
IEEE INTERNET OF THINGS JOURNAL 1

Human-Centric Resource Allocation for the
Metaverse with Multi-Access Edge Computing

Zijian Long, Haiwei Dong, Senior Member, IEEE, and Abdulmotaleb El Saddik, Fellow, IEEE

Abstract—Multi-access edge computing (MEC) is a promising
solution to the computation-intensive, low-latency rendering tasks
of the metaverse. However, how to optimally allocate limited
communication and computation resources at the edge to a large
number of users in the metaverse is quite challenging. In this
paper, we propose an adaptive edge resource allocation method
based on multi-agent soft actor-critic with graph convolutional
networks (SAC-GCN). Specifically, SAC-GCN models the multi-
user metaverse environment as a graph where each agent is
denoted by a node. Each agent learns the interplay between
agents by graph convolutional networks with self-attention mech-
anism to further determine the resource usage for one user in
the metaverse. The effectiveness of SAC-GCN is demonstrated
through the analysis of user experience, balance of resource
allocation, and resource utilization rate by taking a virtual city
park metaverse as an example. Experimental results indicate
that SAC-GCN outperforms other resource allocation methods in
improving overall user experience, balancing resource allocation,
and increasing resource utilization rate by at least 27%, 11%,
and 8%, respectively.

Index Terms—Extended reality, multi-agent reinforcement
learning, attention mechanism, graph convolutional network.

I. INTRODUCTION

THE metaverse, regarded as the next generation of the
Internet, has gained a lot of attention from both academia

and industry. It is commonly defined as a set of virtual
worlds in which people can work, play, and socialize through
their respective avatars [1]. It integrates the most cutting-edge
technologies, such as cloud/edge computing, artificial intelli-
gence, eXtended reality (XR), digital twins, and blockchains
[2]. The current metaverse systems can roughly be classified
into two categories: 1) multiplayer online games: Minecraft
allows players using their avatars to explore, interact with,
and modify a dynamically-generated 3D world made of blocks
[3]. Roblox, a 3D sandbox game, offers a programmable
environment for players to design their worlds which they
can share with others [4]. 2) social activity oriented metaverse
systems: Meta created Horizon World, a popular virtual reality

Manuscript received 2023. The work of Zijian Long was supported in
part by the China Scholarship Council (No. 202107970008). (Corresponding
author: Haiwei Dong.)

Zijian Long and Abdulmotaleb El Saddik are with the Multimedia Com-
munications Research Laboratory (MCRLab), the School of Electrical Engi-
neering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5,
Canada (e-mail: {zlong038, elsaddik}@uOttawa.ca).

Haiwei Dong is with Ottawa Research Center, Huawei Technologies
Canada, Ottawa, ON K2K 3J1, Canada (e-mail: haiwei.dong@ieee.org).

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

(VR) platform, to enable users to move around in a variety
of worlds that host events, games, and social interactions [5].
Baidu also built Xirang where users interact and socialize with
others using avatars in a virtual planet [6].

However, there are still many challenging problems re-
mained to achieve the future metaverse where millions of
users’ virtual avatars live in a set of virtual worlds connecting
closely to the physical world. For example, the metaverse
requires a large amount of computation resources to render
3D virtual worlds in a seamless manner. Due to the lim-
ited computation resources of XR headsets, the computation-
intensive rendering task cannot be solely conducted on them
[7]. Though remote rendering by powerful cloud servers
can solve the insufficient computation resources problem, the
metaverse users expect ultra-low latency of 20ms-30ms which
cannot be satisfied by the current cloud-based infrastructures
[8], [9]. Multi-access edge computing (MEC) [10], which
places powerful servers close to users, is a promising method
to meet the high requirements of the metaverse for both
communication and computation resources [11].

In our vision, the thing-edge-cloud collaborative architecture
of MEC is the key to enabling the metaverse, as shown in
Fig. 1, which comprises three layers: the thing layer, the edge
layer, and the cloud layer. In the thing layer, multiple users
wear XR headsets to experience diverse 3D virtual worlds in
the metaverse, such as Decentraland, Horizon, and Minecraft
[12]. XR headsets measure users’ movement and transmit
the data to the edge layer via the mice uplink flow. Users
then receive rendered scenes of the metaverse by the large
elephant downlink flow [13]. The edge layer is an intermediate
layer between the thing layer and the cloud layer where edge
servers are directly connected to cell towers [14]. The edge
servers mainly execute foreground rendering which has fewer
requirements for graphical details but more requirements for
stringent latency. Note that the edge layer may render both
foreground and background in simple scenarios. The edge
layer connects the thing layer and the cloud layer by trans-
mitting user data from the thing layer to the cloud layer and
delivering synchronization information from the cloud layer to
the thing layer. The cloud layer consists of the most powerful
computing and storage units in the data center. Even though
the edge servers are capable of processing data rapidly, they
still require the cloud layer to handle computation-intensive
latency-tolerant operations, such as user information storage,
user state synchronization, and background rendering [15],
[16].

Metaverse users can benefit from the thing-edge-cloud col-

0000–0000/00$00.00 © 2021 IEEE

ar
X

iv
:2

31
2.

15
31

3v
1

 [
cs

.M
M

]
 2

3
D

ec
 2

02
3

IEEE INTERNET OF THINGS JOURNAL 2

Fig. 1. The thing-edge-cloud collaborative architecture of MEC to provide multiple users with remotely rendered metaverse scenes. To enable human-centric
resource allocation, agents that represent users are denoted as nodes and their interactions are described by dashed lines (explained in Section IV).

laborative framework. However, how to adaptively allocate
edge resources to multiple users in the metaverse has many
challenges due to the following reasons. First, users’ requests
for resources change with their movements. A fast movement
requires more computation resources to generate the respond-
ing scenes and more network resources to deliver the packets
of that scenes. Second, the resource conditions are difficult
to be predicted due to variable CPU utilization rates, network
bandwidths, delays, and jitters. Third, the target of resource
allocation is to improve the overall quality of experience (QoE)
of users while keeping the balance of resource allocation
among users. In the case of limited resources, if some users
move faster they are provided more resources, which is
determined by the QoE definition. Meanwhile, the balance
of resource allocation would also be considered together
for fairness. The trade-off between the two targets makes
obtaining the optimal resource allocation strategy even more
challenging.

In this paper, we address the above challenges in a human-
centric way. First, the main target of our proposed method is
to improve human experience which is defined by four human-
related factors: user-received scene quality, frame choppiness,
latency, and metaverse frame instability (More details will be
given in Section III). Previous user studies have proven that
these factors play key roles in determining human experience
in the metaverse [17], [18]. Second, to treat each metaverse
user fairly, we add balance factor of resource allocation in the
reward function. Moreover, our RL-based method is trained
and tested with user data from a real metaverse resource
allocation system rather than simulated data. The main contri-

butions of our work are as follows:
• We propose a thing-edge-cloud collaborative framework

of MEC to enable the metaverse at the network edge
and formulate the problem of edge resource allocation
as a decentralized partially observable Markov decision
process (Dec-POMDP).

• To solve the Dec-POMDP problem, we propose a method
based on multi-agent soft actor-critic with graph convo-
lutional networks (SAC-GCN). In SAC-GCN, each agent
adaptively determines the usage of communication and
computation resources for one user in the metaverse.
The former is presented as the bit rate of the rendered
metaverse scenes, while the latter is described as the
usage percentage of CPU.

