
ar
X

iv
:2

21
0.

09
80

8v
2

 [
cs

.I
T

]
 3

0
M

ay
 2

02
3

Distributed Inference over Linear Models using

Alternating Gaussian Belief Propagation
Mirsad Cosovic, Member, IEEE, Dragisa Miskovic, Member, IEEE, Muhamed Delalic, Member, IEEE, Darijo

Raca, Member, IEEE, Dejan Vukobratovic, Senior Member, IEEE

Abstract—We consider the problem of maximum likelihood
estimation in linear models represented by factor graphs and
solved via the Gaussian belief propagation algorithm. Motivated
by massive internet of things (IoT) networks and edge computing,
we set the above problem in a clustered scenario, where the factor
graph is divided into clusters and assigned for processing in a
distributed fashion across a number of edge computing nodes.
For these scenarios, we show that an alternating Gaussian belief
propagation (AGBP) algorithm that alternates between inter- and
intra-cluster iterations, demonstrates superior performance in
terms of convergence properties compared to the existing solu-
tions in the literature. We present a comprehensive framework
and introduce appropriate metrics to analyse AGBP algorithm
across a wide range of linear models characterised by symmetric
and non-symmetric, square, and rectangular matrices. We extend
the analysis to the case of dynamic linear models by introducing
dynamic arrival of new data over time. Using a combination of
analytical and extensive numerical results, we show the efficiency
and scalability of AGBP algorithm, making it a suitable solution
for large-scale inference in massive IoT networks.

Index Terms—Distributed Systems, Linear Models, Factor
Graphs, Gaussian Belief Propagation, IoT Networks

I. INTRODUCTION

Recent years have witnessed breakthroughs in embedded

hardware technologies, paving the way for the emergence

of powerful, low-cost and low-power, multi-functional sen-

sor devices. These devices have capability of acquiring and

processing information obtained from the environment in its

close proximity. The sensed information about the environment

can be propagated from almost anywhere via, e.g., massive

machine-type communication service of the fifth-generation

(5G) mobile cellular networks to the edge or cloud computing

nodes for data processing, thus establishing massive internet

of things (IoT) networks [1]. The ubiquitous massive IoT net-

works support the creation of a large-scale, cost-effective, and

spatially interconnected smart environments empowered by big

data analysis [2]. The rapid development of 5G and beyond-5G

networks builds the foundation of a unified infrastructure for

M. Cosovic is with Faculty of Electrical Engineering, University of Sara-
jevo, Bosnia and Herzegovina, and the Institute for Artificial Intelligence
Research and Development of Serbia (e-mail: mcosovic@etf.unsa.ba); D.
Miskovic is with the Institute for Artificial Intelligence Research and Develop-
ment of Serbia (e-mail: dragisa.miskovic@ivi.ac.rs); M. Delalic and D. Raca
are with Faculty of Electrical Engineering, University of Sarajevo, Bosnia
and Herzegovina (e-mail: muha.delalic@gmail.com, draca@etf.unsa.ba); D.
Vukobratovic is with Faculty of Technical Sciences, University of Novi Sad,
Serbia, (email: dejanv@uns.ac.rs).

This paper has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement number 856967.

large-scale information acquisition, communication, storage,

and computing [3].

The distinctive feature of massive IoT networks is the avail-

ability of vast information distributed across geographically

distant areas, posing limitations for its timely and efficient

sharing and joint processing. For this reason, processing

this information in a centralised manner by transmitting and

processing all the data at one place, represents an impractical

approach in practice [4]. Storing and processing data at one

place has a serious implication on data privacy and secu-

rity, issues traditionally overlooked in a centralised approach.

One approach to lessen these concerns is to process data

in decentralised manner, where each sensor preprocess data

before sending the modified data to the central entity for

final decision achieving good real-time performances [5], [6].

With proliferation of edge computing capacities, a distributed

processing approach is emerging as a promising and viable

alternative. Distributed edge computing can overcome the

issues associated with the centralised approach, conforming

with the distributed nature of massive IoT networks [7].

Processing information in massive IoT networks often

represents an instance of statistical estimation problems in

large-scale systems of random variables. The maximum like-

lihood estimation principle underpins majority of practical

estimators [8, Sec. 7.1]. In the literature, numerous examples

exist including channel [9] and position estimation [10] in

communication networks, state estimation in electric power

systems [3], and device tracking using mobile sensors [11].

Matrix decomposition techniques such as lower–upper or

orthogonal factorisation [12] have been recognised as the foun-

dations for solving linear models using maximum likelihood

estimation in both centralized and distributed manner [13]. For

these techniques, the time complexity increases exponentially

with the number of state variables, making it impractical for

large-scale inference.

To overcome this drawback, iterative algorithms provide a

feasible alternative for large-scale inference [14]. Alternatively

to well-known algorithms such as Jacobi and Gauss-Seidel,

one can apply an inference algorithms in graphical models,

such as the Gaussian belief propagation (GBP) algorithm [15],

known to converge more rapidly for large-scale systems [16],

[17]. Another advantage of using the GBP algorithm is its

easy distribution across disjoint computation nodes, where

disjoint parts of a graphical model are processed by a set of

interconnected computation nodes (e.g., edge computing nodes

in 5G network), while maintaining the complexity that scales

linearly per iteration [18], [19].

http://arxiv.org/abs/2210.09808v2

Most existing solutions that leverage the GBP algo-

rithm [20]–[23] in a distributed setting are based on syn-

chronous scheduling of GBP iterations among computing

nodes (clusters), thus relying on synchronous message ex-

change between disjoint clusters. In this paper, we challenge

the efficiency of such an approach, and propose a novel

alternating GBP (AGBP) algorithm for the distributed settings.

In particular, AGBP employs alternating scheduling, where

number of intra-cluster iterations (i.e., synchronous message

exchanges within each of the clusters) are done interchange-

ably with a number of inter-cluster iterations (synchronous

message exchanges between the clusters). Using analytical

results and extensive numerical examples, we argue that

alternating scheduling is an efficient approach for solving

large-scale inference problems in massive IoT networks under

communication constraints.

The impact of our work reflects in two key outcomes:

improved convergence rate and improved probability of con-

vergence for the AGBP as compared to the traditional syn-

chronous GBP. The contributions of this work are summarised

as follows:

• We show a significant improvement in the inference time

of the AGBP algorithm compared to the synchronous

GBP.

• We show through experiments that the convergence rate

is independent of number of clusters and is mainly driven

by the sparsity of the clusters a factor graph is segmented

into.

• Applying AGBP in a dynamic scenario, where new

observations and state estimates are evolved continuously

over time, causes additional reduction of iterations until

convergence.

• In scenarios where both alternating and synchronous GBP

algorithms fail to converge, applying damping technique

(see Appendix D for details) is more beneficial for the

AGBP algorithm.

In summary, the above remarks make the AGBP algorithm

a scalable and efficient method for distributed inference in

massive IoT networks, in particular for the cases with dynamic

arrival of new observations over time.

The rest of the paper is organised as follows. Section

II establishes the theoretical basis and presents the GBP

background. In Section III, we apply the GBP algorithm to the

distributed architecture, with a focus on reducing communica-

tion delay by introducing an alternating message scheduling,

which forms the core of the AGBP algorithm. Section IV

presents the numerical results of various testing scenarios, and

Section V outlines the key findings and conclusions of the

paper.

II. PROBABILISTIC INFERENCE IN LINEAR MODELS

In this section, we review the GBP algorithm to solve a

generic linear model [15]. We set the solution of a probabilistic

inference problem using GBP in the context of solving a

maximum likelihood estimation problem. Further, to efficiently

solve these models under non-stationary conditions, we expand

our setup to a dynamic GBP algorithm.

A. Maximum Likelihood Estimation

We consider a linear model described by a noisy system of

linear equations:

z = h(x) + u, (1)

where x = [x1, . . . , xn]
T represents a vector of state vari-

ables, z = [z1, . . . , zm]T is an observation vector, while

u = [u1, . . . , um]T is a vector of uncorrelated observa-

tion errors, where ui ∼ N (0, vi) follows a zero-mean

Gaussian distribution with variance vi. The vector h(x) =
[h1(X1), . . . , hm(Xm)]T comprises a collection of m linear

equations, where Xi ⊆ X , i = 1, . . . ,m, represents a subset

of the set of state variables X = {x1, . . . , xn}. Under these

conditions, the probability density function associated with the

i-th observation can be written as follows:

N (zi|Xi, vi) =
1√
2πvi

exp

{

− [zi − hi(Xi)]
2

2vi

}

. (2)

The maximum likelihood solution or estimate can be ob-

tained by solving the following optimisation problem:

x̂ = argmax
x

N (z|x,Σ) = argmax
x

m
∏

i=1

N (zi|Xi, vi), (3)

where the positive definite covariance matrix Σ ∈ R
m×m

contains the corresponding variances as diagonal entries. Note

that each entry of estimate x̂ represents a mean of the marginal

likelihood (distribution) of the corresponding variable from the

set X , thus it can be also obtained via efficient marginalisation

using GBP algorithm (see Section II-B).

In many technical fields such as statistics, signal processing,

and control theory, linear models (1) are typically overdeter-

mined, with m ≥ n, written in matrix form:

z = Hx+ u, (4)

where the coefficient matrix H ∈ R
m×n has a full column

rank. Then, starting from (3), the maximum likelihood solution

can be obtained by solving the weighted least-squares equation

[8, Sec. 7.8]:

x̂ = (HTΣ−1H)−1HTΣ−1z. (5)

We focus on a fixed and static linear models (4), where the i-
th sensor provides an observation zi modeled as N (zi|Xi, vi),
defined in (2). In addition to static scenarios, we also analyse

dynamic linear models in which the observation value zi
and the corresponding variance vi change their values in

discrete time instances. The described dynamic scenario can

be solved at each time instance using either (5), or applying the

sliding-window recursive least-squares algorithm with forget-

ting factors [24]. The former approach represents an inefficient

method because the system has to be solved from scratch

at each time instance, while the latter approach efficiently

solves dynamical systems, recursively updating the estimate

x̂ according to new data.

