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Abstract—Heart disease is one of the leading causes of death
worldwide, and with early detection, mortality rates can be
reduced. Well-known studies have shown that the latest Artificial
Intelligence (AI) can be used to determine the risk of heart dis-
ease. However, existing studies did not consider dynamic scalabil-
ity to get the best performance from these AI models in case of an
increasing number of users. To solve this problem, we proposed
an Al-powered smart healthcare framework called HealthFaaS,
using the Internet of Things (IoT) and a Serverless Computing
environment to reduce heart disease-related deaths and prevent
financial losses by reducing misdiagnoses. HealthFaaS framework
collects health data from users via IoT devices and sends it to
Al models deployed on a Google Cloud Platform (GCP) based
serverless computing environment due to its advantages such
as dynamic scalability, less operational complexity, and a pay-
as-you-go pricing model. The performance of five different Al
models for heart disease risk detection is evaluated and compared
based on key parameters such as accuracy, precision, recall,
F-Score, and AUC. Experimental results demonstrate that the
LightGBM model gives the highest success in detecting heart
diseases with an accuracy rate of 91.80%. Further, we have
tested the performance of the HealthFaaS framework in terms
of Quality of Service (QoS) parameters such as throughput and
latency against the increasing number of users and compared
it with a non-serverless platform. In addition, we have also
evaluated the cold start latency using a serverless platform
which determined that the amount of memory and the software
language makes a direct impact on the cold start latency.

Index Terms—Artificial Intelligence, Machine Learning, Heart
Disease, Serverless Computing, Smart Healthcare, IoT

I. INTRODUCTION

The change in nutrition and physical activities brought about
by the modern lifestyle has led to an increase in many diseases,
the most important of which is heart disease. Heart disease is
a general term that includes many diseases of cardiovascular
origins, such as heart failure, heart defects, and heart attack
[1]. Death from heart disease is the most significant cause
of death in the UK and worldwide [2]. Recent attempts to
reduce obesity and increase awareness of the causes behind
heart disease have resulted in lower rates of heart disease, but
the heart disease rate still remains high. Figure 1 shows the
top four causes of death worldwide as published by the World
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Health Organization (WHO) [3] which shows that Ischemic
heart disease ranks is on top with 8.9 million deaths.

The most common complaint of patients with heart disease
is chest pain. As a result of Hematocrit, Electrocardiography
(ECG), and Thallium tests, a specialist makes a diagnosis
as to whether the patient has heart disease [1]. Therefore,
heart disease is difficult to detect with traditional methods
(physical examination, etc.). Indeed, it acts like a silent killer,
and patients are largely unaware they are being affected by
it. For this reason, it is essential to diagnose heart diseases
early and start treatment as soon as possible after detection.
In light of recent developments in the Internet of Things (IoT)
and Artificial Intelligence (AI) model techniques, studies that
make early diagnoses are likely to reduce the number of fatal
cases [4]. Therefore, there is a need to design new systems to
detect heart diseases using IoT and sensors.

A. Motivation and Our Contributions

Advances in Al have led to several promising developments
in smart healthcare systems. The cost of tests for the detection
of heart disease, combined with the misdiagnose of heart
disease, causes millions of pounds in financial loss in the
health sector [5]. Patient data can be collected using IoT
devices, and with the use of the latest Machine Learning
(ML) techniques, the risk of heart disease can be successfully
determined at an acceptable level [6]. Thus, using early and
accurate diagnosis can reduce deaths due to heart disease and
avoid unnecessary expenditures in health services. There is a
need to determine the best ML model to predict heart disease
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Fig. 1. Distribution of Causes of Death Worldwide (Millions) [3].



early based on patients’ health conditions. To achieve this,
it is necessary to identify the ML model with the highest
accuracy by comparing the performance of various latest
ML models that have been successfully demonstrated in the
literature [7]. To achieve this, we have selected Support Vector
Machine (SVM), Artificial Neural Network (ANN), eXtreme
Gradient Boosting (XGBoost), Gradient Boosting Machine
(GBM) and Light Gradient Boosting Machine (LightGBM)
models because another well known research work [1] has
shown that these models are most suitable for investigating the
development of environmental-related cardiovascular disease
and healthcare demand. In addition, the performance of these
models was compared based on accuracy, precision, recall, F-
Score and AUC, and it has been identified that LightGBM
outperformed with 91.8% accuracy.