• To the best of our knowledge, this is the first time
that combines SAC with graph convolutional networks
to deal with the highly dynamic metaverse environment
where agents keep moving and their neighbors change
quickly. The environment is modeled as a graph where
each agent is represented by a node. Edges are also
added to neighboring nodes to indicate their mutual
influence. Moreover, graph convolutional networks and
self-attention mechanism are proposed to promote better
cooperation between agents.

• We propose a smart edge resource allocation system
for the metaverse where multiple users can access the
metaverse wearing untethered VR headsets with adaptive
communication and computation resources based on their
requests. We also compare the performance of SAC-GCN
with other resource allocation methods using a virtual city

IEEE INTERNET OF THINGS JOURNAL 3

park as a case study. Experimental results indicate that
SAC-GCN outperforms other resource allocation methods
in improving overall user experience, balancing resource
allocation, and increasing resource utilization rate by at
least 27%, 11%, and 8%, respectively.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III formulates the resource
allocation as a Dec-POMDP and defines state space, action
space, and reward in our considered scenario. Section IV
describes the proposed SAC-GCN. Section V demonstrates
the architecture of the resource allocation system and the
performance of SAC-GCN using a virtual city park in the
metaverse as an example. Experimental results are analyzed
in Section VI followed by a conclusion in Section VII.

II. RELATED WORK

In this section, we first briefly discuss the relationship
between IoT and the metaverse. We then review the resource
allocation problem in MEC as an enabler technology for the
metaverse at the edge. We also discuss the state-of-the-art
multi-agent deep reinforcement learning (MADRL) methods.

A. Internet of Things and the Metaverse

Internet of things (IoT) plays an important role in the
architecture of the metaverse. First of all, the synchronization
of data between the real world and the virtual world is
essentially fundamental for the metaverse ecosystem [19]. Due
to the recent rapid development of IoT, a large number of IoT
sensors are being deployed to collect data from the real world
which could be further shared with the virtual world. Han et
al. proposed a dynamic hierarchical framework to synchronize
metaverse with the collected data from a group of IoT devices
based on optimal control theory [20]. Secondly, IoT devices,
such as VR and Mixed Reality (MR) headsets, are the most
popular interfaces for users to interact with the metaverse [21].
These IoT devices detect users’ movements and recognize their
gestures and voices to enable various modalities of interactions
in the metaverse. For example, by wearing HoloLens 2 [22],
a MR headset manufactured by Microsoft, user is able to
collaborate on persistent 3D objects with eye contact, facial
expressions, and gestures [23].

B. Resource Allocation for MEC

MEC, as an emerging network paradigm, can provide exten-
sive computation resources and reduce service time as well.
However, intelligent resource allocation schemes are needed
when dealing with the computation-intensive and latency-
sensitive metaverse. Inspired by the success of deep rein-
forcement learning methods in sequential decision making,
researchers have applied them to the edge resource allocation
problem. Wang et al. proposed DRLRA to smartly allocate
network resources and computing resources based on Deep
Q-Network (DQN) [24]. The proposed method is deployed on
a software-defined networking (SDN) [25] controller to collect
the overview of the MEC environment, aiming to reduce the
service time and balance resource consumption across the

MEC servers. Liu et al. jointly considered the task offloading
problem and resource allocation at the edge and proposed
a multi-agent DQN-based framework to reduce system costs
[26]. It is noted that edge resource allocation for the metaverse
has bigger challenges due to its high requirements for the
computation-intensive rendering and ultra-low latency stream-
ing especially for a large number of users.

C. Multi-Agent Deep Reinforcement Learning

MADRL algorithms are designed for the complex systems
where multiple agents operate in a fully/partially shared-
information environment. Each agent learns to make its own
decisions by interacting with the environment and other agents
at the same time. They are considered to be one of the
promising solutions to the NP-hard problems. However, due
to the non-stationarity of the environment, the main challenge
in MADRL, it is quite difficult to make multiple agents learn
and collaborate. Lowe et al. proposed a centralized training
and decentralized execution framework for the multi-agent
version of Deep Deterministic Policy Gradient (DDPG) [27].
They employed a fully observable critic for each agent to deal
with the global information during the training process. Jiang
et al. modeled the multi-agent environment as a graph and
employed graph convolutional networks to facilitate commu-
nication between nearby agents [28]. Yang et al. proposed the
mean field reinforcement learning method to solve the “curse
of dimensionality” caused by a large number of agents [29].

III. PROBLEM FORMULATION

In the MEC-enabled metaverse, multiple users share the
communication resources of the cell towers and the com-
putation resources of the edge servers. How to intelligently
allocate the resources to users can be seen as a multi-agent
game where each agent determines how many resources a user
should take. In general, multi-agent games can be placed into
three groups: fully cooperative, fully competitive, and a mix of
the two, depending on the types of settings they address [30].
We set all the agents with a shared target which is to improve
the overall QoE while balancing the resources allocated to
each user. Therefore, all the agents collaborate to optimize this
long-term target in a fully cooperative manner. As each agent
only observes part of the environment, and all the agents have
the same target, the problem can further be formulated as a
Dec-POMDP, which is a special case of a partially observable
Markov game (POMG) designed for cooperative interaction.

A Dec-POMDP can be defined as a tuple (S,A, P,R,O,
N ,Ω, γ) [31]. At each time step t, the global state of the
environment is denoted by st ∈ S . Each agent i ∈ N =
{1, 2, ..., N} obtains its individual observation oit ∈ Oi accord-
ing to the observation function Ω(oit|st) : S → Oi. The agent
then chooses an action ait ∈ Ai based on its policy πi(ait|oit) :
Oi×Ai → [0, 1]. All the actions selected by the agents at time
step t form a joint action at ∈ A := A1 × A2 × ... × AN .
The transition probability P (st+1|st,at) : S×A×S → [0, 1]
denotes the probability from the current environment state st
to the next environment state st+1 after the joint action at

is executed. The reward function R(st,at) : S × A → R

IEEE INTERNET OF THINGS JOURNAL 4

describes the shared reward from the environment given the
agents’ joint action at, where R represents the set of real
numbers. γ ∈ (0, 1] is a discount factor which determines how
much the agents value the rewards in the future compared to
those in the current state. In the following subsections, we
define state space, action space, and reward for the metaverse
resource allocation problem.

A. State and Observation Space

The observation of the environment for each agent includes
the network condition N i

t and CPU performance Ci
t . The

network condition can be represented by a six-parameter tuple:
N i

t = (xi
t, y

i
t, l

i
t, j

i
t , p

i
t, n

i
t), where xi

t is the last selected
target bit rate; yit is the actually received bit rate; lit is the
average round trip latency; jit is the network jitter; pit is the
number of lost packets; and ni

t is the number of negative
acknowledgment messages. The CPU performance is denoted
by Ci

t = (zit, u
i
t, e

i
t, d

i
t), where zit is the last chosen number to

limit CPU usage for agent i; ui
t is the percentage of overall

available CPU; eit is the rendered frame rate at the edge server;
and dit is the average delay for rendering a frame. Thus, the
local observation is represented as the combination of these
two sets of parameters

oit = (N i
t , C

i
t)

= (xi
t, y

i
t, l

i
t, j

i
t , p

i
t, n

i
t, y

i
t, u

i
t, e

i
t, d

i
t)

(1)

We assume that the global state can be obtained by collecting
all the agents’ local observations. Therefore, the global state
is defined as st = (o1t , o

2
t , ..., o

N
t) ∈ S , where S is the global

state space.