B. Gaussian Belief Propagation

The locality of sensor observations implies sensing data in

its close proximity, allowing likelihood function N (z|x,Σ) to

be factorised in such a way that every function N (zi|Xi, vi)
contains small subsets of state variables Xi. The resulting

linear model has the property of sparsity, where each sensor

observes a function hi(Xi) of a small number of state vari-

ables Xi. This fact motivates solving the maximum likelihood

estimation (3) for both static and dynamic scenarios in a

distributed framework in a scalable and efficient way using

the GBP algorithm. The GBP algorithm efficiently computes

the marginal distributions of the state variables from the set X .

We use graphical models called factor graphs to represent the

linear model (4), while we use the GBP algorithm to obtain

a distributed solution of the optimisation problem (3). The

factor graph is a bipartite graph that describes the structure

of factorisation (3) using a graph-based representation of

probability density functions using variable and factor nodes

connected by edges [25, Ch. 8]. This case is widely applicable

to many real-world scenarios, benefiting from the fact that

all mathematical operations during GBP iterations result in

Gaussian distributions.

Applying the GBP algorithm to linear models (4) requires

forming a factor graph with a structure consisting of the set

of factor nodes F = {f1, . . . , fm}, where each factor node fi
represents a local function N (zi|Xi, vi), connecting the set of

variable nodes X . The factor node fi connects to the variable

node xj if and only if xj ∈ Xi [26]. The set of factor nodes F
can be divided according to the degree of the factor node fi
defined by deg(fi) = |Xi|. We define the set of branch factor

nodes B, where fi ∈ B if deg(fi) > 1, and the set of leaf

factor nodes L, where fi ∈ L if deg(fi) = 1. Observing the

matrix H leads to another interpretation of the factor graph,

where each row of the matrix H corresponds to one factor

node, while the columns define the variable nodes. A factor

node connects to a variable node if and only if the correspond-

ing coefficient of the matrix row is nonzero. Furthermore, if the

i-th row contains only one nonzero element, the corresponding

row defines the leaf factor node fi ∈ L, otherwise the row

defines the branch factor node fi ∈ B.

In general, the GBP algorithm passes two types of messages

along the edges of the factor graph:

• a variable node xj ∈ X to a factor node fi ∈ B message

µxj→fi(xj), and

• a factor node fi ∈ F to a variable node xj ∈ X message

µfi→xj
(xj).

In GBP algorithm, both variable and factor nodes in a factor

graph process incoming messages and calculate outgoing

messages, where an output message on any edge depends

on incoming messages from all other edges connected to a

particular node. Details of implementation of GBP algorithm

including message construction and computation can be found

in Appendix A. For most of practical applications, factor graph

representation includes cycles, requiring use of a loopy GBP.

Loopy GBP is an iterative algorithm, with the iteration index

k = {0, 1, . . .}, requiring a message-passing scheduling. The

commonly used message-passing scheduler is the synchronous

scheduling [27], where messages from variable to factor nodes

µx = [µxj→fi(xj)], fi ∈ B, xj ∈ X , and from factor to

variable nodes µf = [µfi→xj
(xj)], fi ∈ B, xj ∈ X , are

updated in parallel in respective half-iterations1. Note that the

messages from leaf factor nodes µfi→xj
(xj), fi ∈ L, xj ∈ X

remain constant in all iterations k.

The synchronous GBP, running in the centralised frame-

work, starts with the initial values of factor node to variable

node messages µ
(0)
f . The first iteration k = 1 proceeds with

the calculation of the messages from the variable nodes to the

factor nodes µ
(1)
x , followed by a calculation of the messages

from the factor nodes to the variable nodes µ
(1)
f . At the end of

the first iteration, the GBP produces its first estimate x̂(1). The

time required for the calculation of the estimates x̂ consists

of variable initialisation duration, duration of variable-node

processing τx, and the duration of factor-node processing τf .

Assuming that the initialisation duration is negligible, GBP

produces an estimate x̂(ν) that satisfies a given convergence

condition (e.g., that x̂(ν) is sufficiently close the exact solution

x̂ under a given estimation accuracy metric) after k = ν
iterations at the time instant ντm, τm = τx+τf . It is important

to note that the computation time τx results from evaluating

(18) and (24), whereas the time τf is determined by (21).

III. DISTRIBUTED PROBABILISTIC INFERENCE IN THE

LINEAR MODELS

For massive IoT networks, the resulting system could be

segmented and allocated to different clusters C = {c1, . . . , cs},

as shown in Fig. 1. The segmentation can be a result of either

the geographical distance or the specific operational require-

ments of different entities that only utilise certain parts of the

IoT network. An example of such a large-scale system com-

prising massive IoT network and distributed processing across

a large deployment of 5G and beyond-5G radio access network

and edge computing nodes are various smart grid applications

(see [3] and references therein). Emerging applications also

include a number of 5G and beyond-5G distributed network

functions such as device localisation, handover management,

radio resource and energy management and many others [28].

cluster 1ccluster 1c

iccluster

sccluster

IoT Device (tie factor node)

State Variable

Radio Access Network/Edge Computing
Node

.
.
.

.
.

.

IoT Device (internal factor node)

Fig. 1. The architecture of a distributed IoT network supported by both radio
access network and edge computing nodes.

1If necessary, to denote a matrix A or a vector a, we write A = [aij] or
a = [ai], where aij and ai represent generic elements.

Clustering allows running GBP in distributed fashion on a

multi-core computing platform in a single physical node, or

to run subgraphs at different and physically separated physical

nodes, mutually inter-connected via a communication network.

In the following, we consider the latter, and adopt the GBP

message scheduling tailored to the distributed architecture. We

proceed by outlining the methodology for graph clustering and

distributed message scheduling, taking into account commu-

nication constraints between clusters.

A. Factor Graph Clustering

Factor graph representation allows us to flexibly distribute

architecture given in Fig. 1 and defined by (4) over the set of

clusters C. Each IoT device gathers and observes particular

data of interest. This data is a function of state variables

positioned in a close proximity of IoT device. The goal of the

inference process over the factor graph is to estimate the values

of these state variables. In the factor graph representation,

each IoT device is associated with a factor node, and each

state variable with a variable node. Hence, each cluster ci is a

connected subgraph induced from a disjoint subset of variable

nodes of the original factor graph Xci ⊂ X , as illustrated

in Fig. 2. As a result, we obtain the set of internal factor

nodes I ⊂ F , and the set of tie factor nodes T ⊂ B, where

F = {I, T }. Internal factor nodes from the set Ici ⊂ I,

are only associated with the cluster ci, connecting exclusively

variable nodes from the set Xci . In contrast, tie factor nodes

from the set Tci ⊂ T connect variable nodes from the set Xci

to the variable nodes from the set Xcj , ∀cj , that belong to

clusters cj ∈ C \ ci.

.

iccluster cluster 1c

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

sccluster

Fig. 2. The factor graph allocated to different clusters with internal factor
nodes (purple squares) and tie factor nodes (orange squares).

In the distributed framework, the linear models (4) can be

represented as follows:










Hc1 Hc1,c2 . . . Hc1,cs

Hc2,c1 Hc2 . . . Hc2,cs

...

Hcs,c1 Hcs,c2 . . . Hcs





















xc1

xc2

...

xcs











+











uc1

uc2

...

ucs











=











zc1
zc2

...

zcs











, (6)

where each cluster ci is defined by the internal matrix Hci ∈
R

mci
×nci and tie matrices Hci,cj ∈ R

mci
×ncj , ∀cj , cj ∈ C\ci.

The matrix Hci encompasses variable nodes Xci , while the

matrix Hci,cj ties the cluster cj ∈ C\ci with the set of variable

nodes Xcj . To define a factor node fi, let us take an arbitrary

row hci of the matrix Hci , whose at least one element is

nonzero. For the selected row hci , we take corresponding rows

hci,cj across the matrices Hci,cj , cj ∈ C \ci. A factor node fi

is defined by conjunction of rows formed by hci and hci,cj ,

∀cj . For the case where the all elements of hci,cj , ∀cj , cj ∈ C\
ci are equal to zero, the factor node connections are defined by

nonzero elements of hci , forming internal factor node fi ∈ Ici .
In contrast, nonzero elements of hci,cj represent connections

that tie (i.e., connect) variable nodes belonging to the cluster

cj ∈ C \ ci, thus defining the tie factor node fi ∈ Tci
We focus on the case where a large factor graph is seg-

mented into clusters with the vast majority of factor nodes

representing internal factor nodes, and with only a small

fraction of tie factor nodes. In other words, for each cluster ci,
the number of non-zero elements λci of the internal matrix Hci

is significantly larger than the number of non-zero elements

γci of the tie matrices Hci,cj , ∀cj , cj ∈ C \ ci. Note that

λci and γci define a number of internal and tie edges of the

subgraph belonging to the cluster ci.

B. Message Scheduling in Distributed Framework

The main drawback of the synchronous GBP algorithm

when applied to the distributed scenario is potentially high

communication delay over the tie factor nodes T compared to

the time needed to complete a single iteration within a cluster

over the internal factor nodes I. Let us start by observing the

segmented factor graph without tie factor nodes T . In each

cluster ci ∈ C, let us assume that the processing delay of

variable-node and factor-node processing is τ
(ci)
x and τ

(ci)
f ,

respectively. After connecting clusters using tie factor nodes

Tci , the duration of processing causes an additional time delay

τ
(ci)
c . This inter-cluster delay may be due to exchange of

messages between the cores in a multi-core processing node or

exchange of messages between the nodes in a communication

network. Thus, the synchronous GBP on the segmented factor

graph produces the estimate after ν iterations at the time

instant ν(τ
(ci)
m +τc), under assumption that the additional delay

τ
(ci)
c is constant and independent of the clusters τc = τ

(ci)
c ,

and where τ
(ci)
m = max{τ (ci)x + τ

(ci)
f : i = 1, . . . , s}. In

comparison with the synchronous GBP applied over the com-

plete factor graph, the message processing distributed across

multiple clusters is less time consuming τ
(ci)
m < τm (due to

parallelism), however, the duration of the delay τc > τm over

tie factor nodes T may lead to a significant overall time delay

in the calculation of the estimate x̂(ν).

