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[0T-AD: A Framework To Detect Anomalies
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Abstract—In an Internet of Things (IoT) environment (e.g.,
smart home), several IoT devices may be available that are
interconnected with each other. In such interconnected envi-
ronments, a faulty or compromised IoT device could impact
the operation of other IoT devices. In other words, anomalous
behavior exhibited by an IoT device could propagate to other
devices in an IoT environment. In this paper, we argue that
mitigating the propagation of the anomalous behavior exhibited
by a device to other devices is equally important to detecting
this behavior in the first place. In line with this observation, we
present a framework, called IoT Anomaly Detector (Io7-AD), that
can not only detect the anomalous behavior of IoT devices, but
also limit and recover from anomalous behavior that might have
affected other devices. We implemented a prototype of Io7T-AD,
which we evaluated based on open-source IoT device datasets
as well as through real-world deployment on a small-scale IoT
testbed we have built. We have further evaluated Io7-AD in
comparison to prior relevant approaches. Our evaluation results
show that IoT-AD can identify anomalous behavior of IoT devices
in less than 2.12 milliseconds and with up to 98% of accuracy.

Index Terms—Internet of Things (IoT), anomaly detection,
network traffic anomalies, device interaction anomalies

I. INTRODUCTION

With the proliferation of Internet of Things (IoT), different
IoT environments, such as smart homes, have become a reality.
Such environments may consist of a number of IoT devices
from different vendors. These devices may be interconnected
to each other and adhere to conditions defined by users
(e.g., users select a temperature of their preference for their
smart thermostat). In this context, there are several IoT device
controller platforms, such as IFTTT, Samsung SmartThings,
and the Apple Homekj which integrate the services offered
by IoT devices of different vendors. However, when these
devices exhibit behavior that does not follow the conditions
defined by users or report inaccurate readings, this behavior
is defined as an anomaly. Given the interconnected nature of
IoT devices, an anomaly occurred/triggered by an IoT device
can propagate and affect other IoT devices.

We present an anomaly propagation scenario in a smart
home (Figure [I)). In this scenario, a faulty or compromised
motion sensor interacts with and turns on a smoke sensor
even if no smoke is actually detected in the house. As a
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Fig. 1: (a) Interactions among IoT devices; (b) Propagation of
an anomaly across IoT devices.

result, the smoke detector interacts with sensors that open the
windows and unlock the door of the house, so that residents
can escape the smoke and exit the house safely. In this context,
the anomalous behavior of a faulty or compromised motion
sensor has propagated and affected a smoke sensor, smart
window sensors, and a smart lock, resulting in a situation that
the residents’ house is open to outside intruders.

Prior research has identified different types of anomalies
and has proposed methods to identify these anomalies [1]-
[4]]. The majority of prior research has considered: (i) packet-
level anomalies related to the network traffic generated by IoT
devices (e.g., while communicating with controller platforms,
cloud services, or other IoT devices); and (ii) state/behavior
anomalies based on the analysis of the IoT device behavior
over time. However, prior research has focused on anomaly
detection methods, but did not investigate mechanisms to: (i)
mitigate the effects of anomalies that propagate from one IoT
device to another, thus affecting the state/behavior of multiple
devices in an IoT environment; and (ii) enabling affected IoT
devices to recover from such propagated anomalies.
Motivation and research questions: Solely detecting IoT de-
vice anomalies and isolating devices that experienced anoma-
lies may not be sufficient in real-world scenarios, such as
smart homes or buildings. Given the interconnected nature of
real-world IoT environments, anomalies can propagate among
IoT devices before they can be identified. In other words,
an anomaly caused by an IoT device can affect other IoT
devices. To this end, mechanisms are necessary to mitigate the
effects of anomalies that can propagate among IoT devices.
To address this challenge, in this paper, we investigate the
following research questions:

This paper has been accepted for publication by the IEEE Internet of Things Journal. © 2023 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


https://www.ifttt.com/
https://www.smartthings.com/
https://www.smartthings.com/
https://developer.apple.com/apple-home/

« How can we realize a framework that detects packet-
level anomalies and anomalies related to the interactions
among IoT devices?

e How can such a framework enable affected IoT devices
to recover from propagated anomalies and revert to their
last known stable state as if the detected anomalies had
never occurred?

Our contributions: In this paper, we present IoT Anomaly
Detector (IoT-AD), a framework that: (i) detects packet-level
anomalies and interaction anomalies, which can propagate
across IoT devices; and (ii) mitigates the effects of propagated
anomalies, enabling IoT devices to recover from propagated
anomalies. IoT-AD essentially acts as an extended IoT device
controller framework, which is able to detect anomalies in IoT
environments and help associated IoT devices recover from
these anomalies. The contribution of our work is two-fold:

o We present the IoT-AD design, which features mech-
anisms to detect packet-level anomalies and anomalies
related to the interactions among IoT devices, maintain
the state of IoT devices over time, and ultimately enable
IoT devices to recover from anomalies that may have
propagated among them.

e We implement an IoT-AD prototype, which we evalu-
ate based on open-source IoT device datasets as well
as through real-world deployment on a small-scale IoT
testbed we have built. We further evaluate this prototype
in comparison to prior relevant approaches for anomaly
detection in IoT environments. Our evaluation results
demonstrate that [oT-AD is a light-weight framework
that can identify IoT device anomalies in less than 2.12
milliseconds (ms) and with up to 98% of accuracy.