B. Action Space

An agent in our considered scenario executes actions to de-
termine how many communication and computation resources
a user is supposed to take. For communication resources, the
options that an agent can choose from for the transmitting
bit rate of the rendered frames are in the range [bmin, bmax]
Mbps. An agent’s consumption of computation resources is
controlled by throttling the CPU usage of the process that the
agent targets. The options for the throttling usage percentage
are in the range [lmin, lmax]. We define the action of agent i
as a tuple: ait = (ai,mt , ai,pt), where ai,mt ∈ [bmin, bmax] and
ai,pt ∈ [lmin, lmax] represent the actions for communication
and computation resources, respectively. Note that ai,mt and
ai,pt both are positive numbers which means that the action
space is a two-dimension continuous action space. Similar to
the global state, the joint action is the combination of actions
of all agents: at = (a1t , a

2
t , ..., a

N
t) ∈ A, where A is the action

space.

C. Reward Design

Dec-POMDPs utilize shared rewards to evaluate the per-
formance of joint actions and to guide agents to make better
decisions in terms of long-term cumulative reward. When de-
signing the reward function for N users in the metaverse, three
important factors that need to be considered are overall quality

of experience (QoE) [32], balance of communication resource
allocation, and balance of computation resource allocation.
The last two factors represent balance of resource allocation
in the metaverse.

1) Overall QoE: We propose a time-step based QoE model
defined as follows

QoEt = α

T∑
t=1

q(yit)︸ ︷︷ ︸
Metaverse Scene Quality

−β

T∑
t=1

|f i
t − f i

target|︸ ︷︷ ︸
Choppiness Penalty

− γ

T∑
t=1

p(lit)︸ ︷︷ ︸
Latency Penalty

− δ

T−1∑
t=1

|q(yit+1)− q(yit)|︸ ︷︷ ︸
Instability Penalty

(2)

For the time step t, αq(yit) represents the overall level of
satisfaction with the metaverse scene quality of agent i, where
yit is the average received bit rate and α is the satisfaction level
factor. The higher the bit rate, the better the scene quality and
the more enjoyable the viewing and interaction of metaverse
would be. Other items in the equation are used to penalize
the negative impact of other major factors. β|f i

t − f i
target|

donates the choppiness penalty generated by lost frames where
f i
t and f i

target are the received frame rate and the target
frame rate and β is the choppiness penalty factor. γp(lit) is
used to penalize the turnaround latency with lit being the
average latency within time step t and γ being the latency
penalty factor. The instability penalty for the changes in scene
quality from time step t to time step t + 1 is represented by
δ|q(yit+1) − q(yit)| with δ as the instability factor. Because
the marginal improvement in perceived quality decreases at
higher bit rates, we use the logarithmic function to represent
q(yit), where q(yit) = log(yit/y

i
min) and yimin is the minimum

value of the bit rate of all the time. A user’s satisfaction
level decreases more as the total latency increases, and higher
latency significantly reduces QoE with sickness. Therefore, we
use an exponential function to denote p(lit) = el

i
t/l

i
min , where

limin is the minimum value of the latency. The overall user
experience at time step t is represented by the sum of the
QoE score QoEi

t for each agent i

Qt =

N∑
i=1

QoEi
t (3)

2) Balance of Communication Resource Allocation: The
obtained communication resources for agent i at time step t
are presented as the bit rate of the metaverse scene yit. We use
variance of the bit rates to denote balance of communication
resource allocation

V comm
t =

∑N
i=1(y

i
t −

∑N
i=1 yi

t

N)2

N − 1
(4)

3) Balance of Computation Resource Allocation: The ob-
tained computation resources for agent i at time step t are
denoted as the percentage of CPU usage ui

t. We use variance
of the CPU usage to denote balance of computation resource
allocation

V comp
t =

∑N
i=1(u

i
t −

∑N
i=1 ui

t

N)2

N − 1
(5)

IEEE INTERNET OF THINGS JOURNAL 5

Finally, the time-step-based reward function is designed to deal
with the trade-off between overall user experience and balance
of resource allocation, denoted as rt = w1 ·Qt+w2 ·V comm

t +
w3 · V comp

t .
Given the definitions of state space, action space, and reward

in our Dec-POMDP model, the target is to find the optimal
joint policy π∗ which guides the agents to execute a joint
action at at any state st to maximize the expected discounted
return Gt, defined as

π∗ = argmax
π

Eπ[Gt] = argmax
π

Eπ[

∞∑
k=0

γkrt+k+1] (6)

where γk is the discount factor and rt+k+1 is the reward for
the time step t+ k+1. The value of the global state s can be
calculated by the state value function

V π(s) = Eπ[Gt|st = s] (7)

Here π is the current policy. The global state-action value
function (Q-function) is defined as

Qπ(s,a) = Eπ[Gt|st = s,at = a] (8)

Based on the above formulation, our Dec-POMDP problem
can be solved by either model-based reinforcement learn-
ing methods or model-free reinforcement learning methods.
The model-based methods are based on the state transition
probability P (st+1|st,at) which denotes the probability from
one state st to the next state st+1 with action at. Due to
the complexity of our environment, it is difficult to obtain
the transition probability, thus making model-based methods
inapplicable to our problem. On the other hand, the model-
free methods rely on past experience without making any
assumptions about the environment. Therefore, the model-free
RL methods are suitable for handling the above-formulated
problem in our case.

IV. MULTI-AGENT SOFT ACTOR-CRITIC WITH GRAPH
CONVOLUTIONAL NETWORKS

Soft Actor-Critic differs from other RL methods in that
it aims not only to maximize discounted cumulative reward
but also to maximize entropy, which is used to measure the
randomness in the policy [33]. In this section, we propose
SAC-GCN, a multi-agent version of SAC with graph convo-
lutional networks and self-attention mechanism, to deal with
the resource allocation problem in the metaverse.

A. Multi-Agent Soft Actor-Critic

The objective of SAC-GCN is to find the optimal joint
policy π∗ to maximize the expected discounted return and its
entropy simultaneously

π∗ = argmax
π

Eπ

[∞∑
k=0

γk

(
rt+k+1 + αH(π(·|st+k))

)]
(9)

where the entropy term H(π(·|st)) is calculated by
H(π(·|st)) = Ea[−log(π(a|st))] and the temperature pa-
rameter α determines the importance of the entropy value

compared to the reward. The soft state value function is
denoted as

Q(s,a) =

Eπ

[
V π(s) + α

∞∑
k=1

γkH(π(·|st+k))|st = s,at = a

]
(10)

where V π(s) is the expected future rewards defined in Eq. 7.
The soft state value function is then given based on the soft
Q-function [33]

V (s) = Ea∼π(·|s)[Q(s,a)− α log(π(a|s))|st = s,at = a]
(11)

The multiple agents of SAC-GCN are organized by the
centralized training and decentralized execution framework, in
which agents are trained in a centralized offline manner and
execute online with decentralized information. Specifically,
during the training process, the centralized critic of each
agent in SAC-GCN can obtain global states and joint actions
from all the agents. The policy of the agent is then updated
by the centrally learned value function. Once the training is
finished, decisions are made solely on the actor’s observations.
For each agent i in SAC-GCN, we maintain two Q-networks
(parameterized by ϕi

