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Abstract

This paper analyzes the maximal achievable rate for a given blocklength and error probability over a multiple-antenna ambient
backscatter channel with perfect channel state information at the receiver. The result consists of a finite blocklength channel coding
achievability bound and a converse bound based on the Neyman-Pearson test and the normal approximation based on the Berry-
Esseen Theorem. Numerical evaluation of these bounds shows fast convergence to the channel capacity as the blocklength increases
and also proves that the channel dispersion is an accurate measure of the backoff from capacity due to finite blocklength.
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I. INTRODUCTION

HE Internet of Things (IoT) has drawn considerable attention from both academia and industry. However, as the demands
for IoT increases dramatically, the provisioning of power to massive numbers of devices becomes a significant challenge.
The novel concept of using passive communication techniques to enable communications for low-power devices is known as
ambient backscatter [1]-[5[], which is an RF power transfer technique [|6]—[9]]. This approach offers a promising solution for
communications between batteryless devices and it will enable the future growth of IoT systems.
Ambient backscatter communications use RF signals to transmit information symbols and harvest energy, resulting in battery-
free operations. The basic operating principles of ambient backscatter communications are as follows:
1) A tag transmits a symbol, either 1 or —1, by backscattering and modulating a radio frequency (RF) signal from an
existing ambient source.
2) The receiver receives both the signal from the ambient source and the backscattered signal from the tag.

Compared with active radio protocols, such as Wi-Fi, Bluetooth and ZigBee, an Ambient Backscatter Communication
(AmBC) system has a relatively limited data rate. To mitigate this problem, multiple antenna techniques can be used to
increase the date rate. For example, the authors of [27]] use multiple antenna-based orthogonal frequency division multiplexing
(OFDM) to design an AmBC system and cope with different channel conditions. Many current research works have focused
on analyzing achievable rate and capacity for AmBC systems in an infinite blocklength regime [28] [29]. However, in practice,
it is critical to evaluate how to maintain the desired error probability at a given finite blocklength.

The fundamental theorem of reliable data transmission limits over a noisy channel in terms of the mutual information
I(X;Y) between input X and output Y has been established in [18]]. The relationship between the data transmission rate and
error probability has been demonstrated by various bounds in the finite blocklength regime [10]]. In these bounds, the so-called
information density plays an essential role, which is defined as

dPxy dPy|x—¢
d(Px < Py) Py)(X,Y) = log Py (y)

In this paper, we consider an AmBC system with multiple antennas on both the RF source and receiver sides and a single
antenna tag. We analyze achievability and converse bound for the system together with normal approximations. We first study
a multiple input and multiple output (MIMO) channel of the AmBC system from the information-theoretic point of view. For
the channel model, we consider the channel between the receiver and the RF source and the channel through the tag as a
whole [20], [28]]. We derive a corresponding achievability bound, which is defined as a lower bound on the size of a code that
can be guaranteed to exist with a given arbitrary blocklength and error probability. And we further establish a corresponding
converse bound, which is an upper bound on the size of any code with a given arbitrary blocklength and error probability. We
then demonstrate that the channel capacity C for the studied AmBC system in a finite blocklength regime is characterized by
the channel dispersion V' [25]], which is defined as a parameter to assess the stochastic variability of the channel relative to a
deterministic channel with the same capacity [10], [[13].
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Fig. 1. System model for ambient backscatter communications.

A. Contributions

« We use binary hypothesis testing as a fundamental basis to provide achievability and converse bounds on the maximal
achievable rate R(n,¢) for an AmBC system with multiple transmit and receive antennas. We consider the case when the
transmitter and receiver have full channel state information (CSI) and hence we can perform waterfilling power allocation.

o Furthermore, to complete our achievability bound, we utilize the characteristic function to show that the output distribution
is complex Gaussian. Then we use mathematical methods to calculate the lower bounded «, in (T4).

« For the converse bound, we utilize the Mellin transform and Meijer G-function to obtain an upper bound on the auxiliary
channel which is a product of m copies of the probability density function (PDF) of Gamma distributed variables and
apply Lebesgue measure to upper bound its output space.

o For comparison with the asymptotic performance of our achievability and converse bounds, we provide a normal approx-
imation, which approximates the relationship among the rate R(n,€), the channel capacity C' and the channel dispersion
V.

o In addition, we use the Berry-Esseen theorem to complete the proof. There is a ﬁ rate penalty for our AmBC system
when compared to the Shannon channel capacity.

B. Notation

We use lowercase letters to represent scalars. For a scalar complex value x, we denote by |z|, R{z} and S{x} its modulus,
real part and imaginary part, respectively. A bold uppercase letter such as X denotes a random vector and its realization is
represented by a bold lowercase symbol such as x. Uppercase letters of special fonts are used to denote matrices, such as
Y denotes a deterministic matrix and Y represents a random matrix. We use I, to denote the identity matrix of size a X a.
The superscript A" denotes the Hermitian transposition of a matrix A. ¢r(A) denotes the trace of the matrix of A. CN (p, 0?)
represents a complex Gaussian distribution with a mean of x and a variance of o2; in particular, a complex Gaussian random
variable X ~ CA(0,02) with independent and identically distributed zero mean Gaussian real and imaginary components
is circularly symmetric. ||A|| stands for the Frobenius norm of a matrix A, which is ||A| = /tr(AAf). R, stands for the
nonnegative real line; in particular, R’ is the nonnegative orthant of the m-dimensional real Euclidean spaces. log(-) denotes
the natural logarithm. We use Py|x : A+ B to denote a conditional probability measure between input and output spaces A
and B. E[x] denotes the statistical expectation of = and P[A] denotes the probability of an event A.

