IoT networks. For instance, in a large smart factory use-case (e.g.,
hundreds of IoT devices), BWNOMA can be implemented with a user grouping
algorithm where IoT devices in each group (e.g., L=5) occupy a single resource
block and these groups are separated by orthogonal resource allocation algorithms
such as time-division, frequency division or code-division. The user grouping is
beyond the scope of this paper and can be investigated in a future publication.

9Due to space limitations, we had to remove the scenarios that are not presented
in Table II.
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Fig. 5. KPIs comparisons for BIMA and conventional NOMA with ICO when
L=3,Mi=4 ∀i a) EC, b) OP, Ŕi=Mi/L, c) BER.
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Fig. 6. KPIs comparisons for BIMA and conventional NOMA with ICO when
L=3,Mi=16 ∀i a) EC, b) OP, Ŕi=Mi/L, c) BER.

When comparing the EC curves in all figures, we can add that
the proposed BIMA has a capacity performance similar to that of
conventional NOMA schemes. Indeed, in terms of sum-rate, in all
scenarios, BIMA outperforms conventional NOMA at the mid-high
SNR region. This demonstrates the effectiveness of BIMA, which
we see that it has a competitive EC performance in addition to
its high reliability, low-latency, and improved fairness advantages.
In addition, we can observe that the EC for all IoT devices
monotonically increases with respect to SNR in BIMA. However,
only the performance of the first IoT device in conventional NOMA
has the same behaviour, while the other IoT devices experience
a floor that occurs due to IUI. Thus, we can see that even with
the best PA selection, except for the first, all other IoT devices in
conventional NOMA have limited EC performance even though
the transmit power increases. In other words, the increase in the
sum-rate of conventional NOMA is only due to the first IoT device,
whereas the sum rate in BIMA is shared among IoT devices. This
demonstrates the unfairness among IoT devices in conventional
NOMA, whereas BIMA provides a fair scheme for all IoT devices.

Remark 2: BIMA enables massive IoT networks by supporting
an arbitrary number of devices and modulation orders. By contrast,
conventional NOMA has limitations for both modulation order and
number of IoT devices due to strict PA constraint.
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Fig. 7. KPIs comparisons for BIMA and conventional NOMA with SCO when
L=4,Mi=4 ∀i a) EC, b) OP, Ŕi=Mi/L, c) BER.
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Fig. 8. KPIs comparisons for BIMA and conventional NOMA with ICO when
L=4,Mi=16 ∀i a) EC, b) OP, Ŕi=Mi/L, c) BER.

In all of the figures, we can see that the performance of BIMA
increases with respect to SNR for all devices. However, as the
number of IoT devices (i.e. L≥3) and/or modulation order (M>4)
increases, some IoT devices are unable to receive service. For exam-
ple, in Fig. 6, the first IoT device in conventional NOMA is always in
outage. This shows that with the increase of QoS requirements (i.e.,
Ŕ), conventional NOMA can not provide reliable service. In another
example, in Fig. 8, not only the first IoT device, but also the second
IoT device in conventional NOMA suffers from a performance
degradation. Both IoT devices are always out of service (in outage,
i.e., Pi(out)(conv) =1) until 25 dB, and then the second IoT device
receives service. However, the first IoT device is still in outage. Sim-
ilarly, both IoT devices also suffer from a lack of BER improvement.
The BER performance of second IoT device can only be improved
after 25 dB, whereas for a reliable detection of the first IoT device’s
symbols, we need 40 dB SNR. On the other hand, with the proposed
BIMA, the same performance metrics can be obtained with 20−30
dB less transmit power. This is crucial in energy-limited use-cases
where it is vital to meet QoS requirements with less power consump-
tion to have a longer life (since in most-cases the devices are powered
on batteries and no power grid connection is available). These
observations worsen for conventional NOMA with an additional
increase in the number of IoT devices or modulation order. However,
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Fig. 9. KPIs comparisons for BIMA and conventional NOMA with SCO when
L=4,Mi=16 ∀i a) EC, b) OP, Ŕi=Mi/L, c) BER.

