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Marine IoT Systems with Space-Air-Sea Integrated
Networks: Hybrid LEO and UAV Edge Computing

Sooyeob Jung, Seongah Jeong, Jinkyu Kang, and Joonhyuk Kang

Abstract—Marine Internet of Things (IoT) systems have grown
substantially with the development of non-terrestrial networks
(NTN) via aerial and space vehicles in the upcoming sixth-
generation (6G), thereby assisting environment protection, mili-
tary reconnaissance, and sea transportation. Due to unpredictable
climate changes and the extreme channel conditions of maritime
networks, however, it is challenging to efficiently and reliably
collect and compute a huge amount of maritime data. In
this paper, we propose a hybrid low-Earth orbit (LEO) and
unmanned aerial vehicle (UAV) edge computing method in space-
air-sea integrated networks for marine IoT systems. Specifically,
two types of edge servers mounted on UAVs and LEO satellites
are endowed with computational capabilities for the real-time
utilization of a sizable data collected from ocean IoT sensors.
Our system aims at minimizing the total energy consumption
of the battery-constrained UAV by jointly optimizing the bit
allocation of communication and computation along with the
UAV path planning under latency, energy budget and opera-
tional constraints. For availability and practicality, the proposed
methods were developed for three different cases according to
the accessibility of the LEO satellite, “Always On,” “Always
Off” and “Intermediate Disconnected”, by leveraging successive
convex approximation (SCA) strategies. Via numerical results,
we verify that significant energy savings can be accrued for
all cases of LEO accessibility by means of joint optimization
of bit allocation and UAV path planning compared to partial
optimization schemes that design for only the bit allocation or
trajectory of the UAV.

Index terms — Marine networks, Internet of Things (IoT), edge
computing, low-Earth orbit (LEO) satellite, unmanned aerial
vehicles (UAVs), successive convex approximation (SCA).

I. INTRODUCTION

MARINE Internet of Things (IoT) systems have evolved
significantly with the rapid development of non-

terrestrial network (NTN) technologies composed of space
and airborne platforms to collect and process a variety of
ocean data. The vast amount of ocean data plays an important
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role in marine monitoring, which contributes to environ-
mental protection, natural disaster prevention, oceanographic
research, mineral exploration, military surveillance, etc. [1]-
[3]. In particular, continuous monitoring of various physical
phenomena of marine networks, such as sounds, vibrations and
images, requires high-precision and wide-range measurements.
Currently, three types of marine monitoring platforms are
being investigated according to the relay node: shore-based
radar, survey vessels and satellites [1], most of which have the
following procedures. By using existing information communi-
cation technologies, the marine data collected from ocean IoT
sensors is transferred to a ground cloud server with sufficient
computation storage capacity. The ground cloud server stores
and analyzes the collected data, thereby managing various ap-
plications based on ocean utilization and exploration. In shore-
based radar systems installed on offshore buoys and automatic
weather stations located on the coast or islands, there are
difficulties in installation and maintenance due to their spatial
constraints. Meanwhile, survey vessel-based platforms have
temporal constraints, which limit the time for data collection.
In addition, unexpected loss and defects of collected data may
occur in point measurements attained by platforms with shore-
based radar or survey vessel platforms due to extreme channel
environments and unpredictable climate changes in the ocean
[2].

To address these spatial and temporal limitations, satellite-
based monitoring can be an alternative that provides full
coverage of the area of interest with one or multiple satellites.
With the participation of global companies in the satellite
business such as SpaceX, Amazon, and Telesat [4], low-
Earth orbit (LEO) satellites are gaining more attention than
ever before, and cost-effective easy-to-deploy large-scale satel-
lite networks are being established. In addition, conventional
satellite operators such as Spire, Kepler, Fleet, Lacuna space
and Eutelsat, are preparing to provide satellite IoT services
with global coverage [5], [6]. Until recently, satellites have
mostly been adopted as a relay with terrestrial networks;
however, for future 6G IoT services, they can operate as
functional network components, e.g., computing servers [7]-
[12]. Traditionally, the critical drawback of satellite-assisted
networks is the latency resulting from round-trip delays due
to the IoT sensor-satellite-terrestrial station link as well as
the rapidly increasing volume of transmitted data. Therefore,
it is beneficial to bring computing functions in the satellite
to handle processing capabilities of the collected data, rather
than sending it to the ground cloud server. In the following
section, we briefly summarize the recent research activities
that focus on hierarchical integrated networks using satellites
as computing servers.
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A. Related Works

Satellite-assisted edge computing systems have been ac-
tively studied in space-ground integrated networks [7]-[13],
space-air-ground integrated networks (SAGIN) [14]-[21] and
space-air-sea-based non-terrestrial networks (SAS-NTN) [22],
[23]. In particular, the authors in [7] propose a three-tier
computation architecture consisting of ground users, LEO
satellites and ground servers to minimize the total energy
consumption of the system. In [8], network slice scheduling
for satellite-assisted computing architecture is studied, where
satellite servers and ground servers are considered for IoT
applications. Although satellite-assisted edge computing can
provide real-time offloading services to large areas, such as
the ocean, it still faces several practical problems. For long-
distance communication with a satellite, more transmit power
and larger antenna size are preferred at ground user terminals,
which is costly and spatially-limited in real applications.
Moreover, the transceiver for satellite communications must
be robustly designed against severe fading due to atmospheric
turbulence.

Unmanned aerial vehicles (UAVs) can be adopted to provide
enhanced coverage for overcoming path loss and fading issues
of satellite-assisted edge computing. UAVs can receive and
compute data in close proximity to ocean IoT sensors, or can
relay the data to the cloud server for computing. Recently,
UAV-assisted satellite IoT networks have been suggested in
several studies [14], [15]. Cheng et al. [14] propose offloading
systems of remote IoT applications in the space-air-ground
scenario, where UAVs provide computational capability to
nearby users as edge servers, while satellites relay the of-
floaded data to the ground cloud server. In [15], LEO satellite-
assisted UAV data collection for IoT sensors is proposed,
where the delay-tolerant data and delay-sensitive data are
transferred to the ground cloud server via UAV and LEO
satellite, respectively.

As briefly reviewed above, most of existing works on
hierarchical offloading systems in the integrated space and
air networks assume terrestrial infrastructures, which may
result in latency caused by the extreme channel variation of
marine IoT systems. Furthermore, even though space or aerial
computing platforms are considered, most studies assume full
accessibility of the LEO satellite during mission time, which
may not be guaranteed according to the orbit of revolution of
the LEO satellite under insufficient deployments. To perform
real-time data mining and analysis of ocean data in marine
IoT systems, the use of aerial/space moving cloudlets play an
important role considering their availability.

B. Main Contributions

In this paper, we focus on a marine IoT system with
space-air-sea integrated networks, as illustrated in Fig. 1,
where both UAV and LEO satellite-mounted cloudlets are
deployed to offer computing opportunities. In the proposed
system, a number of ocean IoT sensors are distributed only to
collect abundant marine information with limited battery, and
transmit the collected data to a designated computing server
among UAV or LEO-mounted cloudlets so as to satisfy the
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Fig. 1: Marine IoT system model with a space-air-sea inte-
grated network using hybrid LEO and UAV edge computing
for real-time data utilization.

system design criterion. Here, the LEO satellite is assumed
to have a higher computational capability to process the task
than that of the UAV. When the IoT data size exceeds the
computation capacity of the UAV, the computational task is
totally offloaded to the LEO satellite. The computation results
executed at LEO are retransmitted to the UAV, are stored
until it arrives over the end user, and is finally sent to the
end user. To this end, we tackle the key design problem of
jointly optimizing the bit allocation for communication and
computing and the trajectory of the UAV, with the aim of
minimizing its energy consumption. The main contributions
of this paper are summarized as follows:

• For marine IoT systems with extreme channel environ-
ments and unpredictable climate changes, we propose
a hybrid LEO and UAV edge computing method. The
scheduling between UAV and LEO satellite-mounted
cloudlets depends on the size of the offloaded ocean data
and the LEO connection status.

• For practicality and usability, we consider three different
scenarios according to LEO availability such as “Always
On,” “Always Off” and “Intermediate Disconnected”.
For each case, we develop the joint optimization of bit
allocation required for offloading and UAV path planning.

• The non-convex optimization problems formulated for
three different cases depending on the availability of the
LEO satellite are tackled by means of a successive convex
approximation (SCA) algorithm [24], [25], which can
guarantee the local minimum of the original non-convex
problems by using an efficient iterative algorithm.

The rest of this paper is organized as follows. The system
model is presented in Section II. Section III, IV and V provide
problem formulations and proposed methods for the LEO
access status of “Always On,” “Always Off” and “Intermediate
Disconnected”, respectively. Simulation results are given in
Section VI, and conclusions are summarized in Section VII.
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Fig. 2: Frame structure of orthogonal access for multiple ocean
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II. SYSTEM MODEL

A. Set-up

Fig. 1 illustrates a marine IoT system with a space-air-
sea integrated network using hybrid LEO and UAV edge
computing, where 𝐾 ocean IoT sensors collect marine data
to be entirely transferred to available cloudlets for computing.
The computed results are then designated to an end user. For
real-time data utilization, two types of cloudlets mounted on
the UAV and LEO satellite are considered, between which
the scheduling depends on the UAV computing capability and
LEO accessibility. Specifically, when the collected data size
exceeds the computation capacity of the UAV, the data should
be entirely offloaded to the LEO. The computing capability
of the LEO satellite is assumed to be higher than that of
the UAV. Another major factor for scheduling is whether
the LEO satellite is available or not since its beam coverage
varies according to the orbit of revolution. Here, we consider
three different cases according to the availability of the LEO
satellite during mission time: “Always On,” “Always Off” and
“Intermediate Disconnected”. For each scenario, we developed
the joint optimization of the bit allocation for communication
and computation and the trajectory of the UAV. Depending on
the types of cloudlets, we refer to UAV computing and LEO
computing, where computing of the IoT sensor task is executed
at the UAV and LEO, respectively. In UAV computing, the task
of the IoT sensor 𝑘 is offloaded to the UAV-mounted cloudlet
until the UAV arrives over the end user and the output results
are conveyed to them. In LEO computing, the UAV receives
and relays the offloaded data of the IoT sensor to LEO for the
LEO execution. The computed results at LEO are then sent to
the end user via the UAV when the UAV arrives above them.