To minimise delay over tie factor nodes, we consider dif-

ferent message scheduling strategies on the segmented factor

graph aiming to produce an accurate estimate x̂ with minimal

time delay in static and dynamic scenarios. The objective

of distributed message passing scheduling is to reduce the

duration ντc while maintaining accuracy and convergence.

We propose an alternating scheduling based on sequences

of the exchanging messages using global (inter-cluster) and

local (intra-cluster) iterations. Each sequence ks = {1, 2, . . .}
consists of global kg = {1, . . . , νg} and local iterations

kl = {1, . . . , νl} of the GBP algorithm. Intuitively, condition

νl ≥ νg is preferred for the AGBP algorithm, under conditions

λci > γci and τc > τm.

At the level of global or inter-cluster iterations, we compute

all messages µx = [µxj→fi] and µf = [µfi→xj
], fi ∈ B,

xj ∈ X , corresponding to synchronous scheduling over the

complete factor graph, as shown in Fig. 2. At the level of local

or intra-cluster iterations, we perform local iterations for each

cluster by calculating the messages over disjoint segments of

the factor graph, as shown in Fig. 3. In particular, we compute

.

iccluster cluster 1c sccluster

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 3. The disjoint factor graph allocated to different clusters, where tie
factor nodes are collapsed into single connected factor nodes.

messages µx = [µxj→fi] and µf = [µfi→xj
], fi ∈ B \ T ,

xj ∈ X , where each tie factor node fi ∈ T is collapsed into

deg(fi) leaf factor nodes. The messages from these leaf factor

nodes are equal to µf = [µfi→xj
], fi ∈ T , xj ∈ X obtained

after the last global iteration.2

Combining global and local iterations, the AGBP algorithm

reaches a given convergence condition after νs(νg + νl) itera-

tions, where ks = νs is the total number of the sequences.

As a result, the AGBP yields the estimate x̂(νs(νg+νl)) at

the time instant νsνg(τ
(ci)
m + τc) + νsνlτ

(ci)
m . Let us assume

τ
(ci)
m ≪ τc, implying νsνlτ

(ci)
m ≪ νsνg(τ

(ci)
m + τc). The

AGBP may be less time consuming than synchronous GBP

algorithm νsνgτc < ντm only if νsνg < ν, where τc > τm. As

demonstrated in the numerical section, the condition νsνg < ν
is valid, in addition to observation that νs(νg + νl) < ν
also holds across different scenarios. This inequality implies

that AGBP seeds the more rapid convergence rate3. In the

following subsection, we outline how the scheduling of the

messages in conjunction with the properties of the linear model

(4) affects the convergence rate.

C. Convergence Analysis of Alternating Gaussian Belief Prop-

agation Algorithm

We present a convergence analysis of the AGBP algorithm.

In general, the convergence of the GBP correlates with the

spectral radius of the matrix that affects the evolution of

the mean values mf = [mfi→xj
] of the messages µf =

[µfi→xj
(xj)], fi ∈ B, xj ∈ X . We note that the corresponding

variances vf = [vfi→xj
] always converge to the finite-valued

fixed point v∗
f = [v∗fi→xj

] [18], [23]. Without loss of general-

ity, let us observe the factor graph with b = |B| branch factor

nodes from the set B = {f1, . . . , fb}, b < m, and l = |L|
leaf factor nodes defined by the set L = {fb+1, . . . , fm}. To

recall, each row of the matrix H corresponds to one factor

node, therefore, the first b rows of the matrix H correspond

to branch factor nodes, while leaf factor nodes start from the

row b+ 1.

2In Appendix B, we have included a detailed description of the AGBP
algorithm using a practical example to guide the reader through each step.

3The convergence rate defines the rate (i.e., measure) at which the distance
||x̂(k) − x̂|| → 0 as k → ∞ [29, Sec. 4.6].

Let us start with the convergence analysis of the syn-

chronous GBP algorithm. Using (18a) and (21a), the evolution

of the mean values can be written as follows:

m
(k)
f = cf +Ωm

(k−1)
f , (7)

where the vector mf = [mf1 , . . . ,mfb]
T ∈ R

d, d =
∑

fi∈B deg(fi), represents the mean values of messages from

branch factor nodes B to variable nodes X , with the i-th vector

defined as mfi = [mfi→xj
], fi ∈ B, xj ∈ Xi. The vector

cf = [cf1 , . . . , cfb]
T ∈ R

d represents the constant component

of (7). The matrix Ω = [Ωf1 , . . . ,Ωfb]
T ∈ R

d×d affects

the evolution of the mean values mf , where the i-th block

Ωfi ∈ R
di×d, di = deg(fi). The definition of matrix Ω and

vector cf , involved in (7), is provided in Appendix C.

Theorem 1. The means mf converge to a unique fixed point

limk→∞ m
(k)
f = m∗

f :

m∗
f = (I−Ω)−1cf , (8)

for any initial point m
(0)
f if and only if the spectral radius

ρ(Ω) < 1.

Proof. The proof follows similar steps as in Theorem 5.2 in

[30].

Global iterations are executed over the entire factor graph

and equate the convergence analyses of the synchronous GBP

algorithm. According to (7), the evolution equation can be

written as follows:

m
(ks,kg)
f = cf +Ωm

(ks,kg−1)
f , (9)

where the initial point m
(ks,0)
f is equal to m

(ks−1,νl)
f or

m
(ks,νl)
f depending if the corresponding sequence ks is ini-

tialised with global or local iterations.

We complement the previous analysis with the case that in-

cludes local iterations, where each tie factor node fi ∈ T ⊂ B
transforms to deg(fi) leaf factor nodes. The resulting factor

graph contains b− g, g = |T |, branch factor nodes and l+ e,

e =
∑

fi∈T deg(fi), leaf factor nodes. Hence, local iterations

operate on the altered system (9), whose dimensionality is

reduced by e dimensions. This reduction of space can be

achieved simply by replacing nonzero elements with zeros for

each block Ωfi , fi ∈ T , of the matrix Ω. Then, the evolution

of means can be written as follows:

m
(ks,kl)
f = Qcf + (I−Q)m

(ks,νg)
f +QΩm

(ks,kl−1)
f . (10)

Similarly to global iterations, the initial point m
(ks,0)
f depends

on the schedule of global and local iterations in the corre-

sponding sequence ks, and can be m
(ks,νg)
f or m

(ks−1,νg)
f .

The matrix Q = diag(Qf1 , . . . ,Qfb) ∈ F
d×d, F = {0, 1}

is a block-diagonal, and I is d × d identity matrix. The i-th
block of the matrix Q is equal to Qfi = Ifi , fi ∈ B \ T ,

or Qfi = 0fi , fi ∈ T , where Ifi is di × di identity matrix,

and 0fi is a matrix di×di of zeros. The resulting vector Qcf
consists only of mean values from b− g branch factor nodes,

while the vector (I−Q)m
(ks,νg)
f contains mean values from

g branch factor nodes obtained in the last global iteration.

The AGBP algorithm sequentially alternates equations (9)

and (10), arriving to the solution representing exact means only

if algorithm converges. The following theorem formalises this

observation.

Theorem 2. Let m∗
f be a fixed point of the synchronous GBP,

then if the AGBP algorithm converges, the resulting fixed point

is equal to m∗
f .

Proof. The proof can be found in the Appendix C.

We note that characterising the convergence rate is a chal-

lenging task even in the case of synchronous GBP [31], thus

we leave it out the scope of this paper.

D. Dynamic Gaussian Belief Propagation Algorithm

From (7), as well as (9) and (10), it follows that the initial

values of the factor node to the variable node messages affect

the number of iterations needed for convergence. In particular,

the large number of iterations can be caused by random

message initialisation, in cases when priors of their means and

variances do not exist. In dynamic scenarios, where new data

arrive and evolve over time, it is straightforward to consider

GBP as an efficient continuous inference algorithm. In this

scenario, upon arrival of new data, all messages are close to

their fixed-point values, and initialising GBP from this point

allows it to converge in fewer iterations.

We develop a framework for analysing dynamic systems

by simulating arrival of new observations, which are further

infused with deterioration or ageing component over time. We

integrate these data into the continuously running instances of

the GBP algorithm. The proposed ageing solution relies on

the GBP algorithm robustness to the ill-conditioned scenarios

caused by significant differences between values of variances.

This overcomes the main drawback of traditional solutions

based on the weighted least-squares or recursive least-squares

algorithms. More precisely, the GBP is capable of integrating

a wide range of variances, from small values vi → 0 to large

values vi → ∞ [32]. This property allows inference over

the factor graph that reflects the entire network of sensors,

regardless of whether the data is available at a given time.

For example, data arriving at an arbitrary time instant affects

the behaviour of the system according to its finite variance

0 < vi < ∞, while data without impact are represented in the

factor graph via infinite variance vi → ∞. These features are

key foundations for the dynamic GBP algorithm, where the

variance values of different factor nodes change dynamically

over time.