0 10 20 30 40

SNR (dB)

0

5

10

15

T
h

ro
u

g
h

p
u

t 
(b

p
s

/H
z
)

BIMA, Theo.

BIMA, 1st Dev. (EC, OP, BER)

BIMA, 2nd Dev. (EC, OP, BER)

BIMA, 3rd Dev. (EC, OP, BER)

BIMA, 4th Dev. (EC, OP, BER)

BIMA, 5th Dev. (EC, OP, BER)

BIMA, Sum-rate

NOMA, 1st Dev. (EC, OP, BER)

NOMA, 2nd Dev. (EC, OP, BER)

NOMA, 3rd Dev. (EC, OP, BER)

NOMA, 4th Dev. (EC, OP, BER)

NOMA, 5th Dev. (EC, OP, BER)

NOMA, Sum-rate

0 10 20 30 40
SNR (dB)

10
-8

10
-6

10
-4

10
-2

10
0

O
u

ta
g

e

0 10 20 30 40

SNR (dB)

10
-8

10
-6

10
-4

10
-2

10
0

B
E

R

Fig. 10. KPIs comparisons for BIMA and conventional NOMA with ICO when
L=5,Mi=4 ∀i a) EC, b) OP, Ŕi=Mi/L, c) BER.

in BIMA, regardless of the number of IoT devices and modulation
order, all IoT devices are guaranteed to have a reliable service.
This shows that BIMA ensures QoS requirements. As we can see,
in BIMA, none of the IoT devices will experience an outage (i.e.
Pi(out)=1) or will have a non-detectable symbol (i.e. Pi(e)=1).

Remark 3: The diversity order for a communications system can
be defined in terms of OP as δ=− lim

SNR→∞
10log(Pi(out))

10log(SNR) or BER as

δ=− lim
SNR→∞

10log(Pi(e))
10log(SNR) . The BIMA guarantees the full diversity

order. Thus, δBIMA
i =L−i+1 ∀i in ICO case and δBIMA

i =1 ∀i in
SCO case. However, in conventional NOMA, this diversity order
can be guaranteed for limited cases. For instance, when L=4 and
M=16, δ(conv)

i ≈0, i=1,2 for both ICO and SCO cases.
By examining the variable OP and BER performance of BIMA,

we can see that as SNR increase, performance also increases.
Performance in BIMA never has a floor (e.g., lower floor in error
and/or outage). Therefore, BIMA provides the full diversity order for
all IoT devices regardless of the scenario. The only change related
to diversity order in BIMA is channel ordering. As expected, in the
ICO case, since the channels are ordered in an ascending manner,
the first IoT device has the diversity order of L, while the Lth
IoT device has the diversity order of 1. However, in conventional
NOMA, the QoS requirement cannot always be guaranteed. In
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Fig. 11. Fairness comparisons for BIMA and conventional NOMA with SCO when
L=3,Mi=4 ∀i a) Jain’s fairness index (JFI), b) Proportional fairness index (PFI).
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Fig. 12. Fairness comparisons for BIMA and conventional NOMA with SCO when
L=3,Mi=16 ∀i a) Jain’s fairness index (JFI), b) Proportional fairness index (PFI).

particular, some IoT devices may always be out of service or cannot
detect their symbols with an increase in SNR. Therefore, there is a
floor for some IoT devices in conventional NOMA results (e.g., for
the first and third IoT devices in Fig. 6.b, for the first and second
IoT devices in Figs. 8.b and 8.c). This error/outage floor means
that conventional NOMA has performance limitations, and the
performance of some devices cannot be improved even with SNR
increase. Thus, the diversity order in those cases is forced to 0.

C. Fairness Evaluation for BIMA and Conventional NOMA

As the preceding discussion has shown, BIMA ensures a similar
performance and fairness for all IoT devices (e.g., EC is shared
equally among IoT devices with a reliable communication). To
substantiate this, in Figs. 11-15, we present the fairness results in
terms of both Jain’s fairness index and proportional fairness index
for various scenarios which are again summarized in Table II. In
terms of fairness evaluations, we can deduct the following remarks.

