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Abstract—Remote monitoring systems analyze the environment
dynamics in different smart industrial applications, such as
occupational health and safety, and environmental monitoring.
Specifically, in industrial Internet of Things (IoT) systems, the
huge number of devices and the expected performance put pres-
sure on resources, such as computational, network, and device
energy. Distributed training of Machine and Deep Learning
(ML/DL) models for intelligent industrial IoT applications is
very challenging for resource limited devices over heterogeneous
wireless networks (HetNets). Hierarchical Federated Learning
(HFL) performs training at multiple layers offloading the tasks to
nearby Multi-Access Edge Computing (MEC) units. In this paper,
we propose a novel energy-efficient HFL framework enabled by
Wireless Energy Transfer (WET) and designed for heterogeneous
networks with massive Multiple-Input Multiple-Output (MIMO)
wireless backhaul. Our energy-efficiency approach is formulated
as a Mixed-Integer Non-Linear Programming (MINLP) problem,
where we optimize the HFL device association and manage the
wireless transmitted energy. However due to its high complexity,
we design a Heuristic Resource Management Algorithm, namely
H2RMA, that respects energy, channel quality, and accuracy
constraints, while presenting a low computational complexity. We
also improve the energy consumption of the network using an
efficient device scheduling scheme. Finally, we investigate device
mobility and its impact on the HFL performance. Our extensive
experiments confirm the high performance of the proposed
resource management approach in HFL over HetNets, in terms
of training loss and grid energy costs.

Index Terms—HetNets, Hierarchical federated learning, device
association, wireless energy transfer, energy efficiency.

I. INTRODUCTION

Occupational health and safety (OHS) has recently at-
tracted the attention of governmental agencies in order to
provide workers’ protection and minimize health risks [2]–
[4]. More generally, remote monitoring systems that capture
the environment dynamics and monitor individuals are used
in different applications to help senior citizens, patients, and
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factory workers. Distributed Artificial Intelligence (AI) [5] and
communication technologies allow continuous monitoring for
Key Health Indicators (KHIs) of a large number of workers
using relevant industrial IoT devices (smart phones, mobile
devices, wearables, smart cameras, and smart watches). The
collected KHIs are then transmitted to a central or a nearby
edge Central Unit (CU) to be processed by machine and deep
learning algorithms and help in the decision making tasks.

With an increasing number of connected devices, centralized
Machine and Deep Learning (ML/DL) algorithms require
more and more memory resources and huge processing (i.e.
CPU) [6]. In a wireless network setting with real-time and
low-latency requirements, a centralized learning scheme be-
comes inefficient as it induces delay and may compromise
the privacy of exchanged data between devices. Hence, de-
centralized learning approaches have emerged, particularly
Federated Learning (FL) [6], [7]. FL enables to train a shared
model among multiple devices, where each device uses only
its private local data [7]. Indeed, the devices are training
and updating the weights of the global model they received
using their local data samples. Then, they send the new model
weights to a CU for aggregation into a shared learning model.
Finally, the CU broadcasts the aggregated model weights to the
FL participants in order to update their models. This routine
is iterated until reaching the desired model performance. FL
addresses the challenge of data privacy, while enhancing the
bandwidth usage as the amount of transferred data to the
CU decreases. However, with the nexus of thousands of
devices, several challenges need to be addressed including
communication bottlenecks, increase in energy consumption,
congestion, and and data skewness i.e. non-i.i.d data [10].
To cope with these issues, Hierarchical Federated Learning
(HFL) has been presented [8], [9]. HFL enables offloading the
computation task to the Multi-Access Edge Computing (MEC)
in device vicinity, hence increasing the energy efficiency and
enhancing the response time of the IoT nodes. In this new
configuration, the devices send their local updates to their
corresponding MEC for learning and model aggregation. Then,
the MECs transfer their aggregated models to the CU in
order to compute the global aggregation. The most distinctive
feature of HFL is the ability to address and manage diverse
data distribution, e.g., non-i.i.d property of the data. This
is achieved by carefully assigning devices to MECs, hence
speeding up convergence and attaining higher performance
levels [10]. We highlight that if the data is i.i.d, the HFL may
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not have a big contribution to the system performance.
In a wireless communication environment with constant

inter-device interference, latency constraint, increase in energy
consumption and device heterogeneity, the implementation of
HFL becomes challenging. Therefore, many research efforts
have recently focused on making HFL practical for wireless
communication networks. More precisely, recent works have
tackled resources allocation problems, including wireless re-
source allocation, edge-device assignment, device selection
and energy management with the objective of optimizing the
performance of such system fully exploiting its potential. On
the other hand, Wireless Energy Transfer (WET) represents
a promising technology whose objective is to address the
problem of energy bottlenecks in wireless networks [11]. The
system is based on using electromagnetic radiation waves
transmitted from a power source to deliver energy to a wireless
device. Delivering power using wireless technology satisfies
the frequent charging for mobile devices. Hence, it represents a
key technology for the design of energy-efficient IoT wireless
networks [12].

One of the challenges facing the ML/DL distribution is the
high-energy consumption. Thus, to enhance the energy effi-
ciency of HFL processed over HetNets with wirless backhaul,
we propose to incorporate energy harvesting [13], where each
MEC transmits the harvested energy to its related devices via
WET. Compared to the existing schemes in [8]–[10], [14]–
[26], our work is distinctive as it focuses on designing an
energy-efficient HFL architecture assisted by WET. As per our
knowledge, we are the first to consider the implementation of
FL over HetNets with massive MIMO wireless backhaul en-
abled by WET. Furthermore, a practical mobility scenario that
represents the workers in a construction site is considered by
developing an efficient dynamic resource allocation scheme.
The contributions of our work include the following:
• We propose a novel energy-efficient HFL framework,

designed for HetNets with massive MIMO wireless back-
haul and enabled by WET.