The rest of our paper is organized as follows. In Section
we discuss a brief background on IoT anomaly detection and
mitigation, and present prior related work. In Section [T, we
present our threat model and a design overview of IoT-AD.
In Section we present the design of IoT-AD, in Section
we present the evaluation of IoT-AD, and, in Section |VI}
we discuss extensions and limitations of the IoT-AD design.
Finally, in Section we conclude our paper.

II. BACKGROUND AND PRIOR RELATED WORK

In this section, we present a brief background on IoT
anomaly detection and mitigation, and discuss related work.

A. Anomaly Detection of IoT Devices

The purpose of anomaly detection is to identify patterns
whose behavior is considered atypical compared to typical
ones. In prior research, different approaches have been used
to detect anomalies in an IoT environment, such as traffic
analysis, packet-level signatures, and semantics-based models.
Homonit [5] is a framework, mainly for the Samsung Smart-
Things platform, which can detect anomalies by monitoring
encrypted traffic patterns of smart devices’ activities, and
comparing these patterns with expected behaviors inferred
from the source code. HADES-IoT [6]] is a light-weight host-
based IoT anomaly detection framework that can proactively

detect and prevent the execution of unauthorized functions
on IoT devices. IoT-Praetor [7] leverages a device usage
description model to profile different communication and
interaction behaviors among IoT devices to automatically
detect anomalies in real time. A semantics-based approach,
called HAWatcher [8]], was proposed by Wang et al., where
semantic information of IoT devices, such as applications,
device types, installation locations, and event logs, is used
to generate correlations. Subsequently, a shadow execution
simulation is executed based on these correlations to simulate
a smart home environment in parallel with the actual smart
home environment. The behavior of the real and the simulated
environment is compared to detect behavioral anomalies.

HomeSnitch [9] uses the perspective of software-defined
networking to track communication between devices and
servers, classify device actions, and find anomalous behavior.
PingPong [10] is a tool that extracts packet-level signatures
for device events (e.g., a smart plug turning ON/OFF) from
network traffic to identify anomalies in smart home networks.
Orpheus [11]] is an anomaly detection tool that uses event logs
and system logs to detect data-oriented exploits and different
runtime attacks. Xu et al. [[12]] proposed a system that analyzes
home network traffic using a bloom filter to detect anomalous
traffic behavior. Li et al. proposed a light-weight statistical
learning approach for IoT devices where different system
information, such as CPU and memory usage, and network
throughput, can be used to detect anomalies [13]. The same
authors also proposed a technique to detect attacks against IoT
devices based on the energy consumption of different system
components (e.g., CPU, network) [[14]. These systems mostly
used either event logs to infer device activity or packet-level
signatures to find out deviations from the usual traffic patterns.

Furthermore, anomaly detection frameworks have been pro-
posed based on features of the physical layer, such as the
Received Signal Strength Indicator (RSSI), the Power Spectral
Density (PSD), and the Signal-to-Noise Ratio (SNR). Martins
et al. used raw RSSI data to extract the silence and activity
periods of IoT devices and detect anomalies based on this
information [15]. Tang et al. proposed an anomaly detection
framework for wireless sensor networks, which is also based
on RSSI data [[16]. Rajendran et al. proposed SAIFE, which
analyzes the PSD of the wireless spectrum within an IoT
enviroment to detect anomalies [17]. The challenges of de-
tecting anomalies based on physical layer information are the
following: (i) the collected signals may be susceptible to noise;
and (ii) the features used to detect anomalies may depend on
the distance between the sender and the receiver.

B. Machine Learning for IoT Device Anomaly Detection

Due to recent technological advancements, machine learn-
ing has become a powerful technique for the detection of
anomalies by identifying irregular data patterns. Yin ef al. [18§]]
and Jakkula et al. [19] used a one-class support vector
machine to identify activity patterns in a smart home using
a sensor-based dataset. Ramapatruni ez al. [20] used a hidden
Markov model to train network-level data of a smart home in
order to detect anomalies. Fahad er al. [21] used the density



TABLE I: Comparison of design properties of loT-AD and other prior related work (Y: Yes, N: No, L: Limited).

Homonit [5] | IoT-Praetor [7] | HAWatcher [8] | PingPong [10] Yamauchi et al. [27] | IoT-AD
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Stable state N N N N L y
recovery

based spatial clustering algorithm for user activity recognition,
while Trimananda et al. [10] used the same algorithm to
cluster packet pairs and detect anomalies in network traffic.
With the combination of two different techniques, the principal
component analysis and a sliding window algorithm, Wu et
al. [22] can identify user activities by analyzing WiFi signals.
Branch et al. [23]] used a K-NN machine learning method for
outlier detection, while Narudin et al. [24] used both naive
bayes and random forest machine learning algorithms to detect
anomaly-based malware.

