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Abstract—This paper presents a new deep reinforcement
learning (DRL)-based approach to the trajectory planning and
jamming rejection of an unmanned aerial vehicle (UAV) for
the Internet-of-Things (IoT) applications. Jamming can prevent
timely delivery of sensing data and reception of operation
instructions. With the assistance of a reconfigurable intelligent
surface (RIS), we propose to augment the radio environment,
suppress jamming signals, and enhance the desired signals. The
UAV is designed to learn its trajectory and the RIS configuration
based solely on changes in its received data rate, using the latest
deep deterministic policy gradient (DDPG) and twin delayed
DDPG (TD3) models. Simulations show that the proposed DRL
algorithms give the UAV with strong resistance against jamming
and that the TD3 algorithm exhibits faster and smoother conver-
gence than the DDPG algorithm, and suits better for larger RISs.
This DRL-based approach eliminates the need for knowledge of
the channels involving the RIS and jammer, thereby offering
significant practical value.

Index Terms—Internet of Things, unmanned aerial vehicle,
jamming rejection, reconfigurable intelligent surface, deep de-
terministic policy gradient (DDPG), twin delayed DDPG (TD3).

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) has been grow-
ing in popularity with the expansion of the Internet of Things
(IoT) [1]–[3]. For instance, UAVs equipped with sensors and
cameras are increasingly deployed to monitor and collect data
on air quality, traffic, and other environmental factors for IoT
applications [4], [5]. The data collected by the UAVs need to
be transmitted back to a control center or ground base station
(BS) for data analysis or for triggering automated responses,
such as adjusting traffic lights to alleviate congestion [6].

Jamming can have severe effects on the physical-layer
security of UAV-borne IoT applications [7]–[10]. An attacker
can use jamming equipment to disrupt the wireless transmis-
sions between the UAVs and the BS, preventing the UAVs
from transmitting their sensing data and receiving operation

Shuyan Hu and Xin Yuan contributed equally to this work.
S. Hu and X. Wang are with the Department of Communication Science and

Engineering, Fudan University, Shanghai 200433, China (e-mails: {syhu14,
xwang11}@fudan.edu.cn).

X. Yuan and W. Ni are with CSIRO Data61, Sydney, NSW 2122, Australia
(e-mails: {xin.yuan, wei.ni}@data61.csiro.au).

A. Jamalipour is with the School of Electrical and Information Engi-
neering, The University of Sydney, Sydney, NSW 2006, Australia (email:
a.jamalipour@ieee.org).

Corresponding author: X. Wang.

instructions in a timely manner and causing the UAVs to
fail their missions [11]. As a matter of fact, jamming has
been identified to be one of the most critical threats to the
massive IoT connections in the context of the upcoming sixth-
generation (6G) communication systems [12].

Identifying and eliminating jammers is challenging without
specialized equipment, such as radar [13]. Previous research
on jamming cancellation for UAV-borne IoT applications has
not specifically focused on UAV-borne IoT platforms. In [14],
the authors targeted to improve the worst-case long-term
data rate for a UAV-assisted wireless sensor network under
jamming attacks by jointly configuring the UAV’s transmission
strategy and 3D flight path. In [15], a reinforcement learning
(RL)-based communication strategy was developed between a
UAV swarm and a BS to counteract jamming attempts. This
improved the communication quality of UAVs by exploring
the motion and antenna spatial domain. In [16], the authors
proposed a secure UAV communication scheme against smart
jammers using a knowledge-based RL approach, which lever-
aged domain information to reduce the state space and speed
up the convergence of the RL algorithm.

On the other hand, reconfigurable intelligent surfaces (RISs)
were developed as a means of creating programmable wireless
transmission environments [17]. These surfaces, made up of
passive reflecting units with reprogrammable phase shifts [18],
can be placed on building surfaces, and are expected to
be an integral part and effective enhancer for the IoT. By
configuring the phase shifts, the RIS-reflected signals are
added constructively to the direct signal to improve signal
quality or destructively to reduce interference [19]. However,
the potential of RISs for anti-jamming applications has not
been widely studied [20], [21]. In [22], a collective active and
passive beamforming design was formulated to lower transmit
power by optimizing the continuous phase shifts of an RIS.
The result was later extended to discrete phase shifts in [23].
The RIS-assisted secure transmission was studied in [24], [25],
where fast RL and deep RL (DRL) were used to design
the active and passive beamformers. For instance, in [24],
jamming signals were modulated and reflected by an RIS to
reduce the eavesdropping data rate.

As far as we know, the RIS-assisted jamming rejection has
yet to be addressed in the context of UAV-borne IoT platforms.
While there have been studies that have examined general
RIS-assisted UAV communications, e.g., in [26]–[30], none
have considered the impact of jamming attacks. For example,
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in [27], the authors jointly optimized UAV flight path and RIS
passive beamformers to achieve the largest average rate of
the terrestrial user. In [29], a UAV and RIS were configured
to deliver ultra-reliable and low-latency commands among
terrestrial IoT devices using nonconvex optimization. These
studies are inapplicable to the RIS-assisted jamming rejection
for UAV-borne IoT platforms.