Existing studies in disease detection with IoT need to
consider dynamic scalability and respond to the user request
with minimal latency and response time compared to non-
serverless computing. Innovative systems that will provide
high computational power in terms of scalability are needed
to meet multiple user demands at the same time, and process
data from various IoT devices [7]. We deployed HealthFaaS
using Google Cloud Platform (GCP)-Cloud Functions to build
a serverless platform, and used Heroku to create a non-
serverless platform and compared their performance. Perfor-
mance evaluation shows that GCP-Cloud Functions based
serverless platform has a 477 p/sec throughput value to 500
concurrent requests and a response rate of 84 ms, a four times
faster response rate and higher scalability than a non-serverless
platform. Finally, the cold start latency of five different ML
models has been evaluated for latency-sensitive IoT applica-
tions such as patient follow-up. Experimental results show that
the LightGBM model gives the least cold start latency with
1200 ms. Further, it has been determined that the amount of
memory (RAM) and the software language makes a direct
impact on the cold start latency.

The main contributions of this work are:

o To propose a new framework called HealthFaaS to reduce
the number of fatal cases by early detection of heart
diseases using ML/AI and IoT,

e To identify the biomedical markers with the highest
correlation that can be used to identify heart diseases for
medical practitioners with feature selection methods,

o To propose a model with advantages such as dynamic
scalability and a pay-as-you-go financial model to system
users using a serverless platform,

o To determine the most appropriate ML model for time-
sensitive IoT applications by measuring the cold start
delay caused by Serverless Computing,

« To identify factors affecting cold start latency that should
be considered when creating future IoT work environ-
ments using HealthFaaS.

The rest of the paper is structured as follows. Section II
presents the studies on the diagnosis of heart disease using the
dataset used in our study. Section III describes the proposed
methodology. Section IV presents the performance evaluations
and experimental results. Section V concludes the paper.

TABLE I
COMPARISON OF HEALTHFAAS WITH EXISTING WORKS.

[ Study i Mechanism | Scalability | ToT [ Serverless |
[8] KFFS X X X
[9] BayesNet X
[10] KNN X X X
[11] OMLR X X X
[12] Data Mining X X X
[13] GFS - LogisticBoost - C X X X
HealthFaaS LightGBM v v v

II. RELATED WORK

With the recent development of Al, there is a great interest
in research that detects diseases with ML models using IoT,
Fog, and Cloud Computing [14], [15]. In this section, we
examine the studies that determine the risk of heart disease
using ML models from the UCI Heart Disease dataset [16]
that we used in this work. In the first study proposed by
Polat and Gunes, using ML, datasets are transformed from
feature space to kernel space using Linear and Radial functions
[8]. The F-score is calculated for the ML models. Further,
they used the method called Kernel F-Score Feature Selection
(KFFS) in order not to negatively affect the accuracy rates
of ML models. Accordingly, their accuracy rate in detecting
the risk of heart disease is 83.70%. Spencer et al. proposed
using the chi-squared feature evaluator to identify certain
features in their work and use them to predict heart disease.
In their study, the BayesNet algorithm and chi-squared feature
evaluator combined achieved 85% accuracy in detecting heart
disease [9]. However, different feature groups sometimes give
conflicting results. In another study, Khourdifi and Bahaj used
quick feature selection to remove redundant variables from
the dataset before using ML models [10]. By optimizing
their models with the Fast Correlation-Based Feature Selection
(FCBF), Particle Swarm Optimization (PSO), and Ant Colony
Optimization (ACO), they achieved the highest performance
rates with the k-nearest neighbors (KNN) algorithm. In another
study, Optimal Multi-nom Logistic Regression (OMLR) was
used to determine the severity of the state of the heart
[11]. This has yielded an accuracy of 92%. In some studies,
combining different models has tried to increase the prediction
accuracy for determining the risk of heart disease. One of
these studies in the literature uses more than one method
using Data Mining proposed by Tarawneh et al. [12]. In this
work, an accuracy rate of 89.2% has been achieved. In one
of the recent studies, it is a heart disease detection study
using WEKA and KEEL (Knowledge Extraction based on
Evolutionary Learning) open source tools. Another study [13]
combines Principal Component Analysis (PCA) and Fuzzy
logic, the accuracy rate was increased by decreasing the feature
size in the dataset . With the hybrid models used in the
study, up to 94% accuracy rate has been achieved. Vilela et
al. proposed a Fog Computing-based study for real-time and
latency-sensitive healthcare applications [17]. Using IoT and
some medical sensors, the authors tested energy consumption
and delay metrics separately in cloud and fog environments.