The rest of this paper is organized as follows. Section [[I] describes the system model and reviews the definition of a channel
code with perfect channel estimation at the receiver. Section [[1I derives the achievability bound for our system model. Section
presents the converse bound for the investigated AmBC system. Section [V] gives the channel dispersion and the normal
approximation of the studied system. Section shows the relationship between the error probability of the source and tag
signals. Numerical results are presented in Section Finally, Section concludes the paper.

II. SYSTEM MODEL

We consider a MIMO ambient backscatter communication system with one RF source, one receiver and one backscatter tag
with no battery as depicted in Fig. [} The RF source and the receiver have ¢ and r antennas, respectively and the tag has a
single antenna. We let m 2 min(¢, ) and denote by H,,, H,, and Hj, the channel coefficient matrices between the source
and tag, the tag and receiver, the source and receiver, respectively. And H,, € Cctx1 Hy, € C*r H,, € C*7 [17).

A part of the tag received signal will be harvested to power the circuit of the tag, the rest would be backscattered to
accomplish “1” and “—1” transmission. Without loss of generality, we assume tag’s symbol remains unchanged for one block



data transmission from the source. We denote the tag’s symbol as d € {—1,1}. At the receiver, the received signal Y can be
expressed by
Y = X(H,, + H, Hgy, Ad) + W, (1

where X € C™*! is the signal transmitted over n channel uses; Y € C"*" is the corresponding received signal; channel
coefficients H,y, Hg, and H,, are random but remain constant over the n channel uses [11] [[12]. W € C**" is the additive
noise at the receiver, which is independent of g, H, and H,, and has independent and identically distributed (i.i.d) CN(0,1)
entries; A is the scattering efficiency of the tag.

Now let us denote Hy = Hy, and H; = AH,,H,,, then

Y — X(Hy —Hy) +W, d=-1, @)
T X(Hp+Hy)+ W, d=1,
Next, we define a channel code with perfect channel state information at the receiver and transmitter [[14]:
Definition 1. an (n, M, ¢) code consists of:

1) an encoder f; : {1,..., M} x C*" — C"*! that maps the message j € {1,..., M} and the channel H to a codeword
X = fi(j, H) which satisfies:

IXI2 = £:G H)|| <nP, ¥j=1,...,M, YHeC>" )
2) adecoder h, : C"*" x C**" + {1,..., M} which satisfies:
max Plh (Y, H) # J|J = j] < e @

III. ACHIEVABILITY BOUND

In this section, we assume the case where channel side information (CSI) is available at both the transmitter and receiver
[14]. Our achievability bound is based on the x5 bound which was recently provided in [[10]. The achievability bound for the
investigated AmBC system is given below and the corresponding proof builds on the characteristic of parallel AWGN channels.

Theorem 1. Let g1 > -+ > g,, be the m largest eigenvalues of a channel matrix, and let g represent [g1, ..., gm]".

)\ma:v (HO - HI)H(HO - Hl) ) d= _]-7 (5)
g =
Amaz |(Ho + Hi) 7 (Ho + Hy) ), d=1,

where Az () is a function which calculates the m largest eigenvalues.
We consider power constraint with the water-filling strategy [|15]], [16|], and the following constraint set:
A 1
Fp = {X:pi(X)=[A——]"}, (6)
9j
where \ is the solution of
= 1
Y A-—Jt=P ()
j=1 &
Then the distributions of the information density under Py and under Pyx_x are:

n m

Calp.g) = 0 (1og (1 +g;0,00) + 1~ [/, 20 — /1 + 9,009 ®)

i=1 j=1
and | |2
- V9ip;(X)Zij — 1
H,(p,g) = log (14 g;p; (X)) +1— 9)
(p.8) ZZ( (1+ 9,9, (X)) o)
respectively, where Z; j,i = 1,...,n,j =1,...,marei.id. CN(0,1) distributed random variables. For every n.and 0 < ¢ < 1,
we have
R(n, eld) > “log i (10)
’ T n 7 Bioesr(Py, Pyx=x|d)’
where 31—y - (Py, Pyjx—x|d) can be defined by
ﬁ1—€+T(PY7PY|X:X|d) :]P)[Gn > ’7n|d]7 (11)

where 7, is chosen to satisfy
PH, >vld=1—€+T. (12)



Further, we can lower-bound k. by,
Rt Z 7—/C’la (13)

where C1 is a constant.
We then obtain the achievability bound in a simple form.