Remark 4: Regardless of scenarios (e.g., L, M or channel
ordering), always JFIBIMA

v > JFI(conv)v and PFIBIMA
v > PFI(conv)v ,

where v=EC,OP,BER.
In Figs. 11-15, we can see that in all cases the BIMA offers better

fairness than conventional NOMA. Fairness indices for BIMA are
invariably higher than those in conventional NOMA. This clearly
demonstrates that the BIMA not only provides better KPIs, but also
ensures improved user fairness. When we analyze each result in
detail, we have the following results. In terms of EC, the gains of
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Fig. 13. Fairness comparisons for BIMA and conventional NOMA with ICO when
L=4,Mi=4 ∀i a) Jain’s fairness index (JFI), b) Proportional fairness index (PFI).

0 10 20 30 40

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

J
a
in

's
 F

a
ir

n
e
s
s
 I
n

d
e
x
 (

J
F

I)

BIMA, EC

BIMA, OP

BIMA, BER

NOMA, EC

NOMA, OP

NOMA, BER

0 10 20 30 40

SNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

p
o

rt
io

n
a
l 
F

a
ir

n
e
s
s
 I
n

d
e
x
 (

P
F

I)

BIMA, EC

BIMA, OP

BIMA, BER

NOMA, EC

NOMA, OP

NOMA, BER

Fig. 14. Fairness comparisons for BIMA and conventional NOMA with ICO when
L=4,Mi=16 ∀i a) Jain’s fairness index (JFI), b) Proportional fairness index (PFI).

BIMA in Jain’s fairness index and proportional fairness index are
greater in the case of ICO. This is because in conventional NOMA
only the first IoT device has a monotonically increasing performance
w.r.t. SNR, whereas all other IoT devices have an upper bound.
Furthermore, in ICO, since the first IoT device has the strongest
channel gain, the performance gap between IoT devices becomes
greater, which causes unfairness. However, in BIMA since all users
have a monotonically increasing performance and the total sum-rate
is shared in a fair way among the IoT devices, BIMA always offers
better fairness. With the increase of L and/orM , the fairness gain
in BIMA becomes significant compared to conventional NOMA. In
Figs. 5-10 we can see that some of the IoT devices in conventional
NOMA receive no service (i.e., always experiencing outage) when
we have a higher number of IoT devices and/or modulation orders
(i.e., higher QoS requirement). Therefore, the reliable bits in the
numerators of (38) and (39) decrease, which causes unfairness and
a low Jain’s fairness index. Likewise, the difference between the
minimum and maximum performance in (40)-(42) increases thus
causing a worse proportional fairness index. By contrast, in BIMA,
all IoT devices perform similarly w.r.t. L and M which provides
higher values for both Jain’s fairness index and proportional fairness
index in terms of all perspectives (i.e., EC, OP, BER).

Remark 5: lim
SNR→∞

JFIBIMA
v = 1 and lim

SNR→∞
PFIBIMA

v = 1.
However, it cannot be guaranteed in conventional NOMA.

As we can see in all of the figures above, as the SNR increases,
the fairness indexes for BIMA converge to 1 (i.e., the best value).
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Fig. 15. Fairness comparisons for BIMA and conventional NOMA with SCO when
L=5,Mi=4 ∀i a) Jain’s fairness index (JFI), b) Proportional fairness index (PFI).

BIMA has the best Jain’s fairness index and proportional fairness
index values in terms of all performance metrics in the high SNR
regime. This proves two things: first, that the BIMA provides the
overall best fairness performance for all performance metrics, which
is the most common evaluation for a communications system;
second, that BIMA also guarantees similar performance among IoT
devices. Therefore, the IoT devices with the worst and best channel
conditions perform similarly, so that none of the IoT devices will
have a severe performance. However, in conventional NOMA, we
cannot guarantee a convergence in fairness. Indeed, in all figures,
the JFI(conv)EC drops significantly after a critical point and becomes
a monotonically decreasing. The critical point refers to the point
where the worst and best EC performance values are the same in
Figs.5-10. After that point, the EC performance of the first IoT
device in conventional NOMA still increases, whereas the other
IoT devices (so the worst EC performance also) encounter an upper
bound. Therefore, the proportional fairness index decreases. This
can also be observed in the KPI comparisons presented in the
previous subsection (Figs. 5-10).

