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Abstract—Federated Learning (FL) is a novel distributed
privacy-preserving learning paradigm, which enables the col-
laboration among several participants (e.g., Internet of Things
devices) for the training of machine learning models. However, se-
lecting the participants that would contribute to this collaborative
training is highly challenging. Adopting a random selection strat-
egy would entail substantial problems due to the heterogeneity
in terms of data quality, and computational and communication
resources across the participants. Although several approaches
have been proposed in the literature to overcome the problem of
random selection, most of these approaches follow a unilateral
selection strategy. In fact, they base their selection strategy on
only the federated server’s side, while overlooking the interests
of the client devices in the process. To overcome this problem,
we present in this paper FedMint, an intelligent client selection
approach for federated learning on IoT devices using game
theory and bootstrapping mechanism. Our solution involves the
design of: (1) preference functions for the client IoT devices and
federated servers to allow them to rank each other according
to several factors such as accuracy and price, (2) intelligent
matching algorithms that take into account the preferences of
both parties in their design, and (3) bootstrapping technique that
capitalizes on the collaboration of multiple federated servers in
order to assign initial accuracy value for the newly connected IoT
devices. Based on our simulation findings, our strategy surpasses
the VanillaFL selection approach in terms of maximizing both
the revenues of the client devices and accuracy of the global
federated learning model.

Index Terms—Federated Learning, Client Selection, Internet of
Things (IoT), Game Theory, Pricing, Bootstrapping, Newcomer
Client, Incentive Mechanism.

I. INTRODUCTION

THe adoption and popularity of IoT devices is surging day
after day. Based on reports from the International Data

Corporation (IDC), by 2025 the world will contain around 41.6
billion IoT devices. These devices generate large amounts of
data. By taking advantage of the heterogeneity and affluence
of these data, businesses have the chance to improve their
production and business strategies and hence increase their
profits. However, most of the times, the common strategy for
analyzing IoT data is to gather the data from the devices

and to offload these data to a central server for training
and pattern extraction [1], [2]. This might not necessarily be
scalable in the light of the exponential growth of IoT devices
and significant data heterogeneity over the devices [3]–[5].
Additionally, considering the vast volume of pervasive IoT
data-sets in the big data age [6], coupled with the IoT devices
resource constrained nature [7], [8], it is becoming harder
to move large amounts of data over the network to cloud
data centers for centralized analysis [9], [10]. Another major
concern with such an analysis strategy relates to the privacy
risks stemming from the sharing of the data with third-party
servers [11]–[13]. This is problematic, especially if there is
sensitive information in the training data.

To mitigate these communication and privacy concerns,
the Federated Learning (FL) concept has been recently pro-
posed [14]. The main idea of FL is to perform the training at
the level of each device locally, in a distributed fashion [15],
[16]. Google originally unveiled the concept of FL in 2016,
when it was applied to Google keyboards to collaboratively
learn from numerous Android smartphones [17] [18]. FL has
the potential to revolutionize data analytics in several vital
fields, including healthcare, transportation, finance, and smart
homes, because it can be applied to any edge device [19].
A typical Federated training procedure is separated into nu-
merous communication rounds, which are terminated once
the global model achieves the intended accuracy [20]. The
federated server (i.e, the edge server executing the FL process)
first generates a generic machine learning model. Then, The
server sends the global model parameters to a set of selected
client devices throughout each communication cycle. The
clients train the model on their local data and send the updated
parameters to the federated server, which in its turn aggregates
the updated parameters to form the new global model [21], and
returns it to the clients. This procedure is repeated until the
intended amount of accuracy is reached or a certain number
of communication rounds are achieved.
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A. Problem Statement

However, in the default federated learning process, the
clients that participate in the learning rounds are selected in a
random fashion [22]. This might be problematic for two main
reasons. First, in order for the training to take place and for the
results to be communicated with the federated server, the IoT
devices (hereafter, interchangeably used with clients) need to
dedicate appropriate amounts of resources such as CPU, RAM,
and bandwidth to be able to both train the model and transmit
it efficiently [23], [24]. Nonetheless, this criterion is often not
realized due to the resource limits of certain IoT devices,
which have low computing and communication capabilities,
causing considerable latencies to the synchronized parameter
aggregation process at the server [3]. Second, owing to the
heterogeneity at the level of the clients in federated learning,
different clients might have different types of datasets with
varying sizes, qualities, and distributions, a problem that is
often referred to as the non-IID (non-independent and identi-
cally distributed) problem. Thus, selecting clients at random
can result in having clients with low resources or clients that
hold smaller amounts of data [25]. This might hinder the
objective of achieving a certain desired accuracy level and
could result in a considerably high number of communication
rounds. Furthermore, the problem of newcomer client devices
is challenging and has not been appropriately addressed in
the literature. The existing of newcomer IoT devices in the
environment makes the selection process more complicated.
Dealing with devices that can not afford any recorded data for
previous interaction that can tell anything about the status of
such device in order to build a decision on is very challenging.
Moreover, most of the existing client selection models have a
unilateral selection mechanism in which the federated servers
take the selection decision based on specific standards, which
results in an unfair or win-lose situation wherein the server’s
needs are met while the clients’ opinions are completely
neglected.

B. Contributions

Motivated by these shortcomings of the random client selec-
tion approach, we propose a novel client selection approach for
federated learning on IoT devices called Federated Intelligent
Matching (FedMint) which is based on matching game theory
[26]–[29] and trust bootstrapping. First, we apply a boot-
strapping method to obtain an initial accuracy value for the
newly deployed IoT devices. The proposed trust bootstrapping
method capitalizes on the collaboration between an active
set of federated servers and a central bootstrapping server,
wherein each active federated server contributes its recorded,
that records the server’s interactions with a group of client
IoT devices in the previous training rounds. In return, the
bootstrapping server trains a Decision Tree model on the
collected data and finally, delivers the predicted accuracy of
the newcomer IoT device to the federated server that send
the inquiry. Moreover, we employ a matching game wherein
clients and federated servers with specific FL tasks are given
the chance to form their own preference lists based on certain
criteria. Using these lists, the matching takes place where at

each FL communication round. Unlike the random selection
approach, our method makes the federated servers aware of
the data types that are offered by the IoT devices as well as
their accuracy levels. The preferences of the IoT devices are
also taken into consideration in the matching process in terms
of monetary rewards.