Let τr, r = 1, 2, . . . , denote time instants when the factor

node fi receives the observation value zi with the predefined

initial variance vi. After each time instant τr, the dynamic

model increases the variance value vi over time. At each

time interval τr ≤ t < τr+1, we associate the Gaussian

distribution N (zi(t)|Xi, vi(t)) with the corresponding factor

node fi, where the variance vi(t) increases its value starting

from the predefined variance vi, while the mean value zi(t)
remains constant according to the received value zi. Depend-

ing on the dynamic arrival of data, an adaptive mechanism for

increasing the variance over the time vi(t) can be defined. The

logarithmic growth model represents a promising solution for

systems with a high sampling rate of the data, where a rapid

increase in variance is required:

vi(t) = α log

(

t− τr + 1 + β

1 + β

)

+ vi, τr ≤ t < τr+1, (11)

where parameters α and β controls the rate of the growth. In

contrast, the exponential growth model corresponds to systems

with a low sampling rate of the data:

vi(t) = vi(1 + β)α(t−τr), τr ≤ t < τr+1. (12)

Finally, the linear growth model can be observed as a com-

promise between logarithmic and exponential growth models:

vi(t) = α(t− τr) + vi, τr ≤ t < τr+1. (13)

In addition, we can fix the predefined variance vi as a con-

stant value for a certain period of time τr ≤ t ≤ ρr, which is

especially advantageous in networks whose dynamics change

slowly. In practise, the dynamic model requires defining a limit

from above v̄i of a function vi(t), instead of allowing variance

to take on extremely large values, especially if the broadcast

GBP algorithm is used [16]. The variance will increase the

value over the period ρr ≤ t ≤ θr, after which it keeps the

constant value v̄i = vi(θr) over the time period θr ≤ t < τr+1.

To summarise, when the computation unit receives the data at

the time instant τr, the value of variance remains constant vi
up to the time instant ρr, followed by the variance increase up

to the time instant θr, when its value approaches saturation v̄i.
An extension of the growth models (11) - (13) defined in this

way allows for more flexible ageing approach, shown in Fig.4.

As an example, the comprehensive logarithmic growth model

can be written in the following form:

vi(t) =



















vi, τr ≤ t ≤ ρr

α log

(

t− ρr + 1 + β

1 + β

)

+ vi, ρr ≤ t ≤ θr

v̄i, θr ≤ t < τr+1.

(14)

τ1 ρ1 θ1 τ2 ρ2

vi

v̄i

t

v
i
(t
)

(a)

τ1 ρ1 θ1 τ2 ρ2

vi

v̄i

t

(b)

τ1 ρ1 θ1 τ2 ρ2

vi

v̄i

t

(c)

Fig. 4. The logarithmic growth model (subfigure a), the exponential growth
model (subfigure b), and the linear growth model (subfigure c).

To conclude, the presented approach allows the inclusion of

an arbitrary number of sensors with extremely large variance

values with negligible impact on the system. Parts of the

system obtain a unique solution based on real-time data, while

the rest of the system will be determined based on both real-

time data and data with large variance values.

IV. NUMERICAL RESULTS

In this section, we analyse distributed linear models in

the form defined by (6). We artificially create matrices with

independent and identically distributed (i.i.d.) nonzero entries

distributed uniformly in the interval [0, 1). To be more precise,

for each cluster ci, we form internal matrix Hci and tie

matrices Hci,cj , ∀cj , cj ∈ C \ ci, according to the internal

and tie sparsity. Sparsity governs the expected number of the

factor graph edges, denoting it λ̄ci and γ̄ci for internal and tie

edges, respectively. For each simulated scenario, characterised

by a set of distributed linear model’s parameters such as matrix

dimensions, expected number of internal and tie edges, number

of clusters, etc., simulations are repeated 500 times in order

to get statistically significant results.

Due to inherent differences in procedures for calculation of

the solution x̂ between synchronous and AGBP, we consider

the following identity ντm = νsνg(τ
(ci)
m + τc)+ νsνlτ

(ci)
m that

equates the convergence time of both methods. We proceed

by comparing the processing delays of two GBP versions as

follows. Using this identity, we express the inter-cluster delay

τc as follows:

τc =
ν − κνs(νg + νl)

νsνg
τm = φτm, (15)

where under the condition λci > γci , processing time τ
(ci)
m is

estimated as κτm, κ = max{λci/
∑s

j=1(λcj+γcj) : ∀ci}, 0 <
κ < 1. The constant φ quantifies the critical value of a ratio

between the inter-cluster message delay τc and the duration of

a single iteration of synchronous GBP τm, under which both

GBP algorithms converge simultaneously. In other words, for

all the values of τc < φτm, the AGBP algorithm converges

faster than the synchronous GBP. In order to obtain the number

of iterations ν and the number of sequences νs needed for

convergence of synchronous GBP and AGBP, respectively, we

run both algorithms until the root mean square error between

the maximum likelihood solution of (4) and the GBP estimate

reaches 10−5.

A. Linear Models with Symmetric Matrices Properties

We start our experiments by analysing performance of GBP

in an environment with well-defined matrix properties. We

observe distributed linear models, where each cluster consists

of the symmetric matrix Hci , and matrices Hci,cj = HT
cj ,ci

,

mci = nci = ncj . This setup forms the symmetric matrix

H ∈ R
m×n, m = n, where diagonal elements are calculated

according to hii =
∑

i6=j hij + δ, i = 1, . . . , n. Note that

a square matrix H has full rank, resulting in a solution

independent of observation variances.

We start with a strictly diagonally dominant matrix H (i.e.,

the matrix is positive definite) obtained by using the diagonal

increment δ > 0, which guarantees the synchronous GBP

convergence [16]. We consider a distributed model with s = 2
clusters, where the internal matrices of dimension mci = 100
create subgraphs with the expected number of internal edges

equal to λ̄ci = 600, ci ∈ C. We compare the performance of

the synchronous GBP and AGBP algorithm for a different

number of expected tie edges γ̄ci = {5, 25, 50}. Finally,

we set the diagonal increment to δ = 0.01 to obtain the

strictly diagonally dominant matrix H. Fig. 5(a) shows the

median values of the scale factor φ depending on the different

local and global iteration scheme strategies. Regardless of the

number of global iterations νg , as the number of tie edges γci
decreases, a larger number of local iterations νl is preferred.

This expected outcome is a consequence of global iterations

νg that have a minor impact on the estimate x̂ due to the

small number of tie factor nodes. In addition, a decrease in

the number of tie edges γci leads to an increase in the value of

the scale factor φ, which is due to the decrease in the number

of sequences νs, as shown in Fig. 5(c). Comparing Fig. 5(b)

and Fig. 5(c), we note that the AGBP algorithm affects the

convergence rate, leading to convergence in a significantly

smaller number of iterations compared to synchronous GBP.

1 5 30 60 90 2 5 30 60 90 3 5 30 60 90

101

102

νg = 1 νg = 2 νg = 3

Local Iterations νl

S
ca

le
F

ac
to

r
φ

γ̄ci 5 25 50

(a)

5 50

1300

1483

1666

1850

Expected Number

of Tie Edges γ̄ci

It
er

at
io

n
s
ν

(b)

1 5 30 60 90 1 5 30 60 90

101

102

Local Iterations νl
Global Iterations νg = 1

S
eq

u
en

ce
s
ν
s

γ̄ci 5 50

(c)

Fig. 5. The median values of the scale factor φ depending on the different
local and global iteration schemes (subfigure a), the number of iterations of
the synchronous GBP algorithm (subfigure b), and the number of sequences
of the AGBP algorithm (subfigure c) for distributed system with s = 2,
λ̄ci = 600, γ̄ci = {5, 25, 50}, δ = 0.01.

Next, we increase the expected number of internal edges

to λ̄ci = 2600, ci ∈ C. Similar to Fig. 5(a), Fig. 6(a)

shows that the iteration scheme with νg = 1 produces the

highest values of the scale factor φ compared to the schemes

with νg = 2 and νg = 3, regardless of the number of tie

edges γci . Furthermore, comparing the same schemes for the

increased number of internal edges λci leads to even higher

differences between the scale factors φ. This is a consequence

of local iterations νl that are becoming increasingly important

in calculating the estimate x̂ as the value of λci increases.

In addition, the convergence rate of the synchronous GBP

and AGBP algorithms has a significant impact on the scale

factor φ. According to (15) and under condition λci > γci , it

is intuitive to expect that the number of global iterations νg
should be as small as possible (i.e., equal to one) to obtain

the scaling factor φ as large as possible.

As a conclusion, high values of the scale factor φ are

caused by the fact that condition νs(νg + νl) < ν holds.

This inequality implies that the AGBP algorithm seeds a more

1 5 30 60 90 2 5 30 60 90 3 5 30 60 90

102

103

νg = 1 νg = 2 νg = 3

Local Iterations νl

S
ca

le
F

ac
to

r
φ

γ̄ci 5 25 50

(a)

5 50

5100

5333

5566

5800

Expected Number

of Tie Edges γ̄ci

It
er

at
io

n
s
ν

(b)

1 5 30 60 90 1 5 30 60 90

101

102

Local Iterations νl
Global Iterations νg = 1

S
eq

u
en

ce
s
ν
s

γ̄ci 5 50

(c)

Fig. 6. The median values of the scale factor φ depending on the different
local and global iteration schemes (subfigure a), the number of iterations of
the synchronous GBP algorithm (subfigure b), and the number of sequences
of the AGBP algorithm (subfigure c) for distributed system with s = 2,
λ̄ci = 2600, γ̄ci = {5, 25, 50}, δ = 0.01.

rapid convergence rate, which can be explained by the fact

that AGBP, compared to the synchronous GBP, decreases

the spectral radius of the matrix affecting the evolution of

the mean values. Comparing Fig. 5(a) and Fig. 6(a), we

observe an increase in the value of the scale factor φ, as we

increase the value of the expected number of internal edges

λci . This increase improves the convergence rate of the AGBP

algorithm, as shown in Fig. 5(c) and Fig. 6(c). A similar trend

for the convergence rate of the synchronous GBP algorithm is

not observed in Fig. 5(b) and Fig. 6(b).