For communication links between IoT sensors and the UAV,
and between the UAV and LEO satellite, a frequency division
duplex (FDD) scheme is assumed with equal bandwidth 𝐵 for
the uplink and downlink. Each IoT sensor 𝑘 has the number
𝐼𝑘 of input information bits to be processed. The results for
LEO computing and UAV computing are characterized as the
number 𝑂𝐿

𝑘
and 𝑂𝑈

𝑘
of bits produced per input bit of the IoT

sensor 𝑘 , and the number 𝐶𝐿
𝑘

and 𝐶𝑈
𝑘

of CPU cycles per input
bit for computing, respectively. We assume that all tasks must
be computed within the total mission time 𝑇 . Here, a three-
dimensional Cartesian coordinate system is adopted based on
the metric unit. We assume that the IoT sensor 𝑘 is deployed
at position 𝒑𝐼

𝑘
= (𝑥𝐼

𝑘
, 𝑦𝐼
𝑘
, 𝑎𝑘 ), for 𝑘 ∈ {1, · · ·, 𝐾 + 1}, with

𝑎𝑘 being the average sea surface level, where the position

TABLE I: List of Symbols

Symbol Definition
𝐾 Number of ocean IoT sensors
𝑇 Total mission time
Δ Frame duration
𝑁 Number of frames within 𝑇

ℎ𝑈 , ℎ𝐿 Altitudes of UAV and LEO satellite with respect to
average sea surface level and UAV, respectively

𝑔𝑘,𝑛 , ℎ𝑛 Path loss between the IoT sensor 𝑘 and UAV and
between the UAV and LEO at the 𝑛th frame

𝑔0 Channel gain at reference distance 1 m
𝑇𝑣 Visible time of an LEO satellite
𝑣𝑠 Speed of an LEO satellite
ℎ Height of an LEO satellite orbit
𝜃, 𝜑 Elevation angle and beamwidth of the LEO satellite
𝑀 the gross mass of the UAV
𝒗𝑈𝑛 velocity vector of the UAV at the 𝑛th frame
𝜀 Energy budget of the IoT sensor 𝑘 at each frame
𝐼𝑘 Number of input bits of the IoT sensor 𝑘
𝐸
𝐼 ,𝑈

𝑘,𝑛
Energy consumption for uplink communication at the
IoT sensor 𝑘 at the 𝑛th frame

𝐸𝑈
𝑘,𝑛

, 𝐸𝑈,𝐿
𝑘,𝑛

Energy consumption for computing and uplink com-
munication at the UAV-mounted cloudlet for the IoT
sensor 𝑘 at the 𝑛th frame

𝐸𝑈,𝐸 Energy consumption for downlink communication at
the UAV-mounted cloudlet

𝐸𝐿
𝑘,𝑛

, 𝐸𝐿,𝑈
𝑘,𝑛

Energy consumption for computing and downlink com-
munication at the LEO-mounted cloudlet for the IoT
sensor 𝑘 at the 𝑛th frame

𝐸𝐹𝑛 Energy consumption for a UAV flying at the 𝑛th frame
𝐿
𝐼 ,𝑈

𝑘,𝑛
Number of bits for uplink communication at the IoT
sensor 𝑘 at the 𝑛th frame

𝑙𝑈
𝑘,𝑛
, 𝐿
𝑈,𝐿

𝑘,𝑛
Number of bits for computing and uplink communica-
tion at a UAV-mounted cloudlet for the IoT sensor 𝑘 at
the 𝑛th frame

𝐿𝑈,𝐸 Number of bits for downlink communication at the
UAV-mounted cloudlet

𝑙𝐿
𝑘,𝑛
, 𝐿
𝐿,𝑈

𝑘,𝑛
Number of bits for computing and downlink communi-
cation at the LEO-mounted cloudlet for the IoT sensor
𝑘 at the 𝑛th frame

𝑂𝐿
𝑘
, 𝑂𝑈

𝑘
Number of output bits produced per input bit of the IoT
sensor 𝑘

𝑓 𝐿𝑛 , 𝑓
𝑈
𝑛 CPU frequency at the LEO and UAV-mounted cloudlets

for the 𝑛th frame
𝐶𝐿
𝑘
, 𝐶𝑈
𝑘

CPU cycles per input bit at the LEO and UAV-mounted
cloudlets for the task of the IoT sensor 𝑘

𝛾𝐿 , 𝛾𝑈 Effective switched capacitances of the LEO and UAV,
respectively

𝒑𝐼
𝑘
, 𝒑𝑈𝑛 , 𝒑

𝐿
𝑛 Positions of the IoT sensor 𝑘, UAV and LEO for the

𝑛th frame
𝛼𝑘,𝑛 , 𝛽𝑘,𝑛 Variables to indicate LEO connection and offloading

scheduling of the IoT sensor 𝑘 at the 𝑛th frame
𝑁𝑡 Frame number during LEO disconnection

of the end user is considered with an index of 𝐾 + 1. The
UAV flies along a trajectory 𝒑𝑈 (𝑡) = (𝑥𝑈 (𝑡), 𝑦𝑈 (𝑡), ℎ𝑈 )
with a fixed altitude ℎ𝑈 assumed for system stability, for
0 ≤ 𝑡 ≤ 𝑇 , and the position of the LEO satellite is defined as
𝒑𝐿 (𝑡) = (𝑥𝐿 (𝑡), 𝑦𝐿 (𝑡), ℎ𝑈 + ℎ𝐿) with a fixed altitude ℎ𝑈 + ℎ𝐿 ,
for 0 ≤ 𝑡 ≤ 𝑇 , all the altitudes are measured with respect to
the average sea surface level 𝑎𝑘 . For the multiple access of 𝐾
ocean IoT sensors, orthogonal access is assumed, as shown in
Fig. 2. For tractability, in this paper, the total time duration 𝑇
is divided into 𝑁 frames of duration Δ seconds, each of which
is equally divided as Δ/𝐾 seconds, and is preallocated to
IoT sensors for uplink and downlink communication required
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Fig. 3: Geometric relationship between the ground user and
the LEO satellite.

for offloading. Accordingly, the IoT sensors do not interfere
with each other in the offloading procedure. Moreover, the
information data collected from the IoT sensor 𝑘 at the 𝑛 th
frame is assumed to be entirely computed and transferred to
the designated node within the corresponding frame during
Δ/𝐾 seconds, for 𝑛 ∈ {1, · · ·, 𝑁}, so that the computational
task cannot be partitioned. According to the discretized time
unit, the trajectory of the UAV 𝒑𝑈 (𝑡) and the position of the
LEO satellite 𝒑𝐿 (𝑡) is expressed as 𝒑𝑈𝑛 = (𝑥𝑈𝑛 , 𝑦𝑈𝑛 , ℎ𝑈 ) and
𝒑𝐿𝑛 = (𝑥𝐿𝑛 , 𝑦𝐿𝑛 , ℎ𝑈 + ℎ𝐿), for 𝑛 ∈ N , respectively. The LEO
satellite generally flies at a constant speed along its orbit and
the relative positional coordinates of the LEO and UAV should
vary constantly. For the task mission of marine IoT systems,
the initial location 𝒑𝑈

𝐼
and the final location 𝒑𝑈

𝐹
of the UAV

are assigned to 𝒑𝑈1 and 𝒑𝑈
𝑁+1, respectively, and its maximum

speed constraint is given as

𝒗𝑈𝑛 

 = 

 𝒑𝑈
𝑛+1 − 𝒑𝑈𝑛




Δ

≤ 𝑣max, (1)

where the velocity vector 𝒗𝑈𝑛 of the UAV is defined as
( 𝒑𝑈
𝑛+1 − 𝒑𝑈𝑛 )/Δ, and 𝑣max is its maximum velocity. The overall

system variables and parameters are summarized in Table I.
We assume that communication channels between the IoT

sensors and UAV [16], [26], and between the UAV and LEO
satellite [15], [16] are dominated by line-of-sight (LoS) links.
At the 𝑛th frame, the channel gains for the IoT sensor 𝑘-UAV
link and UAV-LEO link are written as

𝑔𝑘,𝑛 ( 𝒑𝑈𝑛 ) =
𝑔0

(𝑥𝑈𝑛 − 𝑥𝐼𝑘 )
2 + (𝑦𝑈𝑛 − 𝑦𝐼𝑘 )

2 + ℎ𝑈 2
(2)

and

ℎ𝑛 ( 𝒑𝑈𝑛 ) =
𝑔0𝐺

(𝑥𝐿𝑛 − 𝑥𝑈𝑛 )
2 + (𝑦𝐿𝑛 − 𝑦𝑈𝑛 )

2 + ℎ𝐿2
, (3)

respectively, where 𝑔0 represents the channel gain at the
reference distance 1 m, and 𝐺 is an antenna gain for the long-
distance satellite communication consisting of the transmission
antenna gain of the UAV and the receiver antenna gain of
the LEO satellite [15], [27]. In real applications, note that
ℎ𝑛 ( 𝒑𝑈𝑛 ) � 𝑔𝑘,𝑛 ( 𝒑𝑈𝑛 ) is guaranteed. For communication links,
an additive white Gaussian noise is considered with zero mean
and power spectral density 𝑁0 [dBm/Hz].