Since patients’ health data are analyzed locally in Fog Com-
puting, it provided advantages such as data security, latency,
and network usage compared to the cloud.

Table I shows the comparison of the proposed work (Health-
FaaS) with existing works. As far as we know, no heart disease
detection studies have been conducted which uses IoT with
Serverless Computing and Al in a single framework. None
of the other studies focused on obtaining biomedical markers
from users. This study can instantly receive data from users
through IoT/wearable devices. In addition, previous research
has focused only on the success of detecting heart disease
with ML. We expanded this scope and deployed ML models
on Serverless Computing. Thus, instant data received from
users are sent to the ML model on the server. It is proposed
to start the treatment process by sending information to health
centres in case of disease detection using HealthFaaS. In this
way, savings to the tune of millions of pounds in expenditures
and heart disease-based deaths are expected to decrease.

III. METHODOLOGY

This section discusses the dataset and defines the biomed-
ical markers. Then, the general working mechanism of the
proposed system will be examined. Finally, information about
the serverless platform used in HealthFaaS will be given, and
the performance evaluation metrics of the serverless platform
will be explained.

A. Dataset and Biomedical Markers

The dataset used in this work has been taken from the
UCI ML Repository [16]. This dataset contains 13 biomedical
markers currently known to be important in the development of
heart disease. These biomedical markers are as follows: Age:
Represents the age of the patient. Sex: Represents the sex of
the patient. 1 indicates that the patient is male, O indicates
that the patient is female. CP: Represents whether the patient
has chest pain. It indicates that there is chest pain for 1
and no chest pain for 0. RestBP: Indicates the resting blood
pressure value of the patient. Chol: It represents the patient’s
cholesterol value. FBS: Represents The Fasting Blood Sugar
level of the person. It is denoted by 1 for values greater than
120 mg/dl, and O for smaller values. rest ECG: Represents the
wave pulse for three different levels. HeartBeat: Represents
the maximum heart rate. Exang: Represents Exercise-induced
Angina. OldPeak: Depression includes exercise relative to
rest. Slope: The condition of the person during the peak
exercise segment. CA: The number of blood vessels colored
by fluoroscopy. Thal: Four different values as results of
Thallium tests. Target: It represents whether the patient has
heart disease or not. It can only have two values: 1 represents
heart disease and O represents non heartdisease situation.

B. HealthFaaS: A System Architecture

Figure 2 shows the HealthFaaS Framework. This study as-
sumes that RestBP, Chol, FBS, rest ECG, HeartBeat, OldPeak,
Slope, CA, Thal biomedical markers are obtained from users
via sensors in wearable devices. Other tokens are assumed

to be entered manually. Raspberry Pi-4, an IoT device, was
used to realize this scenario. Users’ health data are sent to the
serverless platform via an API and then sent to the previously
deployed ML model. For the server-side, GCP-based Cloud
Functions which is a serverless platform is used [18]. The ML
model deployed to the serverless platform has been trained
with the previously given dataset, and as this dataset grows,
the success rate can be increased by retraining the ML model
in the cloud. Biomedical markers belonging to the user coming
to the serverless platform if a heart disease is detected due to
the estimation made in the ML model, information is sent to
the nearest health centre, and the user’s treatment is started. In
this way, it is planned to prevent deaths and financial losses
due to heart disease by starting treatment with early diagnosis.
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Fig. 2. HealthFaaS Framework.
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Fig. 3. HealthFaaS System Architecture.

The system architecture of the HealthFaas Framework is
explained in Figure 3. HealthFaas consists of three different
layers. In the Sensor Layer, biomedical markers are taken
from the users and sent to the [oT Layer. Biomedical markers
collected in IoT Layer are transmitted to Cloud Layer via
API using secure TLS protocol [19]. The Automated Scaling
Listener (1) follows the scalability policy predetermined by
the cloud provider. When the number of requests from the
IoT layer exceeds a certain threshold, it signals resource
replication and starts the scalability process (2). The virtual
server host divides the physical server into multiple servers
using virtualization software. The primary purpose here is to
use the server efficiently. Automated scaling listener continues



to increase or decrease the resources in the cloud according
to the demand from the IoT layer.