To investigate the scalability of the AGBP algorithm,

we increase the number of clusters s, where we kept the

expected number of tie edges per each cluster as before

γ̄ci = {5, 25, 50}. Compared with Fig. 5(a) and Fig. 6(a),

Fig. 7 shows that the scale factor φ remains at almost the

same maximum value regardless of the number of clusters

s. This effect is caused by the fact that both the number of

iterations ν and the number of sequences νs, remain almost

unchanged compared to the scenario with s = 2, whereby ν
is significantly greater than κνs(νg + νl). Hence, according to

(15), the time τc increases the overall value as the number

of clusters s increases (this follows from increase of the

processing time τm).

To further test scalability, we analyse distributed systems

with s = 12, where the systems are formed according to λ̄ci =
{1800, 7800}, γ̄ci = {15, 75, 150}, and mci = 300, ci ∈ C.

Here, we increase the number of internal and tie edges, as well

as the number of variable and factor nodes by a factor of three

compared to the previous scenario. Increasing the number of

nodes and edges does not affect the maximum value of the

scale factor φ, while again the number of iterations ν, and the

number of sequences νs, did not increase the values compared

to the cases analysed previously. Finally, we conclude that both

1 5 30 60 90 1 5 30 60 90

101

102

103

s = 6 s = 12

Local Iterations νl

S
ca

le
F

ac
to

r
φ

γ̄ci 5 25 50 λ̄ci 600 2600

Fig. 7. The median values of the scale factor φ depending on the different
local iterations νl, where the number of global iterations is equal to νg =
1, for distributed systems with s = {6, 12}, λ̄ci = {600, 2600}, γ̄ci =
{5, 25, 50}, δ = 0.01.

the number of iterations ν, and the number of sequences νs,

depends primarily on the number of internal edges λci , while

being independent of the size of the factor graph or the number

of clusters s.

Finally, we consider the influence of the diagonal increment

δ on the scale factor φ. Comparing Fig. 8 with Fig. 5(a) and

Fig. 6(a) for νg = 1, we observe a decrease in the value of

the scale factor φ with increasing the diagonal increment δ. As

expected, increasing the diagonal loading causes a more rapid

convergence rate of both algorithms, having more significant

effect on the synchronous GBP algorithm. Hence, for certain

sequences of local and global iterations, condition ν < νs(νg+
νl) is satisfied, resulting in φ < 0. More precisely, for φ < 0
the AGBP will always produce the estimate x̂ for a time period

exceeding that of the synchronous GBP algorithm.

1 5 30 60 90 1 5 30 60 90

−60

0

60

120

δ = 0.1 δ = 1

Local Iterations νl

S
ca

le
F

ac
to

r
φ

γ̄ci 5 50 λ̄ci 600 2600

Fig. 8. The median values of the scale factor φ depending on the different
local iterations νl, where the number of global iterations is equal to νg = 1,
for distributed systems with s = 2, λ̄ci = {600, 2600}, γ̄ci = {5, 50},
δ = {0.1, 1}.

Consider now a symmetric diagonally dominant matrix H

(i.e., the matrix is positive semidefinite) obtained using the

diagonal increment equal to δ = 0. For the baseline scenario,

s = 2, λ̄ci = {600, 2600}, γ̄ci = {5, 25, 50}, mci = 100,

the synchronous GBP algorithm for λ̄ci = 600 converges with

probability {0.39, 0.34, 0.28} depending on the expected num-

ber of tie edges {5, 25, 50}, respectively, while for λ̄ci = 2600
does not converge at all. In contrast, the AGBP algorithm

always converges for any set of distributed model’s parameters.

Also, switching from the strictly diagonally dominant matrix

to the diagonally dominant matrix did not cause significant

changes in the number of sequences νs.

B. Linear Models with Nonsymmetric Matrices Properties

We complement results in Section IV-A by analysing dis-

tributed models where each cluster consists of the nonsymmet-

ric matrix Hci , and matrices Hci,cj , mci = nci = ncj . This

setup forms the nonsymmetric matrix H ∈ R
m×n, m = n.

In comparison with Fig. 5(b), Fig. 9(a) shows a significant

increase in the number of synchronous GBP iterations ν.

However, the trend for the AGBP algorithm is the opposite,

with the number of sequences νs decreasing as illustrated

in Fig. 9(b) and Fig. 5(c). Similar observations hold for

the scenarios depicted in Fig. 6(b), Fig. 6(c), compared to

Fig. 9(c), and Fig. 9(d).

Thus, the nonsymmetric matrix properties slow down con-

vergence rates of the synchronous GBP algorithm, while

causing more rapid convergence rates of the AGBP algorithm

compared with the systems with symmetric matrix properties.

5 50

400

1100

1800

2500

Expected Number

of Tie Edges γ̄ci

It
er

at
io

n
s
ν

(a)

1 5 30 60 90 1 5 30 60 90

101

102

Local Iterations νl
Global Iterations νg = 1

S
eq

u
en

ce
s
ν
s

γ̄ci 5 50

(b)

5 50

9000

9300

9600

9900

Expected Number

of Tie Edges γ̄ci

It
er

at
io

n
s
ν

(c)

1 5 30 60 90 1 5 30 60 90

101

102

Local Iterations νl
Global Iterations νg = 1

S
eq

u
en

ce
s
ν
s

γ̄ci 5 50

(d)

Fig. 9. The number of iterations of the synchronous GBP algorithm for
Λci = 0.06 (subfigure a) and Λci = 0.26 (subfigure c), and the number of
sequences of the AGBP algorithm for λ̄ci = 600 (subfigure b) and λ̄ci =
2600 (subfigure d) for distributed system with s = 2, γ̄ci = {5, 50}, δ =
0.01.

With these observations, the scaling factor φ is higher for

distributed systems with nonsymmetric matrices compared to

systems with symmetric matrices, as illustrated in Fig. 10.

The trend for the scaling factor is similar across different

configurations. We note that the statements given in Section

IV-A are also valid for distributed systems consisting of

nonsymmetric matrices.

C. Linear Models with Rectangular Matrices

After the analysis of linear models with square matrices, we

proceed by analysing linear models consisting of rectangular

matrices. In particular, a rectangular matrix H, m > n, con-

sists of the matrices Hci and Hci,cj that are also rectangular

mci > nci , nci = ncj . We start by defining exactly nci linearly

independent equations, followed by adding a set of mci −nci

dependent equations to form the internal matrix Hci . Thus,

we reuse square nonsymmetric matrices from Section IV-B

with δ = 0.01, which are extended with mci − nci additional

rows. Each additional row of the internal matrix Hci or the

1 5 30 60 90

101

102

103

104

λ̄ci
600 2600

Local Iterations νl

S
ca

le
F

ac
to

r
φ

γ̄ci 5 25 50

Fig. 10. The median values of the scale factor φ depending on the different
local iterations νl, where the number of global iterations is equal to νg = 1,
for distributed systems with s = 2, λ̄ci = {600, 2600}, γ̄ci = {5, 25, 50},
δ = 0.01.

tie matrix Hci,cj defines as many expected edges as one row

defines for the case of the internal or tie matrix in Section

IV-B.

For experiments, we analyse models with s = 2 and nci =
100, with different numbers of rows mci = {120, 200, 300}.

We compare the performance of the synchronous GBP and

AGBP algorithm for the different number of expected in-

ternal edges equal to λ̄ci = 6mci and λ̄ci = 26mci ,

defined by the matrix Hci ∈ R
mci

×nci . Furthermore, we

observe the different number of expected tie edges γ̄ci =
{0.05mci, 0.25mci, 0.5mci} defined by the matrix Hci,cj ∈
R

mci
×nci . Finally, we set the variances to the value of

vi = 10−8, i = 1, . . . , nci , for independent equations and

vi = 10−1, i = nci + 1, . . . ,mci , for dependent equations. In

this setup, the synchronous GBP algorithm converges, whereas

the AGBP algorithm converges only for specific global and

local iteration schemes. In particular, for the case where

the number of tie edges γci increases while the number of

internal edges λci is small, reduced number of local iterations

νl is needed to ensure convergence of the AGBP. Fig. 11

shows the median values of the scale factor φ for specific

local and global iteration schemes under which the AGBP

algorithm converges. Unlike systems with square matrices,

the scale factor φ decreases as the number of internal edges

λci increases. Furthermore, the maximum values of the scale

factor φ have smaller values compared to the case with square

matrices. However, condition νs(νg + νl) < ν is satisfied for

a large number of local and global iteration schemes.

Next, we reduce the difference between the variances asso-

ciated with independent and dependent equations, resulting in

a significantly reduced probability of convergence for both,

synchronous GBP and AGBP algorithms. However, unlike

with the synchronous GBP, the use of damping (see Appendix

D for details) leads to convergence of the AGBP. More

precisely, combining the damping during local iterations leads

to a significant reduction in the spectral radius of the resulting

matrix, which affects the evolution of the mean values. In

addition, the AGBP algorithm converges for any global and

local iteration scheme. Adding new rows has a positive impact

on the performance of the AGBP algorithm, resulting in a

small number of sequences νs required to reach convergence

for the majority of the analysed systems, as depicted in Fig. 12.

Performance degrades only for a few cases with a large number

of tie edges γci .

1 5 30 60 90 1 2 3 4 5 1 2 3 4 5

0

50

100

mci
120 200 300

Local Iterations νl

S
ca

le
F

ac
to

r
φ

γ̄ci 0.05mci
0.25mci

0.5mci

(a)

1 5 30 60 90 1 2 3 4 5 1 2 3 4 5

0

50

100

mci
120 200 300

Local Iterations νl

S
ca

le
F

ac
to

r
φ

γ̄ci 0.05mci
0.25mci

0.5mci

(b)

Fig. 11. The median values of the scale factor φ depending on the
different local iterations νl, where the number of global iterations is equal
to νg = 1 for λ̄ci = 6mci (subfigure a), and λ̄ci = 26mci (subfigure
b) for distributed system with s = 2, mci = {120, 200, 300}, γ̄ci =
{0.05mci , 0.25mci , 0.5mci}, vi = 10−8, i = 1, . . . , nci , vi = 10−1 ,
i = nci + 1, . . . , mci .