1 T/Cl
R(n,e|d) > —log (14)
( | ) n ﬁl—e+‘r (PY7 PY\X:X|d)
Due to the conditional probability, we have
Pld = —1] 7/C4 Pld = 1] 7/C
R(n,e) > lo + lo (15)
(e) 8 e (Pro Praxld =~ T 1 B (P, Praxd = )

The proof of can be found below.

Proof. To apply k{3 bound to the investigated AmBC channel model, we need to complete three steps: the first step is to
choose the auxiliary output distribution Py, the second step is to compute 5, and the third step is to compute .

A. Choosing The Output Distribution
Py can be expressed as a product of the distributions as

Py=1[1IP.. (16)

First, without loss of generality, to simplify calculation, we choose R{X;;} = S{X;;} = \/P/2m. Therefore Y;; can be
expressed as
i/j,i = j,i(hsr + hsghg.,-Ad) + w, (17)

where hg,, hsg and hgy, are the element of Hy,., H,, and Hy, respectively and w is an element of W.
In the following, we separately analyze the real and imaginary parts of Y ;.
For the real part of Y;;, due to the property of the characteristic function, we have,

[P 2 g2 [P
by, (1) = E[exp{n(, 5 (her + haghyr Ad) + w) } = e e TElexp{ity| 5—hoghyr Ad}). (18)

Now we need to calculate the characteristic function of hgghg,. At first, we need to derive the PDF of a product of two
standard Gaussian distributed variables which is [32]

2Ky(2
¢ (z) = w (19)

where Kj(+) denotes a modified Bessel function of the second kind.
Then we can obtain the characteristic function of (T9) [33]

T e 2Ko(2]]) 2
t) = 6ltw 2)dx :/ e’Lt{L’ dr — . (20)
(rbl() [00 ql( ) . T (t2+4)
Thus we can obtain the characteristic function of hgghg,
4
Oneghyr (1) = G1(D01(~1) = 5. @21)
e P A2 2,2
6y 1d®) = O (VETBTAG) = A0, @)
and,
@ij,i(t) = 67%867§6710g(8il‘42d2t2+1) 23)
= e_%e_[log(to)-i_lititog(t_to)"'%(t—tofﬁ-o(tg’)] 24
710.2 t2
~ e 2 Yj,i , (25)

where (24) comes from the Taylor expansion at t = t.
For the imaginary part of Yj,, it is the same as the real part. Thus Y is a random matrix whose (j,7)th entry follows a
complex Gaussian distribution with variances being determined by o,

Py,, =CN(0,071,,), (26)

where 0'? will be chosen later.



B. Compute [,
Due to the water-filling strategy, the constraint set can be found directly in (6). The information density is shown below

[10]:
=2 log )= (Sroso? + Z[; v —\Joins (0] ) @)

j=1
It is convenient to define 1ndependent standard Complex Gaussian variables Z; ~ CN(0, 1). Then under Py, the distribution
of the information density is:

=" (nlogo; + ;Zl (1= D)2l + 24/ 9,3 ()51 2] - %’(X))) (28)

J=1

dPY|X X

and under Pyx—_y, the distribution is:

1 n
(n1oga; + 55 > (1= aDIZI +24/ 9, 0| Zi] + g,05(X))) (29)
J =1
The next step is to choose o which can minimize 3,. Note that due to the equations (3, = exp{—D(Pyjx—x || Py)} and
D(Pyjx—x || Py) = E[H}], the minimization problem can be modified to the maximization of E[H,,]. Then we have
af-:l—i—gjpj(X), ji=1,...,m. (30)
The proof of the above equation is shown in Appendix [Al With this choice of O'JQ», we can get and (@)

I

Il
-

H, =

J
2
J

C. Computing k.

To compute x,, we need the same aforementioned power constraint set. We denote U as Py on IR{T,

Uj = Z + 950, X)) Zil?, 31)

where U; denotes the jth entry of U, and Z; represents the ith i.i.d CA/(0,1) distributed random variable. Given p and g, the
random variable U; is Gamma distributed. Thus its PDF gy, |p ¢ 18
n—1

on 2r
e T R O M A T eI

Moreover, we denote T as Pyjx_x on R,

(32)

Ty = 1Zi+/gip; X, (33)

i=1

where T denotes the jth entry of T. Given p and g, the random variable T; is the sum of a non-central x? distributed random
variable and a Gamma distributed random variable which can be expressed as:

1
Ty = 1K+, (34)
where K; ~ x/2(4ng;p;(X)) and J; ~ T'(n/2,1/2).
The characteristic function of T} can be written as
1
o1, (7) = b1,y 5, (7) = E[GXP{W(ZKJ‘ + J;)}] (33)

1 .
= E[exp{m(ZKj)}]E[exp{zx(Jj)}]

i4n j J(X)JL’
_ exp { 1—;igz;pj(X) } 1/4 1
N (1 — 2iz)n/2 (1—ita)n/?

exp M4} e {0}

T (-2 A1 —ika)2 T (1 —i2a)n s
~ Xin/s(n9505 (X))




Thus the random variable T); obeys non-central x? distribution and its PDF g7, |p ¢ is