In this paper, we put forth a new DRL-based architecture
for the flight path planning and jamming cancellation of UAV-
borne IoT platforms. A fixed-wing UAV is considered. Our
architecture utilizes an RIS, which dynamically modifies the
wireless transmission environment to mitigate jamming power
and enhance intended signals to the UAV. To accomplish this,
we devise a new Deep Deterministic Policy Gradient (DDPG)
model and its enhancement, Twin-Delayed DDPG (TD3), to
allow the UAV to learn its flight path and the RIS configuration
based solely on its received data rate, eliminating the need
for the channel state information (CSI) involving the RIS and
jammer in the flight path training. This presents a significant
practical advantage, as the estimation of CSI involving an RIS
is complex and may not be able to be performed in real-time.

The main contributions of this paper are as follows:
• A new problem is introduced to jointly optimize flight

path planning and RIS-assisted jamming cancellation to
maximize the data rate of a UAV-borne IoT platform. The
problem is non-straightforward for its non-convexity and
sequential decision-making nature.

• A new DRL architecture is proposed to solve the new
problem and allow the UAV to learn its flight path and
the RIS configuration based solely on its received data
rate, eliminating the need for CSI in the training process.

• The DRL architecture is implemented using the latest
DRL models, DDPG and its twin-delayed version, i.e.,
TD3. While TD3 is generally applicable to the problem
under investigation, DDPG can benefit from its simpler
network architecture and smooth convergence and is
suitable for problems with smaller scales, e.g., fewer
RISs, and less stringent mission time requirements.

The proposed DRL approach is validated through exten-
sive simulations, showing its exceptional resistance against
jamming. Particularly, the DDPG demonstrates faster and
smoother convergence when the mission time is long and the
RIS is small. The TD3 outperforms the DDPG in robustness
against the jammer’s position, especially when the mission
time is short. This is crucial, as accurately locating the jammer
and estimating its CSI can be practically challenging.

The remainder of this paper is arranged as follows. In
Section II, the system model is described. In Section III, we
formulate the problem of jointly designing the UAV’s flight
path and the RIS configuration to maximize the data rate in the
presence of an unknown jammer. In Section IV, we propose
new DRL solutions to the problem. Performances are gauged
in Section V. The paper is concluded in Section VI.

Notation: Boldface lower- and upper-cases indicate vectors
and matrices, respectively; CN denotes the space of N × 1
complex-valued column-vectors; ‖ · ‖ denotes the Euclidean
norm; (·)T and (·)H stand for transpose and conjugate trans-
pose, respectively; diag(a) is a diagonal matrix with the
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Fig. 1. An RIS-assisted anti-jamming UAV-borne IoT platform, where an RIS
is adaptively configured along with the UAV trajectory to enhance the desired
signals and reject the jamming signals.

elements of a along the diagonal; ⊗ stands for the Kronecker
product.

II. SYSTEM MODEL

As depicted in Fig. 1, a ground BS offers wireless com-
munication service for a fixed-wing UAV in the presence of a
terrestrial jammer. Consider a three-dimensional (3D) Carte-
sian coordinate system. The BS and the jammer are placed at
qB = [0, 0, 0]T and qJ = [xJ, yJ, 0]T . An RIS is deployed to
facilitate the UAV communication and suppress the jamming
signals from the jammer. We suppose that the BS, UAV and
jammer all have a single antenna for description convenience
(but the proposed DRL architecture can be extended to support
multi-antenna BSs and UAVs, as part of our future work).
Only based on its received data rate, the UAV determines its
flight path and the RIS configuration dynamically. The RIS is
installed with a smart controller to procure the command from
the UAV (via the cellular system) for RIS configuration [31].

A. UAV Mobility Model

The UAV functions for a finite scheduling horizon of T
seconds, which is split into Tw time slots indexed by t, and t =
1, · · · , Tw. A slot lasts δ = T/Tw, which is short enough that
the UAV can be viewed as stationary per slot. The UAV is trav-
eling from a predetermined starting position q0 = [x0, y0, z0]T

to a predetermined ending position qF = [xF , yF , zF ]T .
The UAV’s 3D coordinates are qt = [xt, yt, zt]

T ,∀t. Let
Vt := [Vxt, Vyt, Vzt]

T and At := [Axt, Ayt, Azt]
T collect the

velocity and acceleration of the UAV per slot t, respectively.
The UAV obeys some mobility constraints [32]:

qt+1 = qt + Vtδ +
1

2
Atδ

2, ∀t, (1a)

qF = qTw , (1b)
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Vt+1 = Vt + Atδ, ∀t, (1c)
|Ai,t| ≤ Amax, i ∈ {x, y, z}, ∀t, (1d)
Vmin ≤ ‖Vt‖ ≤ Vmax, ∀t, (1e)
Vzt/‖Vt‖ ≤ sinϑ, ∀t, (1f)

where Amax is the UAV’s largest acceleration; Vmax and Vmin

are the UAV’s maximum and minimum speeds; and ϑ is the
largest UAV pitch angle when ascending or descending.