1 and ϕi
2) to avoid overestimation of Q-

function values and two target networks (parameterized by
ϕ
i

1 and ϕ
i

2) to stabilize the training process [34]. The target
networks are updated in a soft manner

ϕ
i

j ← τϕi
j + (1− τ)ϕ

i

j , j = 1, 2 (12)

where τ is the step size. The policy network of agent i is
parameterized by θi and all the policy parameters are packed
together as the joint policy denoted as θ = (θ1, ..., θN). Due
to the independence of each θi, the distribution of the joint
action under θ is calculated by

πθ(at|st) =
n∏

i=1

πθi(ait|oit) (13)

To obtain the optimal trade-off between the expected dis-
counted return and the expected entropy at each state, we
employ the soft state value (Eq.11) as the target of our policy
πθi

max
θi

Eat∼πθ
[Qϕ(st,at)− α log(πθi(ait|oit))] (14)

where the expected value is approximated by sampling. How-
ever, direct sampling from the distribution πθi(·|oit) which is
parameterized by the target function is not differentiable. Thus,
the target function is unable to be updated by backpropagation
in neural networks. We follow the reparameterization trick in
[33] and obtain the samples by a squashed Gaussian policy

ãθi(oit, ξ
i
t) = tanh(µθi(oit)+σθi(oit)⊙ξit), ξit ∼ N (0, 1) (15)

where µθi(oit) and σθi(oit) are the mean and standard deviation
of a Gaussian distribution generated by the policy network.
The target of the policy network is then given by samples
from the replay buffer B
Jπ(θ

i) = Est∼B,ξi∼N [min
j=1,2

Qϕj (st, ãt)− α log(πθi(ãit|oit))]
(16)

IEEE INTERNET OF THINGS JOURNAL 6

where ãit represents ãθi(oit, ξ
i
t) in Eq. 15 and ãt is the

joint sampled action by a Gaussian policy, denoted as ãt =
(ã1t , ã

2
t , ..., ã

N
t).

In the Q-network, the loss function is to minimize the
temporal difference error, defined as

JQ(ϕ
i
1,2) = E(st,st+1)∼B,(ξit,ξ

i
t+1)∼N [(Qϕi

1,2
(st, ãt)− y′)2]

(17)

where the target is given by

y′ = rt + γ(min
j=1,2

Qϕj
(st+1, ãt+1)− α log(πθi(ãit+1|st+1)))

(18)

Here minj=1,2 Qϕj
(st+1,at+1) denotes the minimum of the

two target Q-networks. With the defined target functions for
the value network (Eq. 17) and the policy network (Eq. 16),
the parameters are updated by gradient descent and gradient
ascent, respectively.

B. Graph Convolutional Networks

During the above training process of SAC-GCN, the cen-
tralized critics are fed with global states from all agents
making it hard to get valuable information. To tackle this
problem, we employ graph convolutional networks to explore
the hidden graph of agents. More specifically, the multi-agent
metaverse environment is modeled as a graph where each
agent can be represented as a node. The nodes’ features are
derived from local observations which are the conditions of
communication resources and computation resources at the
edge. In the metaverse, one user’s movement/interaction would
likely impact its neighboring users, whose resource requests
would accordingly change. Therefore, we add edges between
a node and its neighboring nodes in the graph to represent
their mutual influence.

Each agent of SAC-GCN consists of three components:
an encoder layer, a convolutional layer, and SAC networks,
as shown in Fig. 2. The encoder layer encodes the local
observation and action to obtain a high-dimensional repre-
sentation which is further used as the feature of a node.
The convolutional layer takes the features from all the nodes
within the same neighborhood as input and outputs a latent
representative feature vector to represent these nodes. We
construct a feature matrix F where the feature vectors of all
the nodes are organized row by row to represent the multi-
agent environment. An adjacency matrix A is also built where
the first row is the one-hot representation of the index of node
i followed by the same representation of the indexes of neigh-
boring nodes. Take agent 3 as an example (shown in Fig. 2),
the adjacency matrix starts with the one-hot representation of
number 3 ([0, 0, 1, 0, 0]) followed by that of neighboring agent
2 and agent 4. The final input of the critic i is then calculated
by A× F with the self-attention mechanism discussed in the
next subsection.

C. Self-Attention Mechanism

The self-attention mechanism is employed within the convo-
lutional layer for agents to give different attention to neighbor-
ing features. The intuition behind this is that in the multi-user

Algorithm 1 SAC-GCN
1: Initialize two soft Q-networks with parameters ϕi

1, ϕi
2 and

a policy network with parameters θi, for each agent i
2: Initialize two target networks with ϕi

1 ← ϕi
1 and ϕi

2 ← ϕi
2,

for each agent i
3: for episode e = 1, 2, ... do
4: for time step t = 1, 2, ..., T do
5: Obtain the original observation oit for each agent and

current global state st
6: for each agent i do
7: Take an action ãit generated by Eq. 15
8: Receive shared reward rt and observe oit+1

9: end for
10: Obtain joint action ãt, and next global state st+1

11: Store the tuple sample (st, ãt, rt, st+1) into the re-
play buffer B

12: for each agent i do
13: Get a random batch of samples from B
14: Apply attention mechanism (Eq. 21) to get the

inputs of each critic ht and ht+1 based on global
states st and st+1

15: Update Q-networks by minimizing the loss func-
tion (Eq. 17) with st replaced by ht and st+1

replaced by ht+1

16: Update policy networks by maximizing the target
function (Eq. 16) with st replaced by ht

17: Update target Q-networks by Eq. 12
18: end for
19: end for
20: end for

metaverse environment, the impacts of actions taken by other
agents are different for a specific agent. For example, when
deciding how to adjust the target bit rate, an agent should pay
more attention to the agents with more network resources. To
apply self-attention mechanism, we first transform the feature
of node i to a “Query” calculated by Q = Wqe

i, where ei is
the encoded feature of node i. Each neighboring node j is then
transformed to a “Keyj” and a “Valuej” by Kj = Wke

j and
V j = Wve

j , respectively. The similarity between the Query
and Keyj is calculated using the cosine similarity denoted as

S(Q,Kj) =
Q ·Kj

||Q|| · ||Kj ||
(19)

The attention weight for Keyj is obtained by the softmax
function

αj =
exp(S(Q,Kj))∑
j exp(S(Q,Kj))

(20)

Finally, the neighboring feature for a node is calculated by a
weighted sum of the values using the above attention weights

Attention(Q,K, V) =
∑
j

αjV j (21)

Moreover, to obtain better performance, multiple attention
heads [35] with multiple sets of parameters (Wk,Wq,Wv)
are employed to perform attention allocation multiple times

IEEE INTERNET OF THINGS JOURNAL 7

Fig. 2. The structure of the neural networks in SAC-GCN, where “EL” and “CL” represent the encoder layer and the convolutional layer, respectively. Each
agent has a centralized critic dealing with joint states and actions during training and a decentralized actor taking actions based on local observations in the
execution process. The convolutional graph networks with multi-head attention are employed to obtain the critic’s final inputs.

in parallel. We then concatenate outputs from all heads to a
single vector as the final representation of the neighboring
feature for node i.