VI. COMPLEXITY AND LATENCY

At the transmitter side, only mapping operations are required for
interleaving and digital baseband modulation blocks. In addition,
in conventional NOMA, although multiplications and additions are
required for superposition coding (after digital modulation blocks),
we neglect the complexity at the transmitter for both the proposed
BIMA and conventional NOMA schemes.

At the receivers, in the proposed BIMA, an ML detector is
required for all IoT devices, as explained in Section II. However,
in conventional NOMA, the ith IoT device should implement L−i
times SIC operations before detecting its own symbols. Considering
the number of complex operations as the complexity metric, with
the aid of [74], the complexity of an ML detection is given by

OML detect=4Mary, (43)

whereMary is the modulation order. Hence, the complexity of the
BIMA for each IoT device is

OBIMA
i =4Mbw, (44)

and the total complexity of the BIMA is derived as

OBIMA=4LMbw. (45)

By contrast, in conventional NOMA, the SIC should be
implemented at the receivers. The SIC includes an ML detector
for IoT devices, which are before in the decoding order, and a
subtraction from the received signal. The complexity of an SIC
operation is given by [32]

OSIC=4Mary+2. (46)

Therefore, the receiver complexity of the ith IoT device in
conventional NOMA is given by

O(conv)
i =4Mi+

L∑
j=i+1

(4Mj+2), (47)

and the total receiver complexity of conventional NOMA is
obtained as

O(conv) =

L∑
i=1

4Mi+

L∑
j=i+1

(4Mj+2). (48)

The receiver complexity comparisons between the proposed BIMA
and conventional NOMA are given in Table III for different numbers
of IoT devices and modulation order. For the sake of comparison,
we assumeMi=M ∀i. In the BIMA, since all IoT devices have the
same receiver complexity, the complexity is given for only one IoT
device and for the total. On the other hand, in conventional NOMA,
results are given for the first IoT device (highest complexity), the
last IoT device (lowest) complexity, and the total. As we can
see in Table III, with an increase in L and / or M , the receiver
complexity of conventional NOMA increases linearly, while the
complexity of BIMA seems to increase exponentially. This is
caused by the total modulation orderMbw which increases by the
power of 2 as increase in L or Mi. However, this increase of the
complex operations does not cause additional latency10 compared
to conventional NOMA. The receivers of the BIMA devices are ML
detectors; hence, all these operations are computed in parallel and
then compared to obtain the minimum.11 However, in conventional
NOMA, the IoT devices should compute iterative SIC operations
sequentially to detect their own symbols. This causes latency in the
receivers. For an informative comparison, in Table IV, we present
receiver latency values for the same conditions of L andM given
in Table III. The latency values are obtained by implementing
ML detectors supported by MATLAB Communications Toolbox
on the same computer. In the comparisons, the latency values of
the BIMA receivers are given in milliseconds, and the values of
the conventional NOMA are presented as increases and decreases
of percentages compared to the BIMA receiver (negative values
mean lower latency, and positive values mean higher latency). For
conventional NOMA, we present latency values for the first (highest
latency) and last (lowest latency) IoT device, and for the average of

10This paper focuses on the physical layer aspects of the BIMA scheme. In terms
of receiver latency, the proposed BIMA has the same latency as OMA (e.g., TDMA
and FDMA) schemes since the detection schemes are quite similar. However, for
a fair comparison, the network complexity/latency should be also considered in
OMA schemes since (unlike BIMA or conventional NOMA), OMA needs multiple
radio resources to serve multiple users. The latency in resource allocation (layer 2)
is beyond the scope of this paper and can be considered as future work.