B. RIS Configuration

The RIS is adhered on the outer surface of a building, which
is on the (x, z)-plane and aligns with the x-axis. The RIS has
a uniform rectangular array (URA) of N = NxNy reflecting
elements (units), and a controller to dynamically control the
phase shift of each unit. Let Θt := diag(ejθ

t
1 , . . . , ejθ

t
N ) be

the phase shift matrix for the RIS at time slot t, where θtn =
θt(nx−1)Ny+ny

∈ [−π, π), n = 1, . . . , N , is the phase shift of
the n-th reflecting unit which is located at the ny-th row and
the nx-th column of the RIS, and j =

√
−1. The first element

of the RIS is at the right bottom corner of the RIS, and its
coordinates are qR = [xR, yR, zR]T .

C. Channel Model

The distances of the BS-UAV link dtBU, the BS-RIS link
dBR, the Jammer-RIS link dJR, the Jammer-UAV link dtJU,
and RIS-UAV link dtRU are given by

dtBU = ‖qt‖, ∀t, dBR = ‖qR‖, dJR = ‖qJ − qR‖, (2a)
dtJU = ‖qt − qJ‖, dtRU = ‖qt − qR‖, ∀t. (2b)

Consider an LoS channel for the RIS-UAV link (i.e., the R-
U link), and Rician fading channels between the BS/jammer
and the UAV (i.e., the B-U and J-U links), and between the
BS/jammer and the RIS (i.e., the B-R and J-R links). The
channel gains of the B-U and J-U links are: ∀t,

htBU =
√
ρ(dtBU)−κ1

(√
βt

1 + βt
gtBU +

√
1

1 + βt
g̃tBU

)
,

(3a)

htJU =
√
ρ(dtJU)−κ1

(√
βt

1 + βt
gtJU +

√
1

1 + βt
g̃tJU

)
,

(3b)

where ρ stands for the path loss at the reference distance d0 =
1 m with the path loss exponent κ1 > 2; βt is the Rician factor
of the B-U and J-U links; gtBU and gtJU are the deterministic
LoS components with |gtBU| = 1 and |gtJU| = 1; g̃tBU and
g̃tJU stand for stochastic dispersion captured by a zero-mean,
unit-variance circularly symmetric complex Gaussian (CSCG)
random variable. The elevation-angle-reliant Rician factor βt
is captured by the following exponential function [33]

βt = ξ1 exp
(
ξ2 arcsin(zt/d

t
BU)

)
, ∀t, (4)

where ξ1 and ξ2 are two constant coefficients dependent on
the environment.

The channel gains of the B-R, J-R, and R-U links, denoted
by hBR ∈ CN×1, hJR ∈ CN×1, and htRU ∈ CN×1, are

hBR =
√
ρd−κ2

BR︸ ︷︷ ︸
path loss

(√
β

1 + β
hlosBR +

√
1

1 + β
hnlosBR

)
︸ ︷︷ ︸

array response & small-scale fading

; (5a)

hJR =
√
ρd−κ2

JR︸ ︷︷ ︸
path loss

(√
β

1 + β
hlosJR +

√
1

1 + β
hnlosJR

)
︸ ︷︷ ︸

array response & small-scale fading

; (5b)

htRU =
√
ρ(dtRU)−2gtRU, ∀t. (5c)

Here, β is the Rician factor of the B-R and J-R links (c.f. βt);
and hlosBR and hlosJR are the LoS components, as given by

hlosBR =
[
1, . . . , e−j

2πdx
λ (Nx−1)φxBR

]T
⊗[

1, . . . , e−j
2πdy
λ (Ny−1)φyBR

]T
, (6a)

hlosJR =
[
1, . . . , e−j

2πdx
λ (Nx−1)φxJR

]T
⊗[

1, . . . , e−j
2πdy
λ (Ny−1)φyJR

]T
, (6b)

where dx and dy are the antenna spacings in the directions
of the x- and y-axes, respectively; φxBR = xR/dBR and
φyBR = yR/dBR are the spatial frequencies corresponding to
the angles-of-arrivals (AoAs) from BS to RIS, and φxJR =
(xJ − xR)/dJR and φyJR = (yJ − yR)/dJR are the spatial
frequencies corresponding to the AoAs from the jammer to
the RIS along the x- and y-axes, respectively [34].