C. Anomaly Mitigation in Smart Homes

To reduce the effects caused by an anomaly, it is necessary

to create prevention and recovery methods. Noah et al. [25]]
introduced a stochastic traffic padding algorithm that shapes
the traffic to hide the metadata and keep user activities private.
Gaurav et al. [26|] proposed a framework to enhance the
security of a smart home that uses attribute based access
control. The advantage of using attribute based access control
is the ability to specify fine-grained security policies and
consider environmental conditions to make access decisions.
Yamauchi et al. [27]] proposed a system that detects anomalous
events by analyzing event sequences and dropping packets
associated with anomalous events.
How is IoT-AD different from prior related work: In Table
we present a comparison of the IoT-AD’s design properties
to prior work. The majority of prior work focused on: (i)
anomalous behavior detection of IoT devices using traffic
analysis; and/or (ii) analyzing the interaction patterns among
the interconnected IoT devices in an IoT environment. For
example, PingPong [|10] provides a way to generate signatures
of IoT events by analyzing the packet sequences, which can
be used to identify anomalous events, while HAWatcher [8]]
generates hypothetical correlations among events of differ-
ent IoT devices (i.e., interactions among devices) to detect
anomalies. IoT-Praetor [7] and Homonit [5]] are specific to the
Samsung SmartThings platform. A drawback of prior work
is that these frameworks did not provide any mechanisms to
help IoT devices recover from anomalies and revert to their
last known stable states. To this end, /oT-AD not only utilizes
traffic and interaction analysis to detect anomalies that can
propagate among interconnected IoT devices but also provides
mechanisms that enable affected 10T devices to recover from
propagated anomalies and revert to their last known stable
state as if the detected anomalies had not happened.

III. THREAT MODEL AND DESIGN OVERVIEW

In this section, we first describe the threat model that we
consider in the context of IoT-AD and we then present an
overview of the IoT-AD design.

A. Threat Model

As IoT devices are resource-constrained and manufactured
for minimal and specific functions to reduce cost and com-
plexity, these devices suffer from malfunctions and security
vulnerabilities [28]—[31]. As a result, IoT devices may in-
troduce anomalies into an IoT environment. In this paper,
we have considered anomalies that are caused by: (i) device
malfunctions; and (ii) devices compromised due to malicious
attacks. We further assume that an IoT device controller
platform that may be available will operate legitimately.
Anomalies due to IoT device malfunction: As IoT devices
have limited power and computing resources, they are prone to
malfunction. In most cases, there are no built-in malfunction
detection mechanisms. As a result, it is challenging to identify
a faulty or malfunctioning device in a timely manner and
repair or replace the device. Device malfunctions can be either
software-based or hardware-based.

Ghost commands, command failures, delays in status up-
dates, and event losses occur as a result of software-based
device malfunctions. Such malfunctions can happen due to a
system crash, network connectivity issues, or bugs in applica-
tion or operating system code. Hardware-based malfunctions
can create false events and command failures. For example, a
defective motion sensor can erroneously detect human pres-
ence when there are no humans around. Another example
of hardware-based malfunctions is command failures due to
melted capacitors and faulty circuit boards. Both types of
malfunctions (software-based and hardware-based) can lead
to unexpected communication patterns (e.g., sending updates
irregularly instead of periodically) or unexpected interactions
with other IoT devices (e.g., a thermostat turns on the fan
even though the temperature sensor indicates that the room
temperature has not changed). Both types of unexpected
patterns can be used to identify anomalies generated by an
IoT device.

Anomalies due to compromised IoT devices: Another rea-
son for IoT device anomalies may be the fact that an IoT
device has been compromised. Given that IoT devices are
resource-constrained, malicious actors can compromise and
gain access to these devices. For example, attackers can exploit
weak usernames and passwords chosen by users, network
vulnerabilities, or create malicious applications that users can
install on their IoT devices. If attackers gain access to an IoT
device, they can compromise the behavior of the device (e.g.,
produce bogus readings), so that the device interacts with other
devices and the anomaly propagates. In addition, attackers can
use a compromised IoT device to access other IoT devices,
which happened during the Mirai botnet attack [32]. Since
the behavior/patterns of a compromised device will typically
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deviate from its regular operation patterns, such changes of
device operation patterns can be used to identify anomalies.

B. I0T-AD Design Overview

In the context of IoT-AD, we consider an IoT environment
(e.g., a smart home), where IoT devices are interconnected
through a controller. The controller realizes the intelligence
of the IoT environment, communicates with IoT devices,
analyzes network traffic and interactions among IoT devices,
and instructs devices to change their current state as necessary.
IoT-AD operates in five steps (Figure [2). The controller is
responsible for executing these steps, which we present below:
Device monitoring: The controller monitors all IoT devices
and receives measurements/readings from them over time.
These measurements/readings are transmitted to the controller
over the local network through a series of packet exchanges.
Event identifier and device status update: Each IoT device
communicates with the controller through a series of network
packet exchanges (application layer protocols). Given the
heterogeneous nature of IoT devices (e.g., different vendors,
different software stacks), each device may implement dif-
ferent application layer protocols to communicate with the
controller. For each device, the controller identifies events (as
communicated by devices) that affect the status of each device
and maintains a log where it records the status of each device
over time. For instance, when a smart light bulb turns on (this
is the event in our example), the bulb will communicate with
the controller and the controller will update the status of this
device to “on”.

Packet-level anomaly detection: As IoT devices communi-
cate through the controller, the controller monitors the gener-
ated network traffic and produces packet-level signatures for
different events. These signatures are used by the controller
over time to identify packet-level (network traffic) anomalies.
If a packet-level anomaly is detected, the controller will
discard the event.

Device interaction validation: IoT devices interact with each
other via the controller. We use the term “device interaction”
to refer to events triggered by a measurement/reading of an

IoT device that affects one or more other devices. For example,
if a motion sensor detects human presence in a room, based
on the time of the day, it may trigger a smart light to turn on.
The controller will validate the interactions among devices
and identify anomalies related to these interactions. Such
an anomaly may occur, for example, when a motion sensor
attempts to trigger a smoke detector when it detects motion in
a room of the house, since this interaction is not meaningful.
Rollback: Once an anomaly is detected, the controller iden-
tifies how much this anomaly has “propagated” among IoT
devices. For example, a motion detector may attempt to
trigger a smoke detector (meaningless interaction), which can
subsequently unlock the smart lock of a house’s front door
and windows (meaningful action, since residents will need
to exit the house in the case of a fire). In other words, the
controller will identify which devices have been affected by
an interaction anomaly and revert the state of the affected
devices back to the most recent stable state.