1 5 30 60 90 1 5 30 60 90 1 5 30 60 90 1 5 30 60 90

101

102

103

λ̄ci
= 6mci

λ̄ci
= 6mci

λ̄ci
= 26mci

λ̄ci
= 26mci

Local Iterations νl

S
eq

u
en

ce
s
ν
s

γ̄ci 0.05mci
0.5mci

(a)

1 5 30 60 90 1 5 30 60 90 1 5 30 60 90 1 5 30 60 90

101

102

103

λ̄ci
= 6mci

λ̄ci
= 6mci

λ̄ci
= 26mci

λ̄ci
= 26mci

Local Iterations νl

S
eq

u
en

ce
s
ν
s

γ̄ci 0.05mci
0.5mci

(b)

Fig. 12. The number of sequences of the AGBP algorithm, where the
number of global iterations is equal to νg = 1, for mci = 120 (subfigure
a), and mci = 300 (subfigure b) for distributed system with s = 2,
γ̄ci = {0.05mci , 0.5mci}, vi = 10−1, i = 1, . . . ,mci , with randomised
damping parameters equal to ζ = 0.9, p = 0.9 for γ̄ci = 0.05mci , and
p = 0.7 for γ̄ci = 0.5mci (see Appendix B for details).

Finally, we test scenarios with a larger number of clusters

(i.e., s = 6 and s = 12), and inflated factor graphs, where

inflated means increased number of internal edges, tie edges,

variable, and factor nodes by factor of three. In these scenarios,

we observe a negligible increase in the number of sequences

νs.

D. Linear Models with Rectangular Matrices in Dynamic

Framework

We extend the analysis in Section IV-C by allowing a

dynamic change of values in vector z, thus simulating more

realistic case where new observations arrive over time. Fig. 13

illustrates the number of sequences νs needed for the conver-

gence of the AGBP algorithm. Following the algorithm con-

vergence, we randomly change the observation values from the

vector z according to a uniform distribution with probability

pz = 0.1 and pz = 0.9, and continue the iterative process.

In the dynamic framework, the AGBP algorithm converges

to a new fixed point in few sequences νs, as illustrated in

Fig. 13. Furthermore, there is no significant impact of the small

pz = 0.1 and large pz = 0.9 probabilities on the convergence

trend in the observational values.

1 5 30 60 90 1 5 30 60 90 1 5 30 60 90 1 5 30 60 90

100

101

102

λ̄ci
= 6mci

λ̄ci
= 6mci

λ̄ci
= 26mci

λ̄ci
= 26mci

Local Iterations νl

S
eq

u
en

ce
s
ν
s

γ̄ci 0.05mci
0.5mci

pz 0.1 0.9

(a)

1 5 30 60 90 1 5 30 60 90 1 5 30 60 90 1 5 30 60 90

100

101

102

λ̄ci
= 6mci

λ̄ci
= 6mci

λ̄ci
= 26mci

λ̄ci
= 26mci

Local Iterations νl

S
eq

u
en

ce
s
ν
s

γ̄ci 0.05mci
0.5mci

pz 0.1 0.9

(b)

Fig. 13. The median values of the number of sequences of the AGBP
algorithm, where the number of global iterations is equal to νg = 1, for
mci = 120 (subfigure a), and mci = 300 (subfigure b), where we change
each element of the vector of observation values z with probability pz = 0.1
and pz = 0.9 for distributed system with s = 2, γ̄ci = {0.05mci , 0.5mci},
vi = 10−1, i = 1, . . . , mci , with randomised damping parameters equal to
ζ = 0.9, p = 0.9 for γ̄ci = 0.05mci , and p = 0.7 for γ̄ci = 0.5mci (see
Appendix B for details).

Further, we analyse the performance of the AGBP algorithm

with the addition of a mechanism for adaptive increase of

variance values. We increase the variance values of the depen-

dent equations using the logarithmic growth model (14) with

probability pz = 0.1 and pz = 0.9 for the same distributed

system as analysed above. According to Fig. 14, the AGBP

algorithm reaches a new fixed point in a fewer sequences νs,

compared to the same scenarios in which we changed the

observation values only (see Fig. 13).

The introduction of the dynamic AGBP algorithm has a

positive impact on the number of iterations needed to converge

compared to the uniform initialisation of messages presented

in Sections IV-A through IV-C. The significant reduction in

the number of iterations needed for convergence makes the

dynamic AGBP algorithm a good candidate for large-scale,

time-constrained systems where arrival of new data requires

fast inference.

1 5 30 60 90 1 5 30 60 90 1 5 30 60 90 1 5 30 60 90

100

101

102

λ̄ci
= 6mci

λ̄ci
= 6mci

λ̄ci
= 26mci

λ̄ci
= 26mci

Local Iterations νl

S
eq

u
en

ce
s
ν
s

γ̄ci 0.05mci
0.5mci

pz 0.1 0.9

(a)

1 5 30 60 90 1 5 30 60 90 1 5 30 60 90 1 5 30 60 90

100

101

102

λ̄ci
= 6mci

λ̄ci
= 6mci

λ̄ci
= 26mci

λ̄ci
= 26mci

Local Iterations νl

S
eq

u
en

ce
s
ν
s

γ̄ci 0.05mci
0.5mci

pz 0.1 0.9

(b)

Fig. 14. The median values of the number of sequences of the AGBP
algorithm, where the number of global iterations is equal to νg = 1, for
mci = 120 (subfigure a), and mci = 300 (subfigure b), where we change
observation variance values vi, i = nci + 1, . . . ,mci using logarithmic
growth model (14) with probability pz = 0.1 and pz = 0.9 for distributed
system with s = 2, γ̄ci = {0.05mci , 0.5mci}, vi = 10−1, i = 1, . . . , nci ,
with randomised damping parameters equal to ζ = 0.9, p = 0.9 for
γ̄ci = 0.05mci , and p = 0.7 for γ̄ci = 0.5mci (see Appendix D for
details).

V. CONCLUSIONS

This paper analyses large-scale distributed systems by

analysing maximum likelihood estimation using the GBP

algorithm applied over clustered factor graphs. We show that

the AGBP algorithm achieves a significant improvement in

inference time compared to the synchronous GBP algorithm.

Furthermore, we demonstrate the scalable properties of AGBP,

making it suitable for large-scale inference in massive IoT

networks. The proposed solution augmented with the damping

technique achieves convergence where existing state-of-the-

art methods fail. Due to the inherent properties of the GBP

algorithm applied over the distributed architecture, where

clusters exchange only “beliefs” about specific state variables,

the proposed framework ensures data privacy. Building upon

the research initiated in this paper, where convergence analysis

is based on the global view that exploits parameters of the

entire system, in our future work, we would like to investigate

convergence conditions from the local perspective, focusing

on individual cluster parameters. The paper establishes fun-

damental concepts for this purpose, opening a new exciting

avenue for future research in this field.

APPENDIX A: LINEAR GAUSSIAN BELIEF PROPAGATION

A. Message from Variable Node to Factor Node

Consider a part of a factor graph shown in Fig. 15 with

a group of factor nodes Fj = {fi, fw, ..., fW } ⊆ B that

are neighbours of the variable node xj ∈ X . The message

Wf

wf

.

.

.
if

jx

)jx(jx→wfµ

)jx(jx→Wfµ

)jx(if→jxµ

Fig. 15. Message µxj→fi
(xj) from variable node xj to factor node fi.

µxj→fi(xj) from the variable node xj to the factor node fi
is equal to the product of all incoming factor node to variable

node messages arriving at all the other incident edges:

µxj→fi(xj) =
∏

fa∈Fj\fi

µfa→xj
(xj), (16)

where Fj \fi represents the set of factor nodes incident to the

variable node xj , excluding the factor node fi. Note that each

message is a function of the variable xj .

Let us assume that the incoming messages µfw→xj
(xj),

. . . , µfW→xj
(xj) into the variable node xj are Gaussian and

represented by their mean-variance pairs (mfw→xj
, vfw→xj

),
. . . , (mfW→xj

, vfW→xj
). Note that these messages carry

beliefs about the variable node xj provided by its neighbouring

factor nodes Fj\fi. According to (16), it can be shown that the

message µxj→fi(xj) from the variable node xj to the factor

node fi is proportional to:

µxj→fi(xj) ∝ N (xj |mxj→fi , vxj→fi), (17)

with mean mxj→fi and variance vxj→fi obtained as:

mxj→fi =

(

∑

fa∈Fj\fi

mfa→xj

vfa→xj

)

vxj→fi (18a)

1

vxj→fi

=
∑

fa∈Fj\fi

1

vfa→xj

. (18b)

After the variable node xj receives the messages from all of

the neighbouring factor nodes from the set Fj \fi, it evaluates

the message µxj→fi(xs) according to (18) and sends it to the

factor node fi.

B. Message from Factor Node to Variable Node

Consider a part of a factor graph shown in Fig. 16 that

consists of a group of variable nodes Xi = {xj , xl, ..., xL} ⊆
X that are neighbours of the factor node fi ∈ B.

.

.

.

lx

Lx)Lx(if→Lxµ

)lx(if→lxµ

if
jx

)jx(jx→ifµ

Fig. 16. Message µfi→xj
(xj) from factor node fi to variable node xj .