In (5a) and (5b), hnlosBR ∈ CN×1 and hnlosJR ∈ CN×1 are the
non-LoS (NLoS) components with the variables independently
drawn from the zero-mean, unit-variance CSCG distribution.
In (5c), gtRU is the array response, as given by

gtRU =
[
1, . . . , e−j

2πdx
λ (Nx−1)φtRU,x

]T
⊗[

1, . . . , e−j
2πdy
λ (Ny−1)φtRU,y

]T
, ∀t,

(7)

where φtRU,x = (xt − xR)/dtRU and φtRU,y = (yt − yR)/dtRU

are the spatial frequencies corresponding to the angles-of-
departures (AoDs) from RIS to UAV along the x- and y-axes,
respectively.

It is noteworthy that the UAV does not ask for the CSI
involving the RIS and the jammer to produce its flight path
and configure the RIS in this paper. Instead, the UAV only
measures its own received data rate to learn the control policy
of its flight path and RIS configuration. This consideration is
of practical value, since the RIS-reflected channels are difficult
and slow to estimate.

III. PROBLEM FORMULATION

Let Pt,∀t denote the transmit power of the BS and PJ

denote the transmit power of the jammer. The signal-to-
interference-plus-noise ratio (SINR) at the UAV at time slot t,
denoted by γtU, is

γtU =
Pt|htBU + (htRU)HΘthBR|2

PJ|htJU + (htRU)HΘthJR|2 + σ2
U

, (8)
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where σ2
U is the variance of the additive white Gaussian noise

(AWGN) at the UAV. The received data rate of the UAV at
time slot t is given by

RtU = log2(1 + γtU). (9)

We aim to maximize the total received data rate of the
UAV from the BS over the mission duration of Tw slots. The
problem considered is stated as follows.

max
{qt,Θt,∀t}

Tw∑
t=1

RtU (10a)

s.t. − π ≤ θtn < π, ∀n, t, (10b)
(1a)− (1f).

Problem (10) is challenging for traditional convex solvers
due to several reasons: First of all, the received data rate
is a non-convex function of the UAV’s flight path qt,∀t
and the RIS phase shifts Θt,∀t. Second, the UAV flight
path waypoints are embedded in the exponents of the R-
U link in (5c) and (7), making the trajectory optimization
intractable for existing convex tools, such as successive convex
approximation. Another reason is that the large number of RIS
reflecting units can cause prohibitive overhead and complexity
for radio channel estimation, acquisition and reconfiguration.
To overcome these limitations, the next section proposes using
DRL to solve (10).

IV. PROPOSED DRL FRAMEWORK FOR ANTI-JAMMING
COMMUNICATION OF UAV-BORNE IOT PLATFORMS

The proposed method in this section aims to solve problem
(10) by utilizing the DDPG and TD3 models. Our approach
involves learning to adjust the RIS and control the UAV’s tra-
jectory, including heading and acceleration, based on changes
in the received data rate of the UAV. Importantly, our method
eliminates the need for precise CSI or knowledge of the RIS
reflecting channels. DDPG and its variations, such as TD3,
have been demonstrated to be effective in addressing problems
with continuous action spaces [35]–[37]. In contrast, tradi-
tional DRL methods, such as deep Q-learning, can struggle
and even diverge when faced with continuous action spaces.

A. State, Action, and Reward

Since the current UAV location only depends on its previous
location and speed, the UAV trajectory (i.e., waypoints) is
a Markov decision process (MDP). The RIS configuration
depends solely on the instantaneous position of the UAV.
Therefore, we interpret problem (10) as an MDP with its state,
action, and reward defined below.
• State Space S: At time slot t, the system state st ∈ S is

made of the relative position of the UAV with regards to
its final location, qt − qF , the velocity of the UAV, Vt,
and the SINR at the UAV, γtU, st = {qt − qF , Vt, γ

t
U}.

• Action Space A: It gathers all possible actions, i.e.,
at ∈ A. During the t-th time step, the action at consists of
the reflecting coefficients {θtn}n∈N and the acceleration
of the UAV, At := [Axt, Ayt, Azt]

T , i.e., at =
{θtn ∈ [−π, π),∀n,Ait ∈ [−Amax, Amax], i ∈ {x, y, z}}.

The UAV acceleration is constrained by (1d)–(1f). Given
the initial location and velocity of the UAV, its future
waypoints qt and velocities Vt are decided by the
accelerations, i.e., by (1a)–(1c).

• Reward rt: The reward function gives positive returns
per time step for implementing action at:

rt = RtU︸︷︷︸
communication

+ ζ
(
dt−1
F − dtF

)︸ ︷︷ ︸
distance to the final location

, (11)

where dt−1
F = ‖qt−1 − qF ‖ and dtF = ‖qt − qF ‖

are the distances from the UAV to the final location at
the (t − 1)-th and t-th time steps, respectively; and ζ
is a tunable parameter during the learning process. The
second element on the right-hand side of (11) encourages
the UAV to fly towards the final location.

• Policy: A projection from the state space, S, to the
action space A is referred to as a policy, µ : S → A,
a distribution µ(a|s) = Pr (at = a|st = s) over state
s ∈ S.

• Experience: The experience, defined as
et = (st, at, rt, st+1), is stored in an experience
replay memory R.