IV. I0oT-AD DESIGN

In this section, we present the components of the IoT-AD
design in detail. A list of symbols and abbreviations used in
the design of IoT-AD is provided in Table

A. Device Monitoring

In IoT-AD, the controller is the entity that conducts a
number of operations (e.g., packet-level anomaly detection,
device interaction validation). To this end, existing IoT devices
with adequate resources (e.g., smart TVs, smart refrigerators),
resourceful WiFi routers, or smart hubf] can act as controllers.
All devices in an IoT environment are connected via wire-
less to a controller, which is responsible for monitoring all
devices within this environment and for collecting measure-
ments/readings from these devices over time. Depending on
the nature of an IoT device, the state information of devices
can be updated to the controller either periodically or whenever
a state change occurs. For instance, the temperature readings

TABLE II: List of symbols and abbreviations used in the
design of [oT-AD.

Symbol/Abbreviation | Description

L2 headers Link layer header fields

L4 headers Transport layer header fields

L3 headers Network layer header fields

SYN TCP synchronization flag

ACK TCP acknowledgement flag

FIN TCP finish flag

TCP cmd TCP command

TCP rsp TCP response

Event e An event detected by the controller

2Examples of a smart TV, a refrigerator, a WiFi router, and a smart hub:

e Smart TV: https://developer.samsung.com/smarttv/develop/
specifications/general-specifications.html

e Smart refrigerator:  |https://www.samsung.com/us/home-appliances/
refrigerators/all-refrigerators/

o WiFi router: https://www.asus.com/us/Networking-IoT-Servers/
'WiFi-Routers/ASUS-Gaming- Routers/RT-AX88U/

o Smart hub: https://store.google.com/us/product/nest_wifi_specs
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of a thermostat can be updated to the controller after a certain
time interval. Another example may be that when an event
occurs, such as a smart light bulb turning on or off, the state
of the light bulb will be updated to the controller.

Apart from monitoring the states of IoT devices, the con-
troller can also analyze packets that are exchanged through the
controller among the devices in chronological order. When a
user, for example, tries to turn on a smart device (e.g., a smart
bulb) through an application, multiple packets are exchanged
between the smart device and the application. The controller
monitors various L2-L.4 packet headers (e.g., IP addresses,
TCP/UDP ports, packet lengths) and records the timestamp
of each packet. The headers of exchanged packets are used to
identify the communication patterns among devices and keep
an event log for each device.

B. Event Identifier and Device Status Updates

An event is a series of packet exchanges between two
or more loT devices within the local network that have
interdependencies (e.g., a motion sensor can turn on a light
bulb or even multiple light bulbs and plugs). When a device
communicates with a cloud server for a particular service, such
as searching for a firmware update, sending device informa-
tion, receiving control commands from a user application, this
communication can be also identified as an event.

Figure [3]illustrates an example of packet exchanges between
two IoT devices through the controller in loT-AD. First, a TCP
connection is established between device 1 and the controller.
The device then sends a command related to an event (e.g., a
motion sensor detecting motion in a room) to the controller.
After the command is successfully received by the controller,
the TCP connection with device 1 is closed, and the controller
follows the same process to communicate a command with
device 2. This command is triggered by the event of device
1 (e.g., a motion sensor that detected motion in a room,
which in turn activated the light in this room). Although the
lengths of the exchanged packets can be different, features,
such as TCP flags, destination ports and source ports can
be common depending on the device and event type. The
sequence of packets and their features remain the same each
time a particular event occurs. As a result, such packet bursts
can be used to detect that an event has occurred at a particular
time.

The IoT-AD controller keeps a log file for each device based
on a chronological occurrence of events as shown in Figure
Hl(c). When an event is detected, the controller updates the log
file of the device that generated this event with information
related to the event. The controller stores logs related to an
event e, at least, until e and all events triggered due to e
have been validated. After that, logs of validated events can
be archived on a remote cloud and be deleted by the controller
if it does not have adequate resources.

Prior research [[10], [33], [34] has shown that each event
has a unique pattern of exchanged packets depending on the
device and its manufacturer, which can be used as a signature.
This is due to the fact that IoT devices typically conduct a
limited number of operations (i.e., space of potential events).

Controller loT Device 2

to

loT Device 1

SN

Initialization of SYN,ACK— |

TCP connection

\ACK\>

Commandtolet [ ————TCP cmd\»
controller know p_/_
about an event ‘/TCP rs

T FNe—

Termination of Yo
TCP connection
FIN "

-
\ACK\»
t \SYN\
S—
_SYN,ACK:
\A(:K\>

————TCP cMle— ]
TCPrsp— |

PE—

Event triggered
due to the event of
device 1

[ ———————ACK.
A

Fig. 3: An example of the network traffic generated for
communication between two IoT devices through the IoT-AD
controller.

In IoT-AD, we create packet signatures based on tuples of
different header fields. Specifically, we have taken into account
the following features: source and destination port numbers,
the exchanged packet lengths, TCP flag types, the time span
of each event, and the direction of the packets within that
time span. Based on these features, loT-AD generates packet
signatures for various events.

