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Abstract—Robust linear decentralized tracking of a time vary-
ing sparse parameter is studied in a multiple-input multiple-
output (MIMO) wireless sensor network (WSN) under channel
state information (CSI) uncertainty. Initially, assuming perfect
CSI availability, a novel sparse Bayesian learning-based Kalman
filtering (SBL-KF) framework is developed in order to track the
time varying sparse parameter. Subsequently, an optimization
problem is formulated to minimize the mean square error (MSE)
in each time slot, followed by the design of a fast block coordinate
descent (FBCD)-based iterative algorithm. A unique aspect of the
proposed technique is that it requires only a single iteration per
time slot to obtain the transmit precoder (TPC) matrices for all
the sensor nodes (SNs) and the receiver combiner (RC) matrix
for the fusion center (FC) in an online fashion. The recursive
Bayesian Cramer Rao bound (BCRB) is also derived for bench-
marking the performance of the proposed linear decentralized es-
timation (LDE) scheme. Furthermore, for considering a practical
scenario having CSI uncertainty, a robust SBL-KF (RSBL-KF)
is derived for tracking the unknown parameter vector of interest
followed by the conception of a robust transceiver design. Our
simulation results show that the schemes designed outperform
both the traditional sparsity-agnostic KF and the state-of-the-art
sparse reconstruction methods. Furthermore, as compared to the
uncertainty-agnostic design, the robust transceiver architecture
conceived is shown to provide improved estimation performance,
making it eminently suitable for practical applications.

Index Terms—Coherent MAC, Kalman filter, linear decentral-
ized estimation, sparse Bayesian learning, stochastic CSI uncer-
tainty, time varying sparse parameter, wireless sensor network.

I. INTRODUCTION

Wireless sensor networks (WSNs) have the potential to
support a wide range of cutting-edge applications, including
environmental monitoring [1], smart agriculture [2], smart
grid [3], target tracking [4], [5], and so on. As a result,
they will play a pivotal role in the Internet of Things (IoT)
[6]. The sensor nodes (SNs) in a typical WSN sense/monitor
multiple parameter(s) of interest, and subsequently transmit the
suitably pre-processed observations over a wireless channel to
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a fusion center (FC) for further processing. To achieve a high
bandwidth efficiency, transmission over a coherent multiple
access channel (MAC) is preferred in such systems, which
necessitates the development of sophisticated signal processing
techniques for accurate parameter estimation at the FC. Such
a sensing setup, which relies on pre-processing and post-
processing operations at the transmitter and receiver respec-
tively, is termed as linear decentralized estimation (LDE) in
the literature [7]. Specifically, one has to design the optimal
receive combiner (RC) of the FC having the minimum mean
square error (MMSE) along with the corresponding transmit
precoder (TPC) matrices to be used at the various SNs. Due
to its significance, numerous researchers have studied the
problem of LDE for scalar [8]-[12] and vector [7], [13]-[17]
parameters, while considering diverse scenarios of interest,
when the parameter(s) of interest is (are) deterministic/ ran-
dom, uncorrelated/ correlated, static/ time varying in nature.
Next, a discussion of the most important studies on LDE is
provided.

A. Existing literature

The problem of LDE was first explored in their seminal
work by Xiao et al. [7] where new schemes were proposed
for the estimation of both scalar as well as vector parameters.
However, their framework considered a diagonal channel be-
tween each SN and the FC, which restricts the applicability of
their results. This shortcoming was overcome by the alternate
minimization based transceiver designs proposed in [15] and
[18]. An innovative minimum variance distortionless precod-
ing (MVDP) framework was proposed in [19] for unbiased
parameter estimation, which does not require a combiner at the
FC. The authors of [20]-[24] studied the problem of LDE in
an energy harvesting WSNs where the SNs run on the energy
harvested from the radio frequency signals transmitted by the
different access points. LDE in massive MIMO WSNs was
also explored in [25]-[27] where the FC is equipped with a
large number of antennas. A major limitation of the works
mentioned above is that they consider a static parameter in
their respective models. However, in practice, the physical
quantities under observation are typically of time-varying
nature, exhibiting temporal correlation. The studies related to
the LDE of a time-varying parameter are discussed next.

Leong et al. [28] devised LDE techniques for a scalar time-
varying parameter with the goal of minimising the MSE at the



TABLE I: Boldly and explicitly contrasting our contributions to the literature

[ Feature [ 1201 T [26] | 128] [ [32] | [36] [ [391 [ [40] | [411 [ [45] [ 1471 [ [48] | [49] [ Our work ]
Multi-sensor MIMO network v v v v v v v v v
Linear decentralized estimation v v v v v v v v v v
Coherent MAC v v v v v v v v v
Time varying sparse parameter estimation v v v v
Temporal correlation v v
Amplify and forward v v v v v v v v v v v v v
Per SN power constraint v v v v v v v v
Recursive BCRB v
Robust transceiver design v v v v v
SBL-KF v

FC, while adhering to a total power limitation, or minimising
the power consumption, while meeting a certain maximum
MSE. The authors of [29] proposed a low-complexity sub-
optimal power allocation scheme for the minimization of the
outage probability for estimating a dynamic parameter in an
orthogonal MAC-based WSN. However, the orthogonal MAC
has low bandwidth efficiency [7], hence it is unsuitable for
large-scale WSNs. Jiang et al. [30] consider the problem of
estimating a dynamic parameter under both total and individ-
ual sensor power limitations. Closed-form expressions were
obtained for the amplitude and phase of the TPC coefficients
at each SN for the scenario of a total power constraint, whereas
numerical optimization routines were employed for the system
with individual SN power constraints. Singh and Rajawat
[31] proposed a scheme for the LDE of a vector parameter
by considering the MSE as their cost function subject to
individual SN power constraints. Furthermore, the authors of
[32] conceived both decentralised and distributed sequential
linear MMSE (LMMSE) techniques for static and dynamic
vector parameter estimation, using time-varying channel and
observation matrices. However, the aforementioned solutions
are not optimized for realistic sparse parameters, which is the
topic of the next section.