A detailed description of the proposed SAC-GCN can be
found in Algorithm 1. At each iteration, we first randomly
obtain a batch from the replay buffer B for each agent. We then
apply GCN with multi-head attention to calculate the inputs of
the centralized critic based on Eq. 21. The parameters of the
Q-networks, the policy networks, and the target Q-networks
are updated in steps 15-17, respectively. Since we employ the
offline centralized training and online decentralized execution
mechanism, there is no extra delay during execution once the
training process is finished. Therefore, the well-trained SAC-
GCN model can be used for the delay-sensitive metaverse.

V. CASE STUDY: RESOURCE ALLOCATION IN A VIRTUAL
CITY PARK METAVERSE

In this section, we describe a case study of how to adaptively
allocate communication and computation resources for users
in a virtual city park metaverse. In more detail, we describe the
architecture of our smart resource allocation system, followed
by the three evaluation baselines that we use. The offline
training results of these deep reinforcement learning (DRL)
methods are demonstrated in the end.

A. System Setup

The proposed resource allocation system is built on a
desktop computer with the Windows 10 operating system,
an Intel Core i9-11900F processor as its central processing
unit (CPU), 64 GB of random-access memory (RAM), and an

NVIDIA GeForce RTX 3090 graphics processor. The virtual
city park1 in the metaverse is designed with Unreal Engine
(UE). As shown in Fig. 3, the desktop computer connects to a
TP-Link TL-WR1043ND Wi-Fi router by an Ethernet cable.
We run multiple instances of UE simultaneously to provide
users with different scenes. With the Unreal Pixel Streaming
(UPS) plugin of Unreal Engine, the frames rendered by the
GPU-enabled desktop can be transmitted to remote users with
VR headsets (Meta Quest 2 in our case) through WebRTC
peer-to-peer communication protocol [36].

Here is how the resource allocation system works. UPS
first finds the IP addresses of the users’ VR headsets through
WebRTC servers, and then creates a wireless communication
session between UPS and VR headsets. The communica-
tion session allows users’ inputs, such as movement and
commands, to be transmitted to the UE instances as mice
flows through the uplink traffic, while rendered frames are
transmitted back to the users as elephant flows through the
downlink traffic. The instances of UE and the adaptive bit
rate (ABR) server are connected by Socket.io2 which enables
real-time bidirectional event-based communication. Therefore,
the ABR server receives the network information from UE
and determines the bit rate selection for each user. Regarding
computation resource allocation, the adaptive CPU usage
(ACU) server detects the CPU performance and employs BES3

to throttle the CPU usage for the instances of UE individually.

1https://www.unrealengine.com/marketplace/en-US/product/city-park-
environment-collection

2https://socket.io/
3https://mion.yosei.fi/BES/

IEEE INTERNET OF THINGS JOURNAL 8

Fig. 3. The architecture of our proposed resource allocation system for the metaverse. Two resource allocation servers, ABR and ACU, are responsible to
control the users’ consumption of network resources and CPU resources, respectively. Moreover, with this system, different scenes of the virtual city park are
displayed to users wearing VR headsets.

In addition, Clumsy4, a Windows network controller, is used
to simulate the dynamics of the network by controlling delay,
bandwidth, and random packet loss rate.

In our experiments, the default settings of the virtual city
park are demonstrated as follows: bandwidth = 300Mbps,
network delay = 20ms, packet loss rate = 0.5%, resolution =
2048x1080, frame rate = 60fps, and available CPU percentage
= 80%. Moreover, we explored the impact of one specific
parameter with a wide range of values. In more detail, we
set delay between 10ms to 200ms, packet loss rate between
0.5% to 8%, bandwidth between 50Mbps to 400Mbps, and
available CPU between 10% to 90%.

B. Evaluation Baselines

To demonstrate the effectiveness of the proposed SAC-GCN
in resource allocation for the metaverse, we compared it with
the following methods:

• DQN: It is one of the representative DRL methods
which combines the advantages of Q learning and neural
networks [37]. Specifically, it employs neural networks
to replace the Q table to make it able to deal with a large
number of states. Previous research has demonstrated the
effectiveness of DQN for solving the problem of resource
allocation at the edge [24], [38].

• Independent SAC (ISAC): This method is a totally de-
centralized form of multi-agent SAC where each agent
is an independent learner taking the rest of the agents as
part of the environment. Despite its various theoretical

4https://github.com/jagt/clumsy

shortcomings, ISAC is appealing compared to MASAC
as each agent only requires its local observations without
the communication and scalability problem.

• GCC with Greedy (GCC-G): It employs Google Con-
gestion Control (GCC) [39] to control the bit rate while
allowing the instances of UE to greedily utilize the
computation resources without any limitation. This is
similar to the way that real-time communication tools
powered by WebRTC work.

• BBR with Greedy (BBR-G): It is also a congestion
control algorithm developed at Google. BBR determines
the maximum bandwidth by sending more data than the
capacity of the network, and when the delay increases
after increasing the volume of data sent, the maximum
bandwidth is determined. The minimum delay is calcu-
lated by sending data below the network capacity. The
RTT obtained is the minimum delay when the delay does
not drop after decreasing the sending volume. Similar to
GCC-G, it also allows the instances of UE to greedily
use the computation resources.

C. Offline Training
As mentioned previously, for each agent in SAC-GCN (Fig

2), the neural network consists of two encoding layers and a
convolutional layer apart from the actor network and the critic
network. Both the soft-Q networks and the policy network
have an input layer, two hidden layers activated by the rectified
linear unit (ReLU) function, and an output layer. All the key
parameters we set up during the implementation of SAC-GCN
are summarized in Table I. To ensure fairness, all the methods
are configured with the same parameters.

IEEE INTERNET OF THINGS JOURNAL 9

TABLE I
PARAMETER SPECIFICATIONS IN THE EXPERIMENTS

Parameters Value
Optimizer Adam

Number of neurons in hidden layer 128
Reward discount factor 0.99

Replay buffer size 5000
Learning rate for updating Q-networks 0.0001

Learning rate for updating policy network 0.0005
Batch size 64

Coefficient for updating target Q-networks 0.01
Entropy temperature parameter 0.2

Metaverse scene satisfaction level factor 1
Choppiness penalty factor 0.2

Latency penalty factor 0.05
Instability penalty factor 0.5

Overall QoE factor 2
Communication resource balancing factor -0.6

Computation resource balancing factor -0.6
Number of users in the metaverse 3

Unlike other typical RL problems, there is no clear def-
inition of an “episode” in the metaverse. We empirically
set a period of time (i.e., 40s) as an episode during which
agents take actions every second. We train each method under
different network conditions and rendering settings in order to
adapt to the dynamic metaverse environment. The learning
curves of the three DRL methods in terms of cumulative
reward are demonstrated in Fig. 4. We notice that at the
beginning of the training, the cumulative rewards of three
methods are all low without obvious difference between them.
This is due to the fact that these DRL methods cannot learn
a stable and efficient policy for resource allocation with a
small amount of data by interacting with the environment.
As the number of training episode increases, the cumulative
rewards of SAC-GCN and ISAC are higher than that of DQN.
Our explanation is that they take a greater variety of actions
during exploration with a higher entropy of the strategy,
which accelerates the learning process and minimizes the risk
of a local optimum. Moreover, the globally learned strategy
based on the centralized training and decentralized execution
structure improves the performance of SAC-GCN compared
to ISAC. Therefore, SAC-GCN reaches the highest cumulative
reward at the end.