11Indeed, a single look-up table for an Mbw-ary constellation can be also used
for an ML detection which will have definitely much less latency since only a
reading from an address will be needed. Nevertheless, we consider the most complex
algorithm for ML detection in comparisons.
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TABLE III
RECEIVER COMPLEXITY OF THE BIMA AND CONVENTIONAL NOMA.

Complexity
BIMA Conv. NOMA

L M Each IoT dev. Total 1st IoT dev. Lth IoT dev. Total

3 2 32 96 28 8 54
3 4 256 768 52 16 102
4 2 64 256 38 8 92
4 4 768 3072 70 16 172
5 2 128 640 48 8 140
5 4 4096 20480 88 16 260

TABLE IV
LATENCY OF THE BIMA AND CONVENTIONAL NOMA.

Latency
BIMA Conv. NOMA

L M Each IoT dev./Ave. 1st IoT dev. Lth IoT dev. Ave.

3 2 1.423 %172.95 −%9.02 %81.96

3 4 1.439 %170.33 −%9.89 %80.22

4 2 1.435 %260.86 −%9.78 %125.54

4 4 1.444 %259.20 −%10.20 %124.50

5 2 1.437 %350.45 −%9.91 %170.27

5 4 1.451 %346.83 −%10.63 %168.10

all devices. In the BIMA, since all IoT devices have the same latency,
the average latency of IoT devices is also equal it. In Table IV, we can
clearly see that only the last IoT device in conventional NOMA has
lower latency than the IoT devices of the BIMA and this gain is very
subtle. By contrast, BIMA provides a lower latency for all other IoT
devices and, on average, this latency improvement can achieve a gain
of 350% for the IoT device with the highest latency in conventional
NOMA and 170% for the average latency of IoT devices.

VII. CONCLUSION

In this paper, we discussed in detail how to enable massive
connections in IoT networks. To this end, we first proposed an
efficient power allocation (PA) algorithm for conventional NOMA
to guarantee a reliable SIC process, and we demonstrated that
conventional NOMA cannot support massive connections, since it
has limitations in terms of the number of IoT devices and modulation
order. Then, we proposed BIMA to resolve this issue in massive IoT
networks. The proposed BIMA has no PA constraint, so it is easy to
implement without the need for complex PA optimization algorithms.
We provided a comprehensive analytical framework for the proposed
BIMA, where EC, OP, and BER analyses were provided for both
ICO and SCO cases. We also analyzed the fairness of BIMA in terms
of Jain’s fairness index and proportional fairness index. Based on
extensive computer simulations, we demonstrated that BIMA outper-
forms conventional NOMA in terms of all KPIs, where BIMA has
no limitations in terms of the number of IoT devices and modulation
order. This proves that BIMA can enable massive connections in a
single resource block, which is crucial for IoT networks. In addition,
it was also showed that BIMA provides an improved fairness for
the overall system and all IoT devices in terms of all performance
metrics. Furthermore, we provided a complexity and latency analysis
for BIMA. Detailed analysis and evaluations showed that BIMA
supports low-latency communication since it allows parallel com-
putation at the receivers so that no iterative operations are needed

(unlike SIC in conventional NOMA). While we introduced BIMA
in this paper to enable massive IoT networks, and thus provided anal-
ysis for a single antenna case, the applications of BIMA can easily
be extended. For instance it can be used for multiple-input multiple-
output (MIMO) scenarios since the proposed BIMA is designed to
be interference-free so that existing MIMO algorithms can be imple-
mented without further effort. Likewise, the interplay of BIMA with
other physical layer techniques can be studied to yield greater perfor-
mance gains. These represent future directions for further research.