The authors of [33]-[35] studied the problem of distributed
detection of a sparse stochastic parameter under different
assumptions concerning its distribution, considering also the
transmission of quantized measurements to the FC. The sparse
parameter vector in their study is assumed to be Bernouli-
Gaussian distributed in [33], generalized-Gaussian distributed
in [34], and Bernouli-Gaussian distributed with 1-bit quantized
measurements at each SN in [35]. Khanna and Murthy in [36]
and [37] proposed a pair of different distributed algorithms,
which rely on the sparse Bayesian learning (SBL) and alter-
nating direction method of multipliers (ADMM) techniques,
respectively, for the estimation of jointly sparse signals in a
WSN. It is important to note that, in their work, the sparse
parameters of the various SNs are assumed to be different,
while sharing a common sparsity profile. Along similar lines,
the authors of [38] proposed an innovative scheme for joint
sparse signal estimation relying on quantized SN measurement
transmissions using an inexact ADMM framework. Novel
algorithms are presented in [39] for the estimation of a sparse
parameter vector which are derived by combining the Kalman
filter (KF) and a pseudo measurement technique based on
the I, and [, norms, respectively. A Kalman-like-particle-
filter (KLPF)-based time varying sparse parameter estimation

scheme was proposed in [40] under realistic communication
constraints. In their scheme, the FC transmits its predicted
observation to a subset of the selected SNs, and subsequently,
each of those SNs transmits its quantized innovation to the
FC. Karseras et al. [41] proposed a path breaking hierarchical
Bayesian Kalman filter (HBKF)-based algorithm for time
varying sparse parameter estimation in a WSN. However,
the authors of [39]-[41] do not consider a coherent MAC
based WSN. Furthermore, they do not develop the MSE-
optimal transceiver that can overcome the fading-induced
degradation of the wireless channel, while taking into account
the power budget of each SN. The authors of [42] have
proposed a novel technique for time-varying massive MIMO
channel estimation which also exploits the SBL framework.
Furthermore, an interesting uplink-aided downlink channel
estimation scheme is developed in [43] for a massive MIMO-
orthogonal time frequency space (OTFS) system which utilizes
the expectation maximization based variational Bayesian (EM-
VB) framework. Furthermore, with the exception of [26], all
of the contributions covered thus far assume the presence of
perfect CSI in their analysis, which is an idealized simplifying
assumption that often does not hold in practice.

In order to limit the performance deterioration arising as a
result of realistic CSI errors, and thus achieve robust perfor-
mance, it is imperative to take the CSI uncertainty into account
during the design of LDE schemes. There are a few papers,
where the authors have designed robust precoders/ combiners
to combat the deleterious effects of imperfect CSI, which are
reviewed next.

The robust TPC/ RC designed for LDE of a scalar parameter
was proposed in [44], [45]. Specifically, the robust LDE
scheme of [44] relies on the MVDP framework that does
not require a combiner at the FC. Liu ef al. developed robust
decentralised and distributed transceivers for worst-case MSE
reduction under individual sensor power limits as well as for
overall power minimization under a specific worst-case MSE
threshold, in their exposition in [45]. Rostami and Falahati [46]
proposed a robust TPC design for vector parameter estimation
under infinite and total network power constraints. The authors
of [47] and [48] have proposed innovative robust LDE schemes
based on majorization theory for non-sparse and sparse param-
eter estimation, respectively, where closed-form expressions
for robust TPCs/ RC matrices were derived. Furthermore,
the robust LDE of a temporally correlated parameter vector
was considered in [49] under imperfect CSI considering both
analog as well as quantized SN measurement transmission.



However, there is no previous study in the literature that deals
with the LDE of a dynamic sparse parameter in a coherent
MAC-based WSN depending on imperfect CSI. In order to
fill this knowledge gap, we develop a novel SBL-KF and fast
block coordinate descent (FBCD) based LDE scheme for time-
varying sparse vector parameter tracking in the presence of
realistic CSI uncertainty. Table I boldly compares the current
and previous contributions on a feature-by-feature basis, which
are further detailed below. Please observe that rows 8 and 10
are entirely unique to our treatise.

B. Contributions

« To begin with, this paper derives the SBL-KF framework
for the LDE of a time-varying sparse parameter con-
sidering a scenario relying on the idealized simplifying
assumption of full CSI availability, followed by the for-
mulation of a per time slot MSE minimization problem.

e« An FBCD algorithm is conceived in order to solve
the resultant non-convex problem for transceiver design,
which requires only a single iteration per time slot.
This significantly reduces the computational complexity
in comparison to the conventional version of the BCD
algorithm.

o A recursive Bayesian Cramer Rao bound (BCRB) is
also derived for benchmarking the performance of the
proposed LDE schemes.

« Next, we consider the scenario where only imperfect CSI
is available for the channel between each SN and the
FC and propose a robust SBK-KF (RSBL-KF) scheme.
The per time slot average MSE minimization problem is
solved for this system to design a robust transceiver.

o Finally, our extensive simulations verify the proposed
SBL-KF- and RSBL-KF-based time varying sparse pa-
rameter estimation framework under perfect as well as
imperfect CSI scenarios, respectively. The results ob-
tained corroborate the analytical formulations derived in
this work and also show the performance improvement
over conventional schemes.

C. Organization and Notation

The rest of the paper is structured as follows. Section
IT presents the system model for LDE in a MIMO WSN,
followed by the SBL-KF-based time-varying sparse parameter
tracking framework and transceiver design for per time slot
MSE minimization in Section III for perfect CSI availability.
Section IV derives our stochastic CSI uncertainty model based
robust time varying sparse parameter tracking framework. The
simulation results are discussed in Section V, and our conclu-
sions are presented in Section VI. The Karush-Kuhn-Tucker
(KKT) framework-based Lagrange multiplier computation is
harnessed in the Appendix A for computing the TPC for
each SN, while the recursive BCRB benchmark is derived in
Appendix B.

Throughput the paper, bold lower (a) and uppercase (A) let-
ters denote vectors and matrices, respectively; a(i) denotes the
ith value of the vector a, while the [A];; denotes the (7, j)th
value of the matrix A; The matrix A = D(aj,as,...,an)

represents a diagonal matrix A of size N x N with the
elements a;, for 2 = 1,2,..., N on its principal diagonal; The
trace and expectation operators are denoted by Tr[.] and E[.],
respectively; The transpose, Hermitian and complex conjugate
operations are denoted by ()7, (.)f and (.)*, respectively; A
q dimensional vector quantity with all its ¢ elements equal
to zero is denoted by 04«1, while I, represents an identity
matrix of dimension g x ¢; The notation det(A) represents
the determinant of a matrix A; a ~ CN(0,R,) represents
the circularly symmetric complex Gaussian distribution with
mean zero and covariance matrix R,,.