The UAV experiences state st, performs action at, receives
reward rt, and turns to state st+1. A policy at = µ(st) maps
state st to a possible action. The UAV chooses the policy that
maximizes the cumulative reward Rt =

∑N
n=t γ

n−trt. Here,
γ ∈ (0, 1) gives the discount factor. Given st, at, and µ, the
Q-function evaluates Rt by

Qµ(st, at) = Eµ[Rt|st, at]. (12)

The action-value function, Qµ(st, at), follows the Bellman
Expectation Equation:

Qµ (st, at) = Ert,st+1∼E
[
rt + γEat+1∼µ [Qµ (st+1, at+1)]

]
.

(13)
Here, E stands for the environment the UAV experiences.

It is generally challenging to directly use an RL algorithm to
solve the continuous-space, finite-horizon MDP and determine
the Q-value, Q(st, at), due to the continuous state and action
spaces. This paper puts forth a new DDPG-based algorithm
to control the UAV’s trajectory and configure the RIS, as
delineated in the following subsection.

B. Actor-Critic Framework-Based DDPG

The DDPG-based network uses four DNN approxima-
tors, including training-actor and training-critic networks, and
target-actor and target-critic networks, as shown in Fig. 2.
The training-actor network with parameters θa, denoted as
µ (st; θa), gives an approximate policy of the UAV and
produces the actions. The training-critic network with pa-
rameters θc, denoted as Qµ(st, at; θc), estimates the action-
value function concerning the actions created in the training-
actor network [35]. The target-actor network with parameter
θ′a, represented by µ′ (st; θ

′
a), and the target-critic networks

with parameter θ′c, represented by Q′µ′(st, at; θ
′
c), generate the

target Q-value for training the training-actor and training-critic
networks.
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Fig. 2. The proposed DDPG-based framework with a training network and a target network, each comprising an actor network and a critic network. The
experience replay buffer gives batches of samples of state transitions for training and updating the networks.
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The DDPG network uses the deterministic policy gradient
(DPG) theorem [35] to refresh θa, θc, θ′a, and θ′c. It produces
actions in an actor-critic setting. Additionally, the adoption of a
target network (i.e., the target-actor and target-critic networks)
helps prevent unstable learning, as opposed to using only a
training network (with a training-actor and a training-critic
network) [38].

The UAV inputs state st into the training-actor network.
Using the DPG theorem [35], the network generates the
strategy by projecting the state to an action in a deterministic
fashion. This network approximates the agent’s policy function
and selects action at. A noise is added to at to balance
between new and known actions, resulting in an output action
at = µ (st; θa) + Nt. Herein, Nt is a random noise process
with a normal distribution. The agent is rewarded with rt
and transitions to state st+1. Then, it stores the experience
(st, at, rt, st+ 1) in R.

The training-critic network evaluates the action-value func-
tion Qµ (st, µ(st; θa); θc) of the selected action at. By using
a random sample from the replay memory R, the network ap-

proximates the action-value function as Qµ(si, µ(si; θa); θc).
We take J(θa) to be the probability distribution of the param-
eter θa. The training-actor network is adjusted in the direction
that improves the strategy the most rapidly, i.e., in the direction
of the gradient of J(θa) with respect to (w.r.t.) θa [35]:

∇θaJ(θa) = Es∼ρµ [∇θaQµ(st, µ(st; θa); θc)] (14a)

= Es∼ρµ
[
∇θaµ(st; θa)∇aQµ(st, a; θc)|a=µ(st;θa)

]
, (14b)

where (14b) uses the chain rule; ρµ provides a discounted
state distribution of µ(st; θa) [36]; ∇θaµ(s) gives the gradient
of the training-actor network µ(s) w.r.t. θa; ∇aQµ(st, a; θa)
provides the gradient of Qµ(st, a; θa) w.r.t. a.

By randomly drawing Nbatch sampled historical transitions
from R, the gradient ∇θaJ(θa) is approximated by

∇θaJ(θa)≈ 1

Nbatch

Nbatch∑
i=1

[
∇θaµ(si)∇aQµ(si, a; θc)|a=µ(si)

]
.

(15)
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The training-actor network parameter, i.e., θa, is refreshed
based on the gradient ascent [39]

θa ← θa + ηa∇θaJ(θa)

≈ θa +
ηa

Nbatch

Nbatch∑
i=1

[
∇θaµ(si)∇aQµ(si, a; θc)|a=µ(si)

]
.

(16)
Here, ηa specifies the learning rate of the training-actor
network.

The training-critic network is refreshed through minimizing
the following loss function:

L(θc) = Est∼ρµ,at∼µ(st;θa)

[
(Qµ (st, at; θc)−yt)2

]
. (17)

Here, yt = rt + γQ′µ′ (st+1, µ
′ (st+1; θ′a) ; θ′c) is the target

Q-value produced by the target network under the transition
(st, at, rt, st+1). Here, the parameters of the target-actor and
target-critic networks, θ′a and θ′c, are the respective decayed
copies of θa and θc.