VI. ONLINE EXPERIMENTAL RESULTS AND ANALYSIS

We compared the performance of our proposed SAC-GCN
with the four evaluation baselines for resource allocation
(Subsection V-B): DQN, ISAC, GCC-G, and BBR-G. The per-
formance metrics in our experiments are: i) overall user QoE
: the sum of QoE score for each user in the metaverse, where
the definition of QoE is given in the reward function of SAC-
GCN (Subsection III-C); ii) balance of resource allocation:
balance of communication resource is represented by variance
of users’ bit rates and balance of computation resource is
denoted by variance of users’ CPU usage percentages; iii)
resource utilization rate: communication resource utilization

Fig. 4. Cumulative reward versus episode (40s for an episode) for different
DRL methods during the offline training process.

rate is calculated by the sum of users’ bit rates divided by the
assigned total bandwidth and computation resource utilization
rate is determined by the sum of users’ CPU usage percentages
divided by the total available CPU. Note that the values of
overall QoE, variance of resource allocation, and resource
utilization rates are all normalized between 0 to 1, respectively.

A. Overall User Quality of Experience Analysis

We first evaluated the performance of all resource allocation
methods regarding overall QoE under various network delays
(shown in Fig. 5 (a)). It is noted that the network delay is the
extra time we add before the packets are transmitted which
does not include the time spent on the network transmission
itself. The overall QoE scores of all methods show a similar
downward trend as the network delay increases. Furthermore,
the QoE scores decrease more with the increase of the network
delay. It is because the Motion-to-Photon (MTP) latency,
which describes the time between the movement of a tracked
object and its corresponding image displayed on the screen,
gets higher with the increasing extra network delays. The high
MTP latency may cause a significant loss of performance
with cybersickness in the interactive metaverse. By employing
graph neural networks with self-attention mechanism, agents
of SAC-GCN pay more attention to neighboring agents with
high delays when making decisions. Thus, SAC-GCN can
always choose appropriate bit rates for each user to alleviate
the impact of high delays on QoE. We observe that SAC-GCN
outperforms the other methods under different network delays
especially when the delay gets large. For example, when the
network delay is 100ms, SAC-GCN reaches 27%, 37%, 63%,
and 64% improvements over ISAC, DQN, GCC-G, and BBR-
G, respectively.

We then examined the impact of network packet loss rate
on QoE, as illustrated in Fig. 5 (b). Note that the network
packet loss rate is manually set by randomly dropping some
packets before they are transmitted and it coexists with the
packet loss caused by network congestion. We observe that
the increased packet loss rate degrades user experience for all
the methods and it gets worse when the packet loss rate is
high. It is because when the packet loss rate is low, it only
causes a small number of frames dropped which is not easy
to be noticed. However, as the packet loss rate increases, user

IEEE INTERNET OF THINGS JOURNAL 10

(a) (b)

(c) (d)

Fig. 5. Overall QoE score comparison of the five resource allocation methods under different settings: (a) delay (10ms, 50ms, 100ms, and 200ms), (b) packet
loss rate (0.5%, 2%, 4%, and 8%), (c) bandwidth (50Mbps, 100Mbps, 200Mbps, and 400Mbps), and (d) available CPU (10%, 40%, 60%, and 90%).

experience is largely impacted by the choppiness caused by
lost frames. The increased packet loss rate has the biggest
influence on BBR-G. More specifically, the QoE of BBR-G
decreases 0.19 when packet loss rate increases from 0.5% to
2%, 0.15 (from 2% to 4%), and 0.26 (from 4% to 8%), which
are much larger than the other three DRL methods. SAC-
GCN always has the best performance when dealing with
different packet loss rates. The reason is that the employed
graph convolutional networks can help agents in SAC-GCN
notice the dramatic changes of packet loss rate for neighboring
agents. They can take quick actions based on the underlying
interplay between agents. Therefore, agents of SAC-GCN are
able to cooperatively reduce the impact of packet loss rate,
thereby reaching the highest QoE.

The impact of total available network bandwidth on overall
QoE was studied in Fig. 5 (c). It is observed that when
the bandwidth is extremely low (50Mbps and 100Mbps), all
methods end up with low QoE scores. The reason is that some
of the packets for the metaverse scenes are either delayed
or dropped in such conditions. Therefore, with insufficient
bandwidth, metaverse users may all suffer from cybersickness
caused by high MTP and choppiness due to a large number of
dropped frames. We also perceive that when the bandwidth is
insufficient (50Mbps), SAC-GCN performs worse than ISAC.
Note that ISAC simply assumes that all agents are independent
which makes it lack convergence guarantees and not theoret-
ically sound in the multi-agent setting. However, agents of
ISAC make decisions only by local information during the
training and inference. Thus, they do not need to wait for

information from other agents relating to communication and
coordination costs (even severe when the bandwidth resource
is very insufficient) which provides a quicker response com-
pared with SAC-GCN. We think this is the reason why ISAC
outperforms SAC-GCN in this case. As the bandwidth grows,
the performance of all methods increases to varying degrees.
When the total bandwidth is sufficient for all users (400Mbps),
all methods achieve high QoE.

B. Resource Allocation Balancing Analysis
We compared the performance regarding balancing commu-

nication resource allocation for metaverse users under different
network bandwidths shown in Fig. 6 (a). We notice that
the variance of network resources decreases as the network
bandwidth increases for each method. The reason is that with
limited resources, the important factors of QoE, such as frame
rate and latency, are easily impacted by obtained network
resources. Thus, it is hard to maximize overall QoE while
reducing imbalance of resource allocation in these conditions.
Moreover, SAC-GCN and DQN have lower variances com-
pared to ISAC, GCC-G, and BBR-G in all settings. The reason
is that the strategies of SAC-GCN and DQN are centralized
learned where the information of other users’ states are
considered. Moreover, the self-attention mechanism employed
by SAC-GCN also helps agents pay more attention to other
agents with higher bit rates which further lowers the variance
of network resources.

The performance of all methods in terms of balancing
computation resource allocation was studied in Fig. 6 (b).

IEEE INTERNET OF THINGS JOURNAL 11

(a)

(b)

Fig. 6. Comparison of resource allocation balancing under different settings:
(a) impact of network bandwidth on balance of network and (b) impact of
available CPU percentage on balance of computation allocation.

Similar to network resources, the variance of computation
resources of these four methods all show a similar downward
trend as the available CPU resources increases. In addition,
ISAC, GCC-G, and BBR-G always have higher variance since
they do not utilize the information from other users when
making decisions

C. Resource Utilization Rate Analysis

The comparison regarding communication resource utiliza-
tion rate was conducted under various bandwidths (shown in
Fig.7 (a)). To ignore the influence of the other resources, we
provide sufficient 90% available CPU resources for each band-
width. Similar to communication resources, when studying
computation resource utilization rate, we also supply sufficient
network resources (400Mbps bandwidth) for various available
CPU resources (shown in Fig.7 (b)).