• We formulate our energy-efficiency approach as a Mixed-
Integer Non-Linear Programming, where we optimize
the HFL device association and manage the wireless
transmitted energy.

• We derive the optimal device association analytically
and we use Brute-Force search to obtain the energy
management decisions.

• Due to the high complexity of the optimal solution, we
propose a device association and energy management
algorithm that aims to enhance the energy-efficiency of
the proposed HFL framework.

• Some devices with high energy requirements may be
deactivated for some frames. Hence, we propose a device
scheduling strategy to decrease the energy consumption
without deteriorating the learning accuracy.

• We develop an efficient dynamic device association
scheme, where we consider a mobility scenario that
represents the workers in a construction site.

• Finally, we conduct an extensive evaluation of the pro-
posed system to prove the energy efficiency and high
accuracy performance of our resource management, de-

vice association, and device scheduling schemes under
different network configurations.

We organize the remainder of this article as follows: In
section II, we explore the related works that study one-layer
and hierarchical FL. In section III, we present the system
model. The optimization problem is formulated in Section
IV. We investigate the resource management in Section V.
The impact of mobility in FL performance is investigated in
Section VI. Evaluation results are provided in Section VII.
Lastly, conclusions are drawn in Section VIII.

II. RELATED WORK

A. Federated Learning

A number of studies have explored resource allocation
for FL [27]–[37] over wireless networks. In [27], an energy
harvesting FL framework was developed by proposing effi-
cient user association and scheduling schemes. Minimizing
the energy costs of FL wireless systems was investigated,
while taking into consideration a limited energy budget by
developing an efficient resource management scheme. In [29],
a data augmentation and adaptive user scheduling scheme
was developed to overcome the challenges related to the
imbalanced distribution of data in FL. The convergence time
was theoretically investigated and optimized in [30] by de-
signing an efficient control scheme. The FL performance was
improved in [31] by proposing an efficient user scheduling
policy. Moreover, the authors of [32] designed an optimal user
selection algorithm that minimizes the FL convergence rate.
In [33], a user selection scheme was proposed to decrease
the effect of unreliable users and enhance the accuracy of
federated learning training. To address the issue of battery
limitation for FL users, initial works [34]–[37] incorporated
WET systems when performing FL tasks. In [34], the authors
assumed that the unmanned aerial vehicles (UAVs) have WET
capability and proposed a suitable FL solution in terms of
energy efficiency. In [35], a heterogeneous mobile architecture
is implemented and an optimal resource allocation solution
is proposed that minimizes the energy consumption of FL
devices. In [36], a low-complexity beamforming strategy was
proposed to minimize the mean-square error in FL based
systems enabled by WET. The authors of [37] developed an
analytic FL framework that establishes a trade-off between
the model convergence and the power consumption which
represents a guideline to ensure efficient learning tasks.

B. Hierarchical Federated Learning

Others works have tackled the optimization of resource
allocation for HFL [8]–[10], [14]–[26]. More specifically, the
authors in [9] used HFL to design a reliable anomaly detection
strategy for IoT systems. Moreover, to face the challenges
caused by non-i.i.d. data, the authors in [10] designed an edge-
device assignment scheme to enhance the federated averaging
performance. Considering the same constraint of non-i.i.d. data
among users, the authors in [19] proposed an efficient resource
allocation and user assignment scheme in HFL for heteroge-
neous IoT systems. Meanwhile, the authors of [14] proposed
a novel HFL architecture aiming to minimize the consumed
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TABLE I: List of key Notations.

Symbol Description Symbol Description

Ncu Number of antennas at the CU Hm

Channel matrix between the CU and
MEC m

Nmec Number of antennas at each MEC gm,k

Channel vector between device k and
MEC m

K Number of devices βm,k Pathloss
L Number of frames σ2 Noise variance
M Number of MECs Wm Detection matrix at MEC m

T Duration of each frame Edev
m,k(l)

Energy required by device k assigned
to MEC m at frame l

Λm

Set of devices associated with MEC
m Ecir Fixed circuit energy consumption

Km Cardinal of Λm Eac
m,k(l)

Required transmit energy of device k
at frame l

C Number of classes Q Size of the local FL model
Dk Dataset of device k Bmax Maximal battery capacity

xk Input of device k Am,k(l)

Amount of harvested energy by
device k assigned to MEC m at
frame l

yk Output of device k Bk(l) Battery level of device k at frame l

S Data matrix of the devices Ewet
m (l)

Transferred energy from MEC m at
frame l

Sc,k

Number of training data samples of
the device k for the class c αm(l) Grid’s weights

wk(l)
Weight vector of the local ML model
of device k at frame l ∆ Total grid energy consumption cost

∪j∈ΛmDj Virtual dataset available at MEC m χm,k Device association index

p(m)(i)
Probability of the class i per MEC
m’s distribution p(·) Global classes distribution

energy and the total training latency under challenging data
distribution. Energy-efficiency was also the focus of the work
in [17], where authors have introduced a power control and
client association solution for HFL. The work in [8] targeted
the minimization of the global cost using a novel resource
allocation and device association algorithm. Another extremely
important metric in FL systems is the latency, that was the
objective of the works in [21] and [15]. While the former op-
timized the association between multiple servers and devices,
the latter designed a HFL framework across heterogeneous
cellular networks. The authors in [18] proposed a flexible
decentralized control over the training process in order to en-
hance the privacy of HFL, while the authors of [22] suggested
using blockchain to meet the privacy requirements of internet
of vehicles composing the HFL system. In [23], a novel HFL
framework based on clustering is proposed to enhance the test
accuracy. The authors of [24] investigated HFL by proposing
a hybrid data partitioning algorithm. In [25], an efficient
HFL algorithm is presented with an objective to determine
the optimal cluster structure. In [26], a resource allocation
heuristic was designed to guarantee the HFL convergence rate
subject to fairness constraint. Finally, the game theory was

used in [16] and [20] to design an efficient resource allocation
strategy for HFL.