B. Coverage Model of the LEO Satellite

In this section, we explore the beam coverage model [7],
[28] of an LEO satellite that accounts for the effect of the
orbit of revolution. As shown in Fig. 3, when the LEO satellite
makes an orbit round, the available communication time with
the UAV can be limited, which is referred to as the LEO visible
time window. The length of the visible time window is defined
as

𝑇𝑣 =
𝐿

𝑣𝑠
=

2 (𝑟𝐸 + ℎ) 𝛾
𝑣𝑠

, (4)

where 𝑣𝑠 is the speed of the LEO satellite. 𝐿 is the arc length to
define the coverage where IoT sensors can communicate with
the LEO satellite, and is calculated by 𝐿 = 2 (𝑟𝐸 + ℎ) 𝛾 with
𝑟𝐸 being the radius of Earth, ℎ being the height of the LEO
satellite orbit, and 𝛾 being the angle of the satellite coverage.
In general, due to the very low altitude of a UAV in comparison
to the orbit height, the same visible time window is applied to
the UAV and IoT sensors. The maximum length of the LEO
visible time window can be achieved when 𝛾 = 𝜋. The angle
𝛾 of the satellite coverage is calculated by

𝛾 = cos−1
(
𝑟𝐸

𝑟𝐸 + ℎ
· cos 𝜃

)
− 𝜃, (5)

where 𝜃 and 𝜑 are the elevation angle and the beamwidth
of the satellite, respectively, and are derived as 𝜃 =

cos−1
(
𝑟𝐸+ℎ
𝑠
· cos (𝜃 + 𝜑)

)
and 𝜑 = 𝜋/2 − (𝜃 + 𝛾) with 𝑠

indicating the distance between the IoT sensor and LEO
satellite. We assume that the UAV can fully access the LEO
satellite within the visible time window of 𝑇𝑣 . According to
the availability of LEO communication based on the coverage
model, three different cases can be considered: “Always On,”
“Always Off” and “Intermediate Disconnected”, the details for
which are described below.

1) “Always On” scenario (𝑇 ≤ 𝑇𝑣 ): The first scenario is
when the UAV can communicate with the LEO satellite during
the entire mission time since the total mission time is within
the LEO visible time, i.e., 𝑇 ≤ 𝑇𝑣 . In this scenario, we have
𝛼𝑘,𝑛 = 1 for all 𝑛 ∈ N ; therefore, the computation capability
of the UAV determines whether the UAV or LEO will be used
for computing.

2) “Always Off” scenario (𝑇𝑣 = 0): The second scenario
is when LEO communication is not available during the entire
mission time since the UAV flies outside the beam coverage
of the LEO satellite, i.e., 𝑇𝑣 = 0. In this scenario, we have
𝛼𝑘,𝑛 = 0 for all 𝑛 ∈ N , and only the UAV computing can be
performed. Furthermore, when the offloaded data size exceeds
the UAV computation capability, it is transferred to the end
user via the UAV without computing.

3) “Intermediate Disconnected” scenario (𝑇 > 𝑇𝑣 ): The
final scenario is when LEO connection is lost during the
mission time, since the total mission time is larger than the
LEO visible time, i.e., 𝑇 > 𝑇𝑣 . In this scenario, when 𝑡 ≤ 𝑇𝑣 ,
we have 𝛼𝑘,𝑛 = 1 for 𝑛 ∈ {1, · · ·, 𝑁𝑡 }, with 𝑁𝑡 being the
last frame within 𝑇𝑣 , where both LEO computing and UAV
computing can be performed: that is, 𝛽𝑘,𝑛 ∈ {0, 1}. When
𝑡 > 𝑇𝑣 , 𝛼𝑘,𝑛 = 0 for 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁}, where only UAV
computing is available: that is, 𝛽𝑘,𝑛 = 0. For example, if the
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TABLE II: Three different scenarios according to LEO availability.

Scenario 𝛼𝑘,𝑛 𝛽𝑘,𝑛 Available types of computing

“Always On” (𝑇 ≤ 𝑇𝑣 ) 1, for all 𝑛 ∈ N
0, for all 𝑛 ∈ N UAV Computing

1, for all 𝑛 ∈ N LEO Computing

“Always Off” (𝑇𝑣 = 0) 0, for all 𝑛 ∈ N 0, for all 𝑛 ∈ N UAV Computing

“Intermediate Disconnected” (𝑇 > 𝑇𝑣 ) 1, for 𝑛 ∈ {1, · · ·, 𝑁𝑡 },
0, for 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁 }

0, for 𝑛 ∈ {1, · · ·, 𝑁𝑡 },
0, for 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁 } UAV Computing

1, for 𝑛 ∈ {1, · · ·, 𝑁𝑡 },
0, for 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁 }

LEO Computing →
UAV Computing

LEO connection is lost at 𝑇𝑣 = 𝑇/2, 𝑁𝑡 is defined as 𝑁/2. The
frame data of 𝑛 ∈ {1, · · ·, 𝑁𝑡 } is computed by the LEO or UAV,
while the frame data of 𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁} is computed by
the UAV. The details for these three scenarios are summarized
in Table II.

C. Energy Consumption Model for Offloading

In the proposed hierarchical architecture, IoT sensors and
the UAV are battery-limited, while the available energy of the
LEO satellite is much more sufficient due to its larger size
and mass, which is therefore negligible for the system design.
With the aim of minimizing the total energy consumption of
the UAV, we cover the energy consumption model for compu-
tation, communication and flying required for offloading. Here,
the LEO satellite is assumed to have sufficient battery capacity
compared to the UAV and IoT sensors [7], [13], which is not
reflected in the system design.

1) Computation energy model: First, we define the
amount of computation energy consumption at the LEO and
UAV-mounted cloudlets at the 𝑛th frame for IoT sensor 𝑘 as
[29], [30]

𝐸𝑑𝑘,𝑛 (𝑙
𝑑
𝑘,𝑛) =

𝛾𝑑𝐶𝑑
𝑘
𝑙𝑑
𝑘,𝑛

Δ2

(
𝐾∑︁
𝑘′=1

𝐶𝑑𝑘′ 𝑙
𝑑
𝑘′,𝑛

)2

, (6)

where 𝑑 ∈ {𝐿,𝑈} with 𝐿 indicating the LEO satellite and 𝑈
indicating the UAV; 𝑙𝑑

𝑘,𝑛
is the number of bits to be computed

at the cloudlet and 𝛾𝑑 is the effective switched capacitance of
the cloudlet.

2) Communication energy model: In the proposed system,
the transmit energy consumption from the UAV to LEO at the
𝑛th frame for offloading the task of the IoT sensor 𝑘 is defined
as [26], [31]

𝐸
𝑈,𝐿

𝑘,𝑛
(𝐿𝑈,𝐿
𝑘,𝑛

, 𝒑𝑈𝑛 ) =
𝑁0𝐵Δ/𝐾
ℎ𝑛 ( 𝒑𝑈𝑛 )

(
2
𝐿
𝑈,𝐿
𝑘,𝑛
𝐵Δ/𝐾 − 1

)
, (7)

where 𝐿
𝑈,𝐿

𝑘,𝑛
is the number of uplink bits. At the final

destination of the UAV above the end user, the downlink
communication energy consumption is required so that the
UAV can transmit the computing results accumulated during
flying, which is given as

𝐸𝑈,𝐸 (𝐿𝑈,𝐸 , 𝒑𝑈𝑁+1) =
𝑁0𝐵Δ/𝐾

𝑔𝐾+1,𝑁+1 ( 𝒑𝑈𝑁+1)

(
2
𝐿𝑈,𝐸

𝐵Δ/𝐾 − 1
)
, (8)

where 𝐿𝑈,𝐸 is the number of downlink bits and is the same as
the sum of output bits of the UAV and LEO-mounted cloudlets
as follows:

𝐿𝑈,𝐸 = 𝑂𝑈𝑘

𝑁−2∑︁
𝑛=1

𝑙𝑈𝑘,𝑛+1 +𝑂
𝐿
𝑘

𝑁−4∑︁
𝑛=1

𝑙𝐿𝑘,𝑛+2. (9)

In addition, the transmit energy consumption from the LEO
and IoT sensor 𝑘 to the UAV at the 𝑛th frame is defined as

𝐸
𝐿,𝑈

𝑘,𝑛
(𝐿𝐿,𝑈
𝑘,𝑛

, 𝒑𝑈𝑛 ) =
𝑁0𝐵Δ/𝐾
ℎ𝑛 ( 𝒑𝑈𝑛 )

(
2
𝐿
𝐿,𝑈
𝑘,𝑛
𝐵Δ/𝐾 − 1

)
(10)

and

𝐸
𝐼 ,𝑈

𝑘,𝑛
(𝐿𝐼 ,𝑈
𝑘,𝑛
, 𝒑𝑈𝑛 ) =

𝑁0𝐵Δ/𝐾
𝑔𝑘,𝑛 ( 𝒑𝑈𝑛 )

(
2
𝐿
𝐼 ,𝑈
𝑘,𝑛
𝐵Δ/𝐾 − 1

)
, (11)

where 𝐿
𝐿,𝑈

𝑘,𝑛
is the number of downlink bits transmitted at

the LEO and 𝐿
𝐼 ,𝑈

𝑘,𝑛
is the number of uplink bits transmitted

at the IoT sensor 𝑘 . The energy consumption for reception is
excluded since it is much smaller than the transmission energy
consumption.

3) Flying energy model: Following [32], [33], the flying
energy consumption of the UAV at the 𝑛th frame is written as

𝐸𝐹𝑛 (𝒗𝑈𝑛 ) = 𝜅‖𝒗𝑈𝑛 ‖2, (12)

where 𝜅 = 0.5𝑀Δ and 𝑀 is the mass of the UAV. The flying
energy consumption depends only on the velocity vector 𝒗𝑈𝑛
of the UAV, and the level flight entails no change in the
gravitational potential energy.