We observe that there is no clear relationship between
resource utilization rate and amount of available resources
when resources are insufficient to support all the metaverse
users. However, the utilization rates of all methods go down
to similar values as more resources are supplied. Since GCC-
G and BBR-G employ the greedy algorithm for computation
resources, the CPU utilization rates are almost 100% with
insufficient CPU. Although this improves the utilization rate,
it may cause other critical problems, i.e., high imbalance of
CPU resource allocation. We also observe that our proposed
SAC-GCN outperforms other methods most of the time. For
other time, it is relatively as good as others regarding network

and CPU utilization rate. For example, it reaches 10%, 15%,
32%, and 41% improvements over ISAC, DQN, GCC-G,
and BBR-G for network resource utilization rate, when the
network bandwidth is 200Mbps. Moreover, it has 8% and 12%
improvements for CPU resource utilization rate compared to
that of ISAC and DQN when the available CPU is 60%. This
verifies the effectiveness of SAC-GCN for improving resource
utilization rates with limited resources.

(a)

(b)

Fig. 7. Comparison of the five resource allocation methods regarding resource
utilization rate: (a) network resources and (b) CPU resources.

D. Discussion

According to the above analysis, we summarize that the
DRL-based methods (SAC-GCN, ISAC, and DQN) have much
better performance than congestion control methods (GCC-G
and BBR-G) in terms of improving overall QoE for users in the
metaverse. It is because the trial and error exploration process
and the feedback from the environment enable their quick
response to the varying multi-user metaverse environment.
Thus, these DRL methods can always make better use of
the available resources by choosing the appropriate bit rate
and corresponding CPU usage percentage for each user. When
the resources are insufficient, such as an increase in network
delay or the packet loss rate, the change of overall QoE is
much more stable compared to that of GCC-G and BBR-
G. As for balance of resource allocation, due to the lack
of a centrally learned strategy, ISAC cannot perform well in
balancing obtained resources for each user, which makes it
inappropriate for this problem. On the contrary, our proposed
SAC-GCN employs the centralized training and decentralized
execution framework where multiple agents are trained with

IEEE INTERNET OF THINGS JOURNAL 12

global states in a centralized manner. Moreover, it uses GCN
with self-attention mechanism to assist agents to capture more
important information in the complex and varying multi-agent
environment, which further enhances the cooperation between
multiple agents. In addition, our SAC-GCN empowered meta-
verse resource allocation system can be further improved by
incorporating more human-related factors [40]. For example,
eye movement, which can be easily detected by eye trackers on
HMDs, is reliable to reflect users’ attention. If the system can
adaptively allocate different communication and computation
resources to different parts of the metaverse scenes based
on users’ attention, users will get the same QoE with less
resources consumed.

VII. CONCLUSION

In this paper, we address the problem of edge resource
allocation for multiple users in the metaverse including com-
munication and computation resources. To maximize the trade-
off between user experience and balance of resource alloca-
tion, we formulate the resource allocation problem as a Dec-
POMDP and propose SAC-GCN, a MADRL-based method,
where each agent determines the usage of communication
and computation resources for one user in the metaverse.
To evaluate the performance of SAC-GCN, we design a
resource allocation system and carry out many experiments
using a virtual city park as a case study. Results demonstrate
the effectiveness of SAC-GCN regarding improving overall
QoE, balancing resource allocation, and increasing resource
utilization rate compared to other methods.

REFERENCES

[1] Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen,
“A survey on metaverse: Fundamentals, security, and privacy,” IEEE
Communications Surveys & Tutorials, 2022.

[2] A. El Saddik, “Digital twins: The convergence of multimedia technolo-
gies,” IEEE Multimedia, vol. 25, no. 2, pp. 87–92, 2018.

[3] W. H. Guss, B. Houghton, N. Topin, P. Wang, C. Codel, M. Veloso,
and R. Salakhutdinov, “Minerl: A large-scale dataset of Minecraft
demonstrations,” arXiv preprint arXiv:1907.13440, 2019.

[4] P. A. Rospigliosi, “Metaverse or simulacra? Roblox, Minecraft, Meta
and the turn to virtual reality for education, socialisation and work,”
Interactive Learning Environments, vol. 30, no. 1, pp. 1–3, 2022.

[5] J. Gauci, E. Conti, Y. Liang, K. Virochsiri, Y. He, Z. Kaden,
V. Narayanan, X. Ye, Z. Chen, and S. Fujimoto, “Horizon: Facebook’s
open source applied reinforcement learning platform,” arXiv preprint
arXiv:1811.00260, 2018.

[6] M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato,
Q. Yang, X. S. Shen, and C. Miao, “A full dive into realizing the edge-
enabled metaverse: Visions, enabling technologies, and challenges,”
arXiv preprint arXiv:2203.05471, 2022.

[7] L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and
M. Gruteser, “Cutting the cord: Designing a high-quality untethered
vr system with low latency remote rendering,” in Proceedings of
International Conference on Mobile Systems, Applications, and Services,
2018, pp. 68–80.

[8] F. Tang, X. Chen, M. Zhao, and N. Kato, “The roadmap of com-
munication and networking in 6G for the metaverse,” IEEE Wireless
Communications, 2022.

[9] H. Dong and J. Lee, “The metaverse from a multimedia communications
perspective,” IEEE Multimedia Magazine, vol. 29, no. 4, pp. 123–127,
2022.

[10] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G net-
work edge cloud architecture and orchestration,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[11] D. Georgakopoulos, P. P. Jayaraman, M. Fazia, M. Villari, and R. Ranjan,
“Internet of things and edge cloud computing roadmap for manufactur-
ing,” IEEE Cloud Computing, vol. 3, no. 4, pp. 66–73, 2016.

[12] H. Dong and Y. Liu, “Metaverse meets consumer electronics,” IEEE
Consumer Electronics Magazine, vol. 12, no. 3, 2023.

[13] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-
latency and ultra-reliable virtual reality,” IEEE Network, vol. 32, no. 2,
pp. 78–84, 2018.

[14] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi, “Resource scheduling in
edge computing: A survey,” IEEE Communications Surveys & Tutorials,
vol. 23, no. 4, pp. 2131–2165, 2021.

[15] P. Ravindra, A. Khochare, S. P. Reddy, S. Sharma, P. Varshney, and
Y. Simmhan, “ECHO: An adaptive orchestration platform for hybrid
dataflows across cloud and edge,” in Proceedings of International
Conference on Service-Oriented Computing, 2017, pp. 395–410.

[16] Y. Wu, “Cloud-edge orchestration for the internet of things: Architecture
and AI-powered data processing,” IEEE Internet of Things Journal,
vol. 8, no. 16, pp. 12 792–12 805, 2020.

[17] M. Xu, D. Niyato, J. Kang, Z. Xiong, C. Miao, and D. I. Kim, “Wireless
edge-empowered metaverse: A learning-based incentive mechanism for
virtual reality,” in Proceedings of IEEE International Conference on
Communications, 2022, pp. 5220–5225.

[18] R. Cheng, N. Wu, M. Varvello, S. Chen, and B. Han, “Are we ready for
metaverse? A measurement study of social virtual reality platforms,” in
Proceedings of the 22nd ACM Internet Measurement Conference, 2022,
pp. 504–518.

[19] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Compute-and
data-intensive networks: The key to the metaverse,” arXiv preprint
arXiv:2204.02001, 2022.

[20] Y. Han, D. Niyato, C. Leung, D. I. Kim, K. Zhu, S. Feng, S. X. Shen,
and C. Miao, “A dynamic hierarchical framework for IoT-assisted digital
twin synchronization in the metaverse,” IEEE Internet of Things Journal,
vol. 10, no. 1, pp. 268–284, 2022.