Unlike the works proposed in the literature, we present
in this paper a novel HFL architecture considering massive
MIMO wireless backhaul, i.e. the links between the MECs
and the devices and the links between MECs are wireless.
Moreover, we consider a practical mobility scenario that
represents the workers in a construction site. Additionally,
the use of energy harvesting for HFL was not considered
in most of the related works. Hence, we consider in this
work that the MECs have WET capability and the devices
are equipped with energy harvesting batteries, which allows
to enhance the energy efficiency. Taking into account these
challenging constraints, we formulate and investigate a novel
resource optimization problem.

III. SYSTEM MODEL AND ENERGY MODEL

A. Hierarchical Federated Learning Model

Massive MIMO is based on multiplexing a large number
of antennas simultaneously to satisfy the demand of multiple
users in the same time-frequency resource, which contributes
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to improving energy efficiency, spectral efficiency, and la-
tency [38]. Furthermore, HetNets, which are based on network
densification in multiple dimensions with different types of
cells, allow to efficiently exploit the wireless resources and
improve the QoS. Incorporating massive MIMO and HetNets
in IoT wireless networks is suitable to optimize the FL
performance. Hence, we opt for a HetNet as presented in
Fig. 1. Our system is composed of a massive MIMO Central
Unit (CU) equipped with Ncu antennas, and M MECs, each
one is endowed with Nmec MIMO antennas (Ncu > MNmec).
Different MECs communicate with the CU through a wireless
backhaul link [39]. Furthermore, each MEC m serves multiple
single-antenna devices. Let Λm be the set of Km devices
served by the MEC m. We note that the total number of
devices in the network is equal to K. We study our system over
an interval of time that we divide into L frames of duration
T . Table I presents different key notations introduced in our
paper. The device association index is defined as:

χm,k =

{
1, if device k is associated to MEC m,
0, otherwise. (1)

Each device k owns a dataset Dk = {xk,yk}, where xk and
yk denote the input and output of the device k. These devices
train their FL models locally and send the obtained weights to
their related MECs. Then, each MEC aggregates the weights
of its devices and forwards the results to the CU. Finally,
the CU aggregates the weights received from all MECs and
shares the updated FL model with all devices. This process
is repeated until reaching a desirable accuracy. Let the Matrix
S ∈ NC×K describe the splitting of data among all devices,
where C denotes the total number of classes in the learning
problem. Particularly, each element Sc,k represents the number
of data samples owned by the device k and belonging to the
class c.

Let wk(l) represent the vector of FL weights of the lo-
cal model trained within the device k at a frame l. After
aggregating all weights, first incoming from the devices, then
collected from the MECs, the CU is considered globally fitting
the resultant weights by minimizing a particular loss function.
In our work, we opt for the cross-entropy loss function that
can be presented as follows:

L (w) =

C∑
c=1

−p(c)Ex∼q(x|y=c) [log dc(x;w)] , (2)

where p(·) defines the global distribution of classes, q(· | ·)
denotes the likelihood function, and dc(x;w) represents the
probability that the input x belongs to the class c, under the
parameters w.
After receiving the weights of the local FL models from the
related devices, each MEC computes the aggregation following
the equation in [10]:

wmec
m (l) =

∑
k∈Λm

| Dk |
| ∪j∈Λm Dj |

wk(l), (3)

where ∪j∈ΛmDj is the grouping of local datasets owned by
different devices related to the MEC m. Accordingly, it can be
considered as a virtual dataset trained at the MEC m. The next

step is to aggregate the weights received from all the MECs
at the central unit, as done in [10]:

wcu(l) =

M∑
m=1

| ∪k∈Λm Dk|
| ∪j=1:K Dj |

wmec
m (l) (4)

Finally, the aggregated weights are broadcasted to all devices
and this process is iterated until reaching a targeted conver-
gence rate.
Because of the distribution and federation of the learning, a
deviation between the FL and aggregated weights may occur.
This divergence is studied in [10] and quantified as follows:

θ =

M∑
m=1

| ∪k∈Λm Dk|
| ∪j=1:K Dj |

×
∥∥∥D(m)

∥∥∥
1
, (5)

where D(m) =
{∥∥p(i)− p(m)(i)

∥∥}C
i=1

, and p(m)(i) is the
probability of the class i per MEC m’s distribution.

B. Communication Model

We assume that the channel between the CU and the
MEC m undergoes a Rician fading represented by Hm ∈
CMs×N . On the other hand, we consider a Gaussian i.i.d.
small-scale fading channel between the MEC m and each
device k ∈ Λm, denoted as fm,k. The access link between
the MEC m and each device k ∈ Λm is denoted by a
vector gm,k = β

1
2

m,kfm,k ∈ CNmec×1, where βm,k represents
the pathloss. To this end, the channel matrix is defined as
Gm = [gm,k]k=1:Km ∈ CNmec×Km .
In our system, we assume a perfect Channel State Information
(CSI) of all devices at each MEC. Thus, all MECs can apply
a cooperative Zero Forcing (ZF) scheme to suppress the effect
of inter-cell and intra-cell interferences as done in [40]. Let
Zm = Gm(GH

mGm)−1 be the decoder matrix of MEC m.
Accordingly, the rate of a device k connected to the MEC m
can be formulated as:

rdev
m,k(l) = λ · log2

(
1 +

pdev
m,k(l)

σ2 [(GH
mGm)−1]k,k

)
, (6)

where λ is the bandwidth, and σ2 represents the variance of
an Additive White Gaussian Noise (AWGN).