Our purpose is to minimize the total energy consumption of
the UAV, which must be calculated as the sum of the energy
consumption of computation, communication and flying:

𝐸 𝑡𝑜𝑡𝑎𝑙𝑘,𝑛 = 𝛼𝑘,𝑛

{
𝛽𝑘,𝑛𝐸

𝑈,𝐿

𝑘,𝑛
(𝐿𝑈,𝐿
𝑘,𝑛

, 𝒑𝑈𝑛 ) + (1 − 𝛽𝑘,𝑛)𝐸𝑈𝑘,𝑛 (𝑙
𝑈
𝑘,𝑛)

}
+ (1 − 𝛼𝑘,𝑛) (1 − 𝛽𝑘,𝑛)𝐸𝑈𝑘,𝑛 (𝑙

𝑈
𝑘,𝑛) + 𝐸

𝐹
𝑛 (𝒗𝑈𝑛 ), (13)

where 𝛼𝑘,𝑛 and 𝛽𝑘,𝑛 are variables for the LEO availability
and scheduling between LEO computing and UAV computing,
respectively, which are given as

𝛼𝑘,𝑛 =

{
1, if LEO communication is available,
0, otherwise,

(14)

𝛽𝑘,𝑛 =

{
1, if LEO computing is performed,
0, if UAV computing is performed.

(15)

Note that the energy consumption 𝐸𝑈,𝐸 for downlink com-
munication with the end user in (8) is excluded from (13)
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since it is constant regardless of optimization. In addition,
LEO computing is considered by 𝛽𝑘,𝑛 = 1 when the input
bits of the IoT sensor 𝑘 exceeds the computation capability of
the UAV: that is,

𝑁∑︁
𝑛=1

𝐿
𝐼 ,𝑈

𝑘,𝑛
>

𝑁∑︁
𝑛=1

(
𝑓𝑈𝑛 ·

Δ

𝐾

)
1
𝐶𝑈
𝑘

, (16)

where 𝑓𝑈𝑛 [CPU cycles/s] is the CPU frequency at the UAV
edge server.

III. OPTIMAL ENERGY CONSUMPTION FOR THE
“ALWAYS ON” SCENARIO

In this section, we formulate an optimization problem and
the proposed algorithm to obtain a solution for the “Always
On” scenario. Depending on the size of the offloaded data,
either LEO computing or UAV computing is selected. As
mentioned above, the total UAV energy consumption 𝐸 𝑡𝑜𝑡𝑎𝑙

𝑘,𝑛

in (13) is rewritten with 𝛼𝑘,𝑛 = 1, for all 𝑛 ∈ N , as

𝐸 𝑡𝑜𝑡𝑎𝑙𝑘,𝑛 = 𝛽𝑘,𝑛𝐸
𝑈,𝐿

𝑘,𝑛
(𝐿𝑈,𝐿
𝑘,𝑛

, 𝒑𝑈𝑛 ) + (1 − 𝛽𝑘,𝑛)𝐸𝑈𝑘,𝑛 (𝑙
𝑈
𝑘,𝑛)

+ 𝐸𝐹𝑛 (𝒗𝑈𝑛 ). (17)

When LEO computing is considered, i.e., 𝛽𝑘,𝑛 = 1,
we need to jointly optimize the bit allocation
of {𝐿𝐼 ,𝑈

𝑘,𝑛
}𝑛∈{1, · · ·,𝑁−4},𝑘∈K , {𝐿𝑈,𝐿

𝑘,𝑛
}𝑛∈{2, · · ·,𝑁−3},𝑘∈K ,

{𝑙𝐿
𝑘,𝑛
}𝑛∈{3, · · ·,𝑁−2},𝑘∈K and {𝐿𝐿,𝑈

𝑘,𝑛
}𝑛∈{4, · · ·,𝑁−1},𝑘∈K along

with the UAV trajectory { 𝒑𝑈𝑛 }𝑛∈{2, · · ·,𝑁 }. When UAV
computing is performed, that is, 𝛽𝑘,𝑛 = 0, we must jointly
optimize the bit allocation of {𝐿𝐼 ,𝑈

𝑘,𝑛
}𝑛∈{1, · · ·,𝑁−2},𝑘∈K

and {𝑙𝑈
𝑘,𝑛
}𝑛∈{2, · · ·,𝑁−1},𝑘∈K along with the UAV trajectory

{ 𝒑𝑈𝑛 }𝑛∈{2, · · ·,𝑁 }. This problem is formulated with (17) as
follows:

min
𝐿
𝐼 ,𝑈
𝑘,𝑛

,𝐿
𝑈,𝐿
𝑘,𝑛

,𝐿
𝐿,𝑈
𝑘,𝑛

𝑙𝑈
𝑘,𝑛
,𝑙𝐿
𝑘,𝑛
,𝒑𝑈𝑛

𝐾∑︁
𝑘=1

(
𝑁−4∑︁
𝑛=1

𝛽𝑘,𝑛𝐸
𝑈,𝐿

𝑘,𝑛+1 (𝐿
𝑈,𝐿

𝑘,𝑛+1, 𝒑
𝑈
𝑛+1)

+
𝑁−2∑︁
𝑛=1
(1 − 𝛽𝑘,𝑛)𝐸𝑈𝑘,𝑛+1 (𝑙

𝑈
𝑘,𝑛+1)

)
+

𝑁∑︁
𝑛=1

𝐸𝐹𝑛 (𝒗𝑈𝑛 )

(18a)

s.t. 𝐸 𝐼 ,𝑈
𝑘,𝑛
(𝐿𝐼 ,𝑈
𝑘,𝑛
, 𝒑𝑈𝑛 ) ≤ 𝜀, ∀𝑘 ∈ K, 𝑛 ∈ N (18b)

𝑛∑︁
𝑖=1

𝑙𝑈𝑘,𝑖+1 ≤
𝑛∑︁
𝑖=1

𝐿
𝐼 ,𝑈

𝑘,𝑖
, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁 − 2 (18c)

𝑛∑︁
𝑖=1

𝐿
𝑈,𝐿

𝑘,𝑖+1 ≤
𝑛∑︁
𝑖=1

𝐿
𝐼 ,𝑈

𝑘,𝑖
, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁 − 4 (18d)

𝑛∑︁
𝑖=1

𝑙𝐿𝑘,𝑖+2 ≤
𝑛∑︁
𝑖=1

𝐿
𝑈,𝐿

𝑘,𝑖+1, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁 − 4 (18e)

𝑛∑︁
𝑖=1

𝐿
𝐿,𝑈

𝑘,𝑖+3 ≤ 𝑂
𝐿
𝑘

𝑛∑︁
𝑖=1

𝑙𝐿𝑘,𝑖+2, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁 − 4 (18f)

𝑁−4∑︁
𝑛=1

𝛽𝑘,𝑛𝐿
𝐼 ,𝑈

𝑘,𝑛
+
𝑁−2∑︁
𝑛=1
(1 − 𝛽𝑘,𝑛)𝐿𝐼 ,𝑈𝑘,𝑛 = 𝐼𝑘 , ∀𝑘 ∈ K (18g)

𝑁−4∑︁
𝑛=1

𝛽𝑘,𝑛𝑙
𝐿
𝑘,𝑛+2 +

𝑁−2∑︁
𝑛=1
(1 − 𝛽𝑘,𝑛)𝑙𝑈𝑘,𝑛+1 = 𝐼𝑘 , ∀𝑘 ∈ K (18h)

𝑁−4∑︁
𝑛=1

𝑙𝐿𝑘,𝑛+2 =

𝑁−4∑︁
𝑛=1

𝐿
𝑈,𝐿

𝑘,𝑛+1, ∀𝑘 ∈ K (18i)

𝑁−4∑︁
𝑛=1

𝐿
𝐿,𝑈

𝑘,𝑛+3 = 𝑂𝐿𝑘

𝑁−4∑︁
𝑛=1

𝐿
𝑈,𝐿

𝑘,𝑛+1, ∀𝑘 ∈ K (18j)

𝐿
𝐼 ,𝑈

𝑘,𝑛
, 𝐿
𝑈,𝐿

𝑘,𝑛
, 𝐿

𝐿,𝑈

𝑘,𝑛
, 𝑙𝑈𝑘,𝑛, 𝑙

𝐿
𝑘,𝑛 ≥ 0, ∀𝑘 ∈ K, 𝑛 ∈ N (18k)

𝒑𝑈1 = 𝒑𝑈𝐼 , 𝒑𝑈𝑁+1 = 𝒑𝑈𝐹 , (18l)

𝒗𝑈𝑛 

 ≤ 𝑣max, ∀𝑛 ∈ N , (18m)

where 𝜀 in (18b) represents the energy budget constraint per
frame for the IoT sensors. The inequality constraint (18c)
and (18e) ensures that the number of bits computed at the
UAV and LEO-mounted cloudlet is less than or equal to the
number of uplink bits transmitted from the IoT sensor and
UAV, respectively. The inequality constraints (18d) and (18f)
ensure that the number of uplink bits from the UAV is less than
or equal to the number of uplink bits from the IoT sensor, and
the number of downlink bits from the LEO is limited by the
number of output bits from the LEO. The equality constraints
(18g) and (18h) enforce that the sum of the uplink bits of
the IoT sensor and the sum of the computation bits for the
LEO and UAV computing are equal to the input bits of the
IoT sensor. The equality constraints (18i) and (18j) enforce the
completion of LEO computing, while (18k) is imposed for the
non-negative bit allocations. The constraints (18l) and (18m)
represent the flying UAV’s initial and final position constraint
and the maximum speed constraint, respectively.

Problem (18) is non-convex because the objective function
and the energy budget constraint are non-convex. To address
this non-convexity, we apply the SCA-based strategy [24], [25]
which builds on the inner convex approximation framework.
In particular, we develop proposed algorithm 1 by using the
following lemmas.