C. Packet Level Anomaly Detection

An event will be considered as a packet-level anomaly if the
set of exchanged packets for a particular event does not match
(or does not have a similar pattern) to any prior generated event
signatures. An anomaly can occur for various reasons, such as
faulty devices and/or sensors, and device(s) compromised by
an attacker.

1oT-AD uses a light-weight machine learning model running
on the controller to detect packet-level anomalies. The model
is trained based on previously extracted event signatures. Since
each IoT device typically performs a specific set of operations
over time, the features of potential events for available IoT
devices can be collected as part of the training dataset. Once
the model is trained, the controller uses this model to identify
whether incoming events are valid. If an incoming event is
valid based on the prediction of the model, the controller
allows the event to continue. Otherwise, the event is deemed
an anomaly and the controller terminates it.

D. Device Interaction Validation

If no packet-level anomalies are identified for an event,
the controller will let the event be executed. The controller
will also log event-related information, such as which device



triggered the event and which device’s state has been changed
because of that particular event. Logs of event-related infor-
mation will be used to validate events that occur over time
based on conditions defined by users and/or the vendor of
each device. We provide examples of such conditions below.

We define a device interaction as an event on a device
triggered by another device in the IoT environment. Similarly,
the same event can be triggered by events of different devices.
For example, an event that turns on a smart bulb can be
triggered by a motion detector. The same bulb can also be
turned on by a light sensor. An interaction among devices
will be considered as a valid one if it follows user- or vendor-
defined conditions, so that the IoT environment as a whole
operates as expected. For instance, a user can set a condition
that if the room temperature as detected by a smart temperature
monitor exceeds a certain threshold value, then the monitor
will send a command via the controller to turn on the AC and
the fan. In this case, turning on the AC and the fan by the
temperature monitor will be considered as valid interactions.
However, if the temperature monitor tries to turn on a light,
this will be considered as an invalid interaction (anomaly).

The controller creates and maintains data structures over
time, called interaction trees. These trees represent sequences
of interconnected events triggered by a measurement or a
reading of a device. The device that starts an interaction is
the root device of a tree. For example, in Figure Eka), device
A is the root device of the interaction tree. When the root
device generates a new measurement/reading, this triggers the
creation of a new interaction tree. Figure [d(a) shows how
interaction trees are formed in Io7T-AD. For interaction tree 1
of device A, two events are triggered on two different devices
(device B and device C). Furthermore, the event of device B
further triggers events on device D and device E.

To record the device interactions and the corresponding
measurements of root devices in a consistent manner, we
introduce a key-value pair-based logging format, which is used
to map the information of each event to a unique key. A
unique key is generated based on two different IDs as shown
in Figure 5] The first part of the key “X” is the sequence
number of the measurement/reading of a root device (for every
new interaction tree, the sequence number is incremented) and
“Y” is the sequence number of a specific event within the “X”
interaction tree. We elected to not use timestamps as a part of
the unique key generation, since time synchronization among
IoT devices is a challenge on its own.

Within an IoT environment, each IoT device may act as
the root device of different interaction trees. Each tree is
generated dynamically when the root device generates a new
measurement/reading (e.g., a temperature sensor may capture
a new reading periodically every few seconds). IoT-AD makes
use of automation rules and conditions (e.g., defined by users
or device manufacturers) to verify interactions among devices.
For example, as shown in Figure ffb), a measurement/reading
captured by device A triggers multiple events on other IoT
devices. In this example, an anomalous event has occurred
on device F, and IoT-AD detects the anomaly based on the
automation rules and conditions. Subsequently, device F inter-
acted with several other devices, as illustrated in Figure Ekb).

As a result, due to the anomalous event on device F, the state
of device G, device H, and device I will also be affected.

E. Rollback

To mitigate the effects of anomalies that propagate among
devices and help affected devices revert their state to the
last known stable state, JoT-AD offers an automated recovery
mechanism, called “rollback”. The rollback process begins as
soon as an interaction anomaly is detected. At this point, the
IoT-AD controller will use the corresponding interaction tree
to identify the devices that got affected due to this interaction
anomaly. For instance, in Figure Elkb), an anomalous event on
device F causes anomalous events on devices H, I, and G.
10T-AD creates a list of those devices and analyzes the logs of
these devices to find out the last known stable state for each
device. For instance, device F was triggered on due to the
anomalous interaction with device A. Therefore, the last stable
state of device F was “triggered off”. Hence, loT-AD sends
commands to affected devices, so that they roll back their
state to the last known stable state (in this example, “triggered
off” for device F). Finally, IoT-AD isolates the device that
initiated the anomaly until the device owner or administrator
can troubleshoot.

The above mechanism essentially assumes that all inter-
actions are legitimate until an anomaly is found. In other
words, loT-AD allows interactions to take place among devices
(and potential anomalies to propagate among devices), while
verifying such interactions asynchronously. If an anomaly is
detected, the state of all affected devices will be rolled back.
An alternative to this mechanism would be to first verify each
interaction that a device would like to perform and, only if
this interaction is valid, let the device interact with another
device. In this case, anomalies would not be able to propagate,
since devices would interact with each other only after each
interaction has been verified. However, verifying automation
rules, especially when the number of IoT devices grows and/or
the rules are complex, may not happen instantly. To this end,
we would need to essentially stop the operation of the IoT
environment until an interaction has been verified.