When the MECs receive the FL weights from their re-
lated devices, they proceed the aggregation and forward
their aggregated weights to the central unit. At the central
unit side, in case of multiple antennas receivers, the Block
Diagonalization (BD) is used to mitigate the multi-device
interference. This approach is known by its high performance
in MIMO systems [41]. Therefore, we assign for each MEC
m a detection matrix Wm, in order to distinguish different
signals received from different MECs. Following [41], Wm

lies in the null space of matrix Hm, which is given by
Hm = [HT

1 ...H
T
m−1H

T
m+1...H

T
M ]T . The decoder matrix for

MEC m is obtained as Wm = V
(0)
m V

(1)
m , where V

(0)
m is

composed of the last Ncu− Jm right singular vectors of Hm,
V

(1)
m represents the first Jm right singular vectors of HmV

(0)
m ,

Jm = rank(Hm), and Jm = rank(HmV
(0)
m ). Hence, the
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Fig. 1: WET-enabled HFL over HetNets in battery powered
end-devices.

uplink rate of MEC m is given as [42]:

rmec
m (l) = λ · log2

(
1 +

pmec
m (l) ‖HmWm‖2F

σ2

)
. (7)

C. Energy Model

In this section, we evaluate the energy needed by the MECs
and their related devices to compute different FL operations.
First, the energy required by a device k connected to an MEC
m to complete the FL tasks in the frame l is expressed by:

Edev
m,k(l) = Ecir + Ecmp

k + Eac
m,k(l), (8)

where Ecir is a fixed circuit energy consumed by filters,
mixers, and digital to analog converters. Ecmp

k is the energy
required by the device k to train its local data, while Eac

m,k(l)
is the energy required to transmit the resulted weights at frame
l.
The energy needed by the device k to train its data can be
calculated as done in [43]:

Ecmp
k = ςωϑ2Q, (9)

Where ς is an energy coefficient that depends on the device
chip, ω represents the number of CPU cycles, ϑ is the CPU
clock frequency, and Q denotes the size of the local model
that highly depends on the deployed FL algorithm. It is worth
mentioning that all local and global models in all devices,
MECs, and CU present the same weights’ size.
Next, to send the weights of the local trained model to its
assigned MEC m at a frame l, the device k requires an energy
equal to:

Eac
m,k(l) =

pdev
m,k(l)Q

rdev
m,k(l)

. (10)

where pdev
m,k(l) is the required transmit power of the device k

connected to the MEC m at a frame t. Based on equation (6),
pdev
m,k(l) can be formulated as:

pdev
m,k(l) = σ2

[
(GH

mGm)−1
]
k,k

(
2
rdev
m,k(l)

λ − 1

)
. (11)

Hence, by replacing pdev
m,k(l) by its expression in (10), we

obtain:

Eac
m,k(l) =

σ2Q
[
(GH

mGm)−1
]
k,k

(
2
rdev
m,k(l)

λ − 1

)
rdev
m,k(l)

. (12)

Each device in our FL system has a battery with a maximum
capacity equal to Bmax. These on-device batteries are also
used to store the wireless transferred energy. Let Am,k(l)
represent the amount of energy transmitted to a device k
connected to the MEC m at a frame of time l. Hence, we
define the battery level update of any device k related to the
MEC m as follows:

Bk(l+ 1) = min
(
Bmax, Bk(l)− Edev

m,k(l) +Am,k(l)
)
. (13)

Furthermore, we define the energy consumed by any MEC m
using WET to supply its associated devices at a frame l as
follows:

Emec
m (l) = Ecir + Ewet

m (l) + Ebh
m(l), (14)

where Ewet
m (l) denotes the energy transferred by the MEC m

to its related devices using the WET system, at a frame l.
Meanwhile, Ebh

m(l) represents the energy consumed by the
MEC m to transmit the aggregated FL weights to the CU.
We remind that Ecir is a fixed circuit energy consumption.
Next, we adopt an optimal beamformer for a MIMO WET
system to calculate the energy supplied to each device k related
to MEC m at a frame l. This energy is expressed as:

Am,k(l) = Ewet
m (l)βm,kξm,kNmec, (15)

where ξm,k is the beamforming coefficient for device k.
The energy required by the MEC m to transmit the aggregated
FL weights to the central unit at a frame l is given by:

Ebh
m(l) =

pmec
m (l)Q

rmec
m (l)

. (16)

The transmit power pmec
m (l) can be derived from (7) as:

pmec
m (l) =

σ2

‖HmWm‖2F

(
2
rmec
m (l)

λ − 1

)
. (17)

Hence, by replacing pmec
m (l) by its expression in (16), we

obtain:

Ebh
m(l) =

σ2Q
(

2
rmec
m (l)

λ − 1
)

‖HmWm‖2F rmec
m (l)

. (18)

We assume that the energy consumed by each MEC m at
a frame of time l is weighted by a parameter αm(l) [44].
Thus, the total cost of the energy consumed by all MECs is
calculated as follows:

∆ =

L∑
l=1

M∑
m=1

αm(l)Emec
m (l). (19)