[21] B. Han, P. Pathak, S. Chen, and L.-F. C. Yu, “Comic: A collaborative
mobile immersive computing infrastructure for conducting multi-user
XR research,” IEEE Network, 2022.

[22] D. Ungureanu, F. Bogo, S. Galliani, P. Sama, X. Duan, C. Meekhof,
J. Stühmer, T. J. Cashman, B. Tekin, J. L. Schönberger, et al., “Hololens
2 research mode as a tool for computer vision research,” arXiv preprint
arXiv:2008.11239, 2020.

[23] S. Dong and T. Hollerer, “Real-time re-textured geometry modeling
using Microsoft HoloLens,” in Proceedings of Conference on Virtual
Reality and 3D User Interfaces, 2018, pp. 231–237.

[24] J. Wang, L. Zhao, J. Liu, and N. Kato, “Smart resource allocation for
mobile edge computing: A deep reinforcement learning approach,” IEEE
Transactions on Emerging Topics in Computing, vol. 9, no. 3, pp. 1529–
1541, 2019.

[25] W. Ren, Y. Sun, H. Luo, and M. Guizani, “A novel control plane
optimization strategy for important nodes in SDN-IoT networks,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 3558–3571, 2018.

[26] X. Liu, J. Yu, Z. Feng, and Y. Gao, “Multi-agent reinforcement learning
for resource allocation in IoT networks with edge computing,” China
Communications, vol. 17, no. 9, pp. 220–236, 2020.

[27] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Advances in Neural Information Processing Systems, vol. 30,
pp. 6382–6393, 2017.

[28] J. Jiang, C. Dun, T. Huang, and Z. Lu, “Graph convolutional reinforce-
ment learning,” arXiv preprint arXiv:1810.09202, 2018.

[29] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, and J. Wang, “Mean field
multi-agent reinforcement learning,” in Proceedings of International
Conference on Machine Learning, 2018, pp. 5571–5580.

[30] C. Yu, A. Velu, E. Vinitsky, Y. Wang, A. Bayen, and Y. Wu, “The
surprising effectiveness of PPO in cooperative, multi-agent games,”
arXiv preprint arXiv:2103.01955, 2021.

[31] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online planning
algorithms for POMDPs,” Journal of Artificial Intelligence Research,
vol. 32, pp. 663–704, 2008.

[32] Z. Long, H. Dong, and A. E. Saddik, “Interacting with New York
City data by HoloLens through remote rendering,” IEEE Consumer
Electronics Magazine, vol. 11, no. 5, pp. 64–72, 2022.

[33] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in Proceedings of International Conference on Machine Learning,
2018, pp. 1861–1870.

IEEE INTERNET OF THINGS JOURNAL 13

[34] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” in Proceedings of AAAI Conference on Artifi-
cial Intelligence, 2016, p. 2094–2100.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems, pp. 5998–6008, 2017.

[36] J. K. Nurminen, A. J. Meyn, E. Jalonen, Y. Raivio, and R. G. Marrero,
“P2P media streaming with HTML5 and WebRTC,” in Proceedings of
Conference on Computer Communications Workshops, 2013, pp. 63–64.

[37] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[38] Y.-C. Wu, T. Q. Dinh, Y. Fu, C. Lin, and T. Q. Quek, “A hybrid DQN
and optimization approach for strategy and resource allocation in MEC
networks,” IEEE Transactions on Wireless Communications, vol. 20,
no. 7, pp. 4282–4295, 2021.

[39] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis and de-
sign of the google congestion control for web real-time communication
(WebRTC),” in Proceedings of International Conference on Multimedia
Systems, 2016, pp. 1–12.

[40] H. Du, J. Liu, D. Niyato, J. Kang, Z. Xiong, J. Zhang, and D. I. Kim,
“Attention-aware resource allocation and QoE analysis for metaverse
xURLLC services,” arXiv preprint arXiv:2208.05438, 2022.

Zijian Long (zlong038@uottawa.ca) received the
B.Sc. degree in Software Engineering from Beijing
Institute of Technology, China, in 2016 and the
M.Sc. degree in Electrical and Computer Engineer-
ing from the University of Ottawa, Canada, in 2020.
He is currently a Ph.D. candidate in the School
of Electrical Engineering and Computer Science,
University of Ottawa. His research interests include
metaverse, XR network, and reinforcement learning.

Haiwei Dong (haiwei.dong@ieee.org) received the
Ph.D. degree from Kobe University, Kobe, Japan
in 2010 and the M.Eng. degree from Shanghai
Jiao Tong University, Shanghai, China, in 2008. He
was a Principal Engineer with Artificial Intelligence
Competency Center, Huawei Technologies Canada,
Toronto, ON, Canada, a Research Scientist with
the University of Ottawa, Ottawa, ON, Canada, a
Postdoctoral Fellow with New York University, New
York City, NY, USA, a Research Associate with
the University of Toronto, Toronto, ON, Canada,

and a Research Fellow (PD) with the Japan Society for the Promotion of
Science, Tokyo, Japan. He is currently a Principal Researcher with Ottawa
Research Center, Huawei Technologies Canada, Ottawa, ON, Canada, and
a registered Professional Engineer in Ontario. His research interests include
artificial intelligence, multimedia, metaverse, and robotics. He also serves as
a Column Editor of IEEE Multimedia Magazine; an Associate Editor of ACM
Transactions on Multimedia Computing, Communications, and Applications;
and an Associate Editor of IEEE Consumer Electronics Magazine.

Abdulmotaleb El Saddik (elsaddik@uottawa.ca) is
currently a Distinguished Professor with the School
of Electrical Engineering and Computer Science,
University of Ottawa. He has supervised more than
120 researchers. He has coauthored ten books and
more than 550 publications and chaired more than 50
conferences and workshops. His research interests
include the establishment of digital twins to facilitate
the well-being of citizens using AI, the IoT, AR/VR,
and 5G to allow people to interact in real time
with one another as well as with their smart digital

representations. He received research grants and contracts totaling more than
$20 M. He is a Fellow of Royal Society of Canada, a Fellow of IEEE, an ACM
Distinguished Scientist, and a Fellow of the Engineering Institute of Canada
and the Canadian Academy of Engineers. He received several international
awards, such as the IEEE I&M Technical Achievement Award, the IEEE
Canada C.C. Gotlieb (Computer) Medal, and the A.G.L. McNaughton Gold
Medal for important contributions to the field of computer engineering and
science.

	Introduction
	Related Work
	Internet of Things and the Metaverse
	Resource Allocation for MEC
	Multi-Agent Deep Reinforcement Learning

	Problem Formulation
	State and Observation Space
	Action Space
	Reward Design
	Overall QoE
	Balance of Communication Resource Allocation
	Balance of Computation Resource Allocation

	Multi-Agent Soft Actor-Critic with Graph Convolutional Networks
	Multi-Agent Soft Actor-Critic
	Graph Convolutional Networks
	Self-Attention Mechanism

	Case Study: Resource Allocation in A Virtual City Park Metaverse
	System Setup
	Evaluation Baselines
	Offline Training

	Online Experimental Results and Analysis
	Overall User Quality of Experience Analysis
	Resource Allocation Balancing Analysis
	Resource Utilization Rate Analysis
	Discussion

	Conclusion
	References
	Biographies
	Zijian Long
	Haiwei Dong
	Abdulmotaleb El Saddik