II. SYSTEM MODEL

Consider a WSN where K sensors are sensing a common
sparse parameter of interest, denoted by & € C?*! and each
sensor is equipped with N, transmit antennas (TAs), as shown
in Fig. 1. An important point to note is that the unknown
parameter vector 6 is time-varying and sparse in nature, whose
sparsity level is not known a priori. Moreover, the support of
the sparse vector is also dynamic in nature, i.e., the set of
indices of the non-zero elements of the vector is changing
with respect to time. The parameter of interest 6[m] at time
instant m, is assumed to evolve according to the first-order
auto-regressive (AR-1) model, [50, Sec. A1.2.4]

0[m] = pBlm 2u[m], (1)

where the quantity p denotes the temporal correlation coef-
ficient and u[m] represents the state innovation noise. This
has been shown to be well suited to capture the temporal
variation of the parameter in several IoT applications, as
evidenced by the pioneering works [30]-[32]. The observation
vector corresponding to SN k at time slot (TS) m, denoted by
xj[m] € C™1, is modeled as

= Ay0[m] + vi[m], 2

where the matrix A, € C!*4 denotes the kth SN’s observation
matrix, while vi[m] € C*! represents the corresponding
observation noise vector, which is assumed to be distributed
as CN(0,Ry). The quantity [ signifies the number of obser-
vations taken by each SN. In order to combat the impediments
arising due to the fading nature of the wireless channel
and also to efficiently utilize the limited power budget, the
observation corresponding to each SN is pre-processed using
the TPC Py[m] € CN:*!. Subsequently, each SN transmits
its precoded observations to the FC over a coherent MAC. At
the FC, the received vector y[m] € CVre*! is modeled as

ZHkPk

K
ZHkPk
k=1

—1]++1—-p

Xk [m]

[m] + vec[m]

m] + Z HyPi[m

[m] + vic[m].

3)

The quantities H;, € CNee*Ns and vgc[m] ~ CA(0, Rec) €
CNreX1 denote the wireless fading channel between the kth
SN as well as the FC and the FC noise for the mth TS,
respectively. The quantity Ngc denotes the number of antennas
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Fig. 1: System model for linear decentralized time varying sparse parameter tracking in a WSN.

at the FC. The expression for the average transmit power
corresponding to the kth SN is evaluated as

E [|[Px[mlxy[m]|[3] = E [Tr [Py [m]xi[m]x; [m]Py [m]]
=Tr [Px[m]E [xk[m]xf [m]] PkH[m]]
=Tt [Py[m] [ARo[m]AF + Ry] P [m]] )

where Ryg[m] =E {O[m]eH[m]} € C7%4. Let (x[m] represent
the kth SN’s maximum transmit power budget for the mth TS.
The average transmit power of the kth SN can be constrained
as

Tr [Pk[m] [AxRy[m]AY + Ry PY [m]} <Glml. )

For the above setup, the next section develops a novel SBL-KF
based approach for tracking a time-varying sparse parameter
vector and also subsequently, an FBCD-based transceiver
design for its efficient estimation.

III. ONLINE SPARSE PARAMETER TRACKING AND
TRANSCEIVER DESIGN UNDER PERFECT CSI

This section exploits the SBL-KF framework for tracking
a time-varying sparse parameter 6, which combines the state-
of-the-art SBL and KF techniques.

A. SBL-KF approach for time varying sparse parameter track-
ing

While the conventional KF efficiently tracks a time-varying
parameter, its estimate is not guaranteed to be sparse in nature.
On the other hand, SBL has a superior sparse signal estimation
capability, wherein the sparsity profile is fixed, i.e. the support
of the sparse vector is time-invariant. However, it fails to
efficiently track a time-varying sparse parameter, especially in
scenarios where the parameters of interest exhibit a significant
temporal correlation. Thus, in order to successfully track a
time-varying sparse parameter, one is naturally motivated to
develop the SBL-KF, which leverages the advantages of both

the conventional KF and SBL techniques. This subsection
derives the various steps involved in the SBL-KF approach.

Let the set ¥,,,_1 = {y[0],¥[1],...,y[m — 1]} represent
the collection of all the received vectors at the FC spanning
from TS 0 to m — 1. Relying on the previously obtained vec-
tors, the predicted estimate of the underlying sparse parameter
vector @[m] and the received vector y[m] at the mth TS is
formulated as [50, Sec. 13.3]

O[m|m — 1] = E [0]m]|¥,,_1]

=E |pOm —1]++/1— p2u[m]|\Ilm_1}
pB[m — 1|m — 1], (6)
y[m]|¥m-1]

&=

Flmlm 1] =

H,.P.[m]A0[m|m — 1], (7

I
M=

B

[

)

where the quantities @8[m|m — 1] and y[m|m — 1] denote the
best prediction of the sparse parameter vector 8[m| and the
received observation y[m] at TS m using W,, ;. Similarly,
0[m — 1|m — 1] represents the filtered estimate of O[m — 1]
using W,,_;. Furthermore, the simplifications in (6) and (7)
exploit the fact that the measurement and the FC noises u[m)],
vi[m], 1 <k < K and vgc[m], respectively, are independent
of the received vectors in the set ¥,,, 1.

The proposed SBL-KF technique assigns a parameterized
Gaussian prior to the sparse parameter vector 8[m| and it is
given by

- -1 —0[m](i)[”
(6l o)) = [T o) enp (27200 ) )
iy Yi[m]
where the quantity ~;[m] that represents the variance of the
ith element is unknown. Hence, it is termed a parameterized
Gaussian prior, where the unknown hyperparameters are -;, Vi,
which are learnt using the Bayesian learning module developed
in this subsection.. Let the hyperparameter matrix I'[m]| €
C7%7 be defined as T'[m] = D (y1[m], v2[m], ..., vq4[m]). The
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Ai |Em|m — 1] + W[m]

IR PH [mHY + Rec |[WH[m).