Algorithm 1 shows the pseudo-code of the HealthFaaS
Operating Mechanism. The biomedical markers (5B;s) taken
from the patients via the sensor are sent to the [oT layer. API
is used to provide communication between IoT and Cloud
Layer. Bj; collected in the IoT Layer is sent to the cloud
layer asynchronously with a request. B are given to the ML
model that was previously deployed on a serverless platform,
and it is expected to return a delta (A) as a result of prediction
from the ML model. If A heart disease detection status equals
the heart disease Dp, the patient’s information is sent to the
nearest health institute. If A is equal to the absence of heart
disease Np, no action is taken. Only the patient’s health data
is stored in the database to be followed by a specialist later.
The HealthFaaS mechanism has no loops and only an if-else
condition. Therefore, the time complexity is O(1).

Algorithm 1 The HealthFaaS Operating Mechanism
1: Input: Request
2: Output: Response

Variables:

3: B)s + Biomedical Markers
4: A < Prediction Result
5: Dp < Heart Disease

6: Np < No Heart Disease

7

8

9

: R < Request
: T}, < Target Path
: Begin
10: ¢ IoT Layer
11: R = Api.called()
12: R.Path = T,
13: R = proxy.call(R)

14: async{

15: event = TransactionInfoEvent(
16: Timestamp: time.Now()

17: Biomedical Markers: Z By}
18: © Cloud Layer

19: if A==1:

20: Return Dp

21: else:

22: Return Np

23: End

C. The Serverless Computing Paradigm

Cloud computing technologies are becoming increasingly
common to meet the need for high processing power and
extensive storage in IoT applications [7]. Cloud computing
consists of three fundamental service models: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS), and Func-
tion as a Service (FaaS) [20]. In the IaaS service model,
a virtual server is created, and the cloud infrastructure and
virtual server resources are allocated to the customer [21].
The customer has to deal with the Operating System and
runtime management. In the PaaS service model, since the
cloud provider provides the system management, the customer

only manages applications and data [22]. According to laaS,
infrastructure management is further abstracted. In Serverless
Computing or FaaS (Function-as-a-Service), the customer is
only responsible for the application’s functionality [23], [24].
In other words, infrastructure management is more abstracted
from the customer than the other two models. The differences
between serverless computing and traditional cloud (IaaS and
PaaS) can be summarized as follows:

1) Server management and infrastructure issues are entirely
taken care of by the service provider: In serverless computing,
customers are only concerned with the application’s function-
ality, unlike IaaS and PaaS [25]. This way, they can spend
most of their time developing code.

2) Serverless computing uses a pay-as-you-go financial
model: Customers only pay for the processing power and space
they use. It means that, unlike IaaS and PaaS models, no fees
are charged to customers during server idle periods [26].

3) With dynamic scalability, resources are automatically
scaled if customers need them: Unlike the IaaS and PaaS
models, when using serverless computing, customers do not
have to anticipate the storage and processing power that will
be needed [23].

D. Serverless Computing Evaluation Metrics

The performance of serverless computing platform is eval-
uated using following three metrics:

1) Throughput: The average number of bits per second suc-
cessfully delivered on the communication channel (bit/s) [24].
In communications, system designers often refer to throughput
when evaluating the performance of a communications system.

2) Average Response Rate (ARR): It is the average of the
time between the results of the requests sent from the client
to the server and the time it takes to reach the client again
[27]. It is a crucial metric for understanding the performance
of the cloud service model used.

3) The Cold Start Latency: In serverless computing, the
resources allocated for the execution of the function and the
container are terminated upon the end of the function. In
this way, no fee is paid for unused resources. This feature
is called scaling to zero in serverless computing [28]. When
the request comes again, a certain time is required for re-
assigning resources and creating containers which cause delays
in applications. This delay is called cold start [29]. Cold start
latency can be a problem for time-sensitive IoT applications
such as patient monitoring and autonomous vehicles [30].

IV. PERFORMANCE EVALUATION

This section will evaluate the performance of various ML
models using metrics such as accuracy, precision, recall, F-
Score, and AUC to find out the model with the most successful
prediction. Then we will find the effect values of the Biomed-
ical Markers on our ML model and rank them in order of
importance. In this way, we will determine which parameters
healthcare professionals should pay more attention for heart
disease detection studies. We will compare the throughput
and average response rate metrics to show the superiority of
the serverless computing over non-serverless. Moreover, in



TABLE I
COMPARISON OF MACHINE LEARNING MODELS.