IV. PROBLEM FORMULATION

Our objective in this work is to design an energy-efficient
HFL framework for heterogeneous networks, where devices
are supplied by wireless energy transfer. More specifically, we



6

aim at minimizing the cost of the total grid energy consumed
by different MECs by optimizing the device association and
the wireless energy, constrained by the divergence between
the FL’s weights and central weights. Since the deviation
between the FL and central weights should not exceed a
given threshold, the local data distributions at different devices
should be considered when deriving the device association. On
these bases, the optimization problem is formulated as (20a).
Constraint (20a) ensures that the deviation between the central
weights and the FL’s weights does not exceed a threshold
θmax. Constraint (20b) guarantees that each device in the
network is assigned to only one MEC. Equation (20c) ensures
that the consumed energy by the devices at each frame is
constrained by the available energy at the batteries. Equation
(20d) ensures that we cannot store energy more than the max-
imum battery capacity. Finally, the last two constraints (20e)
and (20f) guarantee that the transferred amounts of energy via
wireless links are positive, and the device association decisions
are binaries.

min
{χm,k,Ewet

m (l)}
m=1,...,M,k=1,...,K,l=1,...,L

∆ =

L∑
l=1

M∑
m=1

αm(l)Emec
m (l) (20)

s. t. θ ≤ θmax, (20a)∑M
m=1 χm,k = 1, ∀k = 1, . . . ,K, (20b)

χm,k
∑l
i=1E

dev
m,k(i) ≤ Bk(0) +

∑l
i=1Am,k(l),

∀m = 1, . . . ,M, k = 1, . . . ,K, l = 1, . . . , L, (20c)∑l
i=1Am,k(l)− χm,k

∑l−1
i=1E

dev
m,k(i) ≤ Bmax,

∀m = 1, . . . ,M, k = 1, . . . ,K, l = 2, . . . , L, (20d)
Ewet
m (l) ≥ 0, ∀m = 1, . . . ,M, l = 1, . . . , L, (20e)

χm,k ∈ {0, 1}, ∀m = 1, . . . ,M, k = 1, . . . ,K. (20f)

Furthermore, we investigate an extended version of the
formulated problem (20) by incorporating device scheduling.
Some devices with high amount of wireless transferred energy
may be unscheduled for certain communication rounds in
order to improve the energy-efficiency of the network without
deteriorating the FL training loss. The optimization problem
becomes more challenging. Moreover, we extend the formu-
lated problem (20) by incorporating a mobility scenario and
assuming dynamic device association where the association
index became variable over time as χm,k(l).

V. RESOURCE MANAGEMENT

A. Optimal Solution

In this section, we derive the optimal solution of the
problem formulated in (20). First of all, we can see that
our optimization is a Mixed-Integer Non-Linear Programming
(MINLP) due to its combinatorial nature and the non-linearity
of the constraint (20a). Hence, we propose to use the following
theorem to find the optimal energy transferred by each MEC
at each time frame, and consequently simplify the problem.
Theorem 1. For a MEC m and the set Λm of its associated

devices, the optimal transferred energy Ewet*
m (l) from MEC m

to its associated devices is given by:

Ewet*
m (l) = max

k∈Λm

Edev
m,k(l)−Bk(l)

βm,kξm,kNmec
. (21)

Proof. At a frame l, each device k related to a MEC m is
supplied by the harvested energy via WET, in addition to its
own battery. The total energy of k is expressed as follows:

Edev
m,k(l) = Bk(l) +Am,k(l). (22)

Thus, by replacing Am,k(l) by its expression presented in (15),
we can derive the energy Ewet

m (l) transferred by the MEC m
to device k:

Ewet
m (l) =

Edev
m,k(l)−Bk(l)

βm,kξm,kNmec
. (23)

Each MEC serves its related devices based on the highest
required energy. More precisely, the MEC finds the device
that requires the highest amount of energy and serves it along
with the others with this same amount.

Using the expression of the transferred energy Ewet
m (l)

presented in equation (21), our optimization problem (20) can
be simplified as it becomes an integer non-linear problem.
This simplified problem that aims now to find the optimal
device association is combinatorial and is known to be NP-
hard [45]. However, it can be solved using Brute-Force Search
(BFS). Although deriving the optimal solution is still highly
complex, the results can be used as a benchmark to our
heuristic approach that will be proposed in what follows. It is
also worth mentioning that by neglecting the constraint (20a),
the optimization becomes an integer linear problem that can
be solved using numerical tools such as CVX.

B. Heuristic Approach

Due to the combinatorial complexity of the optimal so-
lution that may prohibit its online deployment, we propose
a heuristic algorithm that solves the device association and
energy management problem with low complexity. Similarly
to the optimization, our algorithm aims to minimize the cost of
the consumed grid energy, while respecting the FL divergence
constraints.
Let Rm denote the range of the MEC m, which is the
pathloss of the farthest associated device. Based on (16), we
can see that the device with the higher pathloss receives the
lowest amount of energy via WET. In other words, any device
assigned to the MEC m with a lower pathloss than Rm, i.e.,
βm,k ≤ Rm, may benefit from a higher transferred energy.
Accordingly, each device k tries to find the set of MECs
having a higher range than its pathloss. Next, it selects the one
with minimum divergence θ. This device association process
is done one by one. If one of the devices fails to find a MEC
with a suitable range, it will be associated to the closest one.
Our proposed device association heuristic reduces not only the
energy consumption but also the divergence between FL and
central weights, which contributes to minimize the training
loss. Finally, for each frame l, we can calculate the amount
of energy transmitted by each MEC via WET using equation
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(21). Algorithm 1 presents different steps of our proposed
HFL Heuristic Resource Management Algorithm (H2RMA).
Moreover, the proposed algorithm is described in Fig. 2 and
we provide an example of the device association procedure in
Fig. 3. We can see in Fig. 3 that Dev 3 is within the range
of MEC 1 and MEC 2. Hence, it chooses to be associated
with the MEC that minimizes the divergence. For Dev 4, it
is outside the range of all the MECs. Hence, it chooses to be
associated with the MEC under minimal energy requirement.
Then, the range of MEC 4 is updated following Dev 4.