(rlps (X), 97) = e~ (12 () frmg s (X)) (36)
a1;1p,g\"IP5\ ) 95) = 5 193, (X) 5n/16—1 g;iP;j ;
where I, (y) is a modified Bessel function of a first kind.
We define, x
. r|p;i(X), g
) A QTglp,g( Ip; (X) 9]). 37)
qulp,g(ﬂpj(x)’gj)
Substituting (32) and (36) into (37), we have,
1 n n — n —on
f(,r) _ (5) +1(1+gjpj(x)) F(n)?“ 27 /32+1/2(ngjpj(x)) 5 /32+1/2X
1 — gjp;(X) ng;p;(X)
s 16 (X)) x iPj _ NPy (38
5n/16 1( T’n’g]p]( )) eXp{2(1—|—ngJ(X))T D) } ( )

We only consider the case where 5n/16 is even, and if 51/16 is odd, we can replace I, /161 With I5,/16_3/2. Thus the
upper bound of modified Bessel function of its first kind I5,, /16,1(56) is given by [30]:

T ey /1617

—1/4
8x ) x

Isnji6-1(z) < =

exp{ — (571/16 -1) sinh ™! (571/1#) + CU(\/l + M B 1)} (39)

)
Substituting sinh ™! () = log(z + v/1 + #2) into , we can obtain

Isnj16-1(7) < 7T(x\/(l + M))*lmx

22

exp{ ~ (5n/16 — 1) 1og(5"/1x$ + \/1 + (%)2) + x(\/l + (5"1/1572_1)2)} (40)

Here we only consider that r has the same order as n, which is r = O(n). Thus we set:

r=cn (41)

where ¢ € [1 + g;p;(X) — 6,1+ g;p;(X) + 4] for 4 > 0.
For large n, we have

(5n,/16 — 1)2 25 5 1
en?gipi(X)4 [ (1 + —S—5) = 1/en?g;p;(X)4 /1 + - + (42)
9sPi( )\/( en?g;p;(X) ) 9:pi (%) 256¢g,p;(X)  8cng;p;(X)  en?g,p;(X)

~ 1% \/ 25 + 256¢g;p; (X)- (43)
Thus, putting (@3) into @0), and after some algebraic manipulations, we obtain

i, —1/2
I5,/16-1(n4/ cgipi (X)) < \/;(16 \/25 + 25609jpj(X)>

exp{ - (%l —1)log (%6 ki f‘f%%gjpj(x)) + %\/25 + 256cgjpj(><)}. (44)
Using (38) and (39) and the expression of the Gamma function
logT'(n) =nlogn —n — %lognJrO(l), (45)
f(en) can then be upper bounded by
fen) < exp{—A(n,g;,p;(X),c) + O(1)}. (46)

Here

5n n4/25 4 256¢g,p; (X log(+/25 + 256¢g;p; (X
A(n, g;,p(X),c) = (1—6 — 1) log(5 + \/25—|— 256¢g,p, (X)) — v iP5 (%) + (v iPi ))—

16 2
ne(l —gjp; (X)) n 9 5n 27 1
Sy (7 5)leg2+ (= — 1)l M N ioge— nlog (14 g:pi(X
2Tt gm0 (1 T p)lee2t (55~ Dloen+ (55— 5)loge —nlog (1 +g;p;(X))+
CLUN T 90 (X) 1
(32 2) Oggjp](X)—i-n( 9 "rl) 210g7r. @7



Since ¢ € [1 + g;p;(X) — 6,1+ g;p;(X) + 6] for 6 > 0, we can estimate the range of A(n, g;,p;(X),c), which is

0 < A(n,gj,p;(X),c) < 2n. (48)
Thus, we can obtain the minimum value of A(n, g;, p;(X),c),
Amin (TL, 95,Dj (X), C) Z 0. (49)
Therefore,
f(cn) S GXP{_Amin(n7gj>pj (X), C) + 0(1)} = Cl~ (50)
Without the loss of generality, we can assume a set A where Pr[A] > 7, then we reach the conclusion
qup,g(r‘pa g)
ki = PylA =/ qU|p. (rp,g)dr=/ = ——qTp g(r|P, g)dr
A= ], a0l g (tlp.g) TP
1 1
= —-— r|p,g)dr > —r. 51)
[4 f(T) QTlp,g( ‘p g) Cl (

O

Remark 1. In practice, the numerical evaluation of the numerator of the right-hand side of (I4) is rather difficult. Inspired by
Polyanskiy [[10] [|19], finding an approximation of k. is necessary. After doing so, the achievability bound can be computed
and analyzed numerically.

Remark 2. For the denominator of the right-hand side of ([[4), the best way is the Monte Carlo technique. In our case, we
normally set the repeat sampling to 10° which can lead to an accurate result.

IV. CONVERSE BOUND

In this section, our converse bound is based on the meta-converse theorem [10]. Different from the aforementioned achiev-
ability bound, for the converse bound, we apply the power constraint of each codeword with equality. According to [26],
this power constraint is commonly used in the multiple antenna systems and in multiple access channels as well. For the
convenience of further proof and analysis, we still use the eigenvalues to estimate each channel.