APPENDIX A
PROOF OF THEOREM 1

After the superposition coding at the transmitter, the total
constellation is scattered and it does not follow any uniform
constellation anymore. Indeed, according to PA coefficients,
some points may scatter such a way that these points cannot be
recovered even we consider ideal scenario (i.e., no noise, no channel
impairments). Therefore, the PA coefficient at the transmitter
should be wisely chosen not to cause a non-detectable scattering
after superposition coding. To represent this constraints, without
loss of generality, in Fig. 16, we present a signal constellation (i.e.,
the scattered constellation at the transmitter side after superposition
coding) of a three-user case with Mi = 4, ∀i when b3,1b3,2 = 00.
At the receiver ends, since α3 has the maximum value within αi,
device #3 implements an ML detection. In ML detection, if the
received signal exceeds the decision boundary, detection errors
occur. Therefore, none of the symbols, after superposition coding,
should cross the decision boundary. Otherwise, even without any
impairments (e.g., noise or channel effects), those symbols cannot
be recovered. In this case, the decision boundaries for ML detection
at the device #3 for 4-QAM are the in-phase and quadrature axes. If
any of the symbols cross these axes, it means that those symbols are
already transmitted erroneously and may not be recovered as original
symbols. As given in Fig. 16(a), the constellation points (A, B, C, D,
E, F, G) have a higher probability of crossing the decision boundaries
(i.e., in-phase or quadrature axes) since they are the closest points to
the decision boundaries. Therefore, to detect symbols of device #3,√

α3

2
>

√
α2

2
+

√
α1

2
(A.1)

should be satisfied. Otherwise, those constellation points
(A,B,C,D,E,F,G) are shifted to other regions of IQ domain at the
transmitter side if

√
α3

2 ≤
√

α2

2 +
√

α1

2 . In this case, even without
any noise or channel effects, these symbols will be detected as
b3,1b3,2 6= 00 which makes certain of erroneous detection. To this
end, the PA constraint in (A.1) ensures that none of the points in
scattered constellation does not cross any decision boundary of ML
decision.

Now, let us investigate the PA effects with SIC detection at the
receivers. We assume that device #2 detect the symbols device #3
correctly (i.e., b3,1b3,2 =00) and subtracted from the received signal
which indicates a correct SIC is implemented at device #2. In this
case, the remaining signal constellation at device #2 is given in
Fig. 16(b). The ML decision boundaries for the symbols of device
#2 are again the in-phase and quadrature axes. Based on the ML
decision rule, as discussed above, to detect the symbols of device #
2 correctly, none of the symbols should cross these boundaries (i.e.,
other regions of IQ constellation). From Fig. 16(b), we can see that
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(a) Constellation for the 3rd IoT device (b) Constellation for the 2nd IoT device after correct SIC

Fig. 16. Total constellation of conventional NOMA for L=3 IoT devices,Mi=4-QAM, and b3,1b3,2=00.

symbols of device #2 (in H, J, K points) are the most close points
to these boundaries. Therefore, we should guarantee that these point
not crossing ML decision boundaries and this constraint is given as√

α2

2
>

√
α1

2
. (A.2)

Otherwise, it means that the symbols of device #2 (in H, J, K
points) are already transmitted in a different IQ region and cannot
be recovered at the receivers. In this case, regardless of the channel
effects and the additive noise, symbols of device cannot be detected.
To this end, the constraint in (A.2) should be fulfilled.

As seen in above discussions with the given constraints, we
guarantee at least a detectable scattered constellation at the
transmitter side when L=3 and Mi=4,∀i. In other words, there
will be no conceptual design failure at the transmitter side. At this
points, the erroneous detection at the receivers will be affected
only the additive noise and channel impairments as being in all
communications systems. Now, we extend this rule for general M-
QAM constellations with L IoT devices. AnMi-QAM modulation
can be considered as two

√
Mi-PAM modulations in in-phase and

quadrature axes with total E[|xi|2]
2 energies. The distance between

two adjutant symbols in
√
Mi-PAM modulation is given by

2di=2

√
3

2(Mi−1)
. (A.3)

This distance gives how much the adjutant points will be scattered
in both in-phase and quadrature axes. Besides, it also determines
the distance of a decision boundary from a constellation point (i.e.,
i.e., di, half of the distance between two adjutant symbols).