In this work, the main contributions are summarized as
follows:
• Designing an accuracy bootstrapping model that helps

federated servers assign initial accuracy values for the
newcomer IoT devices having no past participation’s. The
proposed bootstrapping model ensures fairness between
already active and the newcomer IoT devices in terms of
the chance to participate in future FL training rounds.

• Devising a rewarding model for federated servers to
encourage them to engage in the bootstrapping process.
This is achieved by setting a limit on the bootstrapping
requests that a federated server can make and linking
the increase of this limit to the number and quality of
contributions made by each server to the bootstrapping
phase.

• Proposing a bilateral client selection approach for feder-
ated learning using matching game theory. To the best of
our knowledge, this is the first client selection approach
in FL that takes into account the preferences of both
the federated servers and client devices in the selection
process while considering the newcomer IoT devices
problem.

• Elaborating a distinct optimization problem for the fed-
erated servers as well as for the client IoT devices while
expressing the objectives and constraints of both parties
in the selection process.

• Implementing a set of distributed matching algorithms
which takes into account the preferences of both the
federated servers and client devices. The proposed algo-
rithms lead to a stable matching point from which neither
the servers nor clients have incentive to deviate.

C. Paper Outline

In section II, we study the literature on client selection
and discuss the originality of our solution. In section III,
we create the optimization problems for the federated servers
and client IoT devices. In section IV, we introduce the
bootstrapping mechanism and architecture in addition to the
bootstrapping motivation function for the federated servers.
In section V, we describe Fed-IoT matching game principles
and terminology, interpret preference functions, and suggest
algorithms for creating preference lists. In section VI, we
deliver the distributed version of the matching algorithms
implementation. In section VII, we demonstrate the simulation
setup we utilized to run our tests and interpret the outcomes.
Finally, we conclude our work in section VIII

II. RELATED WORK

In this section, we review relevant literature on client
selection and trust bootstrapping in federated learning.
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A. Client Selection
There are several works in federated learning that focus

on client selection. In [30] the authors suggest a probability
conditioned client selection mechanism, based on clients’ data.
In this approach, clients are selected based on a probability
calculated using a value returned by an evaluation function
on the client’s device. The authors argue that their approach
minimizes overall training rounds required to attain the desired
accuracy level.

In [31], the authors introduce POWER-OF-CHOICE, a
client selection framework that achieves a balance between
solution bias and convergence speed in a flexible manner. The
outcomes reveal that this approach converges 3x faster and
achieves better test accuracy compared to the normal random
selection by almost 10% .

In [32], the authors address the challenge of limited compu-
tational resources on client devices and propose an approach
called FedCS. The proposed approach seeks to mitigate the
problem of resource variety across client devices through
performing the federated learning tasks efficiently, by properly
managing clients in accordance with their resources condi-
tions. This is done through imposing some constraints on the
updated models that should be accepted.

In [33] The authors introduce FedMCCS, a multi-criteria
methodology targeting the client selection process in FL to
address the heterogeneity of client devices. This approach
takes into account a device’s resources. The resources are
assessed to predict whether or not the device can accommodate
a FL task.

In [34], the authors propose an approach, called RBCS-
F, which advocates a fairness-guaranteed algorithm. The al-
gorithm seeks to establish a suitable balance among both
training efficiency and fairness, while minimizing the average
model exchange time. This approach ensures that trainers with
low importance are not neglected from participating in the
federated training process.

In [35], the authors introduce Newt, a novel client selection
approach that investigates a trade-off between accuracy and
system advancement. As a novel feature of client selection
technique design, a control on selection frequency is incorpo-
rated in the approach.

The above-discussed papers take into consideration the
federated server’s only, while disregarding the needs and
preferences of the clients. This would result in biased and
sometimes unfair scenarios, where the federated server has
the ultimate say as to which clients should be selected. On the
contrary, our strategy considers the preferences and restrictions
of both the federated server and client devices in the selection
process, to guarantee more fair and less biased decisions.

In [36], a matching-theoretic method in multi-access edge
computing network with incomplete preference list was devel-
oped to handle the low-latency task scheduling problem. The
matching occurs between the edge nodes in charge of the fed-
erated learning task and the end devices in a wide environment.
Experiments reveal that the complete preference list matching
approach performs slightly better than the matching approach
by reducing the latency due to the missing information. To
manage federated learning task allocation and defend against

malicious clients, [37] applied a modified one-to-one two-
sided matching theory between workers and task publishers,
as well as a worker reputation metric. The proposed solution
focuses on minimizing the job publisher’s training time as well
as the worker’s energy usage. In many aspects, our strategy
differs from the above mentioned two solutions. Both tech-
niques attempt to minimize particular metrics, but our model
maximizes client incentives as well as federated server global
model accuracy. We are also applying a distributed version of
the matching game theory, which is more compatible with the
distributed nature of the federated learning. Furthermore, none
of the articles cited above addressed the issue of newcomer
IoT devices in FL.

B. Trust Bootstrapping

Trust bootstrapping have been used to solve the recom-
mender system cold-start problem in many fields such as
business, networking, cloud services and others. In [38] the
authors targeting the malicious client aspect in FL by intro-
ducing FLTrust. Unlike the normal byzantine-robust methods
that rely on statistics analysis for malicious clients detection.
The proposed approach counts on a small amount of collected
data to bootstrap trust.