Theorem 2. Let g1 > - -+ > g, be the m largest eigenvalues of channel matrix.
)\mam (HO_Hl)H(HO_Hl) y d= _]-v
g= (52)
Amaz ( (Ho + Hy) 7 (Ho + Hy) ), d=1,
We consider that each codeword X satisfies the equal power constraint, and each X belongs to the set:
A m
Fj S {X:) p;j(X)=P}. (53)
j=1
For each codeword X € F,, we have its corresponding power allocation vector,

1
p(X) € R™ < p; (X) = —[|X;.||". (54)

There exists a constant K > 0 such that for any (M, ¢€) code the maximal probability of error € over an auxiliary channel Q
satisfies

Kmn
1-€ < 55
€ <—7 (55)
Using B, from Theorem. |l} we can obtain the relationship between (3, and €,
;f(lf) Bi—c(Pyx=x, Qvjx=x) <1 —¢". (56)
Combining and (56), we can get the converse bound:
1 Kmn
R(n,e|d) < —log - . &)
(. €ld) n 7 infp(y Bi—e(Pyix=x, Qv|x=x|d)
Due to the conditional probability, we have
Pld = —1] Kmn Pld = 1] Kmn
R(n,e) < log - + log - . (58)
(n.€) infp ) B1—e(Pyjx=x, Qvjx=x|d = —1) n infp ) B1—e(Pyjx=x, Qvjx=x|d = 1)

The proof of can be found below.



Proof. We use the power allocation vector and the power constraint which can be found in Section The auxiliary channel
@ is defined as:

Qy|x=x = H Qy;|x=x; (59)
j=1
where
QYNX:X = CN(O, 1 + gjpj (X)) (60)

The output of the Qyx—x channel is only dependent on P = p(X). Let S = p(Y) and its entries are the square of the
norm of Y normalized by the blocklength n. It follows that S can express the statistics for the detection of X from (Y, g).
Thus we can define an equivalent channel Qg|p as

1
S; = +gﬂp] ZIZm2 1)

where Z; ; ~ CN(0,1). Note that the random variable S; is Gamma distributed, and its PDF is given by
(2n)" ne1 2ns;
gs;|p(si) = s; exp{ — 7} (62)
PR (1 g5y (X0) T () L+ 905 (X)
Moreover, as Qg|p—p is a product of m copies of the PDF of S; which is Gamma distribution. We can obtain the PDF of
Qs|p=p by the theorem shown below [32].

Theorem 3. Given N independent gamma variables x; with the same shape parameter k and the same scale parameter 6

having density functions )
fl(xl) = F(k)ekxfi e . (63)

The probability density function g(z) of the product z = x1x2 ... N of N independent gamma variables is a Meijer G-function
multiplied by a normalising constant IC,

z
o) = KGR0 (11| ). (69
where
Lytr 1
K=CGNT] =— 65
i=1
" TGy TI T~ 9
e 1 et " D(s+ —ji—s
Grr (| =g [ A I (66
k2, kg 270 [ o joo I D+ d5) T ey TA — Ky —s)
where c is a real constant defining a Bromwich path separating the poles of T'(s + k;) from those of T'(1 — ji,) — s.
Proof. Since the Mellin integral transform of exp (—%) in is
M{exp (—§)|s} = / 2" dr = 05/ 5 e ™ dx = 0°T (s), (67)
0 0
and
M{a* f(x)|s} = M{f(x)|s + k}, (68)
it follows that the probability density function of the gamma variable in (63 has the Mellin transform
e 1 o AR Pk+s-1)
. ) . s—1 k-1 —% _ (k+s—1)—1_—=z _ s—1
(x; = — dr = —— dr = —————=0°"". 6
M{fi(xs)|s} /0 x F(k:)@k‘x e vdx F(k)/o x e Tdx Tk (69)

Then the Mellin integral transform of the probability density function g(z) of the product of N independent random gamma
variables is
I'k+s—1)
_— 70
T (70)

M{g S}_HM{fl mz 5}_9Ns 2 H ) )



and
1 et NT(k + s—1)
_ 759N s—1)
g(Z) 211 c—io© E ds
1 /C““’ qﬁfk‘—ks—l
- 2miN J, e Pt
N
1 v 1 z
=(3) 1T ri (k-1] Q—N). (71)
i=1
Thus we complete the proof. O

In our case, due to the shape parameter k¥ = n and the scale parameter 6 = Hgéifj(x)

applying Theorem. E], we can derive the probability density function of ggp.
2n

and the number of copies N = m,

m,0 m
gsip(2) = KGy ), (n—1| 2(————~ , (72)
S‘P( ) 0, ( ! (1+g]p](x)) )
where m
2n 1
=(—F=3)" == (73)
1+ g;p;(X) E L'(n)
and s
2n Lot 2n Y
Gmn?nlzim:—_/ —_— (s+n—1)d (74)
oo o ) ™) = 3t ) © (1+ggpg E
The PDF of Qg can be upper bounded by
gsp < Kimn, (75)

where K is a constant.
Because p(X) is the power allocation vector, p belongs to a certain ball in R"™. Due to the definition of S, it belongs to a
slightly larger ball. By definition of Lebesgue measure [24], we can obtain the relationship between Leb(p) and Leb(S) and

the bounded Lebesgue measure,
2

K
Leb(p) < Leb(S) < <+ (76)
where Leb is Lebesgue measure and K is a constant. Then for each codeword, the decoding set must have a Lebesgue measure
smaller than £ I
We have the lower bounds for both density of auxiliary channel and Lebesgue measure. Thus we obtain

Kmn
1-€ < 77
¢ <= (77)

where
K =K | K,. (78)

V. NORMAL APPROXIMATION

In this section, we perform the asymptotic analysis of the maximum achievable rate R(n,¢) for a given blocklength n.
According to normal approximation refinement of the coding theorem by Polyanskiy [10], we define the channel dispersion
as follows.