With Nbatch randomly sampled transitions, the loss func-
tion, L(θc), is approximately evaluated by

L(θc) ≈
1

Nbatch

Nbatch∑
i=1

[
(Qµ (si, µ(si; θa); θc)− yi)2

]
, (18)

where yi = ri + γQ′µ′ (si+1, µ
′ (si+1; θ′a) ; θ′c) gives the

approximate target Q-value that the target network generates
upon Nbatch transitions sampled at random. By differentiating
L(θc) w.r.t. θc, the gradient is attained:

∇θcL(θc)≈
2

Nbatch

Nbatch∑
i=1

[(Qµ (si, µ(si; θa); θc)− yi)

×∇θcQµ(si, µ(si; θa); θc)] .

(19)

The training-critic network parameter, θc, is refreshed by
utilizing the stochastic gradient descent method [39].

The target-actor and target-critic networks are refreshed
based on the training-actor and training-critic networks:

θ′a ← τaθa + (1− τa)θ′a,

θ′c ← τcθc + (1− τc)θ′c,
(20)

where τa and τc are the decaying rates for the training-actor
and training-critic networks, respectively.

C. Twin Delayed DDPG (TD3)

TD3 is one of the latest extensions of DDPG and con-
sists of a training network and a target network, where the
training network is made of a training-actor and two training-
critic networks, and the target network comprises a target-
actor and two target-critic networks, as shown in Fig. 3.
TD3 addresses the Q-value overestimation problem of the
DDPG algorithm by incorporating three improvements over
the classical DDPG model, namely, clipped double-Q learning,
target policy smoothing, and delayed policy update [40], [41].
• Clipped double-Q learning: TD3 contains two training-

critic and target-critic networks to produce two Q-values.
The lesser of the two is used to evaluate the target Q-
value in the Bellman error loss function. Specifically,

TABLE I
THE PARAMETERS OF THE SYSTEM MODEL

Parameter Value
RIS antenna separation, dx, dy λ/2
Maximum and minimum speeds, Vmax, Vmin 40 m/s, 2 m/s
Path loss, ρ -30 dB
Path loss exponents, κ1, κ2 3.5, 2.8
Rician factor coefficients, ξ1, ξ2 1, 4.4
Rician factor, β 3 dB
Noise power, σ2

U -169 dBm

Qµ(st, at; θc) in the DDPG is replaced by Qµ(st, at) =
min {Q1 (st, at; θ1) , Q2 (st, at; θ2)} in the TD3.

• Target policy smoothing: TD3 perturbs actions produced
by the target-actor network (i.e., “target action”) with
noises and smooths the corresponding Q-function values
to enhance the resistance of the policy against erroneous
Q-functions. The smoothed target action is written as

a′t = clip
(
µ′ (st+1; θ′a) + clip

(
ε′,−σ2

m, σ
2
m

)
, amin, amax

)
.

(21)
Here, the noise ε′ is taken at random from a Gaus-
sian distribution with zero mean and variance σ2

a, i.e.,
ε′ ∼ N (0, σ2

a); and σ2
m is the maximum exploration noise

supported by the environment. In contrast, the DDPG
model does not add noises towards target actions.

• “Delayed” policy update: The training-actor and target-
actor networks (i.e., policies) are refreshed less frequently
than the training-critic and target-critic networks. For
example, it was recommended in [40] that the training-
actor and target-actor networks are refreshed after the
training-critic and target-critic networks are refreshed
twice in TD3. In contrast, the classical DDPG model
refreshes its train-actor and target-actor networks and
train-critic and target-critic networks at the same pace.

V. PERFORMANCE EVALUATION

We carry out extensive experiments in Python to evaluate
the proposed approach. The location of the jammer is qJ =
[−25,−25, 0]T m. The UAV’s initial and final locations are
q0 = [−200,−100, 5]T m and qF = [100, 60, 50]T m. The
RIS has N = 5 × 4 = 20 (or N = 5 × 8 = 40) reflecting
elements, and the reference point is qR = [50, 50, 30]T m.
The scheduling horizon is T = 30 s with each time slot being
δ = 0.1 s. The other parameters concerning the system model
are collated in Table I.