Lemma 1: Given that a non-convex objective function
𝑈 (𝒙) = 𝑓1 (𝒙) 𝑓2 (𝒙) is the product of 𝑓1 and 𝑓2 convex and
non-negative for any 𝒚 in the domain of 𝑈 (𝒙), a convex
approximation that satisfies the conditions required by the
SCA algorithm is given as

𝑈̄ (𝒙; 𝒚) = 𝑓1 (𝒙) 𝑓2 (𝒚) + 𝑓1 (𝒚) 𝑓2 (𝒙)

+ 𝜏𝑖
2
(𝒙 − 𝒚)T𝑯(𝒚) (𝒙 − 𝒚), (19)

where 𝜏𝑖 > 0 is a positive constant, 𝑯(𝒚) is a positive definite
matrix, and (·)T indicates the transpose.

Lemma 2: Given a non-convex constraint 𝑔(𝒙1, 𝒙2) ≤ 0,
where 𝑔(𝒙1, 𝒙2) = ℎ1 (𝒙1)ℎ2 (𝒙2) is the product of the ℎ1 and
ℎ2 convex and non-negative, for any (𝒚1, 𝒚2) in the domain of
𝑔(𝒙1, 𝒙2), a convex approximation that satisfies the conditions
required by the SCA algorithm is given as

𝑔̄ (𝒙1, 𝒙2; 𝒚1, 𝒚2)

Δ
=

1
2
(ℎ1 (𝒙1) + ℎ2 (𝒙2))2 −

1
2
(ℎ1

2 (𝒚1) + ℎ2
2 (𝒚2))

− ℎ1 (𝒚1)ℎ1
′ (𝒚1) (𝒙1 − 𝒚1) − ℎ2 (𝒚2)ℎ2

′ (𝒚2) (𝒙2 − 𝒚2),
(20)

where the partial derivative of 𝑓 (·) is 𝑓
′ (·).
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We set the primal variables for the formulated Problem
(18) as 𝒛 = {𝒛𝑛}𝑛∈N with 𝒛𝑛 = ({𝐿𝐼 ,𝑈

𝑘,𝑛
}𝑘∈K , {𝐿𝑈,𝐿

𝑘,𝑛
}𝑘∈K ,

{𝐿𝐿,𝑈
𝑘,𝑛
}𝑘∈K , {𝑙𝑈

𝑘,𝑛
}𝑘∈K , {𝑙𝐿

𝑘,𝑛
}𝑘∈K , 𝒑𝑈𝑛 ). We observe that the

function 𝐸𝑈,𝐿
𝑘,𝑛
(𝒛𝑛)

Δ
= 𝐸

𝑈,𝐿

𝑘,𝑛
(𝐿𝑈,𝐿
𝑘,𝑛

, 𝒑𝑈𝑛 ) in (18a) is the product
of two convex and non-negative functions, namely

𝑓1 (𝐿𝑈,𝐿𝑘,𝑛
) = 𝑁0𝐵Δ/𝐾

𝑔0𝐺

(
2
𝐿
𝑈,𝐿
𝑘,𝑛
𝐵Δ/𝐾 − 1

)
(21)

and

𝑓2 ( 𝒑𝑈𝑛 ) = (𝑥𝐿𝑛 − 𝑥𝑈𝑛 )2 + (𝑦𝐿𝑛 − 𝑦𝑈𝑛 )2 + ℎ𝐿2. (22)

Then, by using Lemma 1 and defining 𝒛𝑛 (𝑣) =

({𝐿𝐼 ,𝑈
𝑘,𝑛
(𝑣)}𝑘∈K , {𝐿𝑈,𝐿

𝑘,𝑛
(𝑣)}𝑘∈K , {𝐿𝐿,𝑈

𝑘,𝑛
(𝑣)}𝑘∈K ,

{𝑙𝑈
𝑘,𝑛
(𝑣)}𝑘∈K , {𝑙𝐿

𝑘,𝑛
(𝑣)}𝑘∈K , 𝒑𝑈𝑛 (𝑣))∈ X for the 𝑣th iterate

within the feasible set X of (18), we obtain a strongly convex
surrogate function 𝐸̄𝑈,𝐿

𝑘,𝑛
(𝒛𝑛; 𝒛𝑛 (𝑣)) of 𝐸𝑈,𝐿

𝑘,𝑛
(𝒛𝑛) as

𝐸̄
𝑈,𝐿

𝑘,𝑛
(𝒛𝑛; 𝒛𝑛 (𝑣))

Δ
= 𝐸̄

𝑈,𝐿

𝑘,𝑛
(𝐿𝑈,𝐿
𝑘,𝑛

, 𝒑𝑈𝑛 ; 𝐿𝑈,𝐿
𝑘,𝑛
(𝑣), 𝒑𝑈𝑛 (𝑣))

= 𝑓1 (𝐿𝑈,𝐿𝑘,𝑛
) 𝑓2 ( 𝒑𝑈𝑛 (𝑣)) + 𝑓1 (𝐿𝑈,𝐿𝑘,𝑛

(𝑣)) 𝑓2 ( 𝒑𝑈𝑛 )

+
𝜏
𝐿
𝑈,𝐿

𝑘,𝑛

2
(𝐿𝑈,𝐿
𝑘,𝑛
− 𝐿𝑈,𝐿

𝑘,𝑛
(𝑣))2 +

𝜏𝑥𝑈𝑛

2
(𝑥𝑈𝑛 − 𝑥𝑈𝑛 (𝑣))2

+
𝜏𝑦𝑈𝑛

2
(𝑦𝑈𝑛 − 𝑦𝑈𝑛 (𝑣))2, (23)

where 𝜏
𝐿
𝑈,𝐿

𝑘,𝑛

, 𝜏𝑥𝑈𝑛 , 𝜏𝑦𝑈𝑛 > 0. Also, the function 𝐸𝑈
𝑘,𝑛
(𝒛𝑛)

Δ
=

𝐸𝑈
𝑘,𝑛
(𝑙𝑈
𝑘,𝑛
) in (18a) is the product of two convex and non-

negative functions, namely

𝑓1 (𝑙𝑈𝑘,𝑛) =
𝛾𝑈𝐶𝑈

𝑘
𝑙𝑈
𝑘,𝑛

Δ2 (24)

and

𝑓2 (𝑙𝑈𝑘′,𝑛) =
(
𝐾∑︁
𝑘′=1

𝐶𝑈𝑘′ 𝑙
𝑈
𝑘′,𝑛

)2

. (25)

As in (23), we obtain a strongly convex surrogate function
𝐸̄𝑈
𝑘,𝑛
(𝒛𝑛; 𝒛𝑛 (𝑣)) of 𝐸𝑈

𝑘,𝑛
(𝒛𝑛) as

𝐸̄𝑈𝑘,𝑛 (𝒛𝑛; 𝒛𝑛 (𝑣))
Δ
= 𝐸̄𝑈𝑘,𝑛 (𝑙

𝑈
𝑘,𝑛, 𝑙

𝑈
𝑘′,𝑛; 𝑙

𝑈
𝑘,𝑛 (𝑣), 𝑙

𝑈
𝑘′,𝑛 (𝑣))

= 𝑓1 (𝑙𝑈𝑘,𝑛) 𝑓2 (𝑙
𝑈
𝑘′,𝑛 (𝑣)) + 𝑓1 (𝑙

𝑈
𝑘,𝑛 (𝑣)) 𝑓2 (𝑙

𝑈
𝑘′,𝑛)

+
𝜏𝑙𝑈
𝑘,𝑛

2
(𝑙𝑈𝑘,𝑛 − 𝑙

𝑈
𝑘,𝑛 (𝑣))

2 +
𝜏𝑙𝑈
𝑘′,𝑛

2
(𝑙𝑈𝑘′,𝑛 − 𝑙

𝑈
𝑘′,𝑛 (𝑣))

2, (26)

where 𝜏𝑙𝑈
𝑘,𝑛
, 𝜏𝑙𝑈

𝑘′,𝑛
> 0.

For the non-convex energy budget constraint (18b), we
derive a convex upper bound by using Lemma 2. The function
𝐸
𝐼 ,𝑈

𝑘,𝑛
(𝒛𝑛)

Δ
= 𝐸

𝐼 ,𝑈

𝑘,𝑛
(𝐿𝐼 ,𝑈
𝑘,𝑛
, 𝒑𝑈𝑛 ) is the product of two convex and

non-negative functions, namely

ℎ1 (𝐿𝐼 ,𝑈𝑘,𝑛 ) = 2
𝐿
𝐼 ,𝑈
𝑘,𝑛
𝐵Δ/𝐾 − 1 (27)

and

ℎ2 ( 𝒑𝑈𝑛 ) = (𝑥𝑈𝑛 − 𝑥𝐼𝑘 )
2 + (𝑦𝑈𝑛 − 𝑦𝐼𝑘 )

2 + ℎ𝑈 2. (28)

Algorithm 1 Proposed algorithm for the “Always On” scenario

Input: 𝛾(𝑣) ∈ (0, 1], 𝒛(0) = {𝒛𝑛 (0)}𝑛∈N ∈ X; Set 𝑣 = 0.
Output: {𝐿𝐼 ,𝑈

𝑘,𝑛
}, {𝐿𝑈,𝐿

𝑘,𝑛
}, {𝐿𝐿,𝑈

𝑘,𝑛
}, {𝑙𝑈

𝑘,𝑛
}, {𝑙𝐿

𝑘,𝑛
}, { 𝒑𝑈𝑛 }.