On the other hand, the maximum distance from the origin of the√
Mi-PAM modulation constellation is given by

di,max=(
√
M−1)di. (A.4)

This distance determines the most scattered position for both
in-phase and quadrature components after superposition coding. In
other words, the points are the most likely crossing the decision

boundary (e.g., A, B, C, D, E, F, G, H, J, K points in case of L=3,
Mi=4).

According to these distances, if any of the symbols after super-
position coding exceed the decision boundary (i.e., di, half of the
distance between two adjutant symbols), none of the IoT devices will
be able to detect its own symbols. Therefore, considering the SIC
order, the PA coefficients of ith IoT device should be greater than
the weighted total of the PA coefficient and dmax of the IoT devices
that are later in the SIC order. Hence, the PA constraint is given by

√
αidi>

i−1∑
j+1

√
αjdj,max. (A.5)

By substituting (A.3) and (A.4) into (A.5), (7a) is obtained. So the
proof is completed.

APPENDIX B
PROOF OF EQ. (16)

We firstly define that γi,ζi and assume that ζ1<ζ2< ···<ζn<
···<ζL. In this case, ζn is the nth minimum of ζi random variables,
and according to the order statistics, the PDF of ζn is given by [75]

fζn(ζ)=Lfζ(ζ)

(
L−1

n−1

)
Fζ(ζ)

(n−1)(1−Fζ(ζ))(L−n)
, (B.1)

where fζ() and Fζ() are the PDF and CDF of the i.i.d. ζi random
variables.

With a variable replacement, if we define i,L−n+1, we can
easily compute the ith maximum of the γi variables. It is obtained by

fγi(γ)=Lfγ(γ)

(
L−1

L−i

)
Fγ(γ)(L−i)(1−Fγ(γ))

(i−1)
. (B.2)

By substituting PDF and CDF of an exponential distribution, it is
derived as

fγi(γ)=L

(
L−1

L−i

)
1

σ2
exp(−iγ/σ2)(1−exp(−γ/σ2))

(L−i)
.

(B.3)
Lastly, by applying the binomial expansion and with some algebraic
simplifications, (B.3) is derived as in (16). The proof is completed.
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APPENDIX C
PROOF OF EQ. (22)

As in the previous proof, we define γi , ζi and assume that
ζ1<ζ2< ···<ζn···<ζL. Hence, the CDF of the nth minimum is
given by [75]

Fζn(ζ)=

L∑
j=n

(
L

j

)
Fζ(ζ)

(j)(1−Fζ(ζ))(L−j)
. (C.1)

And again by defining i,L−n+1, the CDF of the ith maximum
of γi is obtained by

Fγi(γ)=

L∑
j=L−i+1

(
L

j

)
Fγ(γ)(j)(1−Fγ(γ))

(L−j)
. (C.2)

By applying the binomial expansion and substituting the exponential
distribution CDF into (C.2), the CDF of the ith IoT device is
derived as

Fγi(γ)=

L∑
j=L−i+1

L−j∑
p=0

(
L

j

)(
L−j
p

)
(−1)p

(
1−exp(− γ

σ2
)
)(j+p)

.

(C.3)

By suıbstituting the CDF into (21), the outage probability of the
ith IoT device is derived as (22), so the proof is completed.

APPENDIX D
PROOF OF EQ. (27)

The moment-generating function of a random variable is given
by [72]

Mz(s)=

∫ ∞
0

fZ(z)exp(sz)dz. (D.1)

By substituting the PDF of the ith maximum (16) into (54), the
MGF of γi is given as

Mγi(s)=L

(
L−1

L−i

)L−i∑
p=0

(−1)p
(
L−i
p

)
1

σ2

∞∫
0

exp

(
−(i+p)γ

σ2

)
exp(sγ)dγ.

(D.2)

Using the Laplace transform∫ ∞
0

exp(−sx)dx=
1

s
,

the MGF of γi is derived as

Mγi(s)=L

(
L−1

L−i

)L−i∑
p=0

(−1)p
(
L−i
p

)(
p+i+sσ2

)−1
. (D.3)

Finally, as defined in (26), we put s=− g
sin2θ

into MGF (D.3), the
bit error probability is derived as (27), so the proof is completed.
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