In [39], the authors introduce FLOD. As a new byzantine-
resistant federated learning approach. The proposed method
capitalizes on trust bootstrapping and the hamming distance
based aggregation, in addition to additive homomorphic en-
cryption and multiple optimizations to protect privacy and
byzantine-robustness in federated learning.

The above mentioned approaches named as FLTrust and
FLOD, proved that using trust bootstrapping to assign initial
trust score for each local model is effective compared to
other methods. These solutions, unlike ours, are aimed at the
bootstrapping of the federated model rather than newcomer
IoT devices.

In [40], the authors try to solve the recommendation system
cold start problem using federated learning by introducing a
double deep Q learning model that counts on the IoT devices
trust score, as well as the resources availability in the selection
process. In this approach, the author applied the federated
learning to address the bootstrapping while in this paper we
are using bootstrapping to address the problem of newcomer
IoT devices.

III. PROBLEM FORMULATION

In this section, we express the client IoT devices selection
problem in FL as an optimization problem and clarify the
relevant constraints. Note that we describe the various symbols
utilized throughout this work in TABLE I.

A. Client IoT Device Optimization Problem

The primary goal of IoT devices is to increase their prof-
itability. The earnings E(i) of every IoT device are determined
based on the amount of resources that the device promises
to dedicate for the FL process (i.e, cpuproi , ramproi , and
bandproi ). The earnings of an IoT device is the summation of
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TABLE I: LIST OF DEFINITIONS

Symbol Explanation

IoTs and Federated Servers
s A single federated server
i A single IoT device
ϕs Data type requested by s
ϕi Available data on i
pw Resource w’s unit price offered by s
S Set of active federated servers
I Set of active IoT devices
Lis Scaled network latency between i and s
rn A federated server communication round n
Cs Number of clients requested by a federated server
Ns Number of clients selected by a federated server
ANs List of clients selected by a federated server s

CPUproi Amount of CPU resources promised by an IoT device i
RAMproi Amount of RAM resources promised by an IoT device i

Bandproi
Amount of bandwidth resources promised by an IoT

device i
ei(o) Operational earnings of an IoT device i
ei(t) Communications and traffic earnings of an IoT device i

βi
s

A request from federated server s to the bootstrapping
server to inquire about a newcomer IoT device i

Optimization
E(i) Total Monetary reward of an IoT device i
Acci Local testing accuracy of an IoT device i
Accs Global Model Accuracy of a federated server s
Âcci Predicted local testing accuracy of an IoT device i

Matching Theory
γ A Matching relation between two entities
γ(s) A matching scheme of a federated server
γ(i) A matching scheme of an IoT device
Pi IoT device i preference list
Ps The preference list of a federated server s

i1 �s i2 Server s prefers being matched to i1 rather than i2

Bootstrapping
SD(X) Standard Deviation of an attribute X
SD(Y,X) Standard Deviation of two attributes X and Y

CV Coefficient of Variation
P (c) Probability of a category c
ð Central Bootstrapping Server
n Sample Size
x Average of a sample

SDR(Y,X) Standard Deviation Reduction
Calls(s) Bootstrapping calls that s can make

two functions, namely (1) operational and (2) network traffic
earnings.

1) Operational Earnings: The operational earnings of an
IoT device are made up of two measures, i.e., CPUproi
and RAMproi. The CPU and RAM utilization cost (in
MIPS) measures the amount of CPU and RAM used by
a specific IoT device i when performing federated server
operations. Formally, the operational earnings ei(o) of
i ∈ I are defined as stated below:

ei(O) = CPUproi ∗ pw +RAMproi ∗ pw′ (1)

2) Traffic Earnings: In FL, the devices must send/receive
the model parameters to/from the federated servers at
certain bandwidth rates. Depending on the underlying
demand, the active physical links may be unavailable

at different periods. Thus, the traffic earnings of IoT
devices is estimated as the bandwidth earnings incurred
on the s ⇔ i link multiplied by the link’s scaled
undergoing delay as a penalty.
In formal terms, the traffic earnings ei(t) of an IoT
device i ∈ I interacting with a federated server s ∈ S
is defined as follows:

ei(t) = (Bandproi ∗ pw)× (1− Lis) (2)

As a result, each IoT device i ∈ I must maximize the
objective function in Eq (3), where std represents the standard
deviation of the IoT device i’s local accuracy compared to the
federated server’s global model accuracy of s ∈ S at round rn.
Such a multiplication reflects the fact that each IoT device will
be penalized in terms of the gap between its local accuracy
and the overall global model accuracy. Therefore, as the IoT
device’s local accuracy Acci tends to be closer to the global
model’s accuracy Accs, the IoT device will receive a higher
reward.

E(i) = (ei(O) + ei(t))× (1− stdrn) (3)

Constraint 1: Each IoT device i ∈ I can be matched
with only one single federated server, per each communication
round.

0 ≤ |γ(i)| ≤ 1 (4)

B. Federated Servers Optimization Problem

Federated servers are interested in maximizing the accuracy
Accs of the deep learning model, by selecting the most
appropriate set of client devices in terms of historical accuracy.
The accuracy Accs of the FL training process can be derived
as per (5):

Accs =

∑I′

n=i weighted accuracyn∑I′

n=i test data sizen
(5)

where I ′ represents subset of IoT devices of I ′ ⊆ I that
participated in federated learning round rn with federated
server s. Weighted accuracy can be calculated for each IoT i
∈ I as follows :

weighted accuracyi = Acci ∗ test data sizei (6)

In this way, a federated server s will be more interested
in selecting an IoT device i over device i′ in a certain
communication round if and only if:

Acci �s Acci′ (7)

Constraint 2: The selected client IoT devices total number
should not exceed the amount of requested IoT Cs by s.

Ns ≤ Cs (8)
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IV. BOOTSTRAPPING ACCURACY FOR NEWCOMER IOT
DEVICES

In this section, we explain the trust bootstrapping solution
and discuss the main stages of the process.