Definition 2. The channel dispersion V (measured in squared information units per channel use) of a given channel with
channel capacity C' is given by
(nC —nR(n, e))

Q- 1(e) 7

V =lim lim sup—
e—0n—o0

Here, for the investigated AmBC system, the channel capacity

m

C= 6151(1) nh_}n;O R(n,e) = lg% nh_)rrgo (]P’[d =1]R(n,eld =1) + Pld = —1|R(n, e|d = —1)) = z;log (1+4g;p;(X)) (80)
J:



and the channel dispersion

Ms

V= Z gjp] gjp] X —m—

81
(905 (X) + 1 8D

(14 g;p;(X))*

\f Q! log") (82)

VI. THE ANALYSIS OF THE TAG SIGNAL

<.
Il
-

Jj=1

The maximum achievable rate can be expressed by

The proof of (82) is shown in Appendix [C|

In this section, we analyze the tag’s performance in terms of the achievability and the converse bound. Because the error
probability of the RF source and the tag are mutually dependent, the performance of the tag can be derived based on the
achievablility and the converse bound for the RF source. _

Given X = X, H = H and Y =Y, with maximum-likelihood (ML) detection and the estimated RF source signal X ,d can
be estimated by:

d= argminHY — )~(H0 — )N(HldH . (83)
d

According to [34], the search space in the above ML detection grows exponentially as modulation size increases, which
causes extremely high complexity. For reducing the complexity of ML detection, we can apply maximum ratio combining
(MRC) to the received signal Y. To obtain the d, we let

HHXH .
= R{ (Y — XHo)}
IF i - o N
_ 0y HIXHXH, Y+ R HI(XHX — XHX)HO} LR H{{XHW}
[Hy 12 G (G
HyH HYHY _
= XMy | g PEOCX Doy (84)
[Hql [Hq|
where w ~ N'(0,1/(2[[H:[*). B
Due to ML detection, if Z > 0, d = 1, otherwise, d = —1.
1) Case 1: when X = X, we have
Z=d+ w. (85)

It shows that Z obeys normal Gaussian distribution. Therefore, under X = X, the error probability of the event d #d
can be expressed as below

Pld # dIX = X] = (1 - )Q(V2||H1)), (86)
where Q)(x) represents the Gaussian Q-function
a (71 t2/2
x) = —e " /7dt. 87
Q(x) /l Vo (87)
2) Case 2: when X # X, we have

HE (XHX — 1)H HIH
Z =—d+R{ 1( 5 ) Npw=—d-2R{-1T}+w (88)

[[Hq ] [[Hy ]

Thus we can obtain
H Ho
IHa

Once getting the error probability of the tag signal for both cases of X = X and X # X, we have the equation which
expresses the relationship between e and the error probability of the tag signal, €g4.

)+ So(vaimi 1 - )

PIA# dIX #X] = e[ 5Q(VEIHL | (-1 + 2R{ ] TP

H
0= (1= QW) + e[ 50(VEIM I -1+ 2R Y) + So(VaIM (-1 - 2] o)

Therefore, we can insert (90) into our achievability bound in Section [[II] and the converse bound in Section [[V] to analyze
the performance of the tag signal.
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VII. NUMERICAL RESULTS

In this section, we evaluate the bounds developed in Section Il and Section [[V] We consider an AmBC system consisting of
a RF source with two transmit antennas, a batteryless tag with a single antenna and a receiver with three receive antennas. We
assume all the channels, i.e., the channels between the source, the tag and the receiver, are independent and set the coefficient
A = 0.5, average error probability ¢ = 1073 and power P = 0 dB. Fig. 2| shows the numerical results of the derived bounds,
the normal approximation and the Shannon capacity by assuming that all the channels are Rayleigh distributed. From Fig.
we can see that C' = 1.83 bit/(channel use), and the blocklength required to achieve above 90% of the capacity starts at
n = 300.

In Fig. 3] we change the channels from Rayleigh distributions to Rician distributions with K-factor equal to 10dB and keep
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transmit antennas and three receive antennas, SNR=0dB and the error probability of the tag signal e; = 10~2 derived from

the same setting for other parameters as Fig. [2l We can see from Fig. [3| that the blocklength required to achieve above 90%
of the capacity, i.e., 2.09 bit/(channel use), starts at the blocklength n = 200.