1: If 𝒛(𝑣) is a stationary solution of (18): STOP.
2: Compute 𝒛̂ (𝒛(𝑣)) of (30) using dual decomposition or

CVX.
3: Set 𝒛(𝑣 + 1) = 𝒛(𝑣) + 𝛾(𝑣) ( 𝒛̂ (𝒛(𝑣)) − 𝒛(𝑣)).
4: 𝑣 ← 𝑣 + 1 and go to step 1.

Then, by using Lemma 2 and defining 𝒛𝑛 (𝑣) for the 𝑣th
iterate, we obtain a strongly convex surrogate function
𝐸̄
𝐼 ,𝑈

𝑘,𝑛
(𝒛𝑛; 𝒛𝑛 (𝑣)) of 𝐸 𝐼 ,𝑈

𝑘,𝑛
(𝒛𝑛) as

𝐸̄
𝐼 ,𝑈

𝑘,𝑛
(𝒛𝑛; 𝒛𝑛 (𝑣))

Δ
= 𝐸

𝐼 ,𝑈

𝑘,𝑛
(𝐿𝐼 ,𝑈
𝑘,𝑛
, 𝒑𝑈𝑛 ; 𝐿𝐼 ,𝑈

𝑘,𝑛
(𝑣), 𝒑𝑈𝑛 (𝑣))

=
𝑁0𝐵Δ/𝐾

2𝑔0


(
2
𝐿
𝐼 ,𝑈
𝑘,𝑛
𝐵Δ/𝐾 − 1 + (𝑥𝑈𝑛 − 𝑥𝐼𝑘 )

2 + (𝑦𝑈𝑛 − 𝑦𝐼𝑘 )
2 + ℎ𝑈 2

)2

−
(
2
𝐿
𝐼 ,𝑈
𝑘,𝑛

(𝑣 )
𝐵Δ/𝐾 − 1

)2

−
(
(𝑥𝑈𝑛 (𝑣) − 𝑥𝐼𝑘 )

2 + (𝑦𝑈𝑛 (𝑣) − 𝑦𝐼𝑘 )
2 + ℎ𝑈 2

)2


− 𝑁0 ln 2
𝑔0

2
𝐿
𝐼 ,𝑈
𝑘,𝑛

(𝑣 )
𝐵Δ/𝐾

(
2
𝐿
𝐼 ,𝑈
𝑘,𝑛

(𝑣 )
𝐵Δ/𝐾 − 1

) (
𝐿
𝐼 ,𝑈

𝑘,𝑛
− 𝐿𝐼 ,𝑈

𝑘,𝑛
(𝑣)

)
− 2𝑁0𝐵Δ/𝐾

𝑔0

(
(𝑥𝑈𝑛 (𝑣) − 𝑥𝐼𝑘 )

2 + (𝑦𝑈𝑛 (𝑣) − 𝑦𝐼𝑘 )
2 + ℎ𝑈 2

)
(
(𝑥𝑈𝑛 (𝑣) − 𝑥𝐼𝑘 ) (𝑥

𝑈
𝑛 − 𝑥𝑈𝑛 (𝑣)) + (𝑦𝑈𝑛 (𝑣) − 𝑦𝐼𝑘 ) (𝑦

𝑈
𝑛 − 𝑦𝑈𝑛 (𝑣))

)
.

(29)

Finally, the problem in Equation (18) can be transformed
into the strongly convex inner approximation for a given
feasible 𝒛(𝑣) = {𝒛𝑛 (𝑣)}𝑛∈N , as

min
𝒛

𝐾∑︁
𝑘=1

(
𝑁−4∑︁
𝑛=1

𝛽𝑘,𝑛𝐸̄
𝑈,𝐿

𝑘,𝑛+1 (𝒛𝑛+1; 𝒛𝑛+1 (𝑣))

+
𝑁−2∑︁
𝑛=1
(1 − 𝛽𝑘,𝑛)𝐸̄𝑈𝑘,𝑛+1 (𝒛𝑛+1; 𝒛𝑛+1 (𝑣))

)
+

𝑁∑︁
𝑛=1

𝐸𝐹𝑛 (𝒗𝑈𝑛 )

(30a)

s.t. 𝐸̄ 𝐼 ,𝑈
𝑘,𝑛
(𝒛𝑛; 𝒛𝑛 (𝑣)) ≤ 𝜀, ∀𝑘 ∈ K, 𝑛 ∈ N (30b)

(18c) − (18m), (30c)

which has a unique solution denoted by 𝒛̂ (𝒛(𝑣)). Since Prob-
lem (30) is convex, we can obtain the closed-form solutions
via dual decomposition [34] or a standard convex optimization
solver such as CVX [35]. The proposed algorithm based
on the SCA method is summarized as Algorithm 1. The
sequence {𝒛(𝑣)} generated by Algorithm 1 converges if the
step size 𝛾(𝑣) is chosen so that 𝛾(𝑣) ∈ (0, 1], 𝛾(𝑣) → 0, and∑
𝑣 𝛾(𝑣) = ∞. Also, {𝒛(𝑣)} is bounded and every limit point

of {𝒛(𝑣)} is stationary. Furthermore, if Algorithm 1 does not
stop after a finite number of steps, none of the stationary points
are a local minimum of Problem (18).
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Algorithm 2 Proposed algorithm for the “Always Off” sce-
nario
Input: 𝛾(𝑣) ∈ (0, 1], 𝒛(0) = {𝒛𝑛 (0)}𝑛∈N ∈ X; Set 𝑣 = 0.
Output: {𝐿𝐼 ,𝑈

𝑘,𝑛
}, {𝑙𝑈

𝑘,𝑛
}, { 𝒑𝑈𝑛 }.

1: If 𝒛(𝑣) is a stationary solution of (32): STOP.
2: Compute 𝒛̂ (𝒛(𝑣)) of (33) using dual decomposition or

CVX.
3: Set 𝒛(𝑣 + 1) = 𝒛(𝑣) + 𝛾(𝑣) ( 𝒛̂ (𝒛(𝑣)) − 𝒛(𝑣)).
4: 𝑣 ← 𝑣 + 1 and go to step 1.

IV. OPTIMAL ENERGY CONSUMPTION FOR THE
“ALWAYS OFF” SCENARIO

In this section, we find the optimal bit allocation and UAV
path planning when the LEO communication is not available
during the entire mission time. Therefore, the total UAV
energy consumption 𝐸 𝑡𝑜𝑡𝑎𝑙

𝑘,𝑛
in (13) is rewritten with 𝛼𝑘,𝑛 = 0

for all 𝑛 ∈ N , as

𝐸 𝑡𝑜𝑡𝑎𝑙𝑘,𝑛 = (1 − 𝛽𝑘,𝑛)𝐸𝑈𝑘,𝑛 (𝑙
𝑈
𝑘,𝑛) + 𝐸

𝐹
𝑛 (𝒗𝑈𝑛 ). (31)

For UAV computing with 𝛽𝑘,𝑛 = 0, the problem is given with
(31) by

min
𝐿
𝐼 ,𝑈

𝑘,𝑛
,𝑙𝑈
𝑘,𝑛
,𝒑𝑈𝑛

𝐾∑︁
𝑘=1

𝑁−2∑︁
𝑛=1
(1 − 𝛽𝑘,𝑛)𝐸𝑈𝑘,𝑛+1 (𝑙

𝑈
𝑘,𝑛+1) +

𝑁∑︁
𝑛=1

𝐸𝐹𝑛 (𝒗𝑈𝑛 )

(32a)

s.t.
𝑁−2∑︁
𝑛=1
(1 − 𝛽𝑘,𝑛)𝐿𝐼 ,𝑈𝑘,𝑛 = 𝐼𝑘 , ∀𝑘 ∈ K (32b)

𝑁−2∑︁
𝑛=1
(1 − 𝛽𝑘,𝑛)𝑙𝑈𝑘,𝑛+1 = 𝐼𝑘 , ∀𝑘 ∈ K (32c)

(18b), (18c), (18k) − (18m), (32d)

where the equality constraints (32b) and (32c) guarantee that
the total number of uplink bits from the IoT sensor and the
total number of computation bits at the UAV must be equal to
the input bits of the IoT sensor for complete offloading.

In the “Always Off” case, the primal variables are defined as
𝒛 = {𝒛𝑛}𝑛∈N with 𝒛𝑛 = ({𝐿𝐼 ,𝑈

𝑘,𝑛
}𝑘∈K , {𝑙𝑈

𝑘,𝑛
}𝑘∈K , 𝒑𝑈𝑛 ). Since

Problem (32) is non-convex, it can be transformed into the
strongly convex inner approximation, for a given a feasible
𝒛(𝑣) = {𝒛𝑛 (𝑣)}𝑛∈N , as

min
𝒛

𝐾∑︁
𝑘=1

𝑁−2∑︁
𝑛=1
(1 − 𝛽𝑘,𝑛)𝐸̄𝑈𝑘,𝑛+1 (𝒛𝑛+1; 𝒛𝑛+1 (𝑣)) +

𝑁∑︁
𝑛=1

𝐸𝐹𝑛 (𝒗𝑈𝑛 )

(33a)

s.t. (32b), (32c), (30b), (18c), (18k) − (18m), (33b)

where 𝐸̄𝑈
𝑘,𝑛

of the objective function is defined equally in (26).
Problem (33) has a unique solution denoted by 𝒛̂ (𝒛(𝑣)) due to
its convexity. As in Problem (30), the locally optimal solution
can be obtained by dual decomposition or a standard convex
optimization solver. The proposed SCA-based algorithm is
summarized in Algorithm 2.

Algorithm 3 Proposed algorithm for the “Intermediate Dis-
connected” scenario
Input: 𝛾(𝑣) ∈ (0, 1], 𝒛(0) = {𝒛𝑛 (0)}𝑛∈N ∈ X; Set 𝑣 = 0.
Output: {𝐿𝐼 ,𝑈

𝑘,𝑛
}, {𝐿𝑈,𝐿

𝑘,𝑛
}, {𝐿𝐿,𝑈

𝑘,𝑛
}, {𝑙𝑈

𝑘,𝑛
}, {𝑙𝐿

𝑘,𝑛
}, { 𝒑𝑈𝑛 }.