+ ZHkPk

H,P.[m]AE[m/m — 1|JAFPH[m

K

lZHkPk

E[m|m — l]A]HP;I[m]Hf

k=1

K
HI + Z H,P.[m]A

J=1.k#

12)

prediction error covariance matrix can be expressed as [50,
Sec. 13.3]

E[m|m — 1] :E[ (é[m\m — 1] — 8m|m — 1])

(§[m|m — 1] — Bm|m — 1])H ]

Substituting the expressions of the quantities [m|m —1] and

6[m|m — 1] from (6) and (1), respectively, into the above
equation, and exploiting the fact that the quantity 8[m —1|m—
1] and the innovation noise u[m — 1] are independent, one
obtains the relationship of

E[m|m — 1] = p’E[m — 1|m — 1] + (1 — p*)Ry[m],

where R, [m] € C7*7 denotes the innovation noise covariance
matrix for the mth TS. Since both the sparse parameter 6[m]
and the innovation noise u[m/| share the same sparsity profile,
i.e. the indices of the zero and non-zero components are
identical, we have R,,[m] = I'[m]. Hence, the final expression
of the prediction error covariance matrix becomes:

Em|m — 1] = p’E[m — 1/m — 1]+ (1 = p))T[m].  (9)
The filtered estimate of the unknown sparse parameter vector
at the mth TS can be updated as [50, Sec. 13.3]
= 6[mlm — 1] + Wm] (y[m] — §lm|m — 1)),

(10)

where W[m]| denotes the Kalman gain matrix for the mth
TS, which is given as

0[m|m]

K K
Wim] = E[m|m — 1] [Z APl [m]HE] [Zﬂkmm]
k=1 k=1
ALE[mim — 1JAZPE[m|HY + H P [m|R PH [m|HE

-1

+ Rrc (1)

Furthermore, upon defining 8[m|m] = 6[m|m] — 8[m], the
error covariance matrix E[m|m] is determined as shown in
(12). From (11) and (12), it can be readily observed that
MMSE-optimal KF-based tracking requires the knowledge of
the unknown hyperparameter matrix I'[m] and suitable TPC
Pj[m] for each sensor. A procedure for the joint design of
these two quantities is described next.

The received vector in (3) can also be equivalently written
as

ylm] = H[m]0[m] + v[m], (13)

where the quantities H[m] e CNexa, g[m] ~
CN(0,R,[m]) € CMex! and the covariance matrix
R, [m] € CNrexNre are defined as

K
Tn]::EE:I{kI)khn

JAL, (14)
ZHkPk [m] + vrc[m], (15)
R P [m]H} + Rec.  (16)

TU}IZEE:I{kI)khn
k=1

Due to the Gaussian nature of (13) and (8), the a posteriori
probability density function (pdf) p (@[m]|y[m]; T'[m]) is also
Gaussian in nature and its mean vector and covariance matrix
can be expressed in the closed-form of:

prg[m] = So[m]H" [m]R,,* [m]y[m], (17)

Solm] = [AY [m]R; [m]H[m] + T~ ]

In the proposed SBL-KF approach, the hyperparameter matrix
T'[m] is obtained so that the Bayesian evidence p(y[m]; T'[m]),
given by

(18)

log. p(y[m]; Dlm]) = ~ "2 log(2r) — 1 log (det (3, m])

-y [ 1= mly[m],
—10g(det( ylml))
=y [m)=y mly[ml, (19)
is maximized, where 3, [m] =
CNecxNee It can be

(ﬁ[m]r[m]ﬁH [m] + R, [m]2 e
readily observed that the above optimization objective is
non-convex, which renders the problem intractable. We can
now harness the EM framework for iteratively maximizing
the Bayesian evidence with respect to the hyperparameters
vilm], 1 < i < g. Upon convergence of the SBL algorithm,
the hyperparameters corresponding to the sparse locations of
the parameter vector 8[m] tend to zero, leading to a sparse
parameter estimate. The key steps of the EM algorithm are
described next.

The EM algorithm initially formulates the log-likelihood
of the complete information set {y[m],0[m]}, where y[m]
is the observed output and 6[m] is the missing information.
T[m]|T[m — 1]), where T'[m
the estimate of the hyperparameter matrix I" obtained in the

This is given as £ — 1] denotes



(m —1)st TS. In the E-step, the quantity £ (I‘[m] IT[m — 1})
is evaluated as

c (r | Tlm — 1])

= Egp)ly (m):T(m) 108 [P (y[m], 8[m]; T'[m])]]

= By mi-£im 108 [P (v1m] | 6[1m])]
+log [p (6[m; Tm])] |

One can simplify the various terms of (20) as discussed
next. Note that the quantity log [p (y[m] | @[m])] inside the
expectation operator above can be simplified as

(20)

~ H
log [p (y[m] | 6[m])] = ~#1 — (y[m] — H[m]6[m])

R, ) (vlm] ~ o)) 21

(o

where k1 = log {(W)qdet (Rv[m})
independent of the hyperparameters. Therefore, the quantity
log [p (y[m] | @[m])] is also independent of the hyperparame-
ters, and hence can be ignored in the subsequent maximization
step (M-step) with respect to the hyperparameters. On the other
hand, the second term inside the expectation in (20) can be
simplified as

] is a constant which is

log [p ([m]; T[m])] = Y _ —log(myi[m]) — %

i=1
(22)

Furthermore, the a posteriori pdf of the parameter 0[m)],
which is required for computing the conditional expectation
]EO[mHy[m];f‘[m] ['] in (20), can be determined as [50, Sec. 11.3]

p (61m] | ylm]; Tlm = 1]) = CN (glm), Balml),  @3)

where the a posteriori mean and covariance p,[m| € C?*!
and Xg[m] € C?%9, respectively, can be evaluated as

polm] = Solm]H" [m]R; [m]y[m], (24)
~ -1 - ~ -1
Sy[m] = <(I‘[m — 1}) +HY[m|R ;! [m]H[m]
(25)
Now, upon taking the conditional expectation
E o)y (m]: E (] [[] in (22), we have

B ]y () ) 1108 [P (O[m]; T[m])]} = Z —log (m7:)
i=1
1 2
- %Ee[m”y[m];f‘[m] {|9i [m]| } .
Finally, the maximization problem in the M-step can be
expressed as

L[m] = arg;naer[m]‘y[m];f[m] {log [p (6[m]; T'[m])]}

Xg[m](i, ) + |pg[m] (i) |
7i[m] '

(26)

= argmax — log(v;[m]) —
r
(27)

The above maximization problem may then be readily solved
by computing the partial derivative with respect to each
hyperparameter and setting it equal to zero, which yields the
update equation for 7;[m]| as

ilm] = Zo[m] (i, i)+ | po[m] (i) | . (28)

Thus, the estimate of the hyperparameter matrix I' becomes
T[m] = D (A1[m], Y2[m], ..., 74[m]), which is subsequently
employed for the TPC/ RC design. The next subsection
describes the existing HBKF technique of [51] to track a time
varying sparse parameter, which has been employed in our
simulations for comparison.