Fig. 4] shows the results for the tag signals with the same setting as Fig. 2| except that we fix the parameter ¢; = 1073
(please refer to (90) for details). We observe that the gap between the channel capacity and the normal approximation is much
smaller than the one presented in Fig. 2] When the blocklength is larger than 400, the normal approximation can nearly reach
the capacity. Fig. {] also implies that the convergence is much faster than Fig. [2]

VIII. CONCLUSION

In this paper, we have established achievability and converse bounds on the maximal achievable rate R(n,¢) for a given
blocklength n and an average error probability € in a multiple antenna backscatter system. We have also derived a normal
approximation involving the channel dispersion and the channel capacity.

The analytical results demonstrated that, as the blocklength n increases, the channel dispersion V' implies rapid convergence
to the channel capacity C. This suggests that the channel capacity is a valid performance metric for communication systems
with stringent latency constraints operating over our system model. We have further developed an easy way to evaluate our
approximation of R(n,¢) and demonstrated its accuracy using the achievability and the converse bounds. In our future work,
we will consider using different coding schemes, such as [35[]-[41]], in the AmBC system for applications in e.g., IoT sensor
networks [42], [43]], cellular networks [44]-[48]] and UAV networks [49]-[51]] and derive corresponding bounds.

APPENDIX A

PROOF OF (30)

In order to maximize E[H,,], we first need to obtain the exact expression of E[H,,] which is shown below,

E{Ha] = D(Pyjso | ) = D(CA(VED: Tn) | EA0, 7)) o1
— logdet 021,,, — log det I,, + (v/&P — 0)" (02L,) "' (v/&p — 0) + tr((o—fIm)—l(Im) - Im) 92)

gp 1
:mlogJ?JrUfJQ_er(U—?fl). 93)

Moreover, we need to calculate the derivative of E[H,,] with respect of ajz.

aE,) Aot + EamE =) gy w
a7 do? =202 @ O




dE[H,,]

To determine the value of 0]2 which reach the peak point of E[H,], we have to solve o = 0, then
J
sz:l—l—gjpj(X)7 j=1,...,m. (95)
APPENDIX B
PROOF OF ([76))

In this section, we give the proof of bounded Lebesgue measure for S. At first, due to space p which belongs to a certain
ball in R™ with radius P/m, S belongs to a larger ball with the radius r

r= E[M] (E[gj}g +1) < %(ng +1) =P+ % (96)
where (96) follows from
Elgy] = —trace{ (Ho + AdHL)" (Hy + AdE))) ©7)
= % (trace{Hngo} + 2trace{HLH, } + trace{H{{Hl}) (98)
= (Y 1zp ) 1Al + Y 1) ©9)
< 2m. - - - (100)

We denote the m-dimensional ball in R™ by B(m, ), where n is the number of dimensions and r is the radius of the ball.
Thus, we can denote the volume of B(m, 1) by s,,. A ball with the radius r has the volume

VOl (B(m, 1)) = spur™. (101)

In order to evaluate s,,, we identify the ball in R™ with the Cartesian product R? x R™~2. Furthermore, we apply the
Fubini’s theorem.

Sm = vol, (B(m,1 :/ 1d(x,y, z :/ / 1dz )d(x,y). (102)
( ( )) B(m,1) ( ) B(2,1) ( B(m—2,y/1—z2—y?) ) ( )
In polar coordinates, we can obtain .
Sm = 27r/ Sm—2(1 — TQ)(m_Q)/Qrdr, (103)
0
this equation leads to
2w
Sm = —Sm—_2. (104)
m
After recursion processing, we have ,
Tm 2
m==——. 105
() (105)
Therefore,
L (B Gl m 106
UOm( (mvr))_r(%+1) xXr ( )
Tm/2 1
P —\m 107
e 1)><( +3) (107)
m/2 1
o
<——x(P+ =)™ 108
7m(%)m/QX( +3) (108)
< Ko, (109)

where (I08) is obtained from Stirling’s formula.



APPENDIX C
PROOF OF (82))

It is convenient to separate the proof of (22) into two parts. At first, we address the converse part. In the beginning of the
proof, we need to introduce the following inequality [10], for any v > 0,

dP
1-e< IP’[*Q > ] +7B1-(P, Q). (110)
Using (@[) with P = Pyjx—x and Q = Qyx—x, then we get for any 7

n

Br—e(Pyjx=x, Qvx=x) = 6""_"C<1 —e—P[>_Hi(g,p) < 77]) (111)
1=1
with m | X2 2
_ . 1V 9P -1
H; =" (Tog (1+ g;p;(X)) +1 = g]pj(x) ) (112)

j=1
where Z; ; ~ CN(0,1). To continue the proof, we need to introduce an important tool which is Berry-Esseen Theorem.

Theorem 4. Let X,k =1,...,n be independent with

pe =E[Xi), o® =Var[Xy], tn=E[Xy—wl’], 0*>=> op and T=> t. (113)
k=1
Then for any —oo < A < 00
" 6T
P[> (X0 — ) = 20| - Q)| < = (114)

k=1
Since Z; ; is an i.i.d complex Gaussian random variable, the first moment of H; is given by

e E[é (108 1+ 51,00 +1- | gjlpi(g])zii&) = ) (115)
- i (108 (1+ g;p;04)) +1 - EH@?&)_ 1\2]) (116)
- i (1og (1 -+ g;p;(X)) +1 - Elgip; )2} - 2m>|§{zi,j}| bl €703 | R
= Zm:log (1 +g;p;(X)) a1s)
o (119)

where (117) from [R{Z?,}| =1 and [R{Z; ;}| = [3{Z; ;}| = 0.