CU

MEC 1

MEC 2

MEC 3

Devices Devices Devices

Devices associated to the MEC in their ranges having the minimum divergence.

Global model update

Local model update

Wireless Energy Transfer (WET)

FL training

Local model aggregation

Global model aggregation

Fig. 2: Diagram of the proposed algorithm H2RMA.

Dev 1

MEC 1

MEC 2

MEC 3

MEC 4

Dev 3

Dev 2

Dev 5

Dev 4

Dev 6

R3

R2

R4

R4 updated

R1

Fig. 3: An example of the device association procedure.

We investigate the complexity of H2RMA. The device asso-
ciation process is presented in lines (3-20) using two loops for
with a complexity equal to O(MK). In the for loop in lines

(21-29), the power control is conducted with a complexity in
the order O(L(2K+M)). Hence, the complexity of H2RMA
can be expressed as:

CH2RMA = O(MK + L(2K +M)). (24)

Hence, H2RMA can be executed in polynomial time.

Algorithm 1 HFL Heuristic Resource Management Algorithm
(H2RMA)

1: Initialization:
2: χik,k ← 0, m = 1..M, k = 1..K,
3: Rm ← 0, m = 1..M
4: for k = 1 : K do
5: Initialize ik ← 0
6: Initialize θmin ← θmax

7: for m = 1 : M do
8: if βm,k ≤ Rm then, verify if device k is within

the range of MEC m.
9: compute θ

10: if θ ≤ θmin then
11: ik ← m, select the MEC with the minimum

divergence.
12: θmin ← θ
13: end if
14: end if
15: end for
16: if ik = 0 then, if device k is not within the range of

any MEC.
17: ik ← argminm=1..M βm,k, associate with the

closest MEC m∗.
18: Rm∗ ← βm∗,k, update the range of the MEC m∗.
19: end if
20: χik,k ← 1
21: end for
22: for l = 1 : L do
23: compute the energy required by each device.
24: compute Ewet

m (l), m = 1..M using (21).
25: send the weights wk(l) to the related MECs and

aggregation using (4).
26: Bk(l+1)← min

(
Bmax, Bk(l)− Edev

m,k(l) +Am,k(l)
)

,
battery update

27: send the weights wmec
m (l) to the central unit to compute

the aggregation using (5).
28: send the aggregated weights to all devices.
29: different devices update their FL training models.
30: end for

C. Device Scheduling

We now investigate the device scheduling for our proposed
HFL framework. In fact, at a given frame l, some devices
may face bad channel conditions and require high amount
of wireless transferred energy, without contributing much on
the HFL procedure. This costs the system unnecessary energy
consumption that can be avoided. In this scenario, a practical
idea to save the grid energy is to deactivate some devices for
some frames based on the available energy and time-varying
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channel. Moreover, the scheduled devices at each frame should
respect the maximal divergence constraint so as not to degrade
of FL performance.
Including device scheduling to the optimization problem (20)
which is MINLP increases the complexity of finding the opti-
mal solution. This optimal device scheduling can be obtained
with BFS. However, its high computational complexity pre-
vents it from being conceivable. Hence, we propose an efficient
heuristic device scheduling scheme to save unnecessary grid
energy cost. We start by considering that all devices are
selected. The devices to be deactivated at the current frame are
those that require high amount of energy exceeding a certain
threshold Eth given by the set:

Ω = {k ∈ {1, . . . ,K}|Eac
m,k(l) > Eth}. (25)

We deactivate the devices in Ω one by one iteratively and
we start by the ones that require higher transmit energy. At
each iteration, the device is deactivated only if the maximal
divergence constraint is satisfied so as not to degrade FL
performance.

VI. IMPACT OF MOBILITY

In this section, we investigate an applied case of occu-
pational health and safety by applying our proposed HFL
framework in order to minimize the health risks of the workers
in a construction site. In consequence, we choose a mobility
scenario [46] that reflects the workers equipped with smart de-
vices in a construction site. The dynamic interactions between
workers on the site makes the construction job one of the
most risky activities. The mobility of workers can be modeled
by Hidden Markov Models (HMMs) [46], which are powerful
statistical tools that represent the probability distributions over
observation. We can categorize the workers into three states,
i.e., static, normal, and risky, depending on their speed and
turning angle. Hence, the hidden states of the HMM may be
defined depending on the values of these two parameters, i.e.,
speed and turning angle. These values are provided in Table II.
Moreover, the step length of the workers is modeled by the
Gamma distribution and the turning angle is modeled by the
Von Mises distribution. Let us divide the network into micro-
cells with length µ. The average number of frames that a
normal worker moves from a micro-cell to another is given
by:

ψnml = d µ

TVnml
e, (26)

where d·e is the ceiling function, and Vnml is the average speed
of a normal worker. The average number of frames that a risky
worker moves from a micro-cell to another is given by:

ψrsk = d µ

TVrsk
e, (27)

where Vrsk is the average speed of a risky worker. It is clear
that the risky workers change their micro-cells more frequently
than the normal workers. Also, some workers when they pass
by certain places in the network (like office, meeting room,
coffee break ...), they remain static for a certain period.