In contrast to the proposed SBL-KF procedure, the HBKF
assigns a parameterized Gaussian prior to the innovation n[k]
as

plapnl;=lmd) = [T ()~ exp (7000 ) )

where &;[m], 1 < i < g, denotes the hyperparameters
that are to be estimated using the Bayesian learning mod-
ule. The corresponding hyperparameter matrix is =[m]| =
diag [&1[m], &2[m], . . ., &g[m]] € C7*7. The observation vector
y[m|m — 1] predicted at the FC is the same as in (7). Hence,
the innovation or observation error vector y.[m] is defined as

+ /1 = p?H[m] + u[m]v[m] (30)
31

Equation (30) reduces to (31) under the assumption that the
estimation error @[m — 1] — @[m — 1|m — 1] approaches
zero as m increases. Due to the Gaussian nature of noise
vectors v[m] in (31) and w[m] in (29), the a posteriori pdf
p (wW[m]|y.[m]; E[m]) is also Gaussian in nature, whose mean
vector and covariance matrix can be evaluated in the following
closed-form

o [m] = /1 — p2Z, [mH? [m]R;  [m]y.[m],

S m] = [(1 — p?) B [m]R; [m]H[m] -I-E_l[m]} .
(33)
Following a procedure similar to the one described for the

SBL-KF, the EM-based update of the hyperparameter Eg’”) is
expressed as

&i(m) = Bu[m] (i, )+ | p,[m](0) |*,

which can be subsequently employed for TPC/RC design
in the HBKF-based framework. The detailed procedure of
designing the transceiver for MSE minimization in each TS
is described in the next subsection. Although, we derive it
using the hyperparameter matrix I'[m] obtained from the SBL-
KF technique, the formulation is identical for the HBKF
framework.

(34)



B. Transceiver design procedure

Since the hyperparameter matrix I'[m] of the mth TS
is evaluated using the procedure described in the previous
subsection, we now exploit this knowledge for designing the
transceiver for per time slot MSE minimization, which is
formulated as:

minimize
Wim] {Pu[m]}_,

subject to  Tr [Py[m] [AxT[m]AF + Ry, | PH[m]]
<(Glm], 1<k <K, (35)

Tr [E[m|m]]

From the expression of [E[m|m]] in (12), the optimization
objective is coupled in terms of the optimization variables
W[m],{Py[m]}X_,, thus making the above problem non-
convex in nature [15], [18] and hence difficult to solve. To
overcome this challenge, one can leverage the BCD-based
framework wherein the RC and TPC matrices are computed
in an iterative fashion for exploiting the fact that the above
optimization problem is convex for the computation of a single
matrix at a given time, when the other optimization matrix
variables are known. Since it is required to run only a single
iteration of the iterative BCD algorithm per TS, it is termed
the FBCD algorithm. When all the TPC matrices {P[m]}X_,
are known, the optimization problem in (35) reduces to an
unconstrained quadratic optimization problem, which can be
solved efficiently by differentiating the objective in (35) with
respect to W[m] and setting it equal to zero. As a result,
the expression for the MSE-optimal RC matrix is obtained as
the Kalman gain matrix W[m] given in (11). The per slot
MSE optimal TPC for each SN k£ can now be determined
using the KKT framework [52, Sec. 5.5.3]. The Lagrangian
function for the problem under consideration is given in (36),
where the scalar A;[m] > 0 represents the Lagrange multiplier
corresponding to the kth SN’s power constraint. Using the first
order optimality condition, the MSE optimal TPC matrix is
obtained as

Pi[m] = [HkHwH[m]W[m}Hk —&—/\k[m]Iy H, P [m]
k—1
Elm|m — JAY — 3" H;W [m]W[m|H! P, m] (Ak
j=1
E[m|m — 1]A ) Z H, W [in]W[m]H!

j=k+1
H —1
P;[m — 1]<AkE[m|m - 1]A§1) 1 {AkI‘[m]AkH + Rk] .
(37)

Furthermore, the Lagrange multiplier Ai[m], for each SN k
is calculated using the KKT framework [Sec. 5.5.3] [52],
and its procedure is described in Appendix A in detail.
Algorithm 1 summarizes the proposed SBL-KF and FBCD-
based time-varying sparse parameter tracking algorithm, while
its graphical representation is seen in Fig. 2.

The proposed SBL-KF and FBCD-based time-varying
sparse parameter tracking algorithm is initialized as follows.

Algorithm 1 SBL-KF and FBCD based time varying sparse
parameter tracking

1+ Input: {y[m], Ry [m]} ¥im, (He}X |, {ALHE .

2: Initialization: Precoders {P;[0]}X, ~ CN(0,1),
-1 —1] = 0,x1, I'[—1] obtained using SBL on y|[0],
E[—-1| — 1] = T'[-1], set time slot index m =0

3: for m=0,1,2,--- do

4: E-Step: Evaluate p4[m] and 3g[m] using (24) and
(25)

5: M-Step: Evaluate 7;[m/| using (28)

6: Use (6), (7) and (9) for prediction

7: Compute the RC matrix W[m] using (11)

8 Update the filtered estimated 8[m/|m] using (10)

9: Compute the TPC Py [m + 1], Vk using (37)

10: end for R

11: Output: Filtered estimate 8[m|m]

The elements of the initial precoders for each SN k, denoted
by Py[0], are initialized randomly as i.i.d. CA(0,1) random
variables. The initial estimate 8[—1| — 1] of the sparse param-
eter vector is set to 04, 1. Furthermore, the initial estimate of
the hyperparameter matrix I'[—1] is obtained by running the
SBL procedure using the initial observation y[0]. Additionally,
our proposed framework initializes the error covariance matrix
E[—-1| — 1] with the hyperparameter matrix I'[—1], which
significantly reduces the MSE for the initial TSs, as observed
in our simulation results in Section-V. The next theorem
presents the centralized BCRB benchmark for the proposed
LDE scheme for a time-varying sparse parameter.