1: If 𝒛(𝑣) is a stationary solution of (34): STOP.
2: Compute 𝒛̂ (𝒛(𝑣)) of (35) using dual decomposition or

CVX.
3: Set 𝒛(𝑣 + 1) = 𝒛(𝑣) + 𝛾(𝑣) ( 𝒛̂ (𝒛(𝑣)) − 𝒛(𝑣)).
4: 𝑣 ← 𝑣 + 1 and go to step 1.

V. OPTIMAL ENERGY CONSUMPTION FOR THE
“INTERMEDIATE DISCONNECTED” SCENARIO

For the “Intermediate Disconnected” case, we provide joint
path planning and resource allocation when the LEO commu-
nication is intermediately disconnected. The total UAV energy
consumption in this case follows (13).

During the LEO computing for 𝑛 ∈ {1, · · ·, 𝑁𝑡 } with
𝛼𝑘,𝑛 = 1 and 𝛽𝑘,𝑛 = 1, we jointly optimize the
bit allocation {𝐿𝐼 ,𝑈

𝑘,𝑛
}𝑛∈{1, · · ·,𝑁𝑡 },𝑘∈K , {𝐿𝑈,𝐿

𝑘,𝑛
}𝑛∈{2, · · ·,𝑁𝑡+1},𝑘∈K ,

{𝑙𝐿
𝑘,𝑛
}𝑛∈{3, · · ·,𝑁𝑡+2},𝑘∈K and {𝐿𝐿,𝑈

𝑘,𝑛
}𝑛∈{4, · · ·,𝑁𝑡+3},𝑘∈K along

with the UAV trajectory { 𝒑𝑈𝑛 }𝑛∈{2, · · ·,𝑁𝑡+4}. During UAV com-
puting for 𝑛 ∈ {1, · · ·, 𝑁𝑡 } with 𝛼𝑘,𝑛 = 1 and 𝛽𝑘,𝑛 = 0 and
𝑛 ∈ {𝑁𝑡 + 1, · · ·, 𝑁} with 𝛼𝑘,𝑛 = 0 and 𝛽𝑘,𝑛 = 0, the bit
allocation and the UAV path planning are jointly designed
as in the UAV computing process of the “Always On” case.
Accordingly, we can formulate the problem as

min
𝐿
𝐼 ,𝑈
𝑘,𝑛

,𝐿
𝑈,𝐿
𝑘,𝑛

,𝐿
𝐿,𝑈
𝑘,𝑛

𝑙𝑈
𝑘,𝑛
,𝑙𝐿
𝑘,𝑛
,𝒑𝑈𝑛

𝐾∑︁
𝑘=1

𝑁𝑡∑︁
𝑛=1

𝛼𝑘,𝑛

{
𝛽𝑘,𝑛𝐸

𝑈,𝐿

𝑘,𝑛+1 (𝐿
𝑈,𝐿

𝑘,𝑛+1, 𝒑
𝑈
𝑛+1)

+
(
1 − 𝛽𝑘,𝑛

)
𝐸𝑈𝑘,𝑛+1 (𝑙

𝑈
𝑘,𝑛+1)

}
+

𝐾∑︁
𝑘=1

𝑁−2∑︁
𝑛=𝑁𝑡+1

(
1 − 𝛼𝑘,𝑛

)
(1 − 𝛽𝑘,𝑛)𝐸𝑈𝑘,𝑛+1 (𝑙

𝑈
𝑘,𝑛+1)

+
𝑁∑︁
𝑛=1

𝐸𝐹𝑛 (𝒗𝑈𝑛 ) (34a)

s.t.
𝑛∑︁
𝑖=1

𝐿
𝑈,𝐿

𝑘,𝑖+1 ≤
𝑛∑︁
𝑖=1

𝐿
𝐼 ,𝑈

𝑘,𝑖
, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁𝑡 (34b)

𝑛∑︁
𝑖=1

𝑙𝐿𝑘,𝑖+2 ≤
𝑛∑︁
𝑖=1

𝐿
𝑈,𝐿

𝑘,𝑖+1, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁𝑡 (34c)

𝑛∑︁
𝑖=1

𝐿
𝐿,𝑈

𝑘,𝑖+3 ≤ 𝑂
𝐿
𝑘

𝑛∑︁
𝑖=1

𝑙𝐿𝑘,𝑖+2, ∀𝑘 ∈ K, 𝑛 = 1, · · ·, 𝑁𝑡 (34d)

𝑁𝑡∑︁
𝑛=1

𝛽𝑘,𝑛𝑙
𝐿
𝑘,𝑛+2 +

𝑁−2∑︁
𝑛=1
(1 − 𝛽𝑘,𝑛)𝑙𝑈𝑘,𝑛+1 = 𝐼𝑘 , ∀𝑘 ∈ K (34e)

𝑁𝑡∑︁
𝑛=1

𝑙𝐿𝑘,𝑛+2 =

𝑁𝑡∑︁
𝑛=1

𝐿
𝑈,𝐿

𝑘,𝑛+1, ∀𝑘 ∈ K (34f)

𝑁𝑡∑︁
𝑛=1

𝐿
𝐿,𝑈

𝑘,𝑛+3 = 𝑂𝐿𝑘

𝑁𝑡∑︁
𝑛=1

𝐿
𝑈,𝐿

𝑘,𝑛+1, ∀𝑘 ∈ K (34g)

(18b), (18c), (32b), (18k) − (18m), (34h)
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TABLE III: Simulation Parameters

Parameter Value Parameter Value
𝑣𝑠 7.5 km/s 𝑟𝐸 6371 km
𝜃 10 ◦ 𝑇𝑣 830 s
ℎ𝑈 1 km ℎ𝐿 600 km
𝐾 10 𝑣max 50 m/s
𝑀 9.65 kg 𝑂𝐿

𝑘
, 𝑂𝑈

𝑘
0.5

𝑓 𝑈𝑛 19.5 × 109 cycles/s [7] 𝐺 10 dB
𝛾𝐿 , 𝛾𝑈 10−28 [29], [30] 𝐶𝐿

𝑘
, 𝐶𝑈

𝑘
1550.7 [29], [30]

𝐵 40 MHz 𝑁0 -174 dBm/Hz
𝜀 0.11 J ref. SNR 80 dB

where the inequality constraints (34b)-(34d) and equality con-
straints (34e)-(34g) limit the number of frames to 𝑛 = 1, · · ·, 𝑁𝑡
instead of 𝑛 = 1, · · ·, 𝑁−4 in constraints (18d)-(18f) and (18h)-
(18j), respectively.

In the“Intermediate Disconnected” case, the primal vari-
ables are defined the same as in the“Always On” case. By
applying the SCA method,the non-convex Problem (34) can
be transformed into the strongly convex inner approximation
for a given a feasible 𝒛(𝑣) = {𝒛𝑛 (𝑣)}𝑛∈N , as

min
𝒛

𝐾∑︁
𝑘=1

𝑁𝑡∑︁
𝑛=1

𝛼𝑘,𝑛

{
𝛽𝑘,𝑛𝐸̄

𝑈,𝐿

𝑘,𝑛+1 (𝒛𝑛+1; 𝒛𝑛+1 (𝑣))

+
(
1 − 𝛽𝑘,𝑛

)
𝐸̄𝑈𝑘,𝑛+1 (𝒛𝑛+1; 𝒛𝑛+1 (𝑣))

}
+

𝐾∑︁
𝑘=1

𝑁−2∑︁
𝑛=𝑁𝑡+1

(
1 − 𝛼𝑘,𝑛

)
(1 − 𝛽𝑘,𝑛)𝐸̄𝑈𝑘,𝑛+1 (𝒛𝑛+1; 𝒛𝑛+1 (𝑣))

+
𝑁∑︁
𝑛=1

𝐸𝐹𝑛 (𝒗𝑈𝑛 ) (35a)

s.t. (34b) − (34g), (30b), (18c), (32b), (18k) − (18m), (35b)

which has a unique solution denoted by 𝒛̂ (𝒛(𝑣)) to be obtained
by dual decomposition or a standard convex optimization
solver. Algorithm 3 describes the proposed method for the
“Intermediate Disconnected” scenario.

VI. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithms to jointly optimize the bit allocation and the UAV
trajectory for marine IoT systems in various LEO accessible
statuses. For reference, we consider the following schemes:
(i) No optimization: The equal bit allocation is considered for
communication and computation per frame, while the UAV
flies at constant velocity between the initial and final positions
as 𝒑𝑈𝑛 = 𝒑𝑈

𝐼
+ (𝑛 − 1)

(
𝒑𝑈
𝐹
− 𝒑𝑈

𝐼

) /
𝑁 , for 𝑛 ∈ N ; (ii) Opti-

mized bit allocation: The communication and computation bits
are optimized by the proposed algorithms while considering
the UAV trajectory with the constant-velocity as in (i); (iii)
Optimized UAV trajectory: The path planning of the UAV
is obtained by the proposed algorithms with fixed equal bit
allocation per frame. The simulation parameters are provided
in Table III. Particularly, the space segment considers Iridium-
like LEO satellite networks that provide global coverage with
66 satellites distributed in 6 polar orbits [15], where the orbit
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Fig. 4: Optimal UAV trajectories according to the different
LEO access scenarios.

height is ℎ = 601 km with the elevation angle 𝜃 = 10 ◦, and
satellites in the orbit travel at a speed of around 𝑣𝑠 = 7.5 km/s.