Considering this mobility scenario, the mobile devices move
around and become far from their associated MECs. Hence,

TABLE II: Values of Hidden States.

State Speed (steps/mn) Turning angle (radians)
Static 0 angle < π/2

Normal 0 < steps ≤ 84 π/2 ≤ angle < π

Risky steps > 84 angle ≥ π

they require higher amounts of wireless transferred energy.
Indeed, performing fixed device association scheme when the
devices are moving involves an increase in the energy con-
sumption cost. Therefore, we need to design an adaptive device
association scheme taking into account devices mobility.

Algorithm 2 Dynamic HFL Device Association (DHDA)

1: for l = 1 : L do
2: if l mod ψrsk = 0 or l mod ψnrm = 0 then,
3: Update Γ the set of mobile devices that changed

their micro-cell during the current frame.
4: for k ∈ Γ do
5: ik ← 0, initialization
6: θmin ← θmax, initialization
7: for m = 1 : M do
8: if βm,k ≤ Rm then, verify if the mobile

device k is within the range of MEC m.
9: compute θ

10: if θ ≤ θmin then
11: ik ← m, select the MEC that has

the minimum divergence.
12: θmin ← θ
13: end if
14: end if
15: end for
16: if ik = 0 then, if the mobile device k is not

within the range of any MEC.
17: ik ← argminm=1..M βm,k, associate with

the closest MEC m∗.
18: Rm∗ ← βm∗,k, update the range of the

MEC m∗.
19: end if
20: χik,k ← 1
21: end for
22: end if
23: end for

We propose a heuristic dynamic device association strategy
for HFL over HetNets enabled by WET. We start by executing
the original device association algorithm H2RM presented in
section V. Then, we change the associated MECs of the normal
workers after each ψnml frames and for the risky workers
after each ψrsk frames. The mobile device k updates its new
associated MEC as follows. It finds first the new set of MECs
that have a range higher than its pathloss. We already defined
the range Rm of a MEC m as the pathloss of the farthest
associated device. Hence, being associated with one of these
MECs will not induce any supplementary energy cost. The
mobile device will choose the MEC having the minimum
divergence θ. If this device fails to find a MEC with suitable
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range, the closest one will be selected. The proposed Dynamic
HFL Device Association Algorithm (DHDA) is illustrated in
Algorithm 2.
To find the complexity of DHDA, we need to multiply the
computational complexity of the first for loop of H2RMA
by the number of times that we repeat association of mobile
device d Lψrsk

e. Hence, the complexity of DHDA is give by:

CDHDA = O(d L
ψrsk
eMK + L(2K +M)). (28)

VII. NUMERICAL RESULTS

In this section, we investigate the performance of our pro-
posed HFL framework under different network configurations.
The simulation settings are as follows: we positioned the CU
at the center of a circular macro-cell and uniformly distributed
the MECs and devices within the considered coverage. First,
we consider that devices are required to recognize digits
between 0 and 9, which can be simulated by training a
classification on MNIST dataset. In our simulation, we used
a deep learning model to train on the MNIST dataset. This
model is composed of two convolutional layers of 3x3 filters
and we chose Rectified Linear Unit (ReLU) as an activation
function. To downsize the resulting feature maps, we added
a max pooling layer, which output is flattened to be fed into
the subsequent fully connected layer. Finally, the last layer
is designed to generate the probabilities of the 10 classes.
We note that we used the dropout technique [47] to reduce
the overfitting and regularize the model. Furthermore, we
incorporated the information about the class weight in the
training process to mitigate the problem of imbalanced classes,
and we used simple Stochastic Gradient Descent (SGD) to
train the model and optimize the cross-entropy loss, throughout
20 training epochs. Next, we investigate CIFAR-10 (Canadian
Institute For Advanced Research) which is a well-known im-
age dataset that is commonly used to validate the performance
of machine learning and computer vision algorithms. The data
consist of 60000 color images of size 32x32 and 10 classes;
each class has 6000 images. The class labels are: horse, frog,
dog, cat, deer, bird, automobile, airplane, truck, and ship. The
data does not have overlap between classes, i.e. the classes are
mutually exclusive. We summarize the simulation parameters
used in this evaluation section in Table III.

A. Fixed Device Association without Scheduling

We start by investigating the performance of the proposed
HFL framework considering a static network and fixed device
association over time. In Fig. 4, we show the grid energy cost,
when varying the number of devices. Deriving the optimal
device association suffers from a high computation complexity.
Thus, we run our simulation using only two MECs in order
to establish the optimal solution as a baseline. Compared to
the optimal solution, we can see that H2RMA achieves a
good performance in terms of energy consumption cost, while
offering a much lower computation complexity. In Fig. 5,
we illustrate the grid energy cost incurred by our heuristic
compared to the random device association scheme, when
changing the number of devices K. Using a large number

TABLE III: Configuration of the HFL over HetNet environ-
ment in our experiments.

Symbol Description Value

Ncu

number of antennas at the
CU 128

M number of MECs 8

Nmec

number of antennas at each
MEC 16

K number of devices 20
L number of frames 50
C number of classes 10
Bmax max battery capacity 1000 J
Bk(0) initial battery level 200 J
ν path loss exponent 3.7
λ bandwidth 20 MHz
ϑ frequency of the CPU clock 109

ω number of CPU cycles 40
ς consumed energy coefficient 10−27

θmax maximal divergence 0.5
cell radius 200 m
circuit power per RF chain 30 dBm
noise power spectral density -174 dBm/Hz

3 4 5 6 7 8

0

500

1000

1500

2000

2500

3000

Fig. 4: Grid energy cost while varying the number of devices
K: comparison between optimal device association, random
association, and H2RMA (M = 2, Bk(0) = 10 J).

of devices, H2RMA presents a highly lower grid energy cost,
due to its adequate device association method. Fig. 6 depicts
the performance of our heuristic algorithm when varying the
number of MECs. When the number of MECs increases, the
cost of grid energy decreases, as different devices in the system
are surrounded by a larger set of MECs; hence, they have a
higher probability to be associated to closer MECs. Moreover,
we can see clearly, that our H2RMA algorithm outperforms the
random association scheme, for different numbers of MECs.