The message µfi→xj
(xj) from the factor node fi to the

variable node xj is defined as a product of all incoming

variable node to factor node messages arriving at other incident

edges, multiplied by the local function N (zi|Xi, vi) associated

to the factor node fi, and marginalised over all of the variables

associated with the incoming messages:

µfi→xj
(xj) =

∫

xl

· · ·
∫

xL

N (zi|Xi, vi)
∏

xb∈Xi\xj

µxb→fi(xb) dxb,

(19)

where Xi \xj is the set of variable nodes incident to the factor

node fi, excluding the variable node xj .

Due to linearity of functions hi(Xi), closed form expres-

sions for these messages is easy to obtain and follow a

Gaussian form:

µfi→xj
(xj) ∝ N (xj |mfi→xj

, vfi→xj
). (20)

The message µfi→xj
(xj) can be computed only when all other

incoming messages (variable to factor node messages) are

known. Let us assume that the messages into factor nodes are

Gaussian, denoted by µxl→fi(xl) ∝ N (xl|mxl→fi , vxl→fi),
. . . , µxL→fi(xL) ∝ N (xL|mxL→fi , vxL→fi). Then, using (2)

and (19), it can be shown that the message µfi→xj
(xj) from

the factor node fi to the variable node xj is represented by

the Gaussian function (20), with mean mfi→xj
and variance

vfi→xj
obtained as:

mfi→xj
=

1

hij

(

zi −
∑

xb∈Xi\xj

hibmxb→fi

)

(21a)

vfi→xj
=

1

h2
ij

(

vi +
∑

xb∈Xi\xj

h2
ibvxb→fi

)

. (21b)

To summarise, after the factor node fi receives the messages

from all of the neighbouring variable nodes from the set Xi \
xj , it evaluates the message µfi→xj

(xj) according to (21a)

and (21b), and sends it to the variable node xj .

C. Marginal Inference

The marginal of the variable node xj , illustrated in Fig. 17

is obtained as the product of all incoming messages into the

variable node xj :

p(xj) =
∏

fc∈Fj

µfc→xj
(xj), (22)

where Fj is the set of factor nodes incident to the variable

node xj .

Wf

wf

.

.

.
if

jx

)jx(jx→wfµ

)jx(jx→Wfµ

)jx(jx→ifµ

Fig. 17. Marginal inference of the variable node xj .

According to (22), it can be shown that the marginal of the

state variable xj is represented by:

p(xj) ∝ N (xj |x̂j , vxj
), (23)

with the mean value x̂j and variance vxj
:

x̂j =

(

∑

fc∈Fj

mfc→xj

vfc→xj

)

vxj
(24a)

1

vxj

=
∑

fc∈Fj

1

vfc→xj

. (24b)

Finally, the mean-value x̂j is adopted as the estimated value

of the state variable xj .

APPENDIX B: TOY EXAMPLE OF ALTERNATING GAUSSIAN

BELIEF PROPAGATION ALGORITHM

To provide a step-by-step presentation of the AGBP algo-

rithm, we use an illustrative example with s = 2 clusters.

The example utilises the distributed linear model given by (6)

represented as:
[

Hc1 Hc1,c2

Hc2,c1 Hc2

] [

xc1

xc2

]

+

[

uc1

uc2

]

=

[

zc1
zc2

]

. (25)

Each cluster consists of two state variables:

xc1 =

[

x1

x2

]

; xc2 =

[

x3

x4

]

. (26)

Furthermore, let us assume that we have the following struc-

ture of the system:

Hc1 =

[

h11 0
h21 h22

]

; Hc1,c2 =

[

0 0
0 0

]

Hc2,c1 =

[

h31 0
0 0

]

; Hc2 =

[

h33 h34

h43 h44

]

zc1 =

[

z1
z2

]

; uc1 =

[

u1

u2

]

; zc2 =

[

z3
z4

]

; uc2 =

[

u3

u4

]

.

(27)

Applying the AGBP algorithm to linear models (25) requires

forming the factor graph. To form a graph, we use variable

nodes for representation of each state variable, resulting in

the set of variable nodes X = {x1, x2, x3, x4}. Similarly,

each linear equation is represented by the factor node, re-

sulting in the set of factor nodes F = {f1, f2, f3, f4}, with

B = {f2, f3, f4} denoting branch factor nodes and L = {f1}
defining leaf factor nodes. Note that among the branch factor

nodes from the set B, only f3 connects variable nodes from

clusters c1 and c2. We label this branch factor node as the

tie factor node T = {f3}. In contrast, the remaining factor

nodes from the set F establish connections only within their

respective clusters and are marked as internal factor nodes

I = {f1, f2, f4}. Fig. 18(a) depicts the resulting factor graph.

During the execution of the AGBP algorithm, each sequence

ks = {1, 2, . . .} undergoes a series of global iterations kg =
{1, . . . νg} and local iterations kl = {1, . . . νl}. Let us assume

that the algorithm starts with global iterations utilising the ini-

tial messages from the factor node to the variable node µ
(ks,0)
f .

cluster 2ccluster 1c

3f

3x

4x

4f

1x

2x

2f

1f

(a)

cluster 2ccluster 1c

3x

4x

6f

4f

7f

1f

1x

2x

2f

5f

(b)

Fig. 18. The complete (subfigure a) and disjoint (subfigure b) factor graph
allocated to s = 2 clusters with internal factor nodes (purple squares) and tie
factor nodes (orange squares).

In particular, the vectors of means m
(ks,0)
f = [m

(ks,0)
fi→xj

] and

variances v
(ks,0)
f = [v

(ks,0)
fi→xj

], fi ∈ F , xj ∈ X , are known.

We run the global iterations of the AGBP algorithm over the

complete factor graph shown in Fig. 18(a). By utilising means

and variances of messages µ
(ks,kg−1)
f , we calculate the means

m
(ks,kg)
x = [m

(ks,kg)
xj→fi

] and variances v
(ks,kg)
x = [v

(ks,kg)
xj→fi

] of

messages from the variable node to the factor node µ
(ks,kg)
x ,

fi ∈ B, xj ∈ X , using (18). For example:

m
(ks,kg)
x1→f3

=

(

mf1→x1

vf1→x1

+
m

(ks,kg−1)
f2→x1

v
(ks,kg−1)
f2→x1

)

v
(ks,kg)
x1→f3

(28a)

1

v
(ks,kg)
x1→f3

=
1

vf1→x1

+
1

v
(ks,kg−1)
f2→x1

. (28b)

Note that the messages originating from the leaf factor nodes

of set L remain constant during the entire iteration process.

Next, using these messages we can compute means m
(ks,kg)
f =

[m
(ks,kg)
fi→xj

] and variances v
(ks,kg)
f = [v

(ks,kg)
fi→xj

] of messages

µ
(ks,kg)
f , fi ∈ B, xj ∈ X , using (21). For example:

m
(ks,kg)
f3→x3

=
1

h33

(

z3 − h31m
(ks,kg)
x1→f3

− h34m
(ks,kg)
x4→f3

)

(29a)

v
(ks,kg)
f3→x3

=
1

h2
33

(

v3 + h2
31v

(ks,kg)
x1→f3

+ h2
34v

(ks,kg)
x4→f3

)

. (29b)

Suppose that we completed the total number of global

iterations νg for the corresponding sequence ks. We can

proceed with the local iterations of the AGBP algorithm on the

factor graph shown in Fig. 18(b). In this graph, the tie factor

node f3 is collapsed into three leaf factor nodes {f5, f6, f7},

each of which retains the means and variances obtained after

the last global iteration and remain constant during local itera-

tions. Following our example, the messages from these factor

nodes to the corresponding variable nodes will be as follows:

µf5→x1
(x1) = µ

(ks,νg)
f3→x1

(x1), µf6→x3
(x3) = µ

(ks,νg)
f3→x3

(x3),

µf7→x4
(x4) = µ

(ks,νg)
f3→x4

(x4). It is important to emphasise that

the initial messages in the local iterations are obtained based

on the results of the last global iteration. Applying the same

logic as for the global iterations, we calculate the messages

using equation (18) and (21). The distinction lies in the fact

that we only calculate messages between variable nodes from

the set X and factor nodes from the set B\T . After completing

νl local iterations, the messages µ
(ks,νl)
f will be used to start

global iterations for a new sequence.

Our process involves repeating these sequences until the

AGBP algorithm converges. Once this occurs, we can compute

marginals using (24) according to messages from the factor

node to the variable node. It is worth noting that waiting for

convergence is not necessary to compute marginals.

APPENDIX C: CONVERGENCE ANALYSIS OF ALTERNATING

GAUSSIAN BELIEF PROPAGATION ALGORITHM

The arbitrary element of the i-th entry cfi = [cfi→xj
], fi ∈

B, xj ∈ Xi, is obtained as follows:

cfi→xj
=

zi
hij

−
∑

k∈K
hik 6=0







hik

hij

∑

r∈R
hrk 6=0

m∗
fr→xk

v∗fr→xk

v∗xk→fi






, (30)

where:

v∗xk→fi
=







∑

a∈A
hak 6=0

1

v∗fa→xk







−1

, (31)

with K = {1, . . . , n} \ j, R = {b + 1, . . . ,m}, A =
{1, . . . ,m} \ i. The second part on the right-hand side of (30)

originates from the leaf factor nodes that send messages with

constant mean values and variance values, representing fixed

point values.

The vector mf can be decomposed as mf =
[m1, . . . ,mq, . . . ,md]

T , where the mean mq corresponds to

mfi→xj
. Therefore, each pair of indices (q, p) of the matrix Ω

corresponds to the means (mfi→xj
, mfy→xk

). The arbitrary

element of the i-th block Ωfi = [ωqp] can be obtained as

follows:

ωqp =











−hik

hij

v∗xk→fi

v∗fy→xk

, hik 6= 0, hij 6= 0, i 6= y, j 6= k

0, otherwise.