Models Accuracy | Precision | Recall | F-Score Auc
GBM 83.60 89.65 78.78 83.87 94.04
ANN 85.24 85.29 87.87 86.56 81.01

XGBOOST 86.88 90.32 84.84 87.50 87.07
SVM 88.52 88.23 90.90 89.55 88.31
LightGBM 91.80 96.66 87.87 92.06 92.15

the last subsection, we will compare the cold start latency
of ML models in serverless computing for time-sensitive IoT
applications.Then we will observe the effect of cold start
on Quality of Service (QoS) parameters. Finally, we will
determine the factors affecting cold start while creating a
working environment in serverless computing. In this way, we
will try to reduce the cold start latency and its impact on in
our application.

A. Machine Learning based Performance Analysis

By adjusting some hyperparameters of our ML algorithms
that we used in our study, it has been ensured that they are
operated in the most optimum way. These are as follows:
e GBM: The booster = ’gbtree’, The learning rate =
0.300000012, The max_depth = 6, and The n_estimators
= 100.

o« ANN: The hidden_layer_sizes =
0.0001, and The activation = ’relu’.

e XGBoost: The booster = gbtree’, The learning_rate =
0.300000012, The max_depth = 6,and The n_estimators
= 100.

e SVM: The kernels = ’linear’, The C hyperparameter =
1.0.

o LightGBM: The boosting_type = ’goss’, The max_depth
= -1, and The learning_rate = 0.1.

100 , The alpha =

Table II shows the Accuracy, Precision, Recall, F-Score,
and Auc values of five different ML models, and experimental
results show that our model with the highest performance rate
is LightGBM with 91.80% accuracy, and our model with the
lowest performance rate is GBM with 83.60% accuracy. Since
it will be sufficient to use only one ML model in the proposed
study, LightGBM is the most appropriate model. Algorithms
using Decision Trees can use one of two strategies as Level-
Wise or Leaf-Wise. In the Level-Wise strategy, the balance of
the tree is maintained while the tree grows. The Leaf-Wise
strategy also continues from the leaves, reducing the division
process loss. It differs from other boosting algorithms by using
the LightGBM Leaf-Wise strategy. In this way, LightGBM has
less error rate and learns faster.

B. The Impact of Biomedical Markers on ML Models

Before the feature selection process, the correlation of the
variables in the dataset with the target variable was examined
by creating a correlation matrix. Accordingly, "chol" and "fbs"
variables were excluded from the dataset because they had low
correlation. After this process, the correlations of the variables
with each other were examined and since the correlation

TABLE III
CLASSIFICATIONS ON A DIFFERENT NUMBER OF FEATURES.

Feature Number | Accuracy (%) | Precision (%)
11 81.96 82.90
9 83.60 83.71
7 77.37 76.75

value was "0", no additional variables were removed from
the dataset."Mutual Information", "Pearson Correlation"”, and
"Anova" models as feature selection methods were used in
this study as they were successful in disease detection studies
using ML in the literature [31]. It was determined that the
feature selection method with the highest accuracy rate for our
dataset was "Anova".After finding the order of importance of
the variables using the "Anova" feature selection method, to
find the feature set with the highest performance, 11, 9, and
7 features were selected, respectively, and ML models were
established. Table III shows the accuracy and precision of ML
models built based on these feature subsets. Accordingly, the
highest accuracy and precision is achieved with the ML model
established by creating the first 9 features with the highest
importance. In addition, these parameters used in heart disease
detection studies can help to better understand the risk factors
associated with heart disease.