V. EVALUATION

In this section, we first present our evaluation setup and we
then discuss our evaluation results.

A. Evaluation Setup

Our evaluation process involves three parts: (i) we first use
open-source IoT device datasets; (ii) we then build a small-
scale testbed of IoT devices, which we use to deploy IoT-AD in
the real world; and (iii) we finally compare loT-AD to relevant
approaches that have been previously proposed.

1) Open-Source loT Datasets: In this part of our evaluation,
we made use of three publicly available datasets of IoT
device data. These datasets were collected through controller
platforms, such as IFTTT and SmartThings. Based on this
data, we generated packet-level signatures and then replayed
this data in the IoT-AD controller for packet-level anomaly
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Fig. 4: Illustration of interactions among IoT devices.
TABLE III: Datasets used for the evaluation of Io7T-AD.
Dataset Setup No. of devices Duration Content Type Data Type
MUD [35] Smart Home 10 21 days Packet level Data + Device Interaction Data pcap
Mon(IoT)r [36] Smart Home 45 3 days per device | Packet level Data + Device Interaction Data pcap
PingPong [20] Smart Home 16 15 days Packet level Data + Device Interaction Data pcap
Testbed data Smart Home 12 10 days Packet level Data + Device Interaction Data pcap

“ X ][ Y ]:[Eventinfo

Fig. 5: Device log generation in loT-AD. “X” is the sequence
number of a measurement/reading of a root device, while “Y”
is the sequence number of a specific event within the “X”
interaction tree.

detection and device interaction validation. We summarize the
characteristics of these datasets in Table and we further
discuss them below.

Manufacturer Usage Description (MUD) dataset [35]: This
dataset includes real-world traffic traces of 10 different types
of smart devices collected over a period of 21 days. It
contains two types of traces: volumetric attack traces (e.g.,
ARP spoofing, TCP/UDP flooding) and benign traces. This
dataset provides information about the number of MUD flows
per minute, the start and the end time of an attack, and the
MUD flows impacted due to an attack.

Mon(IoT)r dataset [36]]: The Mon(IoT)r dataset was created
by collecting traces from a number of devices over 85 days.
The data was collected in two different countries (in the US
and the UK). Each PCAP file of the dataset represents the
traces related to an event of a specific device. The dataset has
multiple instances of the same event for a device, which helps
identify the patterns (generate signatures) for each event. This
dataset also contains the timestamps of each event.
PingPong dataset [20]]: This dataset contains PCAP files with
network traffic traces of 22 popular commercially available
IoT devices. The creators of the dataset identified different
functions or events of these devices and captured them in these
PCAP files. The dataset also includes the timestamps of the
captured functions for each device.

2) Small-Scale Smart Home Testbed: We retrofitted a re-
search space to an one-bedroom apartment to create a small-
scale smart home testbed, where we evaluated the IoT-AD
design. Figure [6] shows the layout of the testbed and the
locations of the used IoT devices. Table [[V] lists the details
for the devices we used. Our testbed contains a total of 12

TABLE IV: List of IoT devices used in our testbed and their
abbreviated labels.

Abbr | Device Name

C Intel NUC mini kit as controller
L1 Govee Smart Light

L2 Sengled Smart Bulb

L3 Tp-link Smart Bulb

L4 Kasa Smart Light

S1 TP-link Smart Plug

S2 Teckin Smart Plug

S3 WeMo Smart plug

S4 KMC 4 Outlet WiFi Smart Plug
S5 Amazon Smart Plug

T1 Ecobee Thermostat

El 4th Generation Echo Dot with Clock
K1 Korex Smart Kettle

IoT devices. These devices can interact with each other via
the controller of loT-AD and trigger different events based on
predefined conditions. All devices are wirelessly connected to
the controller over a local network.

We used an Intel Next Unit Computing (NUC) mini kit
as an lIoT-AD controller in our testbed. The controller runs
a daemon program that can monitor all packets exchanged
among the IoT devices. We used PyShark, a popular Python
library to capture network traffic and interaction traces from
the devices over a period of 10 days. We also used different
APIs that come from device vendors to interact with the
devices and collect the timestamps of various device functions.
More information about our testbed dataset is provided in
Table We make the dataset collected from our testbed
and the IoT-AD implementation code publicly available for
the community to us

3) Comparison to previously proposed approaches: We
compared the IoT-AD design to an Artificial Neural Network
(ANN) based framework for IoT intrusion and anomaly detec-

30ur testbed dataset and IoT-AD implementation code are available at
https://github.com/Hasniuj-Zahan/IoT-anomaly-detector.
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Fig. 6: Floor plan of our IoT testbed and device deployment
layout.

tion [37]] and a Convolutional Neural Network (CNN) based
framework for IoT anomaly and intrusion detection [38|]. For
this comparison, we used the four datasets mentioned above
(MUD, Mon(IoT)r, PingPong, and our testbed dataset).

4) Evaluation Metrics: For the evaluation of the detection
of packet-level anomalies, we used four machine learning
algorithms: a random forest algorithm [39], a k-Nearest Neigh-
bors (kNN) algorithm [40], a decision tree [41], and an
autoencoder [42]]. We used these algorithms instead of more
complex models (e.g., a neural network [43]) due to their
lightweight nature. For the validation of device interactions,
we implemented the IoT-AD controller in software (based on
the design described in Section[[V]). We consider the following
metrics for our evaluation:

1) Inference time: The time needed for the IoT-AD controller
to identify whether: (i) a specific event contains packet-
level anomalies; or (ii) a device interaction is illegitimate
(anomalous).