Theorem 1. Considering a centralized scenario, where all the
observations are available at the FC without any distortion,
the BCRB for the MSE of the proposed SBL-KF based LDE
scheme is formulated as

'm]], (38)

where the Bayesian Fisher information matrix (BFIM) B[m| €
C?%9 can be computed recursively as

MSEncrs £ E [|18m] - 6[m]|13] = Tr [B™

1+ (1 p2)r[m]) +ATRIA.
(39

The stacked observation matrix A € C*B*9 and the measure-

B[m| = (szfl [m

ment noise covariance matrix R € CH*E gre given as
T
A=[AT A], .. Al] (40)
R=D(Ri,Rs,--- ,Rg). (4D
Proof. Given in Appendix B. O

The next section develops robust transceiver designs for the
LDE of a time-varying sparse parameter in the presence of
imperfect CSI.

IV. ROBUST TRANSCEIVER DESIGN

In practical scenarios, it is challenging to obtain perfect
knowledge of the CSI between each SN and the FC due to
several factors, such as the limited pilot overhead, limited



[Pl A mS | = Tr

K
> HPy[m]A
k=1

E[m|m — 1] + W[m]

K
E[m|m — JAF P mH + > HyPi[m|RiP{ [m]HY

k=1

Tim] A + Ry )P m]] — Gelm]] |,

E[m|m — 1] — E[m|m — 1] lZAkHPkH[m]HkH

H,P.[m]ALE[m|m — 1JATPH [m

K

WH[m] — Wm]

k=1

K
H + > HyPym]A

J=11#]

+ i [)\k.[m] [Tr {Pk[m] (Ak

k=1

+ Rpc | WH]

(36)

Update
Infut For E-Step
y[m], R,[m]vm L .m=012..

Hy and A, Vk ‘ do Zo[m] using (22)

| ]
|
. |

Initialization Output M-Stej Prediction
P[0] ~ eNV'(0,DV k Filtered 7,0m] usmg (25) . B[m|m — 1] using (6)
ol-1l-11=0, Estimate forj=12,..,q. i = ]S
I[—1] using SBL on y[0] Bmlm] E[m|m — 1] using (9)
E[-1]-1] = I[-1]

Compute
RC matrix
W[m] using (11)

. 8[m|m] using (10)
E[m|m] using (12)

.+ pg[m] using (21)

Compute
TPC matrices
Py[m +1] vk
Using (34)

Fig. 2: Graphical representation of algorithm 1.

feedback, quantization error etc. Hence, in a practical system,
it is imperative to take the CSI uncertainty into account for
achieving robust parameter tracking. To this end, similar to
[49], [53], let the channel between each SN and the FC be
modeled as

H; = H;, + AHy, (42)
where ﬁk denotes the available channel estimate and AHy
represents the estimation error matrix, whose elements are

assumed to be distributed as CA (0,0%). The result given
in the following lemma will be used in this section.

Lemma l.AConsider a matrix X = X + AX € C™*, where
the matrix X is is fixed, while the elements of the matrix AX
are distributed as CN(0,02). Then, for any arbitrary matrix
Z of appropriate dimension, it follows that [49]
E[XZZ"X"] = XZZ9X" + 0% Tx [2Z7]1,.  (43)
Next, we discuss the RSBL-KF for parameter tracking
relying on imperfect CSI.

A. RSBL-KF

Upon considering the scenario of realistic CSI uncertainty,
during the mth TS, the prediction equation of the sparse
parameter vector @[m] is identical to (6), while the prediction

for the received vector y[m], defined as yr[m|m — 1] =
E [y[m]|®,,—1], can be formulated as

K
= EAHk ZHkPk ]Ak [m|m — 1]

k=1
K

k=1

yr[m|m — 1]

Aka[m|m —1]. (44)

Substituting the expression of Hy from (42) into (12), fol-
lowed by employing the result given in Lemma 1, one obtains
the following expression for the average error covariance

matrix defined as E[m|m] = Ean, [E[m|m]]:
— K A~
E[m|m] = E[m|m — 1] — E[m|m — 1] Z AkHP,If[m}HkH}
k=1
K
WH[m] — Wm)] lz H,P[m]A, | Elm|m — 1] + W[m]
k=1

H, P, [m]AE[m|m — JATPH[mA! 4 64 Tr [Pk[m}Ak

E[m|m — 1}A,€HPkH[m]} + Y HPy[m]ALE[m|m 1]

=157

mIRPH (m]HY + 0%

Mx

AP m
k=1
Tr [P [m]Ry P [m]] + Rec

WH[m). 45)

Once again, invoking the FBCD framework while considering
the TPC matrices {Pj[m]}X_; to be known, the optimization
problem of determining the robust RC matrix for minimizing
the average MSE per TS is given by

minimize Tr [E[m|m]] . (46)

Observe from (45), that the above optimization problem is
an unconstrained convex quadratic cost minimization problem
in terms of the RC matrix W[m]. The robust RC matrix for
the mth TS is obtained by differentiating the aforementioned



objective function with respect to W[m] and equating it to
zero, yielding

K

W] = Elm|m — 1] [Z AFPY [m]ﬁﬂ [zﬁkm[m]

A E[m|m — JATPH[mA! 4 64 Tr [Pk[m]Ak

Elm|m — 1]AfP{ [m]| + H Py m]RyP{ ] HE + o,
-1

Tr [Pk[m}RkPkH [m]] + Rec 47)

Once the robust RC matrix is obtained, the optimization
problem of finding the TPC matrix corresponding to the kth
SN with an objective to minimize the MSE for the mth TS
can be formulated as

minimize Tr [E[m|m]]
Py [m]

subject o Tr [Py[m] [A T [m]A} + Ry PH [m]] < ¢[m].