(32)

Theorem 2 Proof: To prove the theorem, it is sufficient to

show that the sequences of global and local iterations converge

to m∗
f as defined in (8). Using (9) and (10), we obtain the

evolution of means for sequences of the global and local

iterations:

m
(ks,kl)
f = Qcf + cf +Ωm

(ks,νg−1)
f −Qcf

−QΩm
(ks,νg−1)
f +QΩm

(ks,kl−1)
f . (33)

Observing the fixed point limks→∞ m
(ks,kl)
f , we obtained:

m∗
f = (I−Ω)−1cf . (34)

This concludes the proof.

APPENDIX D: RANDOMISED DAMPING GAUSSIAN BELIEF

PROPAGATION ALGORITHM

Randomised damping GBP represents an extension of the

GBP algorithm, where each mean value message mfi→xj

from branch factor node fi ∈ B to a variable node xj ∈ X
is damped independently with probability p, otherwise, the

message is calculated as in the standard GBP algorithm. The

damped message is evaluated as a linear combination of the

message from the previous m
(k−1)
fi→xj

and the current iteration

step m
(k)
fi→xj

, with weights ζ and 1− ζ, respectively [23]:

m
(k)
fi→xj

=
(

1− qfi,xj

)

m
(k)
fi→xj

+ qfi,xj

[

(1− ζ)m
(k)
fi→xj

+ ζm
(k−1)
fi→xj

]

, (35)

where 0 < ζ < 1, and qfi,xj
∼ Ber(p) ∈ {0, 1} is a Bernoulli

random variable independently sampled with probability p for

each mean mfi→xj
.

APPENDIX E: FRAMEWORK FOR INFERENCE OVER FACTOR

GRAPHS

To ease reproducibility, we provide an open-source simula-

tion framework written in the Julia programming language.

The framework provides a powerful tool for simulation of

different GBP algorithms under various scenarios, including

emulation of distributed architecture of linear models, al-

lowing straightforward use for various scenarios analysed in

this paper. To emulate AGBP algorithm in the distributed

architecture, we provide function freezeFactor which is

responsible for collapsing tie factor nodes into leaf factor

nodes, shown in Fig. 3. The function defreezeFactor

returns the factor graph to its original state, shown in Fig. 2.

For the simulation of dynamic behaviour of the GBP algo-

rithm, we use the function dynamicFactor, which emulates

the arrival of new observation values. Finally, we provide the

function ageingVariance, where observations are infused

with deterioration or ageing component over time. For more

details, please refer to the following package FactorGraph.jl,

where we provide extensive documentation and source code.

REFERENCES

[1] F. Guo, F. R. Yu, H. Zhang, X. Li, H. Ji, and V. C. Leung, “Enabling
massive IoT toward 6G: A comprehensive survey,” IEEE Internet Things
J., vol. 8, no. 15, pp. 11 891–11 915, 2021.

[2] Z. Lv, R. Lou, J. Li, A. K. Singh, and H. Song, “Big data analytics for
6G-enabled massive internet of things,” IEEE Internet Things J., vol. 8,
no. 7, pp. 5350–5359, 2021.

[3] M. Cosovic, A. Tsitsimelis, D. Vukobratovic, J. Matamoros, and
C. Anton-Haro, “5G mobile cellular networks: Enabling distributed state
estimation for smart grids,” IEEE Commun. Mag., vol. 55, no. 10, pp.
62–69, 2017.

[4] S. Verma, Y. Kawamoto, Z. M. Fadlullah, H. Nishiyama, and N. Kato,
“A survey on network methodologies for real-time analytics of massive
iot data and open research issues,” IEEE Commun. Surv. Tutor., vol. 19,
no. 3, pp. 1457–1477, 2017.

[5] D. Ciuonzo, S. H. Javadi, A. Mohammadi, and P. S. Rossi, “Bandwidth-
constrained decentralized detection of an unknown vector signal via
multisensor fusion,” IEEE Trans. Signal Inf. Process. Netw., vol. 6, pp.
744–758, 2020.

[6] D. Ciuonzo, P. S. Rossi, and S. Dey, “Massive MIMO channel-aware
decision fusion,” IEEE Trans. Signal Process., vol. 63, no. 3, pp. 604–
619, 2015.

[7] Y. Liu, M. Peng, G. Shou, Y. Chen, and S. Chen, “Toward edge
intelligence: Multiaccess edge computing for 5G and internet of things,”
IEEE Internet of Things J., vol. 7, no. 8, pp. 6722–6747, 2020.

[8] S. M. Kay, Fundamentals of statistical signal processing: Estimation

theory. Prentice-Hall, Inc., 1993.
[9] Z. Du, X. Song, J. Cheng, and N. C. Beaulieu, “Maximum likelihood

based channel estimation for macrocellular OFDM uplinks in dispersive
time-varying channels,” IEEE Trans. Wireless Commun., vol. 10, no. 1,
pp. 176–187, 2010.

[10] H. Wymeersch and G. Seco-Granados, “Radio localization and sensing–
part I: Fundamentals,” arXiv preprint arXiv:2209.00245, 2022.

[11] R. Olfati-Saber and P. Jalalkamali, “Coupled distributed estimation
and control for mobile sensor networks,” IEEE Trans. Autom. Control,
vol. 57, no. 10, pp. 2609–2614, 2012.

[12] G. N. Korres, “A distributed multiarea state estimation,” IEEE Trans.
Power Syst., vol. 26, no. 1, pp. 73–84, 2010.

[13] P. Wang, S. Mou, J. Lian, and W. Ren, “Solving a system of linear
equations: From centralized to distributed algorithms,” Annual Reviews
in Control, vol. 47, pp. 306–322, 2019.

[14] D. E. Marelli and M. Fu, “Distributed weighted least-squares estimation
with fast convergence for large-scale systems,” Automatica, vol. 51, pp.
27–39, 2015.

[15] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschis-
chang, “The factor graph approach to model-based signal processing,”
Proc. IEEE, vol. 95, no. 6, pp. 1295–1322, 2007.

[16] D. Bickson, “Gaussian belief propagation: Theory and aplication,” arXiv
preprint arXiv:0811.2518, 2008.

[17] J. Ortiz, T. Evans, and A. J. Davison, “A visual introduction to Gaussian
belief propagation,” arXiv preprint arXiv:2107.02308, 2021.

[18] C. Fan, X. Yuan, and Y. J. Zhang, “Scalable uplink signal detection
in C-RANs via randomized Gaussian message passing,” IEEE Trans.

Wireless Commun., vol. 16, no. 8, pp. 5187–5200, 2017.
[19] B. Li and Y.-C. Wu, “Convergence analysis of Gaussian belief propaga-

tion under high-order factorization and asynchronous scheduling,” IEEE

Trans. Signal Process., vol. 67, no. 11, pp. 2884–2897, 2019.
[20] Y. Hu, A. Kuh, T. Yang, and A. Kavcic, “A belief propagation based

power distribution system state estimator,” IEEE Comput. Intell. Mag.,
vol. 6, no. 3, pp. 36–46, 2011.

[21] T. Sui, D. E. Marelli, and M. Fu, “Convergence analysis of Gaussian
belief propagation for distributed state estimation,” in Proc. CDC. IEEE,
2015, pp. 1106–1111.

[22] X. Tai, Z. Lin, M. Fu, and Y. Sun, “A new distributed state estimation
technique for power networks,” in Proc. ACC. IEEE, 2013, pp. 3338–
3343.

[23] M. Cosovic and D. Vukobratovic, “Distributed Gauss–Newton method
for state estimation using belief propagation,” IEEE Trans. Power Syst.,
vol. 34, no. 1, pp. 648–658, 2019.

[24] Q. Zhang, “Some implementation aspects of sliding window least
squares algorithms,” IFAC Proceedings Volumes, vol. 33, no. 15, pp.
763–768, 2000.

[25] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine

learning. Springer, 2006, vol. 4, no. 4.
[26] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and

the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp.
498–519, Feb 2001.

[27] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation:
Informed scheduling for asynchronous message passing,” in Proc. UAI.
Arlington, Virginia, United States: AUAI Press, 2006, pp. 165–173.

[28] L. Lovén, T. Leppänen, E. Peltonen, J. Partala, E. Harjula, P. Porambage,
M. Ylianttila, and J. Riekki, “Edgeai: A vision for distributed, edge-
native artificial intelligence in future 6g networks,” The 1st 6G wireless
summit, pp. 1–2, 2019.

[29] A. Quarteroni, R. Sacco, and F. Saleri, Numerical mathematics.
Springer Science & Business Media, 2010, vol. 37.

[30] B. L. Ng, J. Evans, and S. Hanly, “Distributed downlink beamforming
in cellular networks,” in Proc. ISIT. IEEE, 2007, pp. 6–10.

[31] Z. Zhang and M. Fu, “Convergence rate analysis of Gaussian belief
propagation for Markov networks,” IEEE/CAA J. Autom. Sin., vol. 7,
no. 3, pp. 668–673, 2020.

[32] M. Cosovic and D. Vukobratovic, “Fast real-time DC state estimation in
electric power systems using belief propagation,” in Proc. SmartGrid-

Comm. IEEE, 2017, pp. 207–212.

https://github.com/mcosovic/FactorGraph.jl

	Introduction
	Probabilistic Inference in Linear Models
	Maximum Likelihood Estimation
	Gaussian Belief Propagation

	Distributed Probabilistic Inference in the Linear Models
	Factor Graph Clustering
	Message Scheduling in Distributed Framework
	Convergence Analysis of Alternating Gaussian Belief Propagation Algorithm
	Dynamic Gaussian Belief Propagation Algorithm

	Numerical Results
	Linear Models with Symmetric Matrices Properties
	Linear Models with Nonsymmetric Matrices Properties
	Linear Models with Rectangular Matrices
	Linear Models with Rectangular Matrices in Dynamic Framework

	Conclusions
	Message from Variable Node to Factor Node
	Message from Factor Node to Variable Node
	Marginal Inference

	References