A. Experiment Settings

The proposed DDPG network is composed of actor net-
works implemented using fully connected neural networks
(FCNNs) with three hidden layers and learning rates of 10−4.
The first, second, and third layers of the actor networks
have 64, 128, and 64 neurons, respectively. The output layer
implements the tanh(·) activation function to bound the
output actions within [−π, π) for the RIS configuration and
[−2, 2] m/s2 for the UAV control. Additionally, the paper
utilizes critic networks that employ FCNNs with two hidden



7

TABLE II
THE HYPERPARAMETERS OF THE PROPOSED DDPG AND TD3

ALGORITHMS

Parameter Value
Reduction coefficient for upcoming reward, γ 0.99
Training coefficient for actor and critic networks, ηa, ηc 1× 10−4

Declining coefficient for actor and critic networks, τa, τc, ρτ 5× 10−3

Capacity for experience repetition 1× 105

Quantity of episodes, Tep 3000
Total steps per episodes, Ts 300
Quantity of experiences in a mini-batch, Nbatch 128
Variance of the exploration noise, σ2

e 0.2
Delayed policy update interval (TD3) 2
Variance of the policy noise (TD3), σ2

a 0.2
Largest value of the Gaussian noise (TD3), σ2

m 0.5

layers and learning rates of 10−3. Both hidden layers utilize
the Rectified Linear Unit (ReLU) activation functions with 64
neurons in the first layer and 128 neurons in the second layer.
The DDPG actor policy is trained using additive noise N ,
which is sampled from a complex Gaussian noise distribution
with zero mean and variance 0.2.

The proposed TD3 network is built upon the DDPG net-
work. It includes two duplicates of the training-critic and
target-critic networks; see Fig. 3. Similar to the DDPG net-
work, the actor in the TD3 network is trained using exploration
noise that is drawn from a complex Gaussian distribution with
zero mean and variance 0.2. Additionally, the target-actor in
the TD3 network is smoothed using policy noise that is drawn
from a complex Gaussian distribution with zero mean and
variance 0.2. The maximum exploration noise is set to 0.5,
and the actor networks are refreshed every two steps. The
TD3 improves the DDPG by providing faster and smoother
convergence, which is especially beneficial for larger RISs.

The hyperparameters of the proposed DDPG and TD3
networks are summarized in Table II. The DDPG and TD3
networks are trained on a server equipped with a NVIDIA
Tesla P100 SXM2 16GB GPU.

Baseline 1: This baseline applies TD3 to UAV flight path
planning in the absence of the RIS, referred to as “without
RIS”. The TD3 algorithm learns the UAV’s trajectory solely
based on the received data rate at the UAV without CSI
involving the RIS or jammer.

Baseline 2: This baseline decouples the UAV’s trajectory
plan from the RIS configuration by first using a TD3-based
algorithm to optimize the UAV’s trajectory given the RIS
configuration, and then maximizing the signal-to-noise ratio
(SNR) at each time slot using the Dinkelbach method under the
assumption of perfect and instantaneous CSI for all involved
channels. The Dinkelbach method is used to reformulate the
SNR maximization problem as a fractional program defined as
F (γtU) = minΘt f(Θt)− γtUg(Θt), s.t. −π ≤ θtn < π,∀n, t,
where γtU = f(Θt)

g(Θt)
and Θt gives the RIS configuration. Given

γtU, the fractional program can be reorganized as a quadratic
program with a unit-modulus constraint and solved using
manifold optimization. The value of γtU is refreshed based on
the resultant Θt. This process is repeated until convergence,
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Fig. 4. The per-episode and average rewards of the proposed DDPG and TD3
algorithms. Fig. 4(a) plots the proposed TD3 scheme when N = 20; Fig. 4(b)
plots the proposed TD3 scheme when N = 40; Fig. 4(c) plots Baseline 2
when N = 20; Fig. 4(d) plots the proposed DDPG scheme when N = 20;
Fig. 4(e) plots the proposed DDPG scheme when N = 40; and Fig. 4(f) plots
Baseline 1 “without RIS”.

and the convergent value of γtU is output [42].

B. Results of Policy Learning

Fig. 4 plots the per-episode and average rewards of the
proposed and baseline algorithms for N = 20 and N = 40.
The average reward for the i-th training episode, denoted by
r̄i, is evaluated as r̄i = 1

i

∑i
j=1 rj , where i = 1, · · · , Tep, and

rj is the step reward for the j-th training episode; see (11).
Fig. 4 shows that the average reward gradually increases,

as the UAV control policy adapts to a randomly generated
target trajectory in each episode. The proposed TD3 algorithm
outperforms the baselines, and achieves its maximum reward
at the 654th episode for N = 20, and at the 477th episode for
N = 40. The proposed DDPG algorithm reaches its maximum
reward at the 1,607th episode when N = 20, and at the
2,995th when N = 40. Baseline 1 without RIS reaches its
maximum reward at the 280th episode. Baseline 2 reaches
its maximum reward at the 1,752nd episode when N = 20.
The fast convergence of Baseline 2 is due to its substantially
smaller action space of only UAV accelerations resulting from
an unrealistic assumption of perfect and instantaneous CSI of
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Fig. 5. 3D UAV trajectory, where the green and red dots are the UAV initial
location and its expected destination, the orange and yellow triangles denote
the locations of the BS and Jammer, and the blue square is the RIS reference
point.

all involved channels. In general, the TD3 converges faster
and more smoothly than the DDPG. Yet, it undergoes less
smooth changes in the per-episode reward when the action
space is smaller, i.e., N = 20, This is because the TD3 has
two critic networks for both the training and target networks
(c.f. Fig. 3), which could incur higher complexity and more
randomness when training, especially when the action space
is smaller. In contrast, DDPG is suitable for training tasks that
are less complicated and have relatively smaller action spaces.