(48)

The above optimization problem can be solved by following
similar lines to (35), and the MSE-optimal robust TPC matrix
for the kth SN at mth TS is given as

Py.[m] = [ﬁf WH [m]Wm|Hy, + o2 Tr [WH [m] W{m]]
k—1

H,P{ [m|E[m|m — 1]A{ = > H;

Jj=1

+ /\k[m]I} -

WH | WmHI P, [m] (AxElm|m — 1]A7)" — 3"
j=k+1
H; W [m]W[m]H P, [m — 1] (A Em|m — ]AT)"

-1
[AkI‘[m]AkH + Rk] , 49)
where the optimal value of the Lagrange multiplier Ag[m]
can once again be obtained using the procedure described in
Appendix-A. The next section presents our simulation results
characterizing the performance of the proposed SBL-KF and
FBCD-based LDE schemes for time-varying sparse parameter
estimation.

V. SIMULATION RESULTS

The number of SNs in the MIMO WSN is set to K = 10.
The number of observations taken by each SN is [ = 5, the
number of TAs at each SN is N, = 5, while the number of
receive antennas at the FC is considered to be Ngc = 5. The
dimension of the unknown time varying sparse parameter 6
is ¢ = 10 with the number of non-zero locations equal to 2.
Without loss of generality, the observation noise covariance
matrix R, for each SN £ and the FC noise covariance matrix
Rpc are considered as Ry = 02I; and Rpc = UJ%IFC, where
the quantities o7 and UJ% denote the variance of the observation
and FC noises, respectively. The signal-to-noise ratio (SNR) at
the FC is defined as SNRyc = 5. Similarly, the observation
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Fig. 3: MSE performance comparison vs. TS-index between
the conventional KF, HBKF and the proposed SBL-KF
schemes along with BCRB.
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Fig. 4: MSE vs. the correlation coefficient (p) for the HBKF
and SBL-KF schemes.

SNR denoted by SNRgp is set to SNRog = a% Each element
of the channel and observation matrices for all the SNs is
generated as CN(0,1).

Fig. 3 plots the MSE as a function of the TS-index for the
conventional KF, HBKF and the proposed SBL-KF schemes.
The time-varying sparse parameter is generated as follows.
For TS m < 49, the support of the sparse parameter vector
is represented by the set {2,4}, whereas at the 50th TS, the
support is expanded to {1,2,4}. Finally, from m > 150, the
support is set as {1,2}. Thus, we observe that the sparsity
profile of the sparse parameter vector varies slowly with time.
As is evident from the figure, the proposed SBL-KF technique
with TPC designed using the FBCD procedure capable of
successfully tracking the time-varying parameter. Furthermore,
the conventional KF framework, which is not designed for
sparse parameter estimation, is unable to track it accurately.
The tracking performance of the HBKF, which was briefly
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Fig. 5: MSE vs. TS-index for Ngc = {5, 8} observations at
the FC for the HBKF and the proposed SBL-KF schemes.

described in Section-III-A, is also shown for comparison. It
is visually clear that the performance of HBKF is poor in
comparison to that of the proposed SBL-KF framework, which
arises due to the approximation made in Eq. (31) for the HBKF
procedure. Furthermore, observe that the initial MSE obtained
using the proposed SBL-KF framework is significantly lower
than that of the HBKF. This is due to the fact that the SBL-
KF exploits the initialization procedure described at the end of
Section-III-B, which leads to its improved parameter tracking
performance. Finally, it can also be observed that the proposed
SBL-KF scheme performs very close to the recursive BCRB
that corresponds to the best estimation performance that any
LDE scheme can achieve. Hence, it demonstrates the efficacy
of the proposed LDE scheme.

Fig. 4 illustrates the MSE performance of the competing
schemes by varying the temporal correlation coefficient p of
the sparse parameter vector. Observe that the performance of
the proposed SBL-KF technique is consistent right across the
entire range of correlation coefficients p. On the other hand,
upon increasing p, the MSE of the state-of-the-art HBKF
technique approaches that obtained using the conventional KF,
which implies that the former cannot exploit the sparsity, when
the temporal correlation is high. This is due to the fact that
as p —> 1, it can inferred from (32) and (33) that the mean
p,[m] — 0 and X,[m] — I, which leads to inaccurate
hyperparameter estimation in (34), ultimately resulting its poor
tracking performance.

Fig. 5 depicts the MSE versus TS-index for Ngc = {5,8}
observations at the FC, which equals the number of FC
antennas Npc. When Ngc < ¢, the system is underdetermined,
since the number of observations is lower than the size
of the unknown parameter, which makes it challenging to
estimate the unknown quantity. Thus, the conventional esti-
mation techniques fail in this scenario. Interestingly however,
since the unknown parameter is sparse in nature, the SBL
technique that proactively exploits the sparsity is still able to
successfully estimate the underlying parameter even in such an
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Fig. 6: MSE vs. TS-index for K = 25 and 50 SNs in the
WSN for perfect CSI.
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Fig. 7: MSE vs. TS-index parametrized by the sparsity
profile.

underdetermined system. Furthermore, the MSE performance
improves upon increasing number of observations, a trend that
is along expected lines.

Fig. 6 shows the MSE vs. TS-index for K € {25,50}
SNs in the WSN. As time elapses the tracking performance
improves, which reinforces the trend seen in the previous
figures. Additionally, increasing the number of SNs in the
system leads to more observations becoming available at the
FC, which ultimately results in the MSE reduction witnessed.
Furthermore, in Fig. 7, the MSE performance is plotted for
values of the cardinality of the support S; € {2,3} of the
parameter 6 as a function of the TS-index. When S; = 3,
for TSs m < 49, only the {1,2,4}th elements of @ are non-
zero. For TSs 50 < m < 149, the support of the parameter
vector is given by the set {2,4,6}. For TSs m > 150, the
support changes to {1,4,6}. Similarly, for the scenario with
S; = 2, the number of non-zero elements at any given TS
is consistently equal to 2, with the support changing at TS
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Fig. 8: MSE vs. the SNRgc for different values of the

channel uncertainty variance o%;.

m = 50,150. It can be observed that as S; increases, the
MSE performance deteriorates, again a performance trend that
is along expected lines.