C. Performance Evaluation for Serverless Computing

Thanks to its dynamic scalability feature, serverless com-
puting can respond to more users with higher throughput and a
shorter average response rate (ARR) than non-serverless com-
puting. To demonstrate this, we used GCP-Cloud Functions
as a serverless computing platform and Heroku as a non-
serverless platform. Then we deployed ML models on both
platforms and tested their performance on both platforms. The
workload is created via Apache JMeter using the UCI ML
Repository dataset in the HealthFaaS framework. The number
of Concurrent Requests (NCR) was sent at 100, 200, 300, 500,
and 1000 per second to create the workload. Here, the number
of concurrent requests represents the number of users using the
system simultaneously. Accordingly, the dataset variables are
sent to the ML model on the server with the changing NCR.
Moreover, the throughput and average response rate (ARR)
given to this NCR are calculated. As the number of concurrent
users increases, concurrent requests will also increase. There-
fore, the throughput values also increase with the increase in
the number of users accessing the platforms through an APIL.
Figure 4 shows the calculated throughput values against the
NCR. Accordingly, the throughput obtained in 500 concurrent
requests reaches the maximum value for GCP-Cloud Functions
and Heroku. Conflicts that arise when accessing the shared
resource’s disk storage, cache, and memory are called resource
contention [32]. It was observed that the throughput value
decreased after 500 NCR on both platforms due to the resource
contention in the hardware resources. It has been noted that
the throughput of GCP-Cloud Functions is much higher than
the Heroku platform because GCP-Cloud Functions offers
scalable services since it uses the FaaS service model of
cloud computing. Figure 5 shows the ARR values from the



platforms against the NCR. As it can be seen, GCP-Cloud
Functions can respond much faster than Heroku. Response
time performance is a critical evaluation criterion for time-
sensitive IoT applications. With the increase in the NCR
in GCP-Cloud Functions, the response time is expected to
increase. However, 100 NCR have a higher response rate than
200 NCR which is related to cold start latency.
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Fig. 4. Serverless and Non-Serverless Comparison for Throughput.
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In HealthFaaS, we measured the latency times on the client-
side by sending two 100 NCR with J-Meter to determine the
cold start latency values for five different ML models that
we evaluated before. Cold start latency values are found by
subtracting the response time calculated for the first request
from the response time calculated for the second request.
Figure 6 shows the cold start latency values calculated for five
different ML models. Accordingly, the model with the highest
cold start latency was SVM with 1538 ms, and the model with
the least cold start latency was LGBM with 1124 ms. There
are two types of scaling, Horizontal and Vertical Scaling,
to meet the increasing traffic demands [20]. In Horizontal
Scaling, more devices are added to the infrastructure, and in
Vertical Scaling, more processing power is added to a server.
When Fig. 4 is examined carefully, it can be said that the
resources are scaled horizontally in direct proportion to the
increasing NCR. When the number of requests to the serverless
platform exceeds a certain threshold, the resources will be
scaled horizontally to meet the increasing traffic demands, and
this will cause a new cold start latency like in Fig 5. Although
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Fig. 6. The Cold Start Latency for M1 Models.

these latency durations are still a problem for time-sensitive
scenarios, the academic community continues to work on cold
start latency. In the last experiment, we identified the factors
that affect cold start latency. In a serverless environment to
be created by considering these factors, cold start latency
can be decreased as much as possible. We created three
different serverless computing environments using different
ram amounts and software languages. Further, the same "hello
world" function in these three environments were created and
sent two consecutive requests. Figure 7 shows the result of the
experiment. Accordingly, factors such as the amount of RAM
(main memory) allocated for the function and the software
language used to affect the cold start latency time.
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V. CONCLUSIONS AND FUTURE WORK

With the promising developments in Al, we can see its
applications in every aspect of our lives now. In recent years,
the scientific community has resorted to Al to diagnose the
disease. By accelerating the treatment process with early
diagnosis, both the lives of patients can be saved and a
significant reduction in expenditures for the health system can
be achieved. In this paper, a new system called HealthFaaS
has been proposed by combining the IoT and Serverless
Computing technology that detects heart disease in patients
using ML models and identified that LightGBM is the best
model with 91.80% accuracy. With HealthFaaS, possible heart
disease will be diagnosed in users as early as possible and the
nearest health institution will be informed to save life. This
would reduce the number of fatalities with the advantage of
early diagnosis and a reduction in health expenditures. It is
assumed that wearable devices are to be used to obtain health
data from users. Thus, users’ data can be followed instantly.
Our work is deployed on the GCP - Cloud Functions due to its
scalability feature. In this way, as the number of users using the
system increases, the required resources and processing power
can be easily provided in the cloud. In the future, HealthFaaS
can be extended by incorporating the features related to
security and user privacy to increase patients’ confidence in
the system. We have developed HealthFaaS as a benchmark
through these Al models and future researchers can use other
Al-based methodologies on edge for training and testing on
prediction factors.
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