C. Test Results of Learned Policy

Using the learning results obtained in Section V-B, we
test the proposed DDPG-based and TD3-based algorithms for
N = 20 and 40 at the RIS, as well as the baseline schemes
for N = 20 at the RIS for comparison. 500 testing episodes
are conducted, each consisting of 300 steps. During testing,
no exploration noise is added. The proposed algorithms and
baselines are evaluated in terms of the 3D UAV trajectory and
received data rate. Fig. 5 shows the 3D trajectory of the UAV,
while Fig. 6 illustrates the trajectory in the x-y plane and along
the z-axis. These figures demonstrate that the UAV is able to
adapt its control policy to the anti-jamming communication
and successfully reach the destination.

Fig. 7 shows the received data rate of the UAV as the mis-
sion duration increases. The results are based on an average of
500 independent testing episodes, with error bars representing
the associated uncertainty. It is observed that the received data
rate increases with the mission duration under all considered
algorithms, and the use of an RIS improves the received data
rate. The proposed TD3 and DDPG algorithms give slightly
lower data rates than Baseline 2, but operate without the CSI
involving the RIS or the jammer, demonstrating their ability
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Fig. 6. Projection of the UAV trajectory on the x-y plane, with the green
and red dots being the UAV initial and final locations, the orange and yellow
triangles being the locations of the BS and Jammer, and the blue square being
the RIS reference point.

to adapt to system changes. Additionally, the proposed TD3
algorithm achieves a substantially higher data rate than the
proposed DDPG algorithm, particularly for larger numbers of
RIS elements. This is attributed to the faster convergence and
better convergent control policy of TD3 compared to DDPG,
as previously shown in Fig. 4.

Fig. 8 illustrates the distance between the UAV and its
expected destination at the end of the mission. The results
show that as the mission duration increases, the distance
decreases for all algorithms. Without the use of the RIS,
the UAV is unable to reach its expected final location as it
must remain close to the BS to maintain a sufficient data
rate. However, the proposed algorithms, such as TD3, enable
the UAV to get closer or reach its final location by adjusting
the RIS to enhance the desired signals, weaken the jamming
signals and extend the effective BS-UAV transmission range.

It is worth noting that as the mission duration increases,
DDPG can increasingly approach TD3 in the average achiev-
able data rate. This indicates that DDPG is suitable for a
less constrained problem setting where there is sufficient time
for the UAV to maneuver and explore its action space. In
this case, DDPG can be a suitable solution, as it can benefit
from its simpler network architecture than TD3. In contrast,
TD3 demonstrates significant gains over DDPG when the time
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Fig. 7. The received data rate of the UAV vs. the mission duration averaged
over 500 independent testing runs.
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Fig. 8. The finishing distance between the UAV and its destination at the end
of the mission with the increase of the mission duration.

constraint is more stringent. In other words, TD3 suits better
under a shorter mission duration, since it has a more complex
network structure and can generate more randomness to test
the action space more extensively for better solutions.

Fig. 9 plots the cumulative distribution function (CDF) of
the distance between the UAV and its expected destination at
the end of the mission, for mission durations of T = 30 and
40 s. The results show that as the number of RIS elements (i.e.,
N ) or the mission duration (i.e., T ) increases, the proposed
TD3 algorithm can get closer to or reach the destination
more frequently, and performs significantly better than the
case without an RIS. While perfect CSI is important for UAV
trajectory planning, as seen in Baseline 2 for N = 20, the TD3
algorithm can produce equally effective trajectories without
CSI by utilizing a larger RIS with more elements (as seen in
TD3 for N = 40). On the other hand, the DDPG algorithm
appears to suffer from overfitting, as the distance between the
UAV and its expected destination has little dispersion. This
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Fig. 10. The UAV’s data rate vs. its distance to the expected destination,
where T ranges from 5 to 40 seconds.

indicates that DDPG is more prone to overestimating the Q-
value function for a small number of possible actions, leading
to a noisy gradient for policy refreshes and less effective UAV
trajectories and lower data rates.

VI. CONCLUSION

This paper developed a new DRL-driven framework for
the trajectory planning and RIS-assisted jamming rejection
for a UAV-borne IoT platform. The DDPG model and its
enhancement, TD3, were designed to allow the UAV to learn
its trajectory and the RIS configuration only based on its
received data rate, eliminating the need of CSI for learn-
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ing. Extensive simulations showed that the proposed DRL
algorithms offer the UAV reliable resistance against jamming.
The TD3 algorithm converges faster and more smoothly than
the DDPG algorithm. It also demonstrates robustness against
different locations of the jammer. This is particularly important
due to the difficulty in locating the jammer in practice.
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