2) Memory usage: The amount of memory required by the
IoT-AD controller to detect packet-level anomalies and validate
interactions.

3) CPU usage: The CPU usage of the loT-AD controller while
validating the interactions among devices and identifying
packet-level anomalies.

4) Accuracy: The accuracy of different models in terms of
identifying packet-level anomalies.

5) Precision: The precision of a model refers to the ratio of
the number of true positive anomaly predictions to the total
number of positive anomaly predictions.

6) FI score: The F1 score of a model indicates the balance
between the precision and the recall of the model for the
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Fig. 7: Packet-level anomaly detection accuracy using loT-AD
for different datasets.

identification of anomalies.

B. Evaluation Results

1) Evaluation of packet-level anomaly detection: Packet-
level anomaly detection accuracy: In Figure [/} we present
our results on the identification accuracy of packet-level
anomalies for different datasets and learning algorithms. Our
results demonstrate that through the use of packet-level signa-
tures that are created for IoT devices, IoT-AD is able to achieve
over 90% and, in some instances, up to 98% of accuracy.
Precision of packet-level anomaly detection: Figure 8] shows
the precision results of packet-level anomaly identification for
different models and datasets. Similar to the accuracy results,
IoT-AD achieves precision scores over 90% in all cases.

F1 score of packet-level anomaly detection: In Figure [J]
we present the F1 scores of different anomaly identification
models and datasets. The results of Figure [9] indicate that all
models can identify packet-level anomalies with low false pos-
itive and false negative rates. Specifically, the models achieve
F1 scores over 90% (and up to 98% in some instances).
Inference time: In Figure [T0] we present the inference time
per packet-level anomaly. Our results indicate that loT-AD
requires less than 2.12 milliseconds on average to identify
whether an event contains a packet-level anomaly. The infer-
ence time depends on the nature of each device and dataset.
For example, in the MoN(IoT)r dataset, the average inference
time is higher as compared to other datasets. This is due
to the fact that the IoT devices in this dataset are more
complex in nature (e.g., fireTV, smart fridges), thus their
events are represented through more complex communication
protocols that involve more packet exchanges than rudimentary
devices (e.g., smart bulb, smart switch). Further analysis of our
results shows that another factor, which can impact inference
time, is how “noisy” communication between devices is. In
this context, noise typically includes traffic that is exchanged
between devices, but is not related to actual events (e.g., traffic
related to miscellaneous network protocols or traffic related to
firmware updates).

Memory usage: In Figure [TI} we present the results of
the controller’s memory usage while detecting packet-level
anomalies. Our results indicate that the controller requires
a few hundred MB (up to 227MB) for the identification of
packet-level anomalies. To this end, loT-AD can detect packet-
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Fig. 9: Packet-level anomaly detection F1 score using IoT-AD
for different datasets.

level anomalies even when deployed on controller devices with
limited memory resources.

CPU usage: In Figure[12] we present the CPU load of the loT-
AD controller during the detection of packet-level anomalies.
The controller uses less than 10% of its available CPU in order
to identify packet-level anomalies in the traffic exchanged
between [oT devices. Our results demonstrate that loT-AD
can detect packet-level anomalies even when the deployed
controller has limited CPU resources.

2) Evaluation of interaction validation and rollback:
Inference time: In Figure we present the inference time
per device interaction based on different datasets. Our evalua-
tion results show that the IoT-AD controller requires 1.74ms-
1.83ms to validate an interaction and roll back to the last
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Fig. 12: CPU usage during packet level anomaly detection.

known stable state, if there is an anomaly.

Memory usage: Figure [I4] shows the required memory to
validate device interactions for different datasets. To run the
device interaction validation module of the JoT-AD controller,
it takes around 54 MB of memory on average to validate
an interaction among devices. This module not only detects
interactions among devices, but also detects device interaction
anomalies and performs rollback, if necessary.

CPU usage: Figure[15]shows the results of CPU usage during
device interaction validation and rollback when an anomaly
is detected. The CPU usage during the device interaction
validation and rollback process is 16.8%-23.1%. The results
show that these processes are lightweight, so that they can
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Fig. 13: Time for inference and rollback per device interaction.
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rollback.

run on IoT controllers with limited computing resources.

3) Comparison to prior related frameworks: Although loT-
AD achieves 1%-3% lower anomaly detection accuracy as
compared to ANN and CNN based frameworks (because of
their complex architectures) as shown in Figure [I6] Figures
[[7 and [18] indicate that IoT-AD results in 22%-63% lower
memory usage and 39%-62% lower CPU usage. These results
indeed verify the lightweight nature of IoT-AD, which makes
it suitable for deployment on resource-constrained IoT device
controllers. In addition, Figure @ shows that the inference
time of loT-AD is up to 48% lower than other frameworks,
which is desirable for the detection of anomalies in real-time.
Finally, unlike other frameworks, IoT-AD provides mecha-
nisms to detect packet-level anomalies, validate interactions
among interconnected and interdependent IoT devices, and
rollback to the most recent known stable state(s) in case that
an anomaly is detected.

VI. DISCUSSION

In this section, we discuss the process of selecting a device
that can act as the loT-AD controller and the placement of this
controller. We also provide a security analysis of Io7-AD and
discuss the limitations of the IoT-AD design as a whole.

A. TIoT-AD Controller Selection and Placement

During the evaluation of the IoT-AD design, we chose a
smart hub to act as the controller in the IoT environment.
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Fig. 16: Comparison of packet-level anomaly detection accu-
racy between IoT-AD and other frameworks.
BN Hodo et al. [37]

HEE Lietal [38] +H+H 10T-AD

Memory usage (MB)
N w B w [=)] ~
o o o o o o
o o o o o o

fun
o
o

MUD

Testbed

MoN(loT)r

PingPong
Datasets

Fig. 17: Comparison of memory usage between lo7T-AD and
other frameworks.

Alternatively, we could have chosen an IoT device with
adequate resources to act as the controller (e.g., a smart TV,
a smart refrigerator). As a rule of thumb, any device with
adequate resources to identify packet-level and interaction
anomalies (such resource requirements have been quantified
through our evaluation process in Section [V]) should be able
to act as the controller.

The IoT-AD controller could be deployed within a local IoT
environment or it could be remotely deployed on a cloud. A
local controller could reduce the overall latency when it comes
to detecting anomalies and helping IoT devices interact with
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Fig. 18: Comparison of CPU usage between loT-AD and other
frameworks.
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each other. Another benefit of having a local controller is that
an external network observer (e.g., an Internet Service Provider
(ISP) or a cloud service provider) cannot analyze the traffic
to identify what is happening inside an IoT environment [44],
[45]. On the other hand, a controller deployed on a remote
cloud could make the maintenance of the controller transparent
to users and help with scalability and reliability concerns.

B. Security Analysis of the 10T-AD Design

We consider different potential attack scenarios that can take
place in an IoT environment and we analyze the ability of
IoT-AD to mitigate these attack scenarios.

Distributed Denial-of-Service (DDoS) attacks: Due to vul-
nerabilities (such as weak authentication or encryption), IoT
devices can be compromised by an attacker and used as a
part of a botnet (e.g., Mirai [32]) to carry out DDoS attacks.
In such scenarios, the IoT-AD controller monitors traffic from
and to the IoT devices. If unknown traffic patterns are detected,
which do not match legitimate functions and communication
among [oT devices, the controller will identify these patterns
as anomalies and isolate the IoT devices causing them. As
a result, JoT-AD will be able to prevent the orchestration of
DDoS attacks.

Spoofing attacks: If an IoT device gets compromised, an
attacker can spoof its IP address and/or its MAC address. As
a result, the attacker can send malicious information to another
IoT device within the IoT environment to manipulate its state
or to a network outside the IoT environment. Since the loT-AD
controller has a global view of the IoT environment (knowl-
edge of MAC addresses and IP addresses of all devices), it can
detect spoofed packets originating within the IoT environment
and discard them.

Impersonation attacks: In this case, an attacker communi-
cates with other devices as a legitimate device within the IoT
environment and sends instructions to change the states of
other devices. Because of the interaction trees created by loT-
AD, impersonating devices will be identified and eventually
isolated from the network.

Passive attacks: Passive attacks (such as traffic analysis, sniff-
ing, eavesdropping) can be used to gather valuable information
about activities (events) within an IoT environment without
altering packets [44]|-[46]. IoT-AD can defend against this

type of attack by incorporating noise into the communication
between the controller and IoT devices. The noise patterns
will be agreed upon in advance between the controller and
IoT devices. Since the controller will be aware of the noise
patterns, it will be able to separate them from legitimate traffic.

C. Limitations of the 1oT-AD Design

The IoT-AD design has the following limitations, which we
plan to address in our future work.
Single point of failure: The IoT-AD controller introduces a
single point of failure into an IoT environment. To mitigate
this concern, two approaches can be used. The first approach
involves maintaining multiple local IoT controllers in an IoT
environment, since any IoT device with adequate resources can
act as a controller. In this case, mechanisms to synchronize the
state of local controllers will be needed. The second appraoch
involves running a remote controller on a cloud. In this case,
it would be the responsibility of the cloud provider to ensure
that controller failure instances are effectively mitigated.
Anomalies out of IoT-AD’s scope: IoT-AD is designed
to detect and recover from anomalies which are identified
by monitoring network traffic and IoT device interactions.
However, there are additional causes of anomalies, such as
hardware or power failures of IoT devices, which IoT-AD does
not currently consider. For example, the design of IoT-AD can
be extended to detect anomalies of IoT devices using features
of the physical layer. To achieve that, the controller will need
to be equipped with additional hardware (e.g., software-defined
radio, spectrum analyzer) to collect physical layer data and our
models will need to be trained accordingly in order to identify
anomalies based on physical layer data.
Scalability of the IoT-AD design: In an [oT environment with
hundreds of IoT devices, such as a large building, a large
number of events and interactions may take place. In such
cases, the main challenge for IoT-AD would be to identify
devices with adequate resources, which can act as controllers.
A solution could be to maintain multiple controllers and assign
groups of IoT devices to different controllers, so that the load
is distributed among the available controllers.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented loT-AD, a framework that detects
and mitigates the impact of traffic and interaction anomalies
among loT devices. Our evaluation results demonstrate that
10T-AD is a lightweight framework that can identify IoT device
anomalies in less than 2.12 ms and with up to 98% of accuracy.
In our future work, we plan to extend the IoT-AD design
in order to: (i) mitigate single point of failure concerns; (ii)
identify additional categories of anomalies; (iii) support large-
scale IoT environments with hundreds of IoT devices; and
(iv) conduct additional experiments to further investigate the
trade-offs of the IoT-AD design.
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