Bootstrapping is a recommendation technique used in many
fields, such as cloud computing where it is used in order to
determine the trust level of the newly deployed cloud services,
when no historical records on their previous actions exists [41],
[42]. In our approach, we are going to apply the bootstrapping
in order to assign initial accuracy value for the newcomer
IoT devices. In the proposed matching solution, federated
servers sort their preference lists of IoT devices depending
on the accuracy level of each IoT device. So, devices with
no accuracy can’t be added to the preference list. Moreover,
assigning random accuracies for such devices may result in
an unjust situation for both IoT devices and federated servers.
This happens when a very good IoT device gets a very low
accuracy, and vice versa. The proposed method capitalizes on
the collaboration of multiple active federated servers with a
central bootstrapping server to help these servers to overcome
the problem by providing initial accuracy for newcomer IoT
devices.

A. Bootstrapping Overview
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Fig. 1: Bootstrapping Architecture

Our solution is illustrated in Fig. 1 and described as follows.
Each federated server maintains a dataset that records the
server’s interactions with a group of client IoT devices in
the previous training rounds. This dataset should include the
characteristics of each IoT device that participate in the round
(i.e., region, type of the device, resources usage) and most
importantly the accuracy that this device has achieved in
the designated round. In each round, following a joining
request from a certain newcomer IoT device (Step I) to an
active federated server, the entitled server is going to ask the

central bootstrapping server to predict the expected accuracy
for the newcomer IoT device (Step II). The bootstrapping
server issues a bootstrapping request and broadcasts it to all
active federated servers (Step III). Next, the active federated
servers are going to upload all/part of their historical dataset
to a bootstrapping central server (Step IV). Then, the central
server trains a decision tree regression model on the collected
datasets to predict the expected accuracy of the newcomer
IoT device (Step V). Finally, the bootstrapping server sends
the initial expected accuracy of the newcomer IoT device to
the asking server (Step VI). Decision tree uses a tree structure
to develop regression or classification models. It recursively
divides a dataset sample into relatively small segments while
also creating a related decision tree. As final outcome, a
tree should be created with leaf nodes representing each a
numerical target decision, and decision nodes that include at
least two branches representing the examined attribute values.
The topmost decision node in a tree known as root node,
that represents the most reliable predictor that can be chosen
based on certain statistical metric (e.g., Standard Deviation
Reduction).

B. Decision Tree Creation

The decision tree model is a well known supervised ma-
chine learning model that capitalizes on the ID3 technique
for creating decision trees. This is done by performing a
greedy top-down search across the range of possible paths
without backtracking [43]. Decision tree uses a tree structure
to develop regression or classification models. The major
distinction between regression and classification decision trees
is that the results of classification-based decision trees are
categorical, whereas the results of regression-based decision
trees are continuous. The regression decision trees accept
both ordered and continuous data. The ID3 approach can
be applied to create a regression decision tree by using
Standard Deviation Reduction (SDR) instead of Information
Gain [44]. Standard deviation reduction technique is going
to be used in order to measure the homogeneity in a feature.
Decision Tree is created in a top-down way out-of a root node
by splitting the data into segments containing homogeneous
samples with comparable values. To determine the uniformity
of a numerical data sample, we utilize Standard Deviation
(SD). A numerical sample with a low Standard Deviation is
more likely to be homogeneous, whereas a sample with a
high Standard Deviation is less likely to be homogeneous. The
SDR is a measure of the decrease in the Standard Deviation
after splitting a dataset based on a certain attribute. The most
homogeneous branch is determined by the attributes that result
in the greatest standard deviation decrease. The SDR of a
specific feature X can be derived by subtracting the standard
deviation of the target Y, i.e., SD(Y), before the split, from the
standard deviation after the split by X SD(Y, X) represented
by Eq.(9)

SDR(Y,X) = SD(Y )− SD(Y,X) (9)

where a certain SD can be calculated for one attribute x as
follows:
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SD(x) =

√∑
(x− x)2
n

(10)

The symbol n represents the sample size and x represents
the sample’s mean that can be derived as below:

x =

∑
x

n
(11)

The Standard Deviation for two attributes (Target and Pre-
dictor) is defined as below:

SD(Y,X) =
∑
c∈X

P (c)SD(c) (12)

Then, the Coefficient of Variance (CV) can be computed as
per Equation (5):

CV =
SD

x
∗ 100% (13)

TABLE II: Data Sample

Provider Region DeviceType Accuracy

P4 Asia Watch 73.69

P1 Asia Phone 65.05

P4 America Security 67.62

P3 America Lock 58.54

P1 America Phone 53.85

P2 Africa Lock 56.37

P1 Europe Watch 53.85

P4 America Security 82.42

P3 Asia Phone 95.92

P1 Europe Watch 55.56

P1 America Security 56.80

P2 Africa Watch 52.88

P4 Asia Watch 90

P3 Asia Security 55

To demonstrate how Standard Deviation Reduction may
be used in practical federated learning scenarios to generate
decision trees, we provide an illustrative example using a
portion of the dataset that shown in Table II. This dataset was
generated in order to be used subsequently in the experimental
analysis. The dataset stores information on the IoT devices
that contribute in the federated learning rounds in terms of
their type, deployment region, provider and observed accuracy.
First of all, we should calculate the SD for the target which
means the Accuracy denoted by SD(Accuracy). By applying
the above-explained equations on the Accuracy feature we can
find that:
• n = 14
• x = 917.55

14 = 65.53
• SD(Accuracy) = 13.96
• CV = 21.31%

The previous calculations are needed in order to evaluate
the splitting impact of each feature. Starting with the Provider
feature as illustrated in Table III, the dataset is grouped
by category where the standard deviation for each group is
calculated alongside with the frequency of each category.

TABLE III: Split according to the ”Provider” feature

Accuracy(SD) Frequency

Provider P1 4.16 5

P2 1.74 2

P3 18.51 3

P4 8.50 4

SD(Accuracy, Provider) = 8.13 Total = 14

The Provider feature SDR can be determined by applying
the following illustrated methodology:
• SD(Accuracy, Provider) = P (P1) ∗ SD(P1) +
P (P2) ∗ SD(P2) + P (P3) ∗ SD(P3) + P (P4) ∗
SD(P4) = (5/14) ∗ (4.16) + (2/14) ∗ (1.74) + (3/14) ∗
(18.51) + (4/14) ∗ (8.50) = 8.13

• SDR(Accuracy, Provider) = SD(Accuracy)−
SD(Accuracy, Provider) = 13.96− 8.13 = 5.83

By applying the same concept for all the features (i.e.
Region, DeviceType) we will obtain the following standard
deviation values:
• SD(Accuracy, Provider) = 5.83
• SD(Accuracy,Region) = 13.96− 9.51 = 4.45
• SD(Accuracy,DevType) = 13.96− 12.28 = 1.67

Based on the calculated values, the root node should be
assigned to the attribute with the greatest Standard Deviation
Reduction which is the Provider in our example. The dataset
is partitioned depending on the values of the Provider feature
as shown in Fig. 2. This process is repeated on the non-leaf
branches until all data has been processed, or until a branch’s
Coefficient of Variation (CV) falls below a specific threshold
and/or few or no more instances remain in the branch. Finally,
if there are more than one occurrence at a leaf node, we use
the average as the final value for the target. By applying the
above rules on our data sample with n = 3 as number of
instances threshold and CV = 10% as coefficient of deviation
threshold, we obtain the final tree structure illustrated in Fig. 3.

C. Motivation function

Federated servers should be encouraged to engage in the
bootstrapping process. Therefore, it is very important to
provide a rewarding technique for these servers that have
participated in the bootstrapping process as encouragement for
them to participate again. We propose Eq. (14), that represents
a positive relation between the number of bootstrapping calls
that a federated server can make calls(s′), with respect to its
cumulative previous number of contributions Ccont and the
data rate DRt that the federated server provides based on the
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total data set size uploaded at time t by all the participated
servers.

Calls(s′)t = Calls(s′)t−1 + (|Ccont|+ |Ccont ∗DRt|+ 1)
(14)

where DRt of a specific federated server s′ can be calcu-
lated as follows:

DRt =
uploaded data sizes′∑S
n=s uploaded data sizen

(15)

Establishing win-to-win or rewarding methodology between
federated servers and the bootstrapping server is important to
guarantee the constant update of the provided data by the
federated servers used in the bootstrapping model training.
Thus, each federated server is going to be forced to contribute
by its data in order to be able to make further bootstrapping
requests from the bootstrapping server, to assign accuracy
values for new IoT devices that can be potential clients to
a certain federated learning round. Such a relationship is
beneficial to both parties. In fact the federated servers can
benefit by inquiring about newcomer IoT devices and get extra
number of eligible bootstrapping calls. On the other hand, the

bootstrapping server can benefit from the data provided by the
federated servers to keep the Decision Tree model updated.

V. PROPOSED APPROACH: INTELLIGENT CLIENT
SELECTION MECHANISM

In this section, we describe the proposed architecture,
explain the preference functions for both clients and federated
servers, and provide the intelligent client selection algorithms.

A. Proposed Architecture and Solution Overview

The initial communication round between federated server
and client IoT devices is illustrated in Fig. 4. This round is
important for the distributed intelligent selection approach, as
it allows both parties to exchange all the needed information
for the selection process. The communication start with a
demand request to all the active IoT broadcasted by a specific
federated server (Step I), after that the interested/available
IoT devices reply to the federated server with a message that
contains all the needed information including the IoT device
accuracy from previous work (Step II), if the IoT device is
newly deployed device then the federated server is going to
use the bootstrapping methodology discussed in Section IV.
Finally the federated server sends his offer to the designated
IoT device (Step III).

Fig. 4: Fed-IoT First Communication

Our solution takes two inputs, i.e., a set of federated servers
that need to select a set of clients to execute an FL task,
and a set of active IoT devices that are ready and willing to
participate in the FL process. In the following, we highlight
the main steps of our solution:

1) Preference Lists creation: In this step, each of the
clients and federated servers build their preferences lists:
• Initially each active federated server broadcasts to

the IoT devices in the environment the requirements
of each FL task. The IoT devices that are active and
willing to participate reply by sending to the server
their accuracy values obtained from their participa-
tion in previous FL tasks or from the bootstrapping
server alongside their resource information.

• Client IoT device preference list: Contains the list of
federated servers sorted based on the reward values
that these servers offer to pay for the IoT device.
IoT devices prioritize the federated servers that offer
higher rewards.

• Federated server preference list: Contains the list of
IoT devices sorted according to the accuracy values
of the IoT devices. Federated servers prioritize the
clients that have higher accuracy values.
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Fig. 5: Architecture of the proposed approach

2) Matching: In this step, the matching between the fed-
erated servers and client IoT devices takes place. The
matching is accomplished based the matching algorithms
which we describe in section VI. The algorithms rely
on the preference lists of the IoT devices and federated
servers which we describe in Sections V-C and V-D
respectively. The aim of this step is to reach a stable
matching point wherein each IoT device is matched to
a federated server and both parties do not have any
incentive to deviate from this matching. At the end of
the matching game, each federated server will have the
requested number of clients Cs and each client device
will be matched to a federated server.

The high-level system architecture of our suggested ap-
proach is illustrated in Fig. 5.

B. Matching Fed-IoT Game Formulation
In this section, we formulate the Fed-IoT matching game,

and establish preference functions of both the federated servers
and client IoT devices. We finally provide the algorithms
that allow us to create these preference functions. It should
be noted that our matching approach is inspired by the
methodology discussing [45].

Definition 1: We define γ as a matching relation produced
by the matching game between the IoT devices and federated

servers, where γ is a function I ∪ S → 2I∪S that satisfies the
following conditions:
• γ(i) ⊆ S, where |γ(i)| = 0 implies that client i is not

assigned to any federated server.
• γ(s) ⊆ I , where that Ns < Cs implies that the federated

server s didn’t reach the needed number of clients for its
FL task.

• i ∈ γ(s) if ⇔ γ(i) = s,∀i ∈ I, s ∈ S
Definition 2: An IoT-Server pair (i, s) is said to block a

matching relation γ if ∃ (i, s) where i ∈ γ(s) and s ∈ γ(i) we
have i �s γ(s) and s �i γ(i).

Definition 3: When a federated server s reaches the needed
number of clients Cs, it is considered as saturated. If a server
still needs some clients, any IoT device i will be accepted as
long as it meets the Ns < Cs requirements.

Definition 4: A stable matching relation γ exists when (1)
there are no blocking relationships, and (2) every federated
server is matched with the needed number of client devices.

C. Client IoT Device Preference Function

IoT devices wish to be matched with those federated servers
that maximize the former’s reward. There exist a complete,
strict and transitive preference relation Pi(S) for each IoT
device i ∈ I with each federated server s ∈ S. A preference
relationship s �i s

′ means that federated server s is preferred
over federated server s′ to IoT device i. Furthermore, if an IoT
device i does not have a clear preference between joining s or
staying unpaired, a federated server s is said to be undesirable
to i. Based on this description, an IoT device i’s preference
function can be described as follows:

s1 �i s2 ⇔ Pi(s1) > Pi(s2) (16)

where :

Pi(s) =

{
+∞, if s offers the highest reward
−∞, otherwise

(17)

D. Federated Server Preference Function

A federated server prefers to improve the accuracy effi-
ciency by selecting the IoT devices that can train the deep
learning model with the best possible local accuracy. There
exist a complete, strict and transitive preference relation Pf (I)
for each IoT device s ∈ S with each federated server i ∈ I .
A preference relationship i1 �s i2 means that IoT device
i1 is preferred by federated server s over IoT device i2.
Furthermore, if s does not have a clear preference between
selecting i or staying unpaired, the client device i is supposed
to be undesirable to s. Based on this description, a federated
server s’s preference function can be represented as follows:

i1 �s i2 ⇔ Ps(i1) > Ps(i2) (18)

where :

Ps(i) =


+∞, if the selection of i maxi-

mizes the accuracy of the
FL task

−∞, otherwise

(19)
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E. Client Device Preference List Creation Algorithm
In Algorithm 1, we show how to establish a preference list

for each client IoT device.

Algorithm 1: Establishment of IoT Device Preference List

Input: Collection of active federated servers S
Output: Client IoT device i Preference List Pi

1: for each s in S do
2: mark s as visited
3: if data type ϕs ∈ ϕi then
4: add s to Pi

5: end if
6: end for
7: Sort the federated servers in Pi Using Eq. (17)

The algorithm takes a collection of federated servers S as
input and generates the client IoT device i preference list Pi.
The federated servers are ordered in the preference list by
their preference order to i. The algorithm starts by visiting
each non-visited federated server (Line 1) and validating the
data type (e.g., MNIST dataset) requested by the federated
server (Line 3). If the requested data type is available on
i, that corresponding federated server s will be added to i’s
preference list Pi (Line 4). Finally, Eq. (17) is used to compute
the preference ordering across the collection of maintained
federated servers in Pi (Line 7). It is worth nothing mentioning
that this algorithm is carried out independently by each IoT
device i in I separately.

F. Federated Server Preference List Creation Algorithm
Federated servers are primarily concerned with increasing

the accuracy of training their global models by trying to select
the IoT devices with the highest possible accuracy levels.

Algorithm 2 is executed by each federated server in s ∈ S
to help build their desired preference lists. The algorithm
takes as an input a collection of IoT devices that are eager to
participate in the training rounds, and returns the preference
list Ps for every federated server. The IoT devices are sorted
in the preference list by their order of preference by each
s ∈ S. The algorithm initially validates the data type and the
local accuracy Acci availability at each IoT device in i ∈ I
(Line 1− 4). If the underlying device i has the requested data
type and Acci is Empty, then the entitled federated server
is going to initiate a bootstrapping request βi

s to the central
bootstrapping server ð (Line 6). The Trust bootstrapping stages
defined before in section IV-A are represented by the steps
between Line (5 − 12). After the bootstrapping process is
finished, the entitled federated server s assigns the predicted
accuracy Âcci by ð to i. Then, i is added to Ps (Line
14). Finally, our algorithm employs Eq. (19) to assist each
federated server in determining the appropriate ordering of
the maintained IoT devices (Line 17).

VI. SELECTION: FEDERATED SERVER & CLIENT
SELECTION ALGORITHMS

Once the preference lists have been created, the next step
is to devise the appropriate algorithms that would perform

Algorithm 2: Federated Server Preference List Establishment

Input: Collection of client IoT devices willing to participate
in the federated learning training

Output: Preference list Ps of federated server s
1: for each i ∈ I do
2: mark i as visited
3: if data type ϕs ∈ ϕi then
4: if Acci is Unknown then
5: // Start Bootstrapping Steps
6: Server s sends an inquiry message βi

s to ð
7: ð receives the message
8: ð collects data from S
9: ð rewards each server in S using Eq. (14)

10: ð Updates the DT model & predict Âcci
11: ð Replies to the inquiry message by Âcci
12: SET Acci = Âcci
13: end if
14: add i to Ps

15: end if
16: end for
17: Sort Ps Using Eq. (19) to rank the IoT devices in Ps

the actual matching based on these lists. The end result of
this stage is client devices being matched with the federated
servers. Our solution is highly distributed in the sense that
the IoT devices and federated servers connect directly to
accomplish the matching without the need for any third-party
central entity.

A. Matching Algorithm - IoT devices

In this section, we provide Algorithm 3, which is carried
out as part of the matching game by every IoT device. The
algorithm accepts as input the preference list in terms of
federated servers, obtained after executing Algorithm 2. The
algorithm goes over the preference list of each IoT device at
first (Line 2) and selects the most desired federated server
(Line 3). The IoT device communicates with the server by
sending it a work request message (Line 4) and waiting for
a response (Line 5). If the server responds positively (i.e.,
the server agrees to be matched with the IoT device), the
loop is broken and the underlying IoT device and federated
server are matched (Lines 7− 8). Alternatively, if the reply is
negative (Line 6), the server gets pushed to the bottom of the
preference list of the Internet-of-Things device. The algorithm
then proceeds to the next highest priority federated server.
The whole process is repeated for each federated learning
round (Line 12). Note that Algorithm 1 is executed as part of
Algorithm 3 (Line 11) to get the latest preference lists of the
IoT devices, reflecting the latest variations in the environment
in terms of updated performance of the federated servers,
advent of new servers and clients to the environment, and
removal of some existing ones.
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Algorithm 3: Internet-of-Things Device Selection Algorithm

Input: Internet-of-Things device i Preference list Pi

Output: Client IoT device and federated server matching
1: repeat
2: for each s ∈ Pi do
3: mark s as visited
4: Send a request message requesti→m to s
5: Wait for a reply Replym→i from s
6: if Replys→i == ’YES’ then
7: Match i to s
8: Break the Loop
9: end if

10: end for
11: Call Algorithm 1
12: until No more federated learning rounds

B. Matching Algorithm - Federated Server

Algorithm 4 is implemented by every federated server,
with an input consisting of a queue of IoT devices that have
submitted a request message to the underlying federated server.
The algorithm checks to see if the queue is empty at first (Line
2). A non-blank queue indicates that the current federated
server is still accepting request messages from the IoT devices.
If there are requests in the queue, the algorithm pulls a request
message and examines whether the total number of clients
selected Ns have reached the requested number of clients
Cs(Line 3). If not all needed clients have been selected, the
federated server sends an accept message to the underlying
IoT device (Line 4). The federated server then increments the
total number of clients selected Ns and adds the IoT device to
the selected list ANs

(Line 5−6). However, if the total number
of IoT devices selected Ns is equal to the number of requested
IoT devices Cs, but the IoT device is ranked better than any
already selected device i′ such that i′ ∈ ANs

in Ps (Line 7),
the server s will break the agreement with i′ (Lines 8−9) and
send an accept message to i and add it to the selection list
ANs

(Lines 10−11). Yet, if the IoT device is not ranked better
than any already selected IoT device in the federated server’s
preference list, the IoT device receives a reject message (Line
13) and any IoT devices with a lower preference list rank
than the rejected IoT device are removed by the federated
server (Line 14). It is necessary to point out that the entire
process is executed for every federated learning round (Line
18). To constantly get updated versions of the preference lists
that reflect the changes that happen in the environment (i.e.,
performance variation of IoT devices, arrival/removal of some
federated servers and/or IoT devices), Algorithm 2 is executed
as part of Algorithm 4 (Line 17).

VII. EXPERIMENTS

In this section, we describe the context in which we ran our
simulations and discuss the findings of our experiments.

Algorithm 4: Selection Algorithm - Federated server

Input: Queue Qi of IoT devices with request messages to s
Output: Pairing IoT devices with a specific server s

1: repeat
2: while Qi is not Null do
3: if Ns < Cs then
4: Send accept reply → Replys→i =’Yes’
5: add i to selected ANs

6: increment Ns by 1
7: else if Ns == Cs and i �s i

′ then . where i′ is
the worst selected IoT in ANs

8: Send updated rejection Replys→i′ = ’No’
9: remove i′ from the accepted list ANs

10: Send accept reply → Replys→i = ’Yes’
11: add i to the accepted list ANs

12: else
13: Send rejection reply to i→ Replys→i = ’No’
14: Discard every i′ ∈ Qi where i �s i

′

15: end if
16: end while
17: Call Algorithm 2
18: until No more federated learning rounds

A. Experimental Setup

In our simulations, we use the MNIST dataset from the
National Institute of Standards and Technology (NIST)1. The
training sample comprises manually written digits by 250
distinct persons, 50% of them are secondary school students
and 50% are from the Census Bureau. The testing dataset,
likewise, includes the same distribution of manually written
digital information. The MNIST dataset comprises 60k pic-
tures as training dataset and 10k as testing dataset, all having
a size of 28 × 28 pixels and 256 gray levels [46]. In terms
of label and size distributions, the dataset was split over the
client IoT devices in an non-IID fashion. An initial set of
C = 100 IoT devices was created and each round 10 clients
are going to be added, each having a dataset size in the interval
of [100, 450] images. Each IoT device has at least one label
and no more than four labels in its class label distribution.
To run the simulations, we build our own platform in which
each IoT device has a CPU capacity ranged between 300
and 700 MIPS, RAM capacity ranged between 400 and 900
MB, and bandwidth ranged between 500 and 900 Mbps. The
latency across each federated server and IoT device pair varies
between 0.1 and 5 seconds.

We compare our solution with the baseline VanillaFL
method which was first introduced by Google [22], where the
client selection happens randomly. For our simulations, we
start with initial set C as 100 and add 10 clients each round.
We set K to 10 for the VanillaFL same value apply to the Cs

in the FedMint, number of federated servers to 2, and total
number of FL rounds R to 15.

1http://yann.lecun.com/exdb/mnist/
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B. Experimental results

We discuss the findings of our experiments in two subsec-
tions: (1) FedMint vs VanillaFL and (2) Bootstrapping results.

1) FedMint vs VanillaFL: Our experiments are primarily
designed to compare FedMint approach versus VanillaFL by
investigating two key metrics. First, IoT monetary rewards
and Second, global model accuracy. Then we study the results
of applying the Bootstrapping versus random accuracy in the
Global model Accuracy context.

(a) Federated Server 1 (proposed approach vs VanillaFL)

(b) Federated Server 2 (proposed approach vs VanillaFL)

Fig. 6: Our solution increases the IoT devices rewards com-
pared to [22] by more than 58%.

• IoT Devices Monetary Rewards: In Fig. 6, we study
the average reward that an IoT device gains after having
participated in the federated learning task, over the
federated learning rounds number. Fig. 6 shows that
our solution maximizes the clients rewards considerable
compared to VanillaFL. This stems from the fact that our
solution takes into consideration each client’s preference
in the selection mechanism. On the other hand, the
random client selection in VanillaFL is server-oriented,
thus totally ignoring the client’s preferences in the
selection process. We notice from Fig. 6 that (a) the
rewards of the IoT devices that participated in federated
learning rounds with Federated Server 1 using our

approach are higher than those obtained by the IoT
devices in VanillaFL in all the FL rounds by 58.29%
with minimum and maximum differences of 37.31% and
67.19% respectively. Similarly, in the case of Federated
Server 2 (Fig. 6 (b)), our solution enables the IoT
devices to obtain higher rewards than those obtained in
VanillaFL in average by 61.14% inline with minimum
and maximum differences of 48.67% and 69.11%
respectively.

(a) Federated Server 1 (proposed approach vs VanillaFL)

(b) Federated Server 2 (proposed approach vs VanillaFL)

Fig. 7: Our solution achieves high accuracy levels compared
to [22] by more than 20%.

• Federated Learning Model Accuracy: Each federated
server aims to maximize its global model’s accuracy by
selecting the IoT devices with the highest local accuracy.
In Fig. 7, We measure the global model’s accuracy in
both our solution and VanillaFL. The results illustrated
in Fig. 7 (a, b) represent the average global accuracy for
Federated Server 1 and Federated Server 2 respectively,
with respect to the FL communication rounds. To avoid
biased results, we run each method several times and
compute the average accuracy. Overall, as can be seen
in Fig. 7(a), our solution outperforms VanillaFL in terms
of model’s accuracy. Specifically, our solution achieves
an accuracy level of 66.12% in the first communication
round compared to 43.99% in VanillaFL in the case of
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Federated Server 1. Similarly, we notice from Fig. 7(b)
the accuracy of our solution in the first communication
round is 67.10% compared to 48.18% in VanillaFL. In the
15th rounds, both our solution and VanillaFL reach their
highest accuracy levels on both servers. In more detail,
Federated Server 1 reaches an accuracy level of 77.45%
which is considerably higher than that of VanillaFL by
19.70%. Federated Server 2 reaches its highest accuracy
level of 79.92% which is higher than that of VanillaFL
by 20.56%.

2) Bootstrapping results: We investigate the trust bootstrap-
ping mechanism efficiency by showing the accuracy results for
the FedMint approach in Fig. (8) by assigning random initial
accuracy versus using bootstrapping for getting initial accuracy
for the newcomer IoT devices. The MSE plot in Fig. (9)
for the Bootstrapping decision tree model is then interpreted.
The MSE measures the amount of error in machine learning
models. For a perfect model the MSE value is 0 and this value
increases as the model error increases.

As shown in Fig. (8), the accuracy obtained by applying
bootstrapping illustrated by the two upper lines represent
Federated Servers 1 and 2 respectively is quite better. In case
of Federated Server 1, the light-blue upper line represents the
results using our bootstrapping. On the other hand, the lower
light-green line represents the results by assigning random
accuracy, we notice that bootstrapping solution achieves an
accuracy level of 72.21% in the first communication round
compared to 51.56% in the random accuracy approach. Sim-
ilarly, for Federated Server 2 illustrated by the dark-blue line
for the federated server that applies the bootstrapping for
initial accuracy versus the red line that use randomly assigned
accuracy. We notice that the bootstrapping solution achieves
an accuracy level of 64.77% in the first communication round
compared to 48.53% in the random accuracy approach. In the
15th round, both Federated Servers 1 and 2 that adopt our
bootstrapping solution achieve their highest accuracy repre-
sented by 82.38% and 79.32% respectively, which is higher
than the random accuracy approach by more than 24%.

Fig. 8: Global model accuracy rate of the FedMint approach
using bootstrapping vs randomly assigned accuracy rate with
respect to communication round.

In Fig. (9), we study the performance of the trust boot-

strapping Decision Tree model by applying K-Fold cross
validation to plot the model’s MSE with K=10. Fig. (9) shows
that our model performs very well since the maximum MSE
value reached is very low around 0.0118. Also, we observe
from the figure that the MSE value decreases as the round
number increases which mean that the bootstrapping model
performance is improving, where the MSE value at the first
round was 0.0115 which is less by 0.0042 than the last round
equal to 0.0073.

Fig. 9: Mean Square Error performance with respect to com-
munication round using K=10 K-fold cross validation.

VIII. CONCLUSION

In this research, we introduced FedMint, a bilateral match-
ing approach with newcomer IoT devices. The proposed so-
lution takes into consideration the preferences and constraints
of both the federated servers and client devices in its design,
along with a trust bootstrapping system for newcomer IoT
devices initial accuracy assignments. Simulation results indi-
cate that our solution maximizes the federated learning global
model accuracy from the perspective of the federated servers,
and the monetary rewards from the perspective of the client
IoT devices. We compared our method performance to that of
the baseline random client selection FL strategy. Our findings
suggest that, our approach improves accuracy by more than
20%, as well as our solution boosts income of the participating
IoT devices by more than 58%.
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