The variance of H;,

;P (X) S
0" =B((H: — EH [(Zl glp—FngZ](X) )]:m ;Hg]pj oz =Y (120

Furthermore, from the Radon-Nikodym derivative between Pyx and QY|X, we can define

E 3
B= 6%, (121)
(E[|2]])>
e (X) + 2y/B;0002; — 0, (X) 22
S p;i(X) +2¢/p;(X) Z; — p;(X) Z;
J = log(1 + g,;p,;(X)) + . (122)
Noting the fact that p;(X) < P,j =1,..., , as
m
1< 3 log(1+g;P) + (P +2vPIZ,| + PZ2). (123)

j=1



Noting that the right-hand side of (123) is independent of the choice of p;(X), for any choice of p;(X) there exists constants
¢1 > 0 and (5 > 0 that make,

E[J]?) < G (124)
E[lJ]°] < ¢ (125)
Since the variance of J is m
1
E[J?] =m — _— (126)
FI=m = T T 7

and as )7, p;(X) = P, we have at least one p;(X) which is larger than L Therefore we obtain the lower bound for E[J?],
which is

1
2
By the Lyapunov inequality [31], we have
([P < E[JP)Y?. (128)

Combining (127) and (128) together, we have the lower bound for E[|J|?] as well. Thus for any choice of p;(X) there are
constants (3 > 0 and (4 > 0 that make

E[l7]%] = ¢ (129)
E[JP] > ¢ (130)
Combining (124), (123)), (129) and (I30) into (I2I) yields
0 < B < +o0. (131)
For sufficiently large n, we have 3
2
anzl—e—%>0. (132)
Without loss of generality, we can also assume for such n,
n=—-vVnVQ (ay). (133)
From Theorem. 4] we obtain
= B B
P H <n<a+—=<1—-e——. 134
[; <l Sant ‘-7 (134)
Substituting (T34) into (ITI), we have B
—o(Pyix— _y) > e — 135
B1—e(Pyx=x, Qyjx=x) > € NG (135)
Using the estimation of K (n) in (78),
log K(n) =logn + O(1). (136)
We arrive at the upper bound as
n 1 - logn 1 1 logn
R(n,e)SC—ﬁ—ﬁlog(l—P[;Hign]—e)—i— . —&—(’)(ﬁ)gC—n—i—Elogn—i—(’)( - ) (137)
Using Taylor’s theorem, for the interval of 6 € [1 —€— \2/—% 1-— e], from (133), we have
d
n=-vnVQ 1(1—e€) + 2\/023%@1(9) (138)

Since the derivative of inverse Gaussian Q-function is a continuous function in (0, 1), we can obtain the upper bound of second
term of the right-hand side of (T38),

2\/?23%@—1(9) <0 (139)
So, we have
R(n, ) §C+\/ZQ‘1(1—6)+(’)(107§”) (140)



Due to the property of Q~*(z), which is for any € € (0,1) Q~'(1 — €) = —Q~'(¢). Thus, we complete the proof
1
R(n,e) < C —4/ Q ogn)

1 + 25
ap=1—€e+ —.

vn
Note that for sufficiently large n, a,, < 1, so it makes 7 in (I32) meaningful.
Using Theorem. I and combining with P[>"" | H; < 5] — a,, < 0, we have

Secondly, we address the achievability part.
We set

B
P H; <n|> ——>1— —
[; z_n]_an f_ 6"’\/5

For n = —v/nVQ~(a,), without loss of generality, we can assume
logy = nC —n=nC+ VnVQ (an)

Therefore, we obtain

- B
Pyx[i(X;Y) > logy] = ]P’[ZHi <n>1l-e+—
i=1 Vvn
by setting
B
T=-—=
NG

Assuming o is the variance of ¢(X;Y), T is the third moment of i(X;Y), we have
Bictr <E[eXp{—i( X Y) Hixn) 2log v)]
< Zexp{ log(fy) + cé)}]P’{log(
(log (Y72 +cd+8) /0 197
<3 espl-tios () ) [ e P 120
( o

og (L) ted) /o V2T

vy

)+ 08 < i(X:Y) < log (V'
g

)+(c+1)5}

<Zexp{ 1Og(f,y) + Cé”i(\/% T %)
ALEifQ
- Wy

where (148) is from Theorem. [4] and (150) from choosing & =log2 and } ;% 27 = 2.
Then, we obtain

1
log f1—cyr < —logy — 5logn +0(1)
1
=—nC+n— Elogn—i-(’)(l)

From (T3), we can choose k., )
log kr > —5 logn 4+ O(1).

Thus, by combining (I52) and (I53), we can conclude the achievability part

R(n,e) > C + \/ZQI(IE)Jr (log" [Q logn).

This completes the proof.
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