Fig. 8 depicts the MSE performance at TS m = 15 of
the RSBL-KF scheme proposed in Section-IV for scenarios
having CSI uncertainty, versus SNRgc. The values of the CSI
uncertainty variance 0% are set to {0.1,0.2}. The imperfect
CSI plot corresponds to the system wherein the TPCs and
RC, {Py[m]}_, and W[m], respectively, are designed using
the available channel estimates, while ignoring the CSI error.
Finally, the perfect CSI performance corresponds to a scenario
with no channel estimation error and serves as the best-case
MSE performance bound of the preceding two systems. It is
clear that the RSBL-KF attains a better MSE performance
than the imperfect CSI-based design, which ignores the CSI
uncertainty. Hence, the latter scheme exhibits poor estimation
performance. Furthermore, upon increasing SNRgc, the MSE
difference between the robust and uncertainty-agnostic designs
becomes significant, demonstrating the large performance
gains realised by utilising the robust design.

The MSE of the proposed RSBL-KF scheme is shown
in Fig. 9 as a function of the channel uncertainty variance
0% for K € {10,15} SNs. Upon increasing o%, the MSE
performance of the uncertainty-agnostic design degrades dra-
matically, but that of the robust design conceived remains
rather consistent. This clearly demonstrates the benefit of using
the robust sparse parameter estimate approach in real-world
scenarios in the face of realistic CSI uncertainty. The MSE
performance of the ideal CSI-based design is displayed again
as a performance reference for the other estimators, which is
flat since it is independent of o%;. It can also be observed that
deploying more SNs in the WSN results in an even higher
improvement in the MSE of decentralized estimation.

VI. CONCLUSION

A novel SBL-KF and FBCD-based LDE scheme was con-
ceived for tracking a time-varying sparse parameter consider-
ing also a practical scenario having realistic CSI uncertainty.
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Fig. 9: MSE vs. the channel uncertainty variance o% for
different number of SNs K.

The proposed framework yields a significantly improved esti-
mation performance over the conventional KF, which does not
guarantee a sparse estimate. Additionally, the proposed SBL-
KF and FBCD-based LDE scheme outperforms the existing
HBKF framework for sparse time-varying parameter estima-
tion. Along similar lines, the RSBL-KF scheme is also derived
for a scenario associated with imperfect CSI, which was
shown to yield an improved MSE performance in comparison
to the uncertainty-agnostic design that does not account for
the CSI uncertainty. Our future research may explore the
problem of LDE of a time-varying sparse parameter relying on
quantized measurement transmission, which can in turn lead
to a significant reduction of the bandwidth resources.

APPENDIX A
LAGRANGE MULTIPLIER (Ag[m]) CALCULATION FOR EACH
SN k OF THE WSN

This Appendix describes the procedure of determining the
Lagrange multiplier \x[m] of each SN k for the TPC design
problem in (36) of Section-III relying on perfect CSI. Let the
matrices Di[m] € CNs*Ns and Fy[m] € CN-*7 be defined
as

Dy [m] = HE W [m|W[m]H,, (50)
k—1
Fi[m] = |HyPH [m]E[m|m — 1]AH — Z H, W [m]

W{m|HP;[m] (AyE[m|m — AN — 3 H;W/[m]
j=k+1

WmHZ P [k — 1] (AL E[m|m — 1]AF)"

[Akr[m}A}j n Rk] o (51)



Hence, the expression for the TPC in (37) for the kth SN of
the mth TS can be recast as

Next, enforcing the complementary slackness condition of the
KKT framework, one obtains

Ae|m] [Tr [Pm] (AxT[m]AY + Ry) P [m]]
~Glml| =0 53)

Upon substituting Py [m] from (52) into (53) yields

[Di[m] + Ae[m]In,] " Fi[m] (AxT[m]A + Ry)

F{/[m] [Dr[m] + M[m]In.] ™" | = Glm].
(54)

Furthermore, replacing the matrix Dy[m] by its eigen-
value decomposition, which is defined as Dg[m] =
Uy, [m]A[m]U¥[m], the above equation can be recast as

[Ak[m] + e [m]Iy,] 2

Uy [m]Fy[m] (AT [m] A + Ry) By [m]Uplm] | = ¢[m)].
By [m]
(55)
It can also be equivalently written as
S mli
- H” ) = Ck[m]. (56)

The Lagrange multiplier A;[m] of the kth SN can be obtained
by solving the above equation using the bisection approach.

APPENDIX B
PROOF OF THEOREM 1

This Appendix provides the detailed proof of Theorem 1.
Starting with the centralized scenario, the overall observation
vector, denoted by x[m] € C'*!, can be obtained by stacking
the observation vectors corresponding to each SN £ as follows:

T

x[m] =[x} [m],x}[ml,...,xk[m]]" = A8[m] + v[m],

(57)

where the stacked measurement noise vector v[m| € C!/H*!
. T
is v[m] = [v{[m],v3[m],..., vi[m]]

Next, the BFIM matrix B[m)] is given as [54]

Blm] = Caslm] — Coxm][Bm — 1] + Cus [l Calm],
(58)

where the different (¢ x ¢)-dimensional matrices above are
defined as

_ | PPL(8[m]|8[m —1])
Culm] = E[ae[m— 1100 [k — 1]]’ &9
_G[ecemiem -] o
Crzlm] = E[ 200m — 1067 | ~ Calml €0
_ | 2L (8[m)|6[m —1])
Cazlm] = E[ 00[m]96™ [m] ]
0%L (x[m]|0[m])
_E[ 90[m] 06" [m] 1 (1
Using (1) and (57), the log-likelihood functions
L(0[m]|0[m —1]) and L (x[m]|@]m]), respectively, are
defined as
L(8[m]|0[m —1]) = k
~ (8[m] — p8[m — 1) T'[m] (8[m] — pflm — 1))
21— ) ’
(62)
L (x[m]|0[m]) = k»
Hp-1
_ (x[m] — AB[m]) R2 (] (x[m] — AOm)) 3y
where we have k1 = —3log[(2m)%(1 — p?)det (I'[m])]
and k; = —31log [(271’)[25(1613( R)]. Upon substituting
L (0[m]|0[m — 1]) and L (x[m]|0[m)]), respectively, from (62)

and (63), into (59)-(61), one can determine the expressions
of the matrices Cq1[m], Ci2[m], Ca1[m] and Coz[m]. Fur-
thermore,upon substituting these matrices in (58) followed by
invoking the Woodbury matrix identity [50, Sec. A1.1.3], one
obtains the following compact expression for the BFIM

-1
Blm] = (pQB_lth +(1-p?) r[m]) + ATRTIA.
(64)
Hence, the BCRB for any given TS m is derived as

MSEgcrs > Tr [Bil[m]] . (65)
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