To better understand the proposed algorithms, Figs. 4 and 5
consider the partial optimization of UAV path planning or bit
allocation. As shown in Fig. 4, there are 𝐾 = 10 IoT sensors
distributed randomly in a 10 km × 10 km area within the
beam coverage of the central LEO satellite, i.e., 𝛼𝑘,𝑛 = 1,
for all 𝑛 ∈ N and 𝑘 ∈ K. With the LEO visible time of
𝑇𝑣 = 830 s obtained from (4) and a bandwidth of 𝐵 = 40
MHz [15], the data size collected from each IoT sensor is
randomly determined based on the computation capability of
the UAV in (16). In our simulation, the scheduling variable
𝛽𝑘,𝑛 is defined from (16), i.e., 𝛽𝑘,𝑛 = [0 0 0 1 1 1 0 1 0 0],
for 𝑘 ∈ K and 𝑛 ∈ N , as shown in Fig. 4. The IoT sensors
with 𝛽𝑘,𝑛 = 0 for UAV computing and with 𝛽𝑘,𝑛 = 1 for LEO
computing are indicated by black-colored circles and green-
colored circles, respectively, while the LEO satellite, indicated
by a red-colored hexagram, travels along the red dotted line.
The initial and final positions of the UAV are 𝒑𝑈

𝐼
= (5, 0, 0)

to 𝒑𝑈
𝐹
= (10, 5, 0).

Fig. 4 shows the optimized UAV trajectories with the fixed
equal bit allocation according to the different LEO satellite
access scenarios. For this experiment, the latency constraint is
𝑇 = 360 s with 𝑁 = 60 and Δ = 6 s. In the “Always On” case,
the optimized UAV trajectory, represented by a blue asterisk
line, is designed to fly close to the IoT sensors with LEO
computing until its final destination. This can significantly
reduce the large amount of uplink communication energy
consumption induced by the long distance between the LEO
satellite and UAV. In the “Always Off” case, where only UAV
computing is considered, the UAV flies along a straight path
to a destination, which is represented by a yellow crossed
line. In this case, the flying energy consumption must be
reduced to to minimize the total UAV energy due to the fixed
computation bit allocation. In the “Intermediate Disconnected”
case, where the LEO communication is lost at 𝑁𝑡 = 𝑁/2, the
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(c) “Intermediate Disconnected” scenario

Fig. 5: Optimal bit allocations for IoT sensor 6 in Fig. 4
according to the different LEO access scenarios.

optimized UAV trajectory, represented by a purple square line,
tends to fly close to the IoT sensors with LEO computing for
𝑛 = 1, · · ·, 𝑁𝑡 . Then, in the frame period of 𝑛 = 𝑁𝑡 + 1, · · ·, 𝑁
where LEO communication is disconnected, the UAV flies
straight to the final destination because it performs only UAV
computing.

Fig. 5 illustrates the optimized bit allocations for IoT sensor
6 shown in Fig. 4 with the fixed constant-velocity UAV
trajectory according to different LEO access scenarios. Except
for the UAV trajectory, the simulation environment is the same
as in Fig. 4. In Fig. 5(a), the optimal bit allocations 𝐿𝐼 ,𝑈

𝑘,𝑛
,

𝐿
𝑈,𝐿

𝑘,𝑛
, 𝑙𝐿

𝑘,𝑛
, 𝐿𝐿,𝑈

𝑘,𝑛
by proposed Algorithm 1 are shown for

LEO computing in the “Always On” case. First, most of the
uplink bits 𝐿𝐼 ,𝑈

𝑘,𝑛
are allocated between frames 20 to 35, which

corresponds to the period where the UAV flies closest to IoT
sensor 6. The offloading bits 𝐿𝑈,𝐿

𝑘,𝑛
are allocated equally in

the entire frame because the equal bit allocation can achieve
the minimal communication energy from (7). Finally, the LEO
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Fig. 6: Optimal UAV trajectories according to different LEO
satellite orbits, where the IoT sensors with LEO computing
are deployed at the corner.

computing bits 𝑙𝐿
𝑘,𝑛

and LEO downlink bits 𝐿𝐿,𝑈
𝑘,𝑛

are mostly
allocated in the latter parts between frames 50 to 60 to satisfy
the inequality constraints of (18e) and (18f). In Fig. 5(b), the
optimized bit allocations 𝐿𝐼 ,𝑈

𝑘,𝑛
and 𝑙𝑈

𝑘,𝑛
obtained by proposed

Algorithm 2 are shown for UAV computing of the“Always
Off” case. Since the UAV cannot communicate with the LEO
satellite, the computing process is entirely at the UAV-mounted
cloudlet. The uplink bits 𝐿𝐼 ,𝑈

𝑘,𝑛
and the computing bits 𝑙𝑈

𝑘,𝑛
are

assigned the same as 𝐿𝐼 ,𝑈
𝑘,𝑛

and 𝐿𝑈,𝐿
𝑘,𝑛

in Fig. 5(a), respectively.
However, 𝑙𝑈

𝑘,𝑛
is dramatically reduced to 8 × 106 per frame

compared to 10 × 106, as illustrated in Fig. 5(a). This is
because the amount of data exceeding the UAV computation
capability is excluded from the UAV computing. Fig. 5(c)
shows the optimization result of bit allocation attained by
proposed Algorithm 3 in the “Intermediate Disconnected”
case. LEO computing is performed during the first half of
frames, i.e., 𝑛 = 1, · · ·, 𝑁𝑡 , while UAV computing is performed
during the second half of frames, i.e., 𝑛 = 𝑁𝑡 + 1, · · ·, 𝑁 . The
computing bits 𝑙𝐿

𝑘,𝑛
at LEO and the downlink bits 𝐿𝐿,𝑈

𝑘,𝑛
are

reduced in proportion to the reduced frame duration of LEO
computing compared to those shown in Fig. 5(a). For UAV
computing, there are more computing bits 𝑙𝑈

𝑘,𝑛
allocated at

the UAV than those from the case in Fig. 5(b). This means
that less data exceeds the computational capability of the UAV
thanks to the LEO computing.

Fig. 6 shows the optimal UAV trajectories according to the
different LEO satellite orbits in the “Always On” scenario,
where the IoT sensors that need LEO computing are clustered
at the corner, i.e., 𝛽𝑘,𝑛 = [0 1 1 0 1 1 0 0 0 0], for 𝑘 ∈ K and
𝑛 ∈ N . In this deployment, the three different movements of
the LEO satellite in different orbital directions are considered.
In the first orbit moving from the upper right corner to the
lower left corner, the UAV flies near the corner area with IoT
sensors with LEO computing to its final destination. In the
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Fig. 7: Comparison of the total UAV energy consumption
for different optimization schemes in the three LEO satellite
access scenarios.

second orbit moving from the upper left corner to the lower
right corner, the UAV flies in a diagonally downward direction
along its own orbit rather than the optimized UAV trajectory
for the first orbit. In the third orbit moving upwards from
below the midpoint, the UAV flies in an upward direction along
its own orbit rather than the optimal UAV trajectory for the first
orbit. From these results, we can see that the LEO movements
resulting from the orbit influences the optimal UAV path so
as to reduce the communication energy consumption between
the UAV and the LEO satellite.

Fig. 7 compares the total UAV energy consumption of the
joint optimization scheme with reference schemes in three
LEO satellite access scenarios. For this experiment, the latency
constraint is 𝑇 = [360:90:1620] s with 𝑁 = [60:15:270] and
Δ = 6 s, while the remaining simulation parameters are
the same as in Figs. 4 and 5. First, the no optimization
scheme consumes the highest energy in the three scenarios,
among which the largest energy consumption takes place in
the “Always Off” case, where only the UAV computing is
performed. This is natural since the UAV-mounted cloudlet has
a slightly larger burden in terms of the energy consumption
with no support of the LEO. In the “Always On” case, for
𝑇 = 360 s, the total UAV energy consumption for the joint
optimization scheme is the lowest at 4.6 × 106 J, whereas
the optimized UAV trajectory scheme with fixed equal bit
allocation requires 5.5×106 J, and the optimized bit allocation
with the constant-velocity UAV and no optimization schemes
requires 6.1× 106 J. This implies that the UAV path planning
is more effective in terms of UAV energy consumption than
bit allocation. Moreover, the total energy consumption in all
schemes decreases as the total time increases. This is because
the same amount of data is processed over a longer period
of time. Compared to the total UAV energy consumption of
the joint optimization scheme in the “Always Off” scenario,
those of the joint optimization scheme in other scenarios
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Fig. 8: Relationship between the total UAV energy consump-
tion and the collected data usage rate in three LEO satellite
access scenarios according to the LEO satellite access time
rate.

are much higher since the UAV flies straight to its final
destination when the LEO satellite connection is lost, as in Fig.
4. However, there is a trade-off between the total UAV energy
consumption and the collected data usage rate for computing,
which determines the amount of data executed at cloudlet,
which is analyzed in the following figure.

Fig. 8 shows the relationship between the total UAV energy
consumption and the collected data usage rate for computing in
the different LEO accessibility scenarios. Any amount of data
exceeding the UAV computation capability is excluded from
UAV computing. For this experiment, the scheduling variables
are defined as 𝛽𝑘,𝑛 = [0 0 1 1 1 1 0 1 0 0], for 𝑘 ∈ K
and 𝑛 ∈ N . The UAV computation capability is applied to
226 Mbits by using the CPU frequency at the UAV server
𝑓𝑈𝑛 = 9.75 × 109 cycles/s. In the “Always On” scenario, the
LEO satellite access time rate is 1. At this time, the total
UAV energy consumption is 3.3×106 J and the collected data
usage rate is 100%. In the “Always Off” case, where the LEO
satellite access time rate is 0, the total UAV energy consump-
tion is 2.24 × 106 J and the collected data usage rate is 54%.
Although the energy consumption in the “Always Off” case is
dramatically reduced, the utilization rate of the collected data
is also cut in half. In the “Intermediate Disconnected” case,
as the LEO satellite access time rate increases, the total UAV
energy consumption and the collected data usage rate increase
differently. When the LEO satellite access time rate is above
6/8, the total UAV energy consumption is saturated with the
total UAV energy consumption of the “Always On” case. This
is because the straight flight segment of the UAV to the final
destination after disconnecting with the LEO satellite matches
that of the “Always On” case. Also, when the LEO satellite
access time rate is more than 7/8, the collected data usage
rate is more than about 95%. In this simulation environment,
adequate data usage and energy consumