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Centimeter-Level 3D Mobile Online Visible Light
Positioning System With Single LED-Lamp

Shuai Ma, Bing Li, GuanlJie Zhang, Hang Li, Chen Qiu, Chuang Yu, Shiyin Li, and Chao Shen

Abstract—In this paper, we consider a practical indoor 3D
mobile online visible light positioning (VLP) system, where the
orientation of the UE is arbitrary. Based on the received signal
strength (RSS) of multiple photo-detectors (PDs), we formulate
the 3D VLP problem as a non-linear least squares (NLS)
optimization problem, and then propose a sequential quadratic
programming (SQP) positioning algorithm to efficiently calculate
UE’s location. To obtain more accurate positioning solutions, we
further leverage the advantages of deep learning and develop
a stochastic gradient descent (SGD) based VLP algorithm,
and achieve an average positioning error of 1.77cm, which
significantly outperforms existing RSS VLP localization methods.
Moreover, we design a 3D mobile online VLP system prototype
by using a portable RaspberryPi 4 Model B as the positioning
signal processor and data memory, and establish the first publicly
available 3D VLP measured dataset including both RSS and
orientation. The proposed positioning schemes are implemented
and evaluated via the designed prototype system, which can
achieve centimeter-level positioning accuracy (below 1 cm in
certain condition).

Index Terms—Visible light positioning, received

strength, arbitrary orientation.

signal

I. INTRODUCTION

The indoor positioning technology has attracted significant
attentions due to its key role in numerous location-aware
services, including, but not limited to, indoor navigation, asset
tracking, human activity recognition, and intelligent logistics
system. By utilizing the widely deployed light emitting diode
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(LED), visible light positioning (VLP) can simultaneously
provide high-accuracy localization and illumination services.
Compared with other existing indoor positioning technolo-
gies, such as wireless fidelity (WiFi) positioning [1], radio
frequency identification (RFID) [2], magnetic information [3],
bluetooth [4], and ultra-wideband (UWB) [5], VLP exhibits
the advantages of high positioning accuracy, license-free spec-
trum, energy-efficient, low multi-path effects, high security,
and no electromagnetic interference, etc. Furthermore, VLP
can be widely applied in electromagnetic sensitive areas,
where RF radiation is potentially hazardous or even forbidden,
e.g., hospitals, nuclear power plants, and mines.

In VLP systems, various techniques can be leveraged for
position estimation, such as image sensing [6], [7], received
signal strength (RSS) [8], time-of-arrival (TOA) [9] [10], time-
difference-of-arrival (TDOA) [11] and angle-of-arrival (AOA)
[12]. Specifically, the image sensing positioning method re-
quires complicated image sensor hardware (cameras) as the
receiver. AOA, TOA and TDOA based indoor positioning
methods require complex signal processing [13], and while
RSS is the most commonly-used VLP method due to its easy
implementation and low-cost characteristics.

According to the required number of lamps, RSS based
VLP technology can be further classified into multi-lamps
positioning schemes [14], [15] and single-lamp positioning
schemes [16], where the lamp is utilized as the anchor
node for positioning. However, the multi-lamps positioning
schemes in general require at least three anchors for effective
localization, which is hard to implement in many practical
VLC applications area. For example, in a long corridor or
tunnel, the lamps are deployed along a line with large intervals.
In these scenarios, multiple lamps may not be visible to the
user equipments (UEs) at the same time. To overcome the
practical application limitations, the single-lamp VLP schemes
were proposed [8], [12], [14], [16], [17]. Specifically, the
triangulation positioning methods were developed for 2D [14]
and 3D [8] VLP, respectively. Using AOA and RSS, a 3D
indoor positioning system was proposed in [12] with the
fixed PD orientation. In [16], a 2D positioning algorithm
was presented based on a long short term memory-fully
connected network (LSTM-FCN). Fixing the PD orientation,
a weighted k-nearest neighbor (KNN) algorithm was applied
in [17] for 2D fingerprinting localization. The features and the
performance of the above works are summarized in Table I.
Note that, the existing VLP works only consider 3D (or 2D)
positioning with upward (or fixed) PD orientation. In practice,
the PDs’ orientation of mobile users may not be fixed and can
be arbitrary.
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TABLE I: Comparison with existing positioning works.

Receiver

Work | Method (L, \?fr’eas) m® Lamp /231133 Ac(ilrlrrf)lcy Notes Oﬁil(sz Orien;ation 2\];1?
[8] Tri. (1,1,0) 1 2D 2.15 Exp. Off 0° /
[18] Tri. (0.25,0.25,0) 3 2D 1.68 Exp. Off 0° /
[7] Tri. (1.8,1.8,0) 1 2D 2.26 Exp. On 0° /
[14] Tri. (6,6,0) 6 2D 4-6 Exp. Off 0° /
[19] Tri. (1.5,1.2,0) 4 2D 25 Exp. On 0° 15-60
[20] Tri. (0.6,0.6,0) 4 2D 4/8 Exp. On 0° 42-56
[21] Tri. (1,1,0) 4 2D 1 Sim. Off 0° 10
[22] Tri. (5,5,0) 5 2D 33 Exp. On 0° 25
LS Tri. (3,3,2.2) 1 3D 16.8 Exp. On 0° 8.5
LS Tri. (3,3,2.2) 1 3D 26.36 Exp. On Arbitrary 8.5
[23] DL (1.2,1.2,2) 3 3D 11.93 Exp. Off 0° /
[24] DL (1,1.1,2.5) 3 3D 3.65 Exp. | Off 0° /
[17] DL (1.2,1.2,0) 4 2D 1 Exp. Off 0° /
[15] DL (5,5,0) 4 2D 2.48 Sim. Off 0° /
[16] DL (1,1.1,0) 1 2D 0.92 Exp. Off 0° /
[25] DL (0.5,0.6,0.8) 3 3D 3.16 Sim. Off 0° /
[26] DL (1,1,0) 3 2D 4.9 Exp. On 0° /
[27] DL (8,8,0) 3 2D 3.4 Sim. Off 0° 29
[28] DL (1,1,0) 4 2D 0.7 Exp. On 0° /

SGD DL (3,3,2.2) 1 3D 0.7 Exp. On 0° 8.5

SGD DL (3,3,2.2) 1 3D 1.77 Exp. On Arbitrary 8.5

In this paper, for a 3D VLP system, we develop a least
squares (LS) positioning scheme and a stochastic gradient de-
scent (SGD) positioning scheme for arbitrary UE orientation,
as well as the vertical up UE orientation (like most existing
works did). More specifically, the main contributions of this
work are summarized as follows:

e Based on the RSS at the multi-PDs, we first formulate
3D VLP problem with arbitrary UE orientation as a
non-linear least square (NLS) optimization problem by
exploiting the Lambertian channel model, which is non-
convex and difficult to find the optimal solutions. To over-
come this difficulty, we propose a sequential quadratic
programming (SQP) positioning algorithm to iteratively
solve the NLS problem, where the iteration step-sizes are
updated according to Wolfe-Powell rule. The proposed
SQP scheme can achieve the positioning error of 16.8cm
for the vertical up orientation, and 26.36cm for the
arbitrary orientation.

Since the 3D VLP problem is a nonlinear and non-
convex problem, the above proposed SQP algorithms
may fall into poor local optimal positioning solutions.
To further improve the positioning accuracy, we explore
the advantages of deep learning to solve the nonlinear
and non-convex 3D VLP problem. More specific, we
design SGD based VLP schemes for the arbitrary and
vertical up PDs orientation, respectively. The SGD based
VLP schemes can achieve 0.7cm for the vertical up PDs
orientation, and 1.77 cm for the arbitrary PDs orientation,
which can significantly outperform existing RSS VLP
localization methods (referring to Table I).

e We further design and implement a 3D online single-
lamp-multi-PDs positioning system prototype. By using
a portable RaspberryPi 4 Model B as the positioning
signal processor and data memory, the light intensity
of multiple PDs and IMU orientation data are col-
lected simultaneously. Then, we build a RSS and ori-
entation measurements database, which is available at
https://pan.baidu.com/s/1GCvxSaKpnqgjd1XqSRsfbfg?pw
d=nbjy. To the best of our knowledge, this is the first
publicly available RSS and orientation measured database
of 3D VLP systems, which is free for researchers to
perform VLP testing and analysis.

Moreover, we compare the proposed positioning schemes
with exiting works in detail from the perspectives of position-
ing area, number of lamps, positioning dimensions, positioning
accuracy, verification methods, processing methods, receiver
orientation and SNR, which are listed in Table I. In Table I,
“Tri.” means triangulation positioning methods, “DL” means
deep learning positioning methods, “Sim.” means simulation
results, “Exp.” means experimental results. Specifically, com-
paring with the existing VLP schemes, the proposed VLP
schemes are the first to achieve 3-dimension positioning with
arbitrary receiver orientation. Moreover, comparing with the
trilateration based VLP schemes, positioning areas of the
proposed LS schemes are the largest, and the SNRs of the
input signals are the lowest. Comparing with the DL based
VLP schemes, the positioning areas of the proposed SGD
schemes are the largest, and the SNRs of the input signals
of the the proposed SGD schemes are the lowest.

The rest of this paper is organized as follows. In Section II,
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we introduce the 3D VLP system model. In Section III, we
develop 3D LS based positioning scheme. In Section IV, we
propose the SGD based positioning scheme. In Section V, we
present the 3D VLP system prototype design and implemen-
tation. Section VI evaluates the performance of the proposed
positioning algorithms, and finally the paper is concluded in
Section VII.

II. SYSTEM MODEL

LamE
. — PD
1 g y " — IMU
v

UE

X

(a) Horizontal.

(c) The roll ~.

(d) The pitch 5.

Fig. 2: User receiver orientation diagram.

Consider a 3D single-lamp-multi-PDs positioning system,
as shown in Fig. 1, where the lamp with a single LED
in the ceiling serves a mobile user equipment (UE) that
has a K PDs and an inertial measurement unit (IMU). Let

u;, = [191,’[927793]T and u; é [ui’l,um,ui}g]T denote the
position of the lamp and the i-th PD, respectively, where
i € {1,2,---,K}. Assume that the PDs are placed rigidly
on the UE, i.e., all PDs rotate along with the UE. Without
loss of generality, assume that the position of the 1st PD
represent the position of the UE. As such, the orientation and
the rotation angle of the 1st PD are the same as those of UE.
Moreover, the orientation of the lamp is vertical downward,
ie. ny =1[0,0,—1]".

Based on Euler’s rotation theorem [29], any UE’s orientation
in R? space can be uniquely decomposed by three elemental
rotations. Fig. 2 (a) shows the initial vertical up orientation
of UE, and three kinds of rotation are given in Fig. 2(b)-
(d), respectively. Specifically, «, (3, and ~ respectively denote
rotation angle around the Z-axis, X-axis and Y -axis, which
are called yaw, pitch and roll, respectively. The corresponding
rotation matrices R, Rg, R are respectively given as

[ cosa —sina 0 ]

R,=| sina cosa 0 |, (1a)
| 0 0 1]
M1 0 0

Rg=| 0 cosf —sinf8 |, (1b)
| 0 sinf  cosf3
[ cosy 0 siny

R, = 0 1 0 (1c)
| —siny 0 cosy

The concatenated rotation matrix can be written as R =
R.RgR.,, which is explicitly given as

cosysinasin 8 + cos asiny
sinasiny — cosacosysinf | . 2)
cos 3 cosy

R =

Therefore, the orientation of the ¢-th PD can be expressed as
n; = Rng;, where ng,; € R3*! denote the initial orientation
of the i-th PD. Furthermore, after the rotation, the position of
the i-th PD is given as

u; = uy + ay, 3)

where a; = Ray; denotes the position bias of the i-th PD,
u; is the position of the 1st PD, and ag; € R3**! denotes the
position bias relative to the 1st PD in the initial position.

Let h; (t) denote the VLC channel between BS and the i-
th PD at time ¢, which includes both the line-of-sight (LOS)
link and the diffused reflection link. Mathematically, the VLC
channel gain h; (t) is given as [30], [31]

hi (t) = hy,i6 (t) + ha: (t — AT), 4

where hr,; and hq; (t — AT;) denote the gains of the LOS
channel and diffused reflection channel, respectively, ¢ (¥)
is the Dirac function, and AT; denotes the time delay of
the non-line-of-sight (NLOS) path. Furthermore, according to
Lambertian channel model, the LOS channel gain Ay, ; is given
by [32]

(m+1) App
2md?

grcos™ (;) cos (;) rect <$l > » )

C

hi; =
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where m = —In2/In (cos @1 /2) denotes the the Lambertian
emission order, ®; /5 is the semi-angle at half power. App ;
represents the receiving area of the ¢-th PD, g; is the gain of the
optical concentrator, d; denotes the distance between BS and
the i-th PD, ¢; represents the angle between the emitted light
and the normal vector of the LED. 1); is the angle between
the emitted light and the normal vector of the i-th PD, and ¥,
stands for field of view (FOV) of PD. Moreover, rect (¢; /)

is given by
rect viy_ L L
ec )"0

where 7 € K.
By taking the position u; =
consideration, we have

0 S 1/)1 S \IJC7
otherwise, ©)

u; + a; and the angle into

~ 7i(03 —05,)" (up, —uy — a;) ' n;
= 3
™7 ||

hL,i ) (7)

HuL —Uup —a

where ~; £ AP ang g = ug, — (u; +a;)).

Furthermore, let H; (f) denote the frequency domain chan-
nel gain of the i-th PD h; (t), which is given by

H; (f) = hL,i + Cais 3)

where cq,; is the power efficiency for the diffuse signal. In
addition, cq; is given by

pApp e/ AT

(1= p)Aroom (1+5F)

where A,oom represents the surface area of room,f stands
for the cutoff frequency and p is the average reflectivity of
the room.

In the VLP system, the transmitted signal of the LED z (¢)
is given as

; ©))

Cd,i =

x (t) = VPs (t) + Ipc,

where P denotes the power gain of the power amplifier of
the LED driver, s(t) denotes the united power signal, i.e.,
E{s*(t)} =1, and Ipc stands for the DC bias. Thus, the
received signal of the i-th PD y; (¢) is given as

yi () = hi (t) *x z (¢) + 2; (1), 11

where z; (t) ~ N(0,0;?) denotes the additive white Gaussian
noise (AWGN). Therefore, the received power of the i-PD is
given as

(10)

1 [T
P, = T/o (hri + ca) x(t)*dt + o? (12a)

= (B2, + it 2hy,e, ) Pt o, (12b)

where T represents the symbol period of the transmitted
signal.

III. NON-LINEAR LEAST SQUARES POSITIONING
SCHEMES

In this section, we investigate the NLS positioning scheme
by taking the arbitrary PDs orientation into consideration,

where the orientation information is obtained from the IMU
at the UE.

Since the received power of the PD is a function of UE’s
location, the location can be jointly calculated based on the the
received power of multi-PDs. Specifically, the received power
of PDs {Pyz}f; in (12b) can be reformulated as

P, i (7'42
hL,i = y’T&? — Cd ;- (13)
Combining (7) and (13), we have
Pyﬂ' — 0'2»2 _ Yi (193 — 937i)m(uL —u; — ai)Tni

PS - Cd,i m+3

lur, —ar —a;|" [yl

Since there are K PDs at UE, the UE’s position u; can be
obtained by solving following equations

m T
Pyi1—o} c _ M (193*93,1) (up—u1) ng
P, d,1 fug—ur [ F¥ng ]
Py xk—ok —c _ x (ﬁ3763,k)m(uL7ulfaK)TnK
P, d,K ur,—ui—ar "ok

5)

Note that, there are (K + 3) variables in (15), i.e., {Cd.,i}f;
and u;, which is an under-determined equation with infinite
solutions. Since the values of NLOS terms {cd}i}fil are
significantly lower than that of LOS term hy, ;, we approximate
the values of {Cd,i}f; to be the same, i.e., ¢q; = cq, Vi. Thus,

the equations (15) can be re-expressed as

-
[Pyr=of . _ (95-05,)" (uL—u1)"ny
P, d oL —uw "o

Pyk—of _ . _ Ok (95—05,)" (mn—w1—ax) "o
P, 4T T Ju—w—ar [ x|
(16)
For convenience, we introduce the following variables
A\ P, i O'Z-2
ri(u) SS—5——" —c (17)
B 7i (U3 — 93,¢)m(uL —u; — ai)Tni
m—+3 ’
[ur —uy — a7 [
A
r(uy) S (w), r2(w), . ()] (18)
al 2
f(ay) =g [ ()| (19)

Then, the equations (16) can be equivalently formulated as a
NLS optimization problem given by
. 1
min f (w) =5 |r (un)|*, (20)
ui 2

which is non-convex and difficult to find the optimal solutions.
To overcome this difficulty, we exploit the SQP algorithm [33]
to iteratively solve the NLS problem. Specifically, the (i+1)th

iteration point u[liH] is updated as

uf =l 4 gl @1)
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where d[Yl = a;nl" represents the descending direction vector
corresponding to the ¢-th iteration, a; denotes the stepsize,
and 5l € R3*! denotes the descending direction. The optimal
descending direction 1!l satisfies the following equation

H (uf) o = —v 7 (),

where Vf (u[f]) and H (u[li]) denote the gradient and

(22)

the Hessian matrix of f (u[f]>, respectively. Furthermore,

H (u[f]) is given as

REICOREEICY o*f (u')
ou? Ou10us Ou10uy
ICORKFICY 0°f (i)
H (u[ll]) — Ous0uy aug Ou0up
P i) )

OupOuy Ouy Ous T W i

(23)

To choose a proper step-size with a sufficient decrease, the
step-size «; is calculated according to the Wolfe-Powell rule,
ie.,

f (u[f] + amm) <f (u[f]) + pa;Vf (u[f])Tn[i],
V7 (w4 an) 1 > 697 (ul) 496 € (1), @40

where p € (0,0.5) and £ € (p,1) are given parameters. In
summary, the proposed SQP positioning algorithm is presented
in Algorithm 1.

(24a)

Algorithm 1 SQP Positioning Algorithm

1: Initialize u[lo], step-size ag =

tolerance 0 <p < 1;

1 and the convergence

2: repeat
3: Calculate r(ugi]) and the Hessian matrix H u[li]);
4: Update the descending direction ¥ in (22);
5: Calculate the step-size «; by Wolfe-Powell rule in
(24); _ _
. Update ul ™ = ul’ 4 a;nl;
7: 14— 1+ 1;

u[li— 1] _ [li]

8: until LW < u;
[i+1]

9: Output the location solution uj

For some practical VLP applications, the orientation of PDs
may keep vertical up, such as robot cars, cargo tags, which
is a special case of arbitrary PDs orientation. In this special
case, n, = ez = [0,0, l]T, Vi=1,..,K, and the equations
(15) can be further simplified as

vi(93 — 05,:)" (ur, —ug — a;) es
m—+3

hi,i = (25)

[ur, — uy — a|

Furthermore, the objective function of the NLS problem

5
(20) can be rewrote as
P, i 0'42
ri (w) :71,],33 L —cq
(03— 03,)" (ur, —ug — a;) es 26)

lur, =y —ay "

Therefore, the proposed SQP positioning Algorithm 1 can
also be applied. The performance of Algorithm 1 will be
further evaluated in Section VL.

IV. DEEP LEARNING POSITIONING SCHEMES

According to (14), the received power {Pyz}f; are nonlin-
ear and non-convex functions of the localization u;. Therefore,
there are many local optimal localization solutions for the
3D VLP problem (16). The proposed SQP algorithm may
fall into a local optimal solution during the iterative process,
which may lead to high positioning errors. Given the above
issues, we turn to apply the data-driven method. Particularly,
deep learning has flexible and powerful processing capabilities
for complex nonlinear and non-convex optimization problem.
Here, we propose a SGD based deep learning positioning
network to solve the 3D VLP problem.

Specifically, as shown in Fig. 3, the proposed 3D-VLP SGD
network includes K, layers, i.e., {v;},%}, one input layer

vo € RET3 K, hidden layers {v; € RLi}fivl_Q, and one

output layer v, € R3. Moreover, let W; = [W[f], 7W[Ij]} €
RE+1xLi denote the weight matrix between the ith layer
and the (i + 1)th layer, where w,[:] = [w,[i]l, ...,wE}LHl} €
REi+1 denote the weight vector between the ith layer and the
nodes of the (i + 1)th layer for the kth node.

Fig. 3: The proposed SGD positioning network.

The SGD positioning network is trained by multi-
ple small-batch samples. Assume there are NN, sampled
data vectors {by,---,by,} for each batch, where b, =
[Py, Pyc,ni]" denote the ith sample vector of the
received power of K PDs and the orientation of the first PD.
Moreover, let ugl) denote the corresponding position of the ith
sample vector b;. For the SGD based 3D-VLP network, we
first assign the sampled data vectors to the input layer node in
sequence, i.e., vog = b;, where ¢ = 1, ..., N},. Then, the values
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of the nodes in the <th layer is updated using rectified linear
unit (ReLU) activate function, which is given as

Vi = max (O,Wk_lvk_l), k= 1, ceey Nb, (27)

where max (x,y) = {max(z;y;)} denote the activation
function.

Then, the output layer predicts the 3D position vector of the
first PD, i.e., v, 2 [t1, o, ws]. For the ith sample vector b,
let L(Y) denote the loss function between the predicted position
vector v and the exact position vector (label) ugl), ie.,

L® (va,ugix {Wk}kK:vgl) _ HVKV — ugi)H2. (28)

Therefore, for each batch, the mean loss of the N}, sampled
vectors is a function of the weight matrix, i.e.,

Ny 4
(W) = 20 (vl (W)
(29)

Then, based on the back propagation, the weight matrix W
is updated by

07 ({Wi}i2")
oW,

where o denotes the step size. In summary, the proposed SGD
positioning algorithm is listed in Algorithm 2.

W, W, —«a

1=0,..,K,—1, (30)

Algorithm 2 SGD Positioning Algorithm
Input: Set the learning rate «, the stop condition parameter
§ = 1.0x10~19, number of sample batches NV}, and ¢ = 0;
I: while J ({Wk}fggl) > § do
2: while : < N, do

3: Select a batch of samples from the dataset and
calculate the value of L() (VKV, ul?, {Wk}kK;al>;

4: 1=1+1;

5: end while

6 Calculate J({Wy}ioo!) in (29);

7: Update {Wl}l[ivofl according to (30);
8: end while
Output: v .

When the orientation of PDs is vertical up, the proposed
SGD network can be simplified to a lightweight SGD net-
work without IMU input, which requires less numbers of
layers and less calculation time. Specifically, a small batch
of SGD network is designed for processing, and each batch
{b1,--- ,bn,} includes N}, sampled data vectors, where
b, = [Py1,.... Py, x]7 denotes the received power of the ith
sample vector of K PDs. Compared with the previous arbitrary
case, the inputs of the network is reduced to received power of
K PDs, i.e., {Py,i}fip and the number of hidden layers is also
significantly reduced. In this way, based on the K PDs input
data vectors, we may obtain the position of the UE based the
simplified Algorithm 2, whose details are omitted for brevity.

LED Driver

,,,,,,,,,,,,,,,,

CITS TSN

. Raspberry Pi 4
| Model B

Position Display

Fig. 4: The proposed 3D VLP prototype.

V. 3D VLP PROTOTYPE DESIGN AND IMPLEMENTATION

In this section, we introduce the hardware platform design
of 3D online VLP system, which can be used to implement
the proposed positioning schemes. In the 3D VLP system
prototype, the transmitter includes a commercial single LED
luminaire and the LED drive control circuit that can adjust the
brightness of the light. Note that, for the illumination consid-
eration, multiple LEDs can be integrated in the luminaire as
a single anchor node for positioning.

TABLE II: Hardware parameters of 3D online VLP system
prototype.

System modules

Processor

RaspberryPi4 model B

Positioning range(L. x W x H)

(300 x 300 x 220)cm®

LED

SW-LED

TX Driver

9018 Triode

RX Photodiode

TS2516

RX Angle sensor

MPU6050

TX characteristic

Light Power LED 4-7W
LEDFoV 120°
Illuminance range > 1Lux

RX characteristic

Lambert Coefficient m=1
photodiode FoV 90°
v, 90°
Photodiode gain App 1
Photodiode receiving area lecm?

At the VLP receiver side, there are four PDs (K = 4) to

convert optical signals into electrical signals, and an IMU to
measure the real-time orientation of the receiver. The receiver
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is connected to a portable RaspberryPi 4 Model B processor
for data collection and online positioning algorithms process-
ing, and one display is to present the real-time positioning
results.

In practice, the received signals may be influenced by the
background light and interference. Thus, we further introduce
a background noise filtering algorithm, which can automati-
cally detect and eliminate the background light to reduce the
impact of background noise. The background noise filtering
algorithm (BNF) can significantly improve the robustness of
the proposed VLP schemes. The system structure and the
prototype are shown in Fig. 4. Our proposed 3D online VLP
system prototype can achieve high accuracy positioning in a
bright daylight environment.

Training set collection: First, the light intensity data col-
lected by PD and the angle data measured by IMU are
synchronized through the our designed software program.
Then, in a 3D space of (300 x 300 x 220) cm?®, each interval
of 20cm in the horizontal and vertical directions is a data
sampling position point, with a total of 2250 data sampling
position point. Each point collects 20 different angles and
corresponding light intensities, and there are 45000 sampled
training data.

Based on the received light intensity and orientation infor-
mation, the online positioning schemes are implemented in
Python language and executed on the RaspberryPi 4 Model
B processor. The detailed parameters of the prototype are
provided in Table II. Note that, the data sampling, data train-
ing, data preprocessing and the proposed online positioning
schemes are all implemented in the proposed positioning
prototype system, and the evaluation will be presented in the
next section.

VI. EXPERIMENTAL VERIFICATION AND THEORETICAL
RESULTS

In this section, we evaluate the proposed 3D online VLP
schemes via our VLP prototype system. As shown in Fig. 4,
our prototype is tested in the laboratory near the window with
in the (1.5 x 1.5 x 1.5) m? test area. The maximum vertical
distance from the LED to PDs is 2m.

A. LS Positioning Schemes

To verify the accuracy of lambert model, we first test the
iso-illuminance spherical surface of the LED. Fig. 5 shows
the two-dimensional equal illumination fitting curve of LED
with 2700Iux. It can be seen from Fig. 5 that the test points
with the same illuminance can be approximately fitted into
a circle, which verifies the accuracy of the LED spherical
lambert radiation model.

Let LS-VU denote the LS scheme with vertical up UE
orientation, and LS-AO denote the LS scheme with arbitrary
UE orientation. Fig. 6 compares the positioning errors CDF
of LS-VU and LS-AO schemes. One can observe that the
positioning error of LS-VU scheme is less than that of LS-
AO scheme. We conclude that the vertical up orientation can
contribute to the positioning accuracy. More specifically, the
average positioning errors of LS-VU and LS-AO schemes are
16.8cm and 26.3cm, respectively.

2700lux round
+ Verification point

Light source height Z(cm)
8 3

[\
(=)
T

S
‘

-12.5 0 37.5 50
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0
-50  -375 0 25 12.5 25

Fig. 5: Two-dimensional iso-illuminance fitting curve of LED
with 2700lux.
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Fig. 6: Positioning errors CDF of the LS VLP schemes.

B. SGD Positioning Schemes

In this section, SGD-AO denotes the SGD scheme with ar-
bitrary UE orientation. Since the performance of deep learning
does not increase monotonically with the number of network
layers, we first determine the optimal number of layers of the
SGD-AO VLP network.

Fig. 7 (a) shows the positioning errors versus the number
of layers of the SGD-AO network. It can be seen that the
positioning error firstly decreases and then increases as the
number of network layers gets large. We may observe that
the optimal number of network layers corresponding to the
lowest positioning error is 14. Fig. 7 (b) shows the positioning
errors versus the number of layers of the SGD-VU (SGD with
vertical up UE orientation) network. It can be seen that the
positioning errors firstly decreases and then maintains a short
fluctuation with the increase of network layers, and has the
best positioning accuracy when the number of network layers

Authorized licensed use limited to: University College London. Downloaded on December 11,2023 at 23:04:42 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2023.3285556

30 \

Average positioning error eggp(cm)

0 L L L L L
6 8 10 12 14 16 18
Number of network layers
(a)
2 ,
=18+
L
[=)]
o
&16r
:
14t
b
12t
z
[}
o 1
D
<
8
Z 087
06 L L L L
0 2 4 6 8 10
Number of network layers
(b)

Fig. 7: (a) Positioning errors versus the number of layers
of the SGD-AO network; (b) Positioning errors versus the
number of layers of the SGD-VU network.

is 8.

Fig. 8 (a) and (b) depict the positioning errors of SGD-VU
network and SGD-AO network versus the number of iterations.
It can be seen that the positioning error first declines rapidly,
and then tends to be constant as the number of iterations
increases. After 600 iterations, the network positioning error
converges.

Fig. 9 compares positioning errors CDF of SGD-VU and
SGD-AO schemes. It can be seen that the positioning error
of SGD-VU network is less than that of SGD-AO network.
The average positioning errors of LS-VU and LS-AO schemes
are 0.7 cm and 1.77 cm, respectively. Compared with Fig. 6,
the average positioning errors of SGD-VU and SGD-AO are
significantly lower than those of LS-VU and LS-AO schemes.

Fig. 10 compares positioning errors of SGD-AO and LS-AO
schemes which includes 50 random test points. It is observed
that, both the mean and variance of the positioning errors of
SGD-AO are significantly lower than those of LS-AO schemes.

Fig. 11 illustrates the 3D positioning results of SGD-AO
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Fig. 8: (a) Positioning error of SGD-VU network versus num-
ber of iterations; (b) Positioning error of SGD-AO network
versus number of iterations.

scheme. In Fig. 11, the red dots denote the exact location
coordinates and the blue dots denote corresponding positioning
results, which verifies the positioning accuracy of the SGD-AO
VLP scheme.

Table III compares the computational time, positioning
error, number of layers, input dimension, number of nodes
and required training data set size of LS-VU, LS-AO, SGD-
VU and SGD-AO 3D VLP schemes. From Table III, we can
find that the positioning time consuming of LS-VU, LS-AO,
SGD-VU and SGD-AO 3D VLP schemes are respectively
680ms, 1200ms, 0.32ms and 0.45ms, where the positioning
time consumption of SGD-VU 3D VLP scheme is the shortest.
The positioning time of SGD-VU and SGD-AO VLP schemes
are significantly lower than those of LS-VU and LS-AO VLP
schemes. The reason is that LS-VU and LS-AO VLP schemes
employ the SQP Algorithm to iteratively solve the positioning
result, while SGD-VU and SGD-AO VLP schemes calculate
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TABLE III: Performance comparison among the proposed schemes.

Computational | Positioning | Number of . . Number of .
Schemes . Input Dimension Dataset size
time error layers nodes
LS-VU 680ms 16.8cm - 4 - -
LS-AO 1200ms 26.36cm - 7 - -
SGD-VU 0.32ms 0.7cm 8 4 148 500
SGD-AO 0.45ms 1.77cm 14 7 395 2000
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Fig. 9: Positioning errors CDF of SGD-VU and
schemes.
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Fig. 10: Positioning performance comparison between LS-AO
and SGD-AO schemes.

the position through the pre-trained networks. Table III also
shows that the average positioning errors of the four schemes.
The average positioning errors of SGD-VU and SGD-AO VLP
schemes are significantly lower than those of LS-VU and LS-
AO VLP schemes, which is consistent with our above intuition
that the SQP algorithm may fall into some local optimum
results. Comparing with the SQP algorithm, deep learning

SGD-AO Fig. 11: Tllustration of 3D positioning performance of SGD-

AO Scheme

based SGD-VU and SGD-AO 3D VLP schemes algorithms
can handle complex nonlinear and non-convex optimization

problems.

10 \ \

Average positioning error eaye(cm)
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The diameter of positioning area dyye,(cm)

350

Fig. 12: Positioning error e,,. of the proposed SGD-AO
network versus positioning area diameter d, e,

Fig. 12 shows the positioning error e,y of the proposed
SGD-AO network versus positioning area diameter d,pe,. It
can be seen that the positioning error is less than 2 cm for
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darea < 3 m. However, for d,;., > 3 m, the positioning error
increases rapidly. The reason is that it exceeds the effective
coverage of the single LED VLP system, and some PDs cannot
receive light.

In the proposed VLP hardware platform, the range of the
IMU angle error eppqu is epyu € [—0.1°,0.1°]. To illustrate
the effect of IMU angle error ey on the proposed VLP
schemes, we test the CDFs of the positioning accuracy with
different eryru, as shown in Fig. 13.

—emu € [-0.1°,0.1°]
-==emMU € [*100, 100}

0.8 emu € [*2007 200}

0.6

CDF

0 | 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40

Position error eggp(cm)

Fig. 13: Positioning accuracy CDF of different IMU angle
€Iror eyMu-

Fig. 13 shows positioning accuracy CDF of different IMU
angle error eryu. It can be seen that the positioning accuracy
CDFs of eqmqu € [—0.10,0.10] and epnqu € [—100,100] are
close, which shows that the proposed VLP schemes are robust
to IMU angle errors, especially for error epyy € [—10°,10°].
Moreover, for the large IMU angle error epny € [—20°, 20°],
the positioning performance degrades.

In addition, in order to illustrate the effect of the BNF al-
gorithm, we compare the positioning performance of applying
the BNF algorithm and without applying the BNF algorithm.
The background noise of the positioning system includes both
thermal noise and ambient light noise. Fig. 14 shows the
CDF of the positioning error eggp of applying BNF algorithm
and without applying BNF algorithm. It can be seen that by
applying the BNF algorithm, the positioning error esgp can
be significantly reduced, and the average positioning error is
reduced from 8.84cm to 1.77cm.

VII. CONCLUSIONS

In this paper, we proposed centimeter-level 3D mobile
online VLP schemes for the UE with the multiple PDs and
one IMU. We first formulated the positioning problem as an
NLS problem by considering arbitrary UE orientation, and
obtained the UE location via the SQP positioning schemes.
Then, in order to improve the accuracy, we turn to a deep
learning method and developed SGD positioning networks.
Moreover, we designed a 3D single-lamp-multi-PDs posi-
tioning system prototype, where RaspberryPi 4 Model B is

0.8

— BNF algorithm
---------- Without BNF algorithm
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T
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02ti ]
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Position error eggp(cm)
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Fig. 14: CDF of the positioning error eggp of applying BNF
algorithm and without applying BNF algorithm.

used as the positioning signal processor and data memory.
Based on the designed VLP system prototype, we examined
two positioning schemes for the arbitrary UE orientation
scenarios, and the corresponding positioning accuracy can
reach 26.36cm and 1.77cm for LS-AO and SGD-AO schemes,
respectively. Moreover, for the vertically up UE orientation
scenarios, the developed LS-VU and SGD-VU positioning
schemes can achieve 16.8cm and 0.7cm positioning accuracy,
respectively. Under the same conditions, the positioning error
of the proposed positioning schemes is significantly lower than
that of the existing methods. In addition, we provided the first
publicly available RSS and orientation measured database of
3D VLP systems.
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