Fig. 7 presents the accuracy performance of H2RMA com-
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Fig. 5: Grid energy cost while varying the number of devices
K: comparison between H2RMA and random device associ-
ation scheme (M = 8, Bk(0) = 200 J).
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Fig. 6: Grid energy cost while varying the number of MECs
M : comparison between H2RMA and random device associ-
ation (K = 20, Bk(0) = 200 J).

pared to the random association scheme, when tested using
MNIST dataset. We can see that our algorithm converges
faster, owing to its efficient device association process that
minimizes the divergence. In Fig. 8, the accuracy performance
of H2RMA is evaluated, while considering CIFAR-10 dataset.
Similar to the MNIST dataset, our proposed device association
scheme performs well and outperforms the random device
association scheme in terms of test accuracy.

B. Fixed Device Association with Scheduling

We investigate now in Fig. 9 the impact of the proposed
device scheduling on the grid energy consumed by our system.
It is clear that we can save a significant amount of energy
while deactivating some devices that require a high amount
of wireless transferred energy for a certain number of frames.
Moreover, the proposed device scheduling scheme performs
very well compared to the random scheme, because only far
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Fig. 7: Test accuracy: comparison between H2RMA and
random device association scheme considering MNIST (K =
15,M = 3, C = 3).
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Fig. 8: Test accuracy: comparison between H2RMA and
random device association scheme considering CIFAR-10
(K = 15,M = 3, C = 2).

devices are being deactivated, while respecting the maximal
divergence constraint.

Fig. 10 depicts the performance of our device scheduling
heuristic when varying the number of MECs. We can save a
significant amount of grid energy specifically when the number
of MECs increases thanks to the efficient device scheduling
scheme.

Fig. 11 depicts the performance of our heuristic device
scheduling algorithm in terms of test accuracy considering
MNIST. It can be seen that when deactivating some devices
randomly, the test accuracy decreases. However, the proposed
heuristic device scheduling scheme allows to enhance the
convergence rate since only a subset of devices that respect
the divergence constraint is scheduled.
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Fig. 9: Grid energy cost while varying the number of devices
K: comparison between the proposed scheduling heuristic,
random device association and system scheduling all devices
(M = 8, Bk(0) = 200 J).
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Fig. 10: Grid energy cost while varying the number of MECs
M : comparison between the proposed scheduling heuristic,
random device association and system scheduling all devices
(K = 20, Bk(0) = 200 J).

C. Dynamic Device Association

Finally, we implement a mobility scenario for the devices
which is described in Section V. The mobility parameters
used in this simulation are illustrated in Table II. In Fig. 12,
we evaluate the cost of grid energy consumed by our HFL
framework, when considering the mobility scenario. Indeed,
the proposed dynamic device association algorithm allows
saving significant amount of energy because it allows us to
efficiently adapt the association of the mobile devices. Further-
more, the performance gap between dynamic and fixed device
association increases when the number of mobile devices in
the network becomes higher.

Fig. 13 shows the performance of the proposed HFL frame-
work in terms of convergence rate considering a mobility
scenario. The proposed dynamic device association scheme
ensures that mobile devices respect the maximal divergence
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Fig. 11: Test accuracy considering MNIST: comparison be-
tween the proposed scheduling heuristic, random device as-
sociation and system scheduling all devices (K = 15,M =
3, C = 3).
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Fig. 12: Grid energy cost while varying the number of devices
K considering a mobility scenario (M = 8, Bk(0) = 200 J).

constraints and hence achieve better convergence rate than the
fixed device association.

To summarize, the performance of our HFL framework is
evaluated by showing the energy-efficiency of the proposed
resource management approaches, in addition to the high
accuracy achieved under different network configurations and
using two well-known datasets, namely MNIST and CIFAR-
10. Moreover, we showed the efficiency of the proposed
dynamic device association considering a mobility scenario
in the network.

VIII. CONCLUSION

An energy-efficient HFL over HetNets with massive MIMO
wireless backhaul enabled by WET has been investigated
in this work. An optimization problem involving a grid en-
ergy consumption cost constrained by energy availability and
maximal divergence, have been developed. In addition, an
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Fig. 13: Test accuracy considering a mobility scenario and
MNIST dataset (K = 15,M = 3, C = 3).

optimal energy management has been derived. To achieve
this, we have formulated the main objective as a device
association optimization problem that we solved using BFS.
Because of the high complexity to get the optimal solution, we
have proposed an efficient device association heuristic, with
low computational complexity, namely H2RMA. Moreover, a
device scheduling strategy has been designed to save the grid
energy without deteriorating the learning accuracy. The impact
of mobility on FL performance has also been investigated by
developing an efficient dynamic device association scheme.
Our extensive experiments confirm the efficiency of our HFL
framework in terms of accuracy, convergence rate and grid
energy consumption, when evaluated under different network
configurations.

As a future work, we plan to develop an efficient cluster-
ing strategy based on reinforcement learning for HFL over
HetNets enabled by WET.
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