
This article has been accepted for publication in IEEE Internet of Things Journal. This is the author’s version which has not
been fully edited and content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3286276

Dynamic Decision Tree Ensembles for
Energy-Efficient Inference on IoT Edge Nodes

Francesco Daghero, Member, IEEE, Alessio Burrello, Member, IEEE, Enrico Macii, Fellow, IEEE, Paolo
Montuschi, Fellow, IEEE, Massimo Poncino, Fellow, IEEE, and Daniele Jahier Pagliari Member, IEEE

©2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for
more information.

Abstract—With the increasing popularity of Internet of Things
(IoT) devices, there is a growing need for energy-efficient Ma-
chine Learning (ML) models that can run on constrained edge
nodes. Decision tree ensembles, such as Random Forests (RFs)
and Gradient Boosting (GBTs), are particularly suited for this
task, given their relatively low complexity compared to other
alternatives. However, their inference time and energy costs are
still significant for edge hardware.

Given that said costs grow linearly with the ensemble size,
this paper proposes the use of dynamic ensembles, that adjust
the number of executed trees based both on a latency/energy
target and on the complexity of the processed input, to trade-off
computational cost and accuracy. We focus on deploying these
algorithms on multi-core low-power IoT devices, designing a tool
that automatically converts a Python ensemble into optimized
C code, and exploring several optimizations that account for
the available parallelism and memory hierarchy. We extensively
benchmark both static and dynamic RFs and GBTs on three
state-of-the-art IoT-relevant datasets, using an 8-core ultra-low-
power System-on-Chip (SoC), GAP8, as the target platform.
Thanks to the proposed early-stopping mechanisms, we achieve
an energy reduction of up to 37.9% with respect to static GBTs
(8.82 uJ vs 14.20 uJ per inference) and 41.7% with respect to
static RFs (2.86 uJ vs 4.90 uJ per inference), without losing
accuracy compared to the static model.

Index Terms—Energy Efficiency, Machine Learning, Random
Forest, Gradient Boosting, Dynamic Inference

I. INTRODUCTION

MAchine Learning (ML) inference is increasingly present
in multiple Internet of Things (IoT) applications, rang-

ing from human activity recognition [1] to predictive mainte-
nance [2] or to seizure detection [3]. A cloud-centric paradigm
is traditionally leveraged, with the IoT nodes collecting data,
and offloading almost all computations to high-end servers.
This approach allows relying on robust and accurate models,

Manuscript received January XX, XXXX; revised January XX, XXXX.
(Corresponding Author: Daniele Jahier Pagliari).

F. Daghero, P. Montuschi, M. Poncino and D. Jahier
Pagliari are with the Department of Control and Computer
Engineering, Politecnico di Torino, Turin, 10129, Italy (e-
mail: francesco.daghero@polito.it; paolo.montuschi@polito.it;
massimo.poncino@polito.it; daniele.jahier@polito.it).

A. Burrello and E. Macii are with the Interuniversity Department of
Regional and Urban Studies and Planning, Politecnico di Torino, Turin, 10129,
Italy (e-mail: alessio.burrello@polito.it; enrico.macii@polito.it).

A. Burrello is also with the Department of Electrical, Electronic and
Information Engineering, University of Bologna, 40136 Bologna, Italy (e-
mail: alessio.burrello@unibo.it).

Copyright (c) 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

independently from the IoT device’s computing capabilities.
Nevertheless, the need for a constant connection to remote
servers, especially in unstable or insecure environments which
are common for IoT systems, may lead to unpredictable re-
sponse latencies or confidentiality concerns [4], [5]. Moreover,
transmitting a constant stream of data to the cloud is an energy-
hungry operation, which can severely affect the battery life of
the device [6].

For these reasons, extreme-edge (i.e., on-device) computing
has grown as an increasingly popular alternative for simple
ML-based tasks [5], [6]. Instead of a remote deployment on a
high-end server, ML models are stored and executed directly
on the device, eliminating or limiting the need to transmit the
collected data. This reduces both privacy and latency concerns
tied to the unreliability of the Internet connection, while also
possibly leading to higher energy efficiency.

Deploying ML at the edge is complicated by the tight
resources budgets of IoT devices, which are mostly based
on Microcontrollers (MCUs). Therefore, simple tree-based
ensembles such as Random Forests (RFs) [7] and Gradient-
Boosted Trees (GBTs) [8] are often regarded as a more
lightweight alternative to state-of-the-art Deep Learning (DL)
models in extreme-edge settings [9], since they can obtain
comparable accuracy on simple tasks, with fewer parameters
and operations per inference [10].

Despite these advantages, the energy costs linked with tree
ensembles inference can still be hard to sustain for battery-
operated or energy-autonomous IoT nodes. Accurate ensem-
bles often include hundreds of Decision Trees (DTs), resulting
in thousands of clock cycles per inference. Several approaches
have been introduced in the literature to optimize these models,
generally consisting of pruning algorithms, which eliminate
the least frequently used branches in each DT [11]. However,
these solutions modify the ensemble structure statically, re-
ducing its complexity once-for-all in exchange for a possible
drop in accuracy. Thus, they offer limited flexibility in tuning
the model execution costs at runtime.

In this work, which extends [12], we consider the much less
explored path of runtime and input-dependent optimizations
for tree-based ensembles, motivated by the fact that: i) a
system’s energy budget may vary over time (e.g., depending
on battery state), and ii) not all inputs require the same
computational effort to achieve an accurate classification.
Indeed, most inputs are “easy”, and a small subset of the DTs
in the ensemble would be sufficient to classify them correctly,
while saving energy. On the other hand, statically shrinking
the model would cause complex inputs to be wrongly labelled,

1

ar
X

iv
:2

30
6.

09
78

9v
1

 [
cs

.L
G

]
 1

6
Ju

n
20

23

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 2

negatively affecting the accuracy.
Accordingly, we study early stopping policies that halt

the execution of the ensemble after reaching a classification
confidence target. We use those policies to dynamically adapt
the amount of computation to the system’s requirements and
to the difficulty of the processed data (stopping early for easy
inputs), saving energy compared to a static ensemble. While
other works have studied dynamic inference for tree-based
models [13]–[15], we are the first to thoroughly analyze the
key issues and overheads associated with their deployment on
a real-world, complex IoT platform. To this end, we design a
tool that automatically generates optimized inference C code
for both static and dynamic RFs and GBTs, starting from a
Python model. The following are our main contributions:

• We introduce two novel early-stopping policies for dy-
namic inference of GBTs or RFs. Furthermore, we detail
the deployment of these models on complex IoT devices,
describing the required data structures and memory al-
location techniques, while also exploring the effect of
quantization on tree-based ensembles.

• We study the effectiveness of early-stopping on multi-
core platforms, in which sets of DTs are evaluated in
parallel, adapting our policies accordingly.

• We benchmark our dynamic models on three IoT relevant
datasets, reducing an hardware-unaware estimate of time
complexity from 57% to 90% with respect to static
ensembles, with less than 1% drop in accuracy on all
the three tasks. When deployed on GAP8, a multi-core
RISC-V architecture, our dynamic ensembles reduce the
energy consumption by up to 42% compared to a static
RF/GBT, without losing accuracy.

The rest of the paper is structured as follows. Section II
provides the required background, and Section III reviews the
state-of-the-art; in Section IV, we present the details of the
proposed early-stopping policies and of our implementation of
dynamic tree-based ensembles for multi-core low-power plat-
forms; lastly, Section V reports the results of our experiments,
and Section VI concludes the paper.

II. BACKGROUND

A. Decision Trees

Decision Trees (DTs) are shallow, non-parametric Machine
Learning (ML) algorithms widely used for both classification
and regression in supervised learning setups. At training
time (also known as “growth”), these models learn a set of
decision rules from the data, producing a piece-wise constant
approximation of the target variable. Specifically, starting from
the root, each node compares one feature (column) of the input
with a learned threshold and assigns the input either to its left
or right child based on the result of such comparison. This
process is repeated recursively until a terminal (leaf) node is
reached, which contains the output estimate. Since this work
focuses on post-training and runtime optimizations of DTs, we
omit a detailed description of the various fitting algorithms for
DTs, referring readers to [16] for further information.

Figure 1 depicts a trained DT for a classification task,
showing non-terminal nodes as circles and leaf nodes as

rectangles. Leaves can, in general, store either the class label or
the entire array of class probabilities [9]. In case of regression,
they contain the predicted scalar.

! "

#

!"#$%&"'()*!!

!
"#$%

&
'(
$

!"#$%&'

!(#$%)

!"#$%)'

!(#$%&

!"#$%*'

!(#$%"'

!"#$%+'

!(#$%(

Fig. 1: Example of DT, where the root node performs a
decision based on feature A and threshold αA.

Algorithm 1 reports the inference pseudo-code. We denote
as Root(t) and Leaves(t), respectively, the root and the leaves
of tree t. For each node n, Feature(n) and α(n) are the input
feature used for the split and its threshold, while Right(n) and
Left(n) are its descendants. Lastly, Prediction(n) extract the
output value from the reached leaf.

Algorithm 1 Decision Tree Inference

n = Root(t)
While n /∈ Leaves(t)

if Feature(n) > α(n):
n = Right(n)

else:
n = Left(n)

P = Prediction(n)

The space complexity of a DT is O(2D), where D is the
depth, i.e. the maximum-length path from the root to a leaf.
The upper bound is a perfect tree with 2D−1 nodes. The time
complexity is O(D + M), where M denotes the number of
classes (with M = 1 for regression). Reaching a leaf implies,
at worst, D branching operations, followed by an argmax over
M elements to determine the largest output probability.

Due to their lightweight branching operations and lim-
ited memory requirements, DTs represent an ideal candidate
for embedding inference on constrained edge nodes [17].
Nonetheless, these methods also have some shortcomings.
They are prone to overfitting and tend to introduce a bias
towards the majority class in unbalanced datasets [16].

B. Tree-based Ensembles

In order to tackle these limitations, several DT ensembles
have been introduced, in which multiple trees, referred to
as “weak learners”, perform an inference pass on the same
input, before aggregating their output predictions. This leads
to sharp increases in accuracy and resistance to overfitting and
unbalancing issues, at the cost of increased time and memory
complexity. We focus on the two most popular types of tree
ensembles, i.e., RFs and GBTs.

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 3

1) Random Forests: RFs [7] are sets of classification DTs
trained on a randomly selected subset of the data (i.e., with
boosting) and using only a random subset of the input features.
This ensures diversity in the predictions and makes the RF less
prone to overfitting. At inference time, each DT is applied
to the input, and the output probabilities are accumulated.
An argmax on the accumulated scores yields the final label.
Algorithm 2 shows the corresponding pseudo-code, where
TreeInference(t) denotes a DT inference (i.e., Algorithm 1).

Algorithm 2 Random Forest Inference

P = 0M // array of 0s of size M
for t ∈ Forest:

P = P +TreeInference(t)
class = argmax(P)

Noteworthy, for DT implementations that only store the
predicted class label in leaf nodes, the RF aggregation can
only use a crisp “majority voting”, rather than a more precise
averaging of probability scores. This is usually detrimental
to accuracy; therefore, in this work, we follow the trend of
most modern libraries [18], using weak learners that predict a
probability value per class.

2) Gradient-Boosted Trees: the standard implementation
of GBTs [8] groups DTs in sets of cardinality M called
“estimators”, conceptually executed in a sequence. Each DT
within an estimator is a regression model, trained to predict the
residual error obtained by all previous estimators on a specific
class. At inference time, all DTs outputs are accumulated in a
vector, which is then converted to probabilities with a formula
that depends on the loss function used for fitting. As for RFs,
the last step is an argmax to extract the label. Algorithm 3
shows the pseudo-code of a GBT inference, where ti is the
DT in charge of class i within estimator e.

Algorithm 3 Gradient Boosting Trees Inference

P = 0M // array of 0s of size M
for e ∈ Estimators: // e array of M trees

for ti ∈ e:
Pi = Pi +TreeInference(ti)

class = argmax(compute probabilities(P))

3) Complexity Analysis: The space complexity of RFs and
GBTs is O(N ∗ 2D) and O(N ∗M ∗ 2D), respectively, where
N is the number of estimators. For RFs, each single DT
is considered an estimator, while for GBTs, an estimator is
a set of M trees, hence the additional multiplicative factor.
Here, D denotes the maximum depth across all DTs, which is
generally fixed during training. Similarly, the time complexity
for inference, which is also linked with energy consumption,
is O(N ∗D) for RFs and O(N ∗M ∗D) for GBTs.

C. IoT End-node Target

Microcontrollers (MCUs) are at the heart of most IoT end
nodes, mainly due to their low production cost and high
programmability. In fact, while Application-Specific Integrated

Circuits (ASICs) are potentially more energy efficient, espe-
cially for ML applications, their huge Non-Recurrent Engi-
neering costs are unaffordable for most IoT solutions.

In recent years, the RISC-V Instruction Set has emerged in
this domain due to its versatility and licensing-cost-free open-
source nature [19]. In this work, we focus on the Parallel Ultra-
Low-Power Processing Platform (PULP) family of RISC-V
processors [20], and specifically on the GAP8 System-on-Chip
(SoC). This SoC features one I/O core paired with an 8-core
cluster, all leveraging an extended RISC-V instruction set with
support for common signal processing and ML operations. The
cores access a two-level memory hierarchy, including a 64 kB
L1 with single-clock access latency (private of the cluster’s
cores) and a 512 kB L2. An additional L3 off-chip memory
can be equipped to extend the storage capacity further but
was not employed in this work. GAP8 also features a general-
purpose Direct Memory Access (DMA) controller to transfer
data between memory levels, reducing access bottlenecks and
allowing the programmer to control data transfers.

D. Static and Dynamic ML Optimizations

The problem of optimizing ML models to enable their
execution on ultra-low-power edge nodes, trading off (small)
accuracy drops for large latency, energy or memory savings,
has been studied extensively in recent years, although with
most focus being devoted to deep learning [1], [21]–[25].

One broad characterization distinguishes static and dy-
namic optimizations. The former optimize a model before
deployment, either during training or post-training. Among
the most well-known static approaches are quantization and
pruning [22], particularly popular for DL, which respectively
limit the precision of data and operations or eliminate them,
to improve both memory occupation and efficiency.

A fundamental limitation of static optimizations lies in their
inability to adapt to changes in external conditions during
runtime, such as a low-battery state, or even more interestingly,
to the processed input data. Naively, this could be solved
deploying multiple independent models (e.g., multiple RFs
or multiple GBTs), each with a different trade-off in terms
of accuracy vs energy/latency, and selecting among them at
runtime. However, this approach would incur a large memory
overhead, which is particularly critical for IoT end nodes.

Dynamic (or adaptive) inference techniques, including this
work, are designed to overcome these limitations. They allow
the deployment of a single model able to adapt its complexity
at runtime, while keeping the memory overhead under con-
trol [24]–[26]. In practice, a dynamic model can be partially
turned off when the external conditions require it, or when the
processing input’s difficulty allows it [22]. This partial shut-
off can be realized in various ways, depending on the type of
model considered [15], [22], [25]. Most dynamic optimizations
are orthogonal to static ones, i.e., it is possible to build a
dynamic system on top of statically optimized (e.g., quantized,
pruned, etc.) ML models.

For dynamic ML systems that tune their complexity based
on the input, a key component is a suitable policy, i.e., the
logic that selects which parts of the model to activate for a

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 4

given datum [27]. Good policies should be accurate but also
incur low overheads. Section IV analyzes this aspect in detail.

III. RELATED WORKS

A. Dynamic inference

While dynamic/adaptive approaches are increasingly popu-
lar in the literature, the great majority applies solely to DL
models. Most dynamic DL works adopt an iterative approach,
where the same input is processed multiple times, each time
activating a larger “portion” of a neural network. After each
iteration, the confidence of the prediction is evaluated. The
process is stopped when confidence reaches a pre-defined
threshold. This scheme assumes that easy inputs are the
majority, thus most executions will stop at the initial iterations,
reducing the average energy consumption. On the other hand,
complex inputs will still be classified by the largest “version”
of the model, thus avoiding accuracy drops. Literature works
differ mainly in how they decompose the model. For instance,
the authors of [24]–[26], [28] obtain a single sub-model by
selectively deactivating a subset of the layers or channels
of a network, or truncating the bit-width used to represent
parameters. Other works extend the approach more than two
sub-models [25], [29] or enhance the stopping criterion with
class-aware thresholds [22].

Applications of adaptive inference to shallow ML classifiers
are much less common. In [14], the authors propose an early
stopping criterion for tree-based ensembles, which models
the prediction confidence after a binomial or multinomial
distribution (depending on the number of classes), stopping the
inference after a suitable subset of the trees has been executed.
The authors benchmark their approach on seven small public
datasets and a private one, showing a reduction of up to 63%
on the average number of trees executed with respect to the
entire ensemble. However, this approach requires the storage
of large lookup tables in the order of O(N2), where N is the
number of estimators, thus incurring a significant overhead for
large ensembles.

In [13], the authors leverage the partially aggregated proba-
bilities of the already executed weak learners to determine the
next tree to execute at runtime. This selection is performed
according to multiple criteria: i) the current highest class
probability and ii) the computational cost associated with
each tree. Since weak learners within an ensemble process
different features of the input datum, the inference cost is
estimated taking into account not only the evaluation of the
trees themselves, but also the extraction of any new feature
that is not already available, i.e., that was not used by any of
the previously executed weak learners. A Gaussian distribution
is used to obtain a probabilistic “twin” of the classifier and
determine when to trigger an early stop. The authors also
introduce a dimensionality reduction technique to limit the
computations required to select the best next DT. Nonetheless,
the overhead of such a complex policy on an ultra-low-power
device would be hard to sustain. Indeed, as stated by the
authors themselves, this approach becomes convenient only
in the case of complex feature extraction, which is rarely the
case in IoT applications [13].

Lastly, the authors of [15] propose the closest work to ours,
introducing an early stopping method named Quit When You
Can (QWYC). In this approach, two probability thresholds (ϵ−
and ϵ+) are extracted post-training, determining the boundaries
to trigger an early stopping in binary classification tasks. At
runtime, QWYC requires only two additional comparisons,
introducing a minimal overhead. Additionally, the authors
propose a static sorting of weak learners, in which DTs able
to trigger an early stopping most frequently are executed first.
However, QWYC is only evaluated on binary tasks, and no
deployment results are provided.

B. Tree-Based Ensembles Libraries

Tree-based ensembles are widely used in various machine
learning applications, and several optimized implementations
have been proposed. Some works focus on optimizing in-
ference time for high-end hardware [30]–[32], while others
specifically target IoT edge nodes [9], [33]. In the former
category, the authors of [32] propose a C++-based implemen-
tation of RFs that supports both training and inference. They
utilize an object-oriented representation of the trees, storing
node information and thresholds (α) in separate classes. How-
ever, they do not store class logits or support quantization,
making their library less compact than those designed for
IoT edge nodes. The implementation in [31] mirrors the DT
data structures of [18], storing information such as child
indexes, class logits, alpha values, and feature indexes for each
node. Quantization is not supported in this case either. [30]
introduces a C++ implementation of RFs and GBTs. Single
trees are implemented as classes, and nodes are represented as
structures with pointers to left and right children, thresholds,
and other fields. This implementation supports the integer
representation of thresholds but only applied post-training and
at 32-bit. Despite being optimized for fast inference, these
approaches are not suitable for IoT node deployment as they
do not prioritize memory minimization, a crucial constraint
for this type of device.

RF implementations tailored for RISC-V-based MCUs are
presented in [9], [33]. The authors of [33] benchmark various
RF implementations on a single-core RISC-V MCU called
PULPissimo, testing fully unrolled trees, recursive and for-
loop-based inferences. Data storage is done using arrays
or structures, and compiler-level optimizations are explored,
resulting in up to 4× speed-up. In [9], the authors propose an
array-based representation of trees, similar to our approach,
specifically designed for the GAP8 SoC.

However, our work addresses several important aspects that
have been overlooked in previous implementations. First, we
store the logit values instead of just the predicted class, as
they are necessary for enabling dynamic inference. Second,
we discuss the allocation of the tree ensemble on a multi-
level memory hierarchy. Finally, we enable various memory
minimization techniques such as quantization at multiple pre-
cisions and optimized storage of children indexes, as described
in Section IV-B2. To the best of our knowledge, our library is
the first to consider all these optimizations.

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 5

IV. METHODOLOGY

A. Early Stopping policies for Tree-Based Ensembles

1) Single-classifier Policies: So-called iterative dynamic
inference approaches [22], including ours, perform a sequence
of classifications, either with different models or with different
“versions” of the same model, deciding adaptively when to
stop the process. For these methods, most early-stopping
policies use the output probabilities of the t-th classifier in
the sequence (P t) to determine the confidence of its predic-
tion [15], [25]–[27].

One of the most straightforward and computationally in-
expensive approaches simply looks at the largest probability
(i.e. the one associated with the most likely class). Intuitively,
a large top-probability will indicate a confident prediction and
vice versa. We denote this policy as Max Score (st).

While only requiring O(M) comparisons per input, with M
being the number of classes, this approach does not allow
for a measure of the gap between the top-probability and
the others. For instance, a 4-class output P t = [0.5, 0.5, 0, 0]
corresponds to a large value for the metric (st = 0.5), far
from the random guess, but the classification is clearly highly
uncertain, since P t

0 = P t
1 . In this case, using st might mislead

the early stopping into triggering too early, negatively affecting
the accuracy.

A second policy that tries to overcome this issue is the Score
Margin (smt) [25], [27], which also considers the second
largest probability in P t and is computed as follows:

smt = max(P t)−max2nd(P
t) (1)

While having the same O(M) theoretical complexity, smt

requires approximately twice as many operations as st. On
the other hand, it is generally more robust. In the previous
example, while st = 0.5 may lead to wrong results, smt = 0
clearly indicates that the classifier is not confident about its
prediction, ensuring that the early stopping is not triggered.
Accordingly, smt has become the most popular choice in
recent literature [25]–[27].

At runtime, st or smt are computed after each iteration,
and compared with a user-defined threshold th. Using smt as
an example, the early stopping decision is formulated as:

P =

P 0 if sm0 ≥ th

P 1 if sm0 < th ∧ sm1 ≥ th

P 2 if sm0 < th ∧ sm1 < th ∧ sm2 ≥ th

...

PN−1 if smi < th, ∀i < N

(2)

where P is the final array of probabilities, which will be used
to classify the input. The energy versus accuracy trade-off is
controlled by th, whose value alters the number of classifiers
executed on average. Namely, a larger th results in a more
conservative system (giving higher priority to accuracy), and
vice versa. Therefore, the threshold can be tuned at runtime to
select different operating points based on external conditions,
e.g., on battery state.

The main advantage of these confidence metrics is their low
computational cost while also being accurate as long as the

classifiers are well-calibrated [34]. Noteworthy, in case of a
binary classification, st and smt become equally informative,
since the second largest probability is just the complement of
the largest.

2) Aggregated Scores Policies: In their usual implementa-
tion, the metrics introduced in Section IV-A1 are evaluated
using only the probabilities produced by the last executed
classifier t, ignoring the outputs of previous models in the
cascade [25], [27]. This approach makes sense under the
assumption that each new model is significantly more accurate
than the previous ones, i.e., that P t is a much more reliable
estimate of the true output probabilities with respect to P t−1.

However, for ensemble models like RFs and GBTs, all weak
learners (DTs) have comparable predictive power. It becomes
then sub-optimal to decide for early stopping based only on the
latest executed tree, ignoring the output of all previous ones.
In light of this, we propose two extensions of the policies
described in Section IV-A1, designed so that early stopping
is triggered based on the accumulated predictions of all weak
learners already executed (P [1:t]). In other words, we take a
decision based on the aggregated prediction of the “smaller
ensemble” composed of all already executed DTs.

The effectiveness of our approach lies in the fact that, for
easy inputs, the accumulated probabilities quickly skew toward
a single class after executing a small number of weak learners.
Then, it becomes highly unlikely or even mathematically
impossible for the leftover models to overturn the prediction,
making their execution pointless to improve accuracy.

Mathematically, for an RF ensemble, we define the partial
output after executing t weak learners as:

P [1:t] =

t∑
i=1

P i (3)

We then define the Aggregated Max Score (St) policy as:

St = max(P [1:t]) (4)

and the Aggregated Score Margin (SM t) as:

SM t = max(P [1:t])−max2nd(P
[1:t]) (5)

The corresponding early stopping policies are obtained by
replacing the array of probabilities of the last executed tree
P t with the ones of all executed trees P [1:t] and the score
smt with their aggregated versions St or SM t in Eq. 2.

For GBT, the formulation is similar except for one key
difference. As mentioned in Section II-B, each estimator in a
GBT is a set of regression trees, whose outputs are converted
to probabilities with a computationally expensive operation
that depends on the training loss. Incurring the associated
overheads after evaluating each estimator in order to extract
P [1:t] could outweigh the benefits of early stopping. Thus, we
leverage the fact that the conversion formula is monotonically
increasing [18], and prefer to estimate confidence directly on
the raw predictions.

Our results of Section V show that the proposed aggregated
scores policies obtain superior energy versus accuracy trade-
offs with respect to state-of-the-art solutions that only account
for the last learner.

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 6

Figure 2 shows a high-level overview of the adaptive
inference mechanism proposed in this work, applied to an RF
with N = 3, M = 3, D = 3, and using SM t as confidence
metric. We also assume a batch B = 1 (more details on this
in Section IV-C2). Orange nodes represent the decision path
taken in each tree for a hypothetical input. After each weak
learner, SM t is computed on the accumulated probabilities
(P [1:T]) and compared with the user-defined threshold th.
As soon as SM t > th, the process is stopped, and P [1:t]

undergoes an argmax to extract the final predicted class Ci.

!

"

$

%

& '

!!
!
!"#$%

!"
!
!"#&

!#
!
!"#'

!!
"
!"#(%

!"
"
!"#'

!#
"
!"#'

!!
#
!"#)%

!"
#
!"#&

!#
#
!"#&

!"

!"#$%"#&'()(!!

!"

!

!*#*%"#$'()(!!
!!
!$"
!*#*

!"
!$"
!"#$

!#
!$"
!"#)%

!"

!

!!
!$#
!*#$

!"
!$#
!"#+

!#
!$#
!"#,%%

(

)

* "!

""

"# "$

"%

"&

"' "(

")

"* #!

Fig. 2: A dynamic RF with N = 3, M = 3 and D = 3.
In case early stopping is not triggered, the obtained output is
identical to a static RF.

B. Deploying tree-based ensembles on MCUs

In this section, we describe our efficient library for static
and dynamic RF/GBT inference on multi-core IoT end-nodes,
such as our target GAP8, introduced in Section II. Noteworthy,
an RF library for GAP8 has recently been proposed in [9].
However, its data structure is unsuitable for dynamic inference
since it stores in the leaves only the most likely class rather
than the full array of probabilities, making it impossible to
derive confidence metrics. To our knowledge, there are no
open-source GBT libraries for multi-core RISC-V MCUs.

For these reasons, we extend our previous in-house tool for
the automated generation of optimized RF inference code [12],
generalizing it to also support GBTs and to handle multi-core
parallelism and complex memory hierarchy. The tool outputs
C code, generated with template programming starting from a
Python model of the ensemble, and depending on its hyper-
parameters (N , M , D, etc.)1. The next sections describe the
generated data structures (Section IV-B1), the memory alloca-
tion strategy (Section IV-B2) and the quantization employed to
support our FPU-less target (Section IV-B3). Note that while
this work focuses on dynamic tree ensembles, our tool can
also efficiently implement static models.

1) Ensembles structure: Our data structures take inspiration
from the open-source OpenCV [32] library, with several mod-
ifications to make them more efficient for low power MCUs.
Specifically, we replace lists with C arrays, saving memory
and improving data locality while also making the structure
more compact. Figure 3 shows the three main structures for a

1The code is available open-source at: https://github.com/eml-eda/eden

RF with M = 3 classes. The NODES array is composed of C
“structs”, representing the information of all DT nodes. Each
node has three fields:

• fidx: storing the index of the input feature considered
by the node. At inference time, it is used to select the
input value compared with the threshold α to determine
the next visited node. For leaves, this field is set to the
special value -2 for compatibility with [18].

• α: the threshold compared against the input value at
position fidx. If the latter is smaller or equal (larger)
than α, we visit the left (right) child next.

• right: the offset in NODES between the current node and
its right child. For terminal nodes, we reuse this field to
store a row index in the LEAVES matrix, holding the
class probabilities assigned to samples reaching that leaf.

The ROOTS array stores the indexes of the root nodes of each
tree in NODES, allowing a fast iteration among the trees.
Lastly, as mentioned, the LEAVES matrix stores the class
probabilities of all leaves.

!"#$

!"#$%&'()

!"#$*+,'

%*+)

&"'()*(

!"#$*+'

%*+(&

&"'()*'

!"#$*+&

%*+'$

&"'()*%

!"#$%%&

!""#

$"%&'

!"!'(%& $%&$%'$%(

)

(&)*&'

!
"
*
%
+
,
%
&

+

!

"

#

$

, -

Fig. 3: C data structures of our tree ensemble library in the
case of a RF. The arrows represent the inference steps for the
first tree in Figure 2.

The inference pseudo-code for a single tree, in the most
general case of a multi-class RF, is shown in the “run tree”
function of Algorithm 4. Note that we do not store the index of
the left child of a node, to save memory. Instead, we organize
our data structure so that the left child for all non-leaf nodes is
always (implicitly) the next element in the NODES array. This
is obtained by generating the structure during a pre-order visit
of each tree. The special value in fidx indicates when a leaf
has been reached, thus being used as a loop exit condition.
C denotes the total number of cores available during the
inference, which will be discussed in detail in Section IV-C.

We further optimize our data structures when working with
binary RF classifiers or GBTs. In the first case, each leaf needs
only to store a single class probability (since P1 = 1 − P0).
Thus, we can save this value directly in the α field of the
leaf, completely removing the LEAVES array. Similarly, GBTs
regression trees require the storage of a single value per leaf,
allowing us to apply the same optimization.

2) Memory Allocation Strategy: Modern IoT end nodes,
including our target, have complex multi-level memory hi-
erarchies. In particular, many of these devices use software-
controlled scratchpad memories rather than hardware caches,
coupled with Direct Memory Access (DMA) controllers to
move data between, for instance, a smaller but faster L1 mem-
ory, and a bigger but slower L2 memory. With respect to using

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 7

Algorithm 4 Static multi-class RF inference pseudo-code

1 run_tree(t, P, INPUT, ROOTS, NODES, LEAVES) {
2 if (core_id == (t%
3 n=NODES[ROOTS[t]];
4 while(n.fidx != -2) {
5 if(INPUT[n.fidx]>n.alpha) n+=n.right;
6 else n=n+1;
7 }
8 critical_section_in();
9 for(j=0;J<M;j++) P[j]=P[j]+LEAVES[n.right][j];

10 critical_section_out();
11 }
12 }
13

14 // L1 Memory -> INPUT, P, ROOTS
15 // L1 or L2 Memory -> NODES,LEAVES
16 P = {0};
17 parallel for (t=0; t<N; t++)
18 run_tree(t, P, INPUT, ROOTS, NODES, LEAVES);
19 barrier();
20 if(core_id == 0) res = argmax(P);

hardware caches, this approach requires more effort on the
software side, but results in smaller and more power-efficient
hardware, which is crucial for IoT nodes, while also possibly
providing performance benefits for applications characterized
by predictable and regular memory access patterns, such as
many ML models. Examples of these devices are found both
in academia [35] and in commercial products [20], [36].

Maximizing L1 accesses is, therefore, imperative to reduce
inference latency and energy. The problem is not trivial, since
ensembles achieving high accuracy, even for relatively simple
tasks such as those considered in Section V, are generally too
large to fit entirely in L1 (GAP8, for instance, has a 64kB L1).

One solution would be to employ a tiling approach, dynam-
ically loading to L1 only the data required to execute a small
chunk of computation (e.g., a single tree inference). This is the
approach generally taken by DL libraries for edge devices [37].
The regularity of neural network computations makes tiling a
profitable option because: i) data portions needed in L1 can
be statically determined at compile time, and ii) once loaded,
all data elements will be accessed and reused multiple times,
amortizing the transfer overheads.

On the contrary, for tree-based ensembles, the access ratio
of the NODES structure is logarithmic, requiring the transfer
of up to 2D nodes per tree, but accessing at most D elements,
with at most one access per node. Thus, the data transfer
overhead out-weights the benefits of having node information
in L1, making tiling detrimental. Similar considerations apply
to the LEAVES matrix, whose rows are accessed with an
increasing yet randomly strided and sparse pattern (1 every
2D rows in the worst case). In contrast, the input sample
array (INPUT in Algorithm 4) is reused by all DTs in the
ensemble, and multiple nodes within each tree might access
the same element. Similarly, the array of accumulated outputs
(P in Algorithm 4) is accessed densely and with a regular
pattern at the end of each DT inference.

We define a static (compile-time) memory allocation strat-
egy for our tree ensemble code generator based on these
considerations. We load INPUT, P, and the ROOTS array
(whose size is generally negligible, i.e., less than 1kB) entirely

in L1. We then compute the leftover L1 memory and check
if the LEAVES or NODES structures can fit in the remaining
space, prioritizing the former. When this happens (for small
ensembles), all required structures are stored in L1. Otherwise,
NODES and LEAVES are directly accessed from L2. Lines 14
and 15 of Algorithm 4 summarize the allocation scheme. We
verified experimentally that this produces a faster and more
efficient inference than tree-wise tiling.

Note that this proposed memory allocation strategy is valid
for any device characterized by a multi-level memory and a
software-managed caching mechanism. Changing the deploy-
ment target only impacts the dimension of L1, which has to be
specified as an input argument for our allocation strategy. On
the contrary, SoCs equipped with hardware-controlled caches
can skip this memory placement step.

3) Data Quantization: One of the most promising ap-
proaches to make ML models compatible with edge devices
is quantization, an optimization which consists of reducing
the precision used to store inputs and parameters [23]. This
reduces memory occupation and improves speed and energy
efficiency for IoT end-nodes, where FPUs are either slower
and more energy-hungry than ALUs, or completely absent, as
in the case of GAP8, causing floating point operations to be
approximated with expensive software routines.

While extensively studied for DL [23], quantization is much
less explored for tree ensembles. For RF/GBT classifiers, the
valid targets for quantization are: i) the input array, ii) the
internal comparison thresholds of each DT node (α), and iii)
the output probabilities. Since i) and ii) are directly compared,
they should be quantized with the same precision and format.

Input and threshold quantization can be introduced at train-
ing time (so-called quantization-aware training) by simply
converting inputs to integers before starting the process.
The comparison thresholds generated by the training frame-
work [18] will still be floats in general. However, given that
inputs are integers, it can be easily seen that if the thresholds
are quantized by simply truncating their fractional part, the
nodes’ decisions will not be altered.

In contrast, our tool quantizes the leaves probabilities after
training (a.k.a., post-training quantization), statically comput-
ing the range of the values that the accumulated probabilities
can assume, and using it to determine the quantizer parameters.

In both cases, we use a symmetric min-max quantizer [22],
computed with the following equations:

xint = round

(
x · 2bits−1

max(|x|)

)
(6)

xQ = clamp(−2bits−1, 2bits−1 − 1, xint) (7)
(8)

Where x is the floating point value, and the max is computed
over all training samples. The clamp is necessary for outliers
that fall outside the training range and is defined as follows:

clamp(a, b, x) =

a if x ≤ a

x if a ≤ x ≤ b

b if x ≥ b

(9)

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 8

We find that the accuracy loss when quantizing inputs,
thresholds and outputs is often negligible. The detailed trade-
off between quantization bit-width (8, 16, 32 bits for inputs,
thresholds, and leaves) and accuracy is analyzed in Sec-
tion V-C1.

C. Multi-core inference

1) Static ensembles: To parallelize static RFs/GBTs on
multi-core IoT platforms, we use the approach proposed in [9]
as a starting point. Figure 4 schematizes a static inference on
C cores (each represented by a different color), which corre-
sponds to the pseudo-code of Algorithm 4. DTs are statically
assigned to a core based on their index in the ensemble. Mutual
exclusive access, indicated by a lock (critical_section
in Alg. 4), is required when accumulating probabilities on the
shared output vector P (Acc. in the Figure). Finally, a barrier
has to be inserted after the parallel execution of trees, before
the final argmax computation, performed only by Core0.

Fig. 4: Multi-core inference for a static tree ensemble.

Noteworthy, this scheme does not enforce a specific order on
the DT executions in different cores. Global synchronization is
required only at the end. In case of GBTs, also DTs belonging
to different estimators can run in parallel.

2) Dynamic ensembles: Previous dynamic inference ap-
proaches for tree ensembles [13]–[15] evaluate the early-
stopping policy (Section IV-A) after executing each DT. How-
ever, as shown in our previous work [12], this is not necessarily
optimal. Evaluating the policy more rarely (thus reducing the
associated overheads due to its computation, i.e., Equation 2)
might give benefits superior to the occasional wasted energy
for executing “useless” extra DTs.

This becomes even more relevant in multi-core setups,
where performing a stopping decision after each DT is highly
sub-optimal. In fact, C trees are concurrently being executed at
all times (with C = number of cores), requiring, on average,
a similar execution time. Thus, taking an 8-core system for
example, halting after either 10 or 16 DTs consumes almost the
same amount of time and energy. However, the first option may
result in a less informed decision, as it disregards the output
of the remaining 6 trees, which is likely already available or
produced shortly. Noteworthy, these considerations are ignored
by all previous works, which assume a purely sequential
computation model [13]–[15].

In contrast, we follow these observations and propose a
configurable batching mechanism, in which early-stopping is
considered only after all cores have executed their following

estimator. Figure 5 and Algorithm 5 schematize this approach
for an RF. In the pseudo-code of Algorithm 5, each iteration
of the outer loop in lines 4-11 corresponds to one of these
macro-steps, whose maximum number is computed statically
and inserted in the POLICY TRIGGERS constant. Lines 12-
15 handle the final “left-over” DTs when the total N is not
a multiple of the batch size. The “policy” function in line
9 represents the evaluation of St or SM t, whose value is
compared with th to set the stop flag.

Compared to the execution of static ensembles, an additional
barrier is inserted after each batch of B trees, allowing the
execution of the early-stopping policy, which is in charge of
Core0. When the policy determines that inference should be
halted, execution jumps directly to the final argmax. Note-
worthy, the added barriers (lines 7, 10), the computation of
the policy, and its comparison with the exist threshold (line
9), cause an overhead in terms of latency and energy in
the dynamic ensemble, which however is often minimal, as
detailed in Sec. V.

Fig. 5: Multi-core inference for a dynamic tree ensemble.

Algorithm 5 Dynamic multi-class RF inference pseudo-code

1 P = {0};
2 t = 0;
3 stop = 0;
4 for(int bt=0; bt < POLICY_TRIGGERS && !stop; bt++) {
5 for (int i = 0; i < B; i++)
6 run_tree(t++, P, INPUT, ROOTS, NODES, LEAVES);
7 barrier();
8 if (core_id == 0)
9 stop = policy(P) > th;

10 barrier();
11 }
12 if (!stop) {
13 while(t<N)
14 run_tree(t++, P, INPUT, ROOTS, NODES, LEAVES);
15 }
16 barrier();
17 if (core_id == 0) res = argmax(P);

We set the batch size B equal to the available cores C to
ensure that all hardware resources are fully used. In the case
of RFs, where an estimator corresponds to a single DT (the
total number of trees is identical to N, i.e., the number of
estimators), we perform an early stopping decision once every
B executed trees. For GBTs, instead, early stopping decisions
can only be performed after executing an entire estimator, i.e.,
a group of M trees, (the total number of trees in the ensemble
is N ·M , with N being the number of estimators, and M the
number of classes, see Section II).

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 9

V. RESULTS

A. Target Benchmarks

We benchmark our work on three diverse IoT-relevant
tasks: surface Electromyography (sEMG)-based hand gestures
recognition, hard-drive failure detection and Human Activity
Recognition (HAR) based on accelerometer data.

For sEMG-based gesture recognition, we employ the Ni-
napro DB1 [38], which encompasses EMG signals collected
from 27 healthy subjects while performing hand movements.
We follow the experimental setup described in [38], using
the same pre-processing and data split, considering 14 hand
movements classes, and a 10-channel EMG signal as input. We
use a window of 150 ms, collected at 100 Hz, thus obtaining
a dataset with ≈207k elements. As in most state-of-the-art
works [38], we use a patient-specific training procedure, i.e.,
we train separate models for each subject in the dataset, using
different recording sessions as training, validation and test sets.
For sake of space, we show graphical results only for the first
two subjects (S1 and S2), while reporting aggregate metrics
over all 27 subject in tables.

For hard-drive failure detection, we analyze the Back-
blaze [39] dataset, containing 19 Self-Monitoring Analysis
and Reporting Technology (SMART) features collected from
hard disks by different vendors during their lifetime in a data
center from 2014 to 2019. The goal is predicting whether a
disk will experience a failure in the next 7 days. For this
dataset, we mirror the setup shown in [2] in terms of data split,
preprocessing, and feature selection. Namely, we feed models
with 90-day windows of the 19 features (each feature has 1
sample per day), obtaining a dataset with ≈707k elements. We
use 10% of the training data as validation set.

Lastly, we consider the UniMiB-SHAR [40] HAR dataset,
featuring 3-axis acceleration signals collected from smart-
phone accelerometers, during 9 different daily-life activities
(e.g., walking, standing, etc.) and 8 different kinds of falls.
The sampling frequency is 50 Hz, and the authors provide
the data already pre-processed in windows of 151 samples
(≈3s) centered around acceleration peaks. The datasets con-
tains around 11k elements. We benchmark our models on
the AF-17 task [40], which considers all 17 classes without
subject-specific training, using the default pre-processing and
windowing. Samples are divided into training, validation, and
test datasets with a 60%, 20%, 20% split.

The tasks involve different kinds of inputs signals, input di-
mensions (from 150 ms in NinaPro to 90 days in BackBlaze),
and number of classes (from 2 in BackBlaze to 17 in UniMiB-
SHAR), leading to RF/GBT models whose complexity spans
over 3 orders of magnitude. Due to the unbalanced nature of
the training sets, we augment the training sets by performing
an oversampling of the minority classes.

In the following sections, we report our results using the top-
1 macro average accuracy (also known as balanced accuracy,
i.e., the average of each class recall) for Ninapro and UniMiB-
SHAR and the F1-score for Backblaze.

B. Experimental Setup

All ensembles have been trained using Python 3.8 and the
Scikit-Learn [18] library. To build our comparison baseline,
we explore with grid search all static RFs and GBTs with
the following combinations of hyper-parameters: depths in
the range [1,15], number of estimators in [1,40], and input
and leaves quantization to 8/16/32 bits, for a total of 5400
architectures tested for each dataset and model type. For
Ninapro, given the personalized training, we repeated the grid
search for each of the 27 subjects. For RFs on Backblaze,
we instead fixed the maximum depth of the ensembles to
38 and limited the number of estimators to less than 30,
following the reference work of [2]. After each search, we
excluded static models too large to fit the L2 512kB memory
of GAP8, and selected the top scoring one on the validation
set as starting point to derive our dynamic model. Section V-C
reports the results of this grid search, in which we estimate
time complexity using a hardware-agnostic metric, i.e., the
average number of visited tree nodes per inference.

Sections V-D-V-F analyze dynamic solutions: in Sec. V-D,
we report hardware-agnostic results with all dynamic policies;
in Sec. V-E, we discuss the impact of execution order on
dynamic ensembles; lastly, in Section V-F, we report the
results obtained deploying all the dynamic and static models
that are Pareto optimal in terms of scoring metric (Accuracy or
F1) versus memory or time complexity. All deployments use
our automated code generation tool, and target the GAP8 [20]
SoC introduced in Section II-C. We set both the cluster and the
fabric controller clock frequencies to 100 MHz. The inference
runs entirely on the cluster cores.

C. Static Inference Results

In this section, we report the results of the grid search for
static RFs and GBTs on the three target tasks, with the goal
of analyzing the trade-offs among the two types of models.

1) Ensembles quantization: Figure 6 shows the models on
the score vs. memory occupation Pareto front extracted from
the validation set at different bit-widths for inputs/thresholds
(Binput) and outputs (Bleaves) and scored on the test sets.
For all datasets, we notice that points obtained with 8-bit
output quantization are never on the global Pareto front for
GBT, with Backblaze models incurring a F1 drop so large
that they are omitted from the figure for easier visualiza-
tion. This is probably due to the wider ranges of the GBT
outputs. On the contrary, 8/16-bit inputs and 16-bits outputs
are generally achieving the best memory versus score trade-
offs. Concerning RFs, fewer bits are generally required, since
leaf nodes store probabilities, with narrower ranges. In this
case, 8-bit quantization is often enough, both for inputs and
outputs. The only exception is represented by Backblaze,
where 8-bit quantization causes sharp decreases in F1 score.
For both types of models, we observe that 32-bit ensembles
are rarely on the Pareto fronts. We impute this behavior to the
combination of: i) the regularization effect of quantization,
which, as already observed in Neural Networks [23], can
lead to better generalization, and ii) the significant increase in

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 10

�✁✂✄☎✁ ✆☎✝✞✟✂

✠✡☛☞✌✍✎✏✑✠✒✓✔✕✓✖ ✗✏

✠✡☛☞✌✍✎✏✑✠✒✓✔✕✓✖ ✗✘✙

✠✡☛☞✌✍✎✏✑✠✒✓✔✕✓✖ ✗✚✛

✠✡☛☞✌✍✎✘✙✑✠✒✓✔✕✓✖ ✗✏

✠✡☛☞✌✍✎✘✙✑✠✒✓✔✕✓✖ ✗✘✙

✠✡☛☞✌✍✎✘✙✑✠✒✓✔✕✓✖ ✗✚✛

✠✡☛☞✌✍✎✚✛✑✠✒✓✔✕✓✖ ✗✏

✠✡☛☞✌✍✎✚✛✑✠✒✓✔✕✓✖ ✗✘✙

✠✡☛☞✌✍✎✚✛✑✠✒✓✔✕✓✖ ✗✚✛

Fig. 6: Pareto front of score vs. memory occupation for ensembles with quantized inputs (Binput) and outputs (Bleaves) on
the validation set scored on the test set.

memory that 32-bit models incur, leading rapidly to exceeding
the L2 of the target device.

2) RF vs GBT comparison: Fig. 6 also shows the global
static Pareto fronts in the scoring metric versus memory
occupation space. Specifically, we extract the Pareto points
from the validation set, reporting then their score on the
test set. On all datasets, we observe that for lower memory
footprints (less than 40/150 kB, depending on the task), GBTs
tend to outperform RFs, achieving higher accuracy for the
same space occupation. Vice versa, RFs outperform GBTs
under less tight constraints, while also reaching the highest
score values for models fitting GAP8’s memory on all tasks.
On the Ninapro DB1 dataset, for S1, RFs reach up to 77.05%
of balanced accuracy (vs 72.64% of GBTs), while for S2, they
achieve 74.98% of accuracy (vs 69.56%). On Backblaze, RFs
achieve a maximum F1 score of 79%, compared to the 66%
achieved by the best GBT model; Lastly, for UniMiB-SHAR,
RFs obtain a 2% higher maximum accuracy (67% vs 65%), but
GBTs perform significantly better in the low-memory regime
(e.g., the smallest GBT reaching 52% requires 4x less memory
than the smallest RF achieving the same score). This trend is a
direct effect of the structure of the two model types; GBTs do
not need an external leaves array to store the probability of all
the output classes, as discussed in Section IV, thus requiring
less memory. This saving is more evident for smaller models,
in which the LEAVES array size is comparable to the one of
the NODES structure.

Fig. 7 shows the trade-off between the scores achieved by
the models and the number of visited nodes per inference,
averaged on all input samples. We use this metric as an
estimate of the time and energy complexity for an inference,
more accurate than just counting the number of DTs, since our
models also have varying depths. The Pareto optimal models

shown in this figure are in general distinct from those in
Figure 6. In contrast to memory occupation, static RFs always
outperform static GBTs in terms of time complexity, achieving
gains ranging from 2× to 45× at iso-accuracy for Ninapro,
and from 4× to 30× for UniMiB-SHAR. This is because, each
GBT estimator includes one regression tree per class (vs. a
single classification tree for RFs). Only on hard disk failure
detection, which is indeed the task with the smallest number
of classes (two), the trend is similar to the memory one.

Overall, these results show that while GBTs are generally
outperformed in terms of inference time complexity, they are
competitive for small memory budgets. For this reason, we
explore dynamic inference for both types of ensembles.

D. Dynamic Inference: Hardware-agnostic Results

In this section, we discuss the results obtained with our
proposed dynamic inference policies (Agg. Max and Agg.
Score-Margin), comparing them against the static models
discussed in the previous section and against three state-of-the-
art dynamic policies, namely Max, Score-Margin, and Quit-
When-You-Can (QWYC). Specifically, the comparison is done
following the setup described in Section V-B, and reported in
terms of accuracy versus the average number of visited nodes
as a proxy for time/energy complexity, since the goal of early-
stopping adaptive models is precisely to reduce the average
latency or energy consumed per input.

Table I reports the details of the models used as a starting
point to construct dynamic ensembles, i.e., the rightmost
models of the static Pareto curves of Fig. 7. For each model,
we report the maximum depth of the trees, the number
of estimators, the average number of visited nodes on the
test set, the quantization bit-width used for inputs/thresholds
(Binput) and leaves probabilities (Bleaves), the score (Bal.

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 11

Dataset Depth #VisitedNodes #Estimators Binput Bleaves Score [%] Memory [kB]
GBTs

Ninapro 5.9 [±0.7] 3060 [±387] 37[±3.5] 17[±10] 20[±9] 75[±6] 199.5[±65]
Backblaze 15 128.53 9 16 16 66 226
UniMiB-SHAR 8 2987 22 8 16 65 363

RFs
Ninapro 13.8 [±1.28] 348 [±81] 31.8 [±7] 16 [±9.5] 12.4 [±4.5] 77 [±6] 335.83 [±97]
Backblaze 38 155 9 16 32 79 308
UniMiB-SHAR 15 136 10 32 8 67 292

TABLE I: Static RFs/GBTs used as a starting point to construct dynamic ensembles.

�✁✂✁✄☎ ✆✝

�✁✂✁✄☎ ✞✟✠

✡✂☛

�☎☞✌✍✎✡✂✌✏✄✑

✒✓✔✕ ☞✌✖✍✌✍✖

✒✓✔✕ ✗✑☞✌✖✍✌✍✖

✘✏✏✙ ✡✂☛

✘✏✏✙ �☎☞✌✍✎✡✂✌✏✄✑

Fig. 7: Dynamic and static ensembles Pareto fronts obtained on the validation set and scored on the test set with batch B = 1.

Accuracy or F1), and the memory occupation. For Ninapro,
we report the average results over the 27 subjects, with the
standard deviation in square brackets. Note that the best
score is achieved with different depths, numbers of trees, and
quantization precisions for different tasks and ensemble types,
demonstrating that all parameters explored during the grid
search are critical.

Figure 7 compares eight different families of models: on
the top row, we compare static GBTs (blue curve) with
6 different adaptive policies, while on the bottom one, we
repeat the comparisons for RFs. All the adaptive Pareto curves
are obtained by applying an early-stopping policy on top of
the “seed” models from Table I. All points come from the
same seed, simply changing the early stopping threshold th
(whereas, for static models, each point is an entirely differ-
ent RF/GBT model). We report the results of five different
dynamic inference policies. Namely, we consider the state-
of-the-art Max and Score Margin scores from Section IV-A in
their native form, which uses only the probabilities of the latest
executed classifier (st and smt, labelled “Max” and “Score-
Margin” respectively) and in our proposed aggregated variants
(St and SM t, labelled “Agg. Max” and “Agg. Score-Margin”).
Further, we also consider the state-of-the-art QWYC adaptive
policy [15], which, however, only applies to the binary hard-
drive failure detection task. In these experiments, we do not
consider batching yet.

On the Ninapro dataset, with dynamic GBTs using our pro-
posed SM t policy, we are able to consistently reduce the num-
ber of visited nodes with respect to static models achieving the
same score. The maximum reduction occurs at 71% (65%)
balanced accuracy for S1 (S2), respectively, where we reduce
the number of visited nodes by 54% (51%). Conversely, the
state-of-the-art adaptive policies fail to achieve the same score,
leading to a reduction in accuracy of 9% (14%). Dynamic RFs
with SM t, instead, obtain their maximum reduction at 73%
(74%) balanced accuracy, cutting the number of visited nodes
of 83% (45%) on the two displayed subjects. Also in this case,
the best pre-existing policy, the Score-Margin, obtains a very
low accuracy of 59% (56%). Over all subjects in the dataset,
we achieve an average maximum reduction of 58.5 [±9]%
with GBTs and 58.8 [±1.2]% with RFs with respect to static
models at iso-score.

On the Backblaze dataset, the maximum gain is 88% for
GBTs and 69% for RFs, obtained at 66% and 73% F1 score. In
this case, the QWYC approach is the best one, given its double
threshold mechanism, which increases its accuracy when a low
number of DTs is employed. On the other hand, the other
pre-existing policy (the Max) leads to significant score drops,
respectively of 6% and 22% with respect to the seed ensemble.
Lastly, for UniMiB-SHAR, we reduce the number of visited
nodes compared to an equally accurate static model by up
to 58% and 41% for GBTs and RFs, respectively, at 63%

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 12

and 66% balanced accuracy scores, outperforming the best
existing adaptive policy (the Score-Margin), which achieves a
maximum accuracy of 55% and 52%.

Besides the aforementioned savings, an additional key ben-
efit of dynamic solutions, compared to static models, is their
flexibility. In fact, the entire Pareto frontiers of Figure 7 can be
obtained by deploying only the seed model and then changing
the value of th (e.g., depending on battery state or another
external trigger). Conversely, the static curve is composed of
tens of different models, each with different hyperparameters,
which can not be simultaneously deployed on the target device
due to memory constraints, thus limiting the choices available
at runtime.

In Table II, we compare the static baseline models (“S”
column) and the best dynamic configurations built on top of
them which are able to maintain the same score metric (“A-
Iso”), or achieve a < 1% score drop (“A-1%”). Note that these
models are using, for each input, a subset of the DTs included
in “S”. At iso-score, for the two ensemble types, we achieve a
reduction in terms of visted nodes of up to 49% for Ninapro,
88% for Backblaze and 41% for UniMiB-SHAR. If we allow a
1% score drop, the savings increase to up to 70% for Ninapro,
89% for Backblaze and 57% for UniMiB-SHAR.

Dataset Model #VisitedNodes #Estimators Policy
GBTs

Ninapro
S. 3060[387] 37[3.5]
A.-Iso 1805[315] 22 [3.73] Agg.SM
A.-1% 1096[191] 13.4[2.6] Agg.SM

Backblaze
S. 128 9
A.-Iso 14.89 1.01 QWYC o.
A.-1% 14.75 1.003 QWYC o.

UniMiB
S. 2987 22
A.-Iso 1766 13.02 Agg.SM
A.-1% 1286 9.48 Agg.SM

RFs

Ninapro
S. 348[81] 31.8[7]
A.-Iso 175[49] 15[3.9] Agg.SM
A.-1% 104[30] 9[2] Agg.SM

Backblaze
S. 156 9
A.-Iso 55 3.03 Agg.Max
A.-1% 17 1.0005 QWYC o.

UniMiB
S. 136 10
A.-Iso 116 8.46 Agg.SM
A.-1% 73 5.37 Agg.SM

TABLE II: Statistics of dynamic models compared to their
seeds at iso-score (A.-Iso) and with a loss of 1% accuracy
(A.-1%). Abbreviations: o.: ordered.

We notice that in all multi-class classification tasks, the best-
performing policy is the proposed aggregated score margin
(SM t). On the other hand, on the binary hard-drive failure
prediction task, where the SM t degenerates in the Agg. Max
(St), the QWYC [15] algorithm with ordering works best for
3 out of 4 cases, except for the iso-score RF, which uses
St. The reason for this is two-fold: first, QWYC uses two
separate confidence thresholds for the positive and negative
classes, which allows it to execute less DTs on average when
predicting that a sample belongs to the “easiest” class, i.e.,
no-failure in this case. Second, for a binary problem, the Agg.
Max and Agg. SM policies become equivalent, as detailed in
Section IV-A, but the former requires fewer operations, thus
obtaining superior trade-offs. Also, notice that the Max and

Score Margin are not present in this table, given that they
always fail to reach the same level of accuracy of static models
and are outperformed by more than 10% by our dynamic
policies. In fact, both approaches are tailored for a cascade of
increasingly accurate classifiers, which is not the case for tree
ensembles of randomly generated week classifiers. Therefore,
being always sub-optimal compared to our new proposed
adaptive policies or to the QWYC algorithm, in the rest of
the work, we removed them from the discussion, and we do
not consider them for deployment.

E. Dynamic Inference: Tree ordering

In this section, we investigate the impact of the execu-
tion order of estimators in dynamic ensembles. The intuitive
assumption is that executing the decision trees (DTs) with
the highest accuracy first would lead to quicker activation of
early stopping policies without affecting accuracy. However,
determining the order of trees based on accuracy is not
straightforward. For example, Figure 7 demonstrates that the
performance of the QWYC-ordered ensemble is inferior to
that of the QWYC-unordered ensemble. This indicates that
the trees achieving the best validation accuracy differ from
those maximizing accuracy on the test data.

Nonetheless, we tested if ordering could improve perfor-
mance for our new policies. Figure 8 shows an example
of the results with the Agg. Score Margin policy, on the
UniMiB-SHAR dataset (corresponding to the purple markers
in the rightmost panels of Fig. 7). We consider 53 different
orderings, including: i) 50 randomly generated permutations,
ii) two greedy ordering algorithms (QWYC-like and Score),
and iii) the original training order. The QWYC-like order is
inspired by [15], sorting the estimators in a way that minimizes
the number of visited nodes needed to reach iso-accuracy
with the static ensemble. The Score order sorts estimators in
descending order of accuracy on the validation set. Each curve
corresponds to a different ordering of the same DTs, and the
different points are generated varying the early-exit threshold.
As shown, none of the proposed “smart” orders outperform
the randomly generated ones, and the original training order
falls in the middle of the multiple random curves.

�✁✂✄☎✆ ✝✞✟✠✟✂✁✡ ☛☞✌✍✎✡✟✏✑ ✒✓☎✞✑

Fig. 8: Example of dynamic ensembles with different execu-
tion orders of the estimators.

However, selecting the best of the 50 random curves is
impossible in practice, because we verified that there is no

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 13

�✁✂✁✄☎ ✆✝✞ ✟✠✡☛ ☞✌✍✎✌✎✍ ✟✠✡☛ ✏✑☞✌✍✎✌✎✍ ✒✓✓✔ ✕✂✖ ✒✓✓✔ �☎☞✌✎✗✕✂✌✓✄✑

Fig. 9: Static and dynamic GBTs Pareto fronts obtained from the validation set and scored on the test set on GAP8. Each
column shows a different batch size.

correlation between the best ordering on the validation set, and
the best one on the test set. Similar results are also obtained
for other benchmarks and policies, although we omit them for
sake of space. Therefore, we conclude that ordering dynamic
ensembles based on their performance on the validation set is
not a sufficiently robust approach for our benchmarks, and use
the natural training order for the rest of our experiments.

F. Dynamic Inference: Deployment Results

Figures 9 and 10 show static Pareto-optimal ensembles
and the dynamic model from Figure 7 when deployed on
GAP8. Specifically, we replace the average number of visited
nodes with the average number of clock cycles per inference
on the target, which correlates with both latency and energy
consumption. In this case, we report results with batch sizes
B = 1, 2, 4 and 8. For each value of B, we limit the number
of cores used to parallelize the execution to C = B for
both static and dynamic models, for the reasons explained
in Section IV-C. The early-exit policy is evaluated after each
batch.

Moving from the previous complexity estimate to the actual
clock cycles reveals a small advantage of GBTs. For these
models, the accumulation of DT’s scores on the shared output
vector is faster, since each tree only produces a scalar versus

a full array of probabilities of M values for RFs (in RFs, a
single DT produces M different class probabilities). Given that
accumulation happens in a critical section, we find that low-
score GBTs outperform low-score RFs on our target, achieving
the same score with lower cycles, contrary to the estimate of
Figure 7. Nonetheless, the general trend is maintained, with
RFs rapidly becoming superior as scores increase.

For batch sizes up to B = 4, dynamic models consistently
outperform static solutions for a big portion of the Pareto
curve. In fact, with less parallelization, the overhead of the
early-stopping mechanism is low w.r.t the execution of the
static model, leading to large savings. At B = 4, on the
Ninapro dataset, we obtain the maximum cycles reduction at
73.9% (74%) balanced accuracy for S1 (S2), respectively. With
a dynamic RF exploiting the aggregated score margin (SM t)
policy, we save 71.8% (27.1%) of the cycles compared to the
static RF at iso-score. On the Backblaze dataset, the maximum
gain is instead obtained with a GBT at 66.8% F1 score, saving
36.6% of the cycles. Lastly, on UniMiB-SHAR, an adaptive
GBT reaches 63.4% balanced accuracy, with 47.7% fewer
cycles compared to the static GBT achieving the same score.

On the contrary, with B = 8, the introduced overhead
becomes significant w.r.t the fast and highly-parallel execution
of the ensemble. In this case, only a reduced set of adaptive

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 14

�✁✂✁✄☎ ✆✝ ✞✟✠✡ ☛☞✌✍☞✍✌ ✞✟✠✡ ✎✏☛☞✌✍☞✍✌ ✑✒✒✓ ✔✂✕ ✑✒✒✓ �☎☛☞✍✖✔✂☞✒✄✏

Fig. 10: Static and dynamic RFs Pareto fronts obtained from the validation set and scored on the test set on GAP8. Each
column shows a different batch size.

models are Pareto optimal. Thus, a general conclusion is that
the effectiveness of dynamic early-stopping ensembles reduces
with the available cores. However, compared to the most
accurate static models, we still obtain large cycle reductions
without loss of accuracy even at B = 8.

Table III reports the cycles, energy, and latency results
achieved by the “seed” static models and by two dynamic
models, namely the fastest/most efficient ones that achieve
the same score, or a score drop of less than 1%. All models
reported refer to the curves with B = C = 8. The table also
analyzes in detail the effects of parallelization, providing a
breakdown of the cycle counts for the static “seed” models and
for the various dynamic models, both when running on 8 cores,
and when the same models are executed with B = C = 1.
For each of the 18 ensembles, we report the average cycles
for tree execution (Trees C.), probability accumulation (Acc.
C.), and policy computation (Policy C.), as well as the total
cycles (Total C.). Additionally, for the 8-core case, we also
include energy and latency results. Comparing the C = 1 and
C = 8 configurations, we observe speed-ups ranging from
3.15× to 7.92× for tree execution. The suboptimal speed-
up is influenced by two factors: the imbalance between trees
and the leftover trees executed in the last batch. For example,
when executing 9 trees, the first 8 trees are parallelized, while

the last one is executed individually, resulting in a maximum
speed-up of 9

2 = 4.5×. It is important to note that only the tree
inference section of the ensemble execution is parallelized, as
described in Algorithm 4 and 5. However, the table also shows
a speed-up in the computation of the policy cycles. This is due
to the batch size being equal to the number of cores (B = C),
resulting in the policy being executed C× fewer times. Also
in this case, the speed up is affected by the leftover trees. The
total speed-up on 8 cores ranges from 2.29× to 7.07×, since
it depends both on the parallel tree inference section and on
the impact of the sequentially executed accumulation phase.

Overall, when considering 8-core execution we achieve iso-
score reductions in terms of latency and energy of up to
41.7% for Ninapro DB1, 35.2% for Backblaze, and 37.9%
for UniMiB-SHAR. The maximum gains are obtained by a RF
with the SM t policy for Ninapro DB1, and GBTs with St and
SM t policies for Backblaze and UniMiB-SHAR, respectively.
If we allow a score loss of 1% compared to the seed model,
the gains for the three datasets improve to 60%, 50.6%, and
46.5%, respectively.

VI. CONCLUSIONS

In this work, we have studied the effectiveness of early-
stopping dynamic inference for RFs/GBTs in real-world IoT

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 15

1 CORE 8 CORES
Dataset Model Trees C. Acc. C. Policy C. Total C. Trees C. Acc. C. Policy C. Total C. E. Lat. Policy

GBTs

Ninapro
S. 169005 9324 n.a. 178329 21330 (7.92×) 9324 n.a. 30654 (5.81×) 15.63 30.65
A.-Iso 86878 7700 1496 94578 11950 (7.27×) 7700 204 (7.33×) 19854 (4.76×) 10.13 19.85 Agg. SM
A.-1% 52233 4690 911 56923 8381 (6.23×) 4690 136 (6.69×) 13207 (4.31×) 6.73 13.21 Agg. SM

Backblaze
S. 7105 162 n.a. 7267 1436 (4.95×) 162 n.a. 1598 (4.54×) 0.81 1.60
A.-Iso 4624 25 50 4699 985 (4.69×) 25 25 (2.0×) 1035 (4.54×) 0.53 1.04 Agg. Max
A.-1% 4624 25 50 4699 985 (4.69×) 25 25 (2.0×) 1035 (4.54×) 0.53 1.04 Agg. Max

UniMiB
S. 193868 2992 n.a. 196860 24844 (7.80×) 2992 n.a. 27836 (7.07×) 14.20 27.84
A.-Iso 75324 5533 1250 82107 11573 (6.51×) 5533 192 (6.51×) 17298 (4.74×) 8.82 17.30 Agg. SM
A.-1% 52106 4029 910 57045 10685 (4.88×) 4029 192 (4.73×) 14906 (3.83×) 7.60 14.91 Agg. SM

RFs

Ninapro
S. 22055 6720 n.a. 28775 2892 (7.62×) 6720 n.a. 9612 (2.99×) 4.90 9.61
A.-Iso 12580 3150 1020 16750 2316 (5.43×) 3150 136 (7.5×) 5602 (2.99×) 2.86 5.60 Agg. SM
A.-1% 9007 1890 612 11509 1823 (4.94×) 1890 136 (4.5×) 3849 (2.99×) 1.96 3.85 Agg. SM

Backblaze
S. 8676 162 n.a. 8838 1941 (4.47×) 162 n.a. 2103 (4.20×) 1.07 2.10
A.-Iso 6289 75 75 6439 1433 (4.39×) 75 25 (3.0×) 1533 (4.20×) 0.78 1.53 Agg. Max
A.-1% 4300 25 35 4360 978 (4.40×) 25 35 (1.0×) 1038 (4.20×) 0.53 1.04 QWYC u.

UniMiB
S. 9400 3700 n.a. 13100 2046 (4.59×) 3700 n.a. 5746 (2.28×) 2.93 5.75
A.-Iso 7851 3130 643 11624 1794 (4.38×) 3130 152 (4.23×) 5076 (2.29×) 2.59 5.08 Agg. SM
A.-1% 8960 1986 188 11134 2841 (3.15×) 1986 35 (5.37×) 4862 (2.29×) 2.48 4.86 Agg. Max

TABLE III: Models with B = 1 and with maximum parallelization (B = 8) deployed on GAP8. Abbreviations, C.: cycles,
Acc.: accumulation, E.: energy, Lat.: latency, u.: unordered.

systems. Namely, thanks to a tool that generates efficient
inference code automatically, we have deployed optimized
static and dynamic tree ensembles, that support parallelization
and data quantization, on a multi-core SoC with a complex
memory hierarchy. We benchmarked several adaptive policies,
finding that the proposed Aggregated Score Margin obtains the
best results for multi-class classification problems, although
the improvement with respect to the other proposed approach
(Aggregated Max) is often small. Thanks to the proposed
low-cost early stopping policies and batching mechanism, we
have shown that we can mitigate the overheads of dynamic
inference, which otherwise tend to increase with parallelism.
On three IoT-relevant benchmarks, and using all 8 cores
available, we have shown that the average energy consumption
per inference can be reduced by up to 35.2-41.7% with respect
to a static ensemble, while preserving the same accuracy. Ad-
ditionally, the obtained dynamic system is extremely flexible,
and permits to easily change its working point (in terms of
accuracy and energy) by acting on a single tuning parameter.
In our future work, we plan to explore additional lightweight
early stopping policies for edge devices, e.g., considering a
running mean of scores rather than a simple aggregation,
and focus on optimizing the execution of small adaptive tree-
based models for even smaller platforms, with tighter memory
constraints.

REFERENCES

[1] F. Daghero et al., “Ultra-compact binary neural networks for human
activity recognition on risc-v processors,” in Proceedings of the 18th
ACM International Conference on Computing Frontiers, 2021, pp. 3–
11.

[2] A. Burrello et al., “Predicting Hard Disk Failures in Data Centers Using
Temporal Convolutional Neural Networks,” in Euro-Par 2020: Parallel
Processing Workshops, ser. Lecture Notes in Computer Science, B. Balis
et al., Eds. Cham: Springer International Publishing, 2021, pp. 277–
289.

[3] F. Manzouri et al., “A comparison of machine learning classifiers
for energy-efficient implementation of seizure detection,” Frontiers in
systems neuroscience, vol. 12, p. 43, 2018.

[4] V. Sze et al., “Efficient Processing of Deep Neural Networks: A Tutorial
and Survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329,
2017.

[5] W. Shi et al., “Edge Computing: Vision and Challenges,” IEEE Internet
of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[6] Z. Zhou et al., “Edge Intelligence: Paving the Last Mile of Artificial
Intelligence With Edge Computing,” Proceedings of the IEEE, vol. 107,
no. 8, pp. 1738–1762, 2019.

[7] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[8] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[9] E. Tabanelli et al., “Dnn is not all you need: Parallelizing non-
neural ml algorithms on ultra-low-power iot processors,” arXiv preprint
arXiv:2107.09448, 2021.

[10] R. Shwartz-Ziv and A. Armon, “Tabular data: Deep learning is not all
you need,” Information Fusion, vol. 81, pp. 84–90, 2022.

[11] L. Breiman et al., “Classification and regression trees (wadsworth,
belmont, ca),” ISBN-13, pp. 978–0 412 048 418, 1984.

[12] F. Daghero et al., “Adaptive random forests for energy-efficient inference
on microcontrollers,” in 2021 IFIP/IEEE 29th International Conference
on Very Large Scale Integration (VLSI-SoC), 2021, pp. 1–6.

[13] T. Gao and D. Koller, “Active Classification based on Value
of Classifier,” in Advances in Neural Information Processing
Systems 24, J. Shawe-Taylor et al., Eds. Curran Associates, Inc.,
2011, pp. 1062–1070. [Online]. Available: http://papers.nips.cc/paper/
4340-active-classification-based-on-value-of-classifier.pdf

[14] A. G. Schwing et al., “Adaptive random forest — how many “experts”
to ask before making a decision?” in CVPR 2011, 2011, pp. 1377–1384.

[15] S. Wang et al., “Quit when you can: Efficient evaluation of ensembles
by optimized ordering,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), vol. 17, no. 4, pp. 1–20, 2021.

[16] O. Z. Maimon and L. Rokach, Data mining with decision trees: theory
and applications. World scientific, 2014, vol. 81.

[17] STMicroelectronics, “inemo inertial module: always-on 3d accelerom-
eter and 3d gyroscope,” Website, 2019, www.st.com/resource/en/
datasheet/lsm6dsox.pdf.

[18] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] A. Waterman et al., “The risc-v instruction set manual. volume 1: User-
level isa, version 2.0,” California Univ Berkeley Dept of Electrical
Engineering and Computer Sciences, Tech. Rep., 2014.

[20] E. Flamand et al., “Gap-8: A risc-v soc for ai at the edge of the iot,”
in 2018 IEEE 29th International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 2018, pp. 1–
4.

[21] D. Anguita et al., “Human activity recognition on smartphones using a
multiclass hardware-friendly support vector machine,” in International
workshop on ambient assisted living. Springer, 2012, pp. 216–223.

[22] F. Daghero et al., “Energy-efficient deep learning inference on edge
devices,” in Hardware Accelerator Systems for Artificial Intelligence
and Machine Learning, ser. Advances in Computers, S. Kim and G. C.
Deka, Eds. Elsevier, 2021, vol. 122, pp. 247–301.

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 16

[23] B. Jacob et al., “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 06
2018.

[24] D. Jahier Pagliari et al., “Dynamic Bit-width Reconfiguration for
Energy-Efficient Deep Learning Hardware,” in Proceedings of the
International Symposium on Low Power Electronics and Design, ser.
ISLPED ’18. New York, NY, USA: ACM, 2018, pp. 47:1—-47:6.
[Online]. Available: http://doi.acm.org/10.1145/3218603.3218611

[25] H. Tann et al., “Runtime configurable deep neural networks for energy-
accuracy trade-off,” in Proceedings of the Eleventh IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis - CODES ’16, 2016, pp. 1–10. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2968456.2968458

[26] F. Daghero et al., “Human activity recognition on microcontrollers
with quantized and adaptive deep neural networks,” ACM Trans.
Embed. Comput. Syst., vol. 21, no. 4, aug 2022. [Online]. Available:
https://doi.org/10.1145/3542819

[27] E. Park et al., “Big/little deep neural network for ultra low power
inference,” in 2015 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2015, pp. 124–132.
[Online]. Available: http://ieeexplore.ieee.org/document/7331375/

[28] J. Yu et al., “Slimmable Neural Networks,” 2018.
[29] M. V. Ngo et al., “Contextual-Bandit Anomaly Detection for IoT Data

in Distributed Hierarchical Edge Computing,” 2020.
[30] “Treelite: model compiler for decision tree ensembles.” [Online].

Available: https://treelite.readthedocs.io/en/latest/
[31] D. Morawiec, “sklearn-porter,” transpile trained scikit-learn estimators

to C, Java, JavaScript and others. [Online]. Available: https:
//github.com/nok/sklearn-porter

[32] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[33] E. Tabanelli et al., “Optimizing random forest-based inference on risc-
v mcus at the extreme edge,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 11, pp. 4516–
4526, 2022.

[34] C. Guo et al., “On Calibration of Modern Neural Networks,” CoRR, vol.
abs/1706.0, 2017. [Online]. Available: http://arxiv.org/abs/1706.04599

[35] P. Houshmand et al., “Diana: An end-to-end hybrid digital and analog
neural network soc for the edge,” IEEE Journal of Solid-State Circuits,
vol. 58, no. 1, pp. 203–215, 2022.

[36] “Gap9.” [Online]. Available: https://greenwaves-technologies.com/
gap9 iot application processor/

[37] A. Burrello et al., “Dory: Automatic end-to-end deployment of real-
world dnns on low-cost iot mcus,” IEEE Transactions on Computers,
vol. 70, no. 8, pp. 1253–1268, 2021.

[38] M. Atzori et al., “Building the ninapro database: A resource for the
biorobotics community,” in 2012 4th IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomechatronics (BioRob).
IEEE, 2012, pp. 1258–1265.

[39] “Backblaze Hard Drive,” https://www.backblaze.com/b2/hard-drive-test-
data.html.

[40] D. Micucci et al., “Unimib shar: A dataset for human activity recognition
using acceleration data from smartphones,” Applied Sciences, vol. 7,
no. 10, p. 1101, 2017.

Francesco Daghero is a PhD student at Politecnico
di Torino. He received a M.Sc. degree in com-
puter engineering from Politecnico di Torino, Italy,
in 2019. His research interests concern embedded
machine learning and Industry 4.0.

Alessio Burrello received his M.Sc. and Ph.D de-
grees in Electronic Engineering at the Politecnico of
Turin, Italy, and University of Bologna, respectively,
in 2018 and 2023. He is currently a research assis-
tant at Politecnico di Torino. His research interests
include parallel programming models for embed-
ded systems, machine and deep learning, hardware-
oriented deep learning, and code optimization for
multi-core systems.

Enrico Macii is a Full Professor of Computer Engi-
neering with the Politecnico di Torino, Torino, Italy.
He holds a Laurea degree in electrical engineering
from the Politecnico di Torino, a Laurea degree in
computer science from the Universita’ di Torino,
Turin, and a PhD degree in computer engineering
from the Politecnico di Torino. His research interests
are in the design of digital electronic circuits and
systems, with a particular emphasis on low-power
consumption aspects energy efficiency, sustainable
urban mobility, clean and intelligent manufacturing.

He is a Fellow of the IEEE.

Paolo Montuschi (M’90-SM’07-F’14)
(paolo.montuschi@polito.it) is a full professor
with the Department of Control and Computer
Engineering, Rector’s Delegate for Information
Systems, and a past member of the Board of
Governors at Politecnico di Torino, Italy. His
research interests include computer arithmetic,
computer architectures, and intelligent systems.
He is an IEEE Fellow, a life member of the
International Academy of Sciences in Turin, and of
HKN, the Honor Society of IEEE. He serves as the

Editor-in-Chief of the IEEE Transactions on Emerging Topics in Computing,
the 2020-23 Chair of the IEEE TAB/ARC, and a member of the IEEE
Awards Board. Previously, he served in a number of positions, including the
Editor-in-Chief of the IEEE Transactions on Computers (2015-18), the 2017-
20 IEEE Computer Society Awards Committee Chair, a Member-at-Large of
IEEE PSPB (2015-20), and as the Chair of its Strategic Planning Committee
(2019-20). More information at http://staff.polito.it/paolo.montuschi

Massimo Poncino is a Full Professor of Computer
Engineering with the Politecnico di Torino, Torino,
Italy. His current research interests include various
aspects of design automation of digital systems,
with emphasis on the modeling and optimization
of energy-efficient systems. He received a PhD in
computer engineering and a Dr.Eng. in electrical
engineering from Politecnico di Torino. He is a
Fellow of the IEEE.

JOURNAL XXXX, VOL. XX, NO. XX, MONTH XXXX 17

Daniele Jahier Pagliari received the M.Sc. and
Ph.D. degrees in computer engineering from the
Politecnico di Torino, Turin, Italy, in 2014 and 2018,
respectively. He is currently an Assistant Professor
with the Politecnico di Torino. His research interests
are in the computer-aided design and optimization
of digital circuits and systems, with a particular
focus on energy-efficiency aspects and on emerging
applications, such as machine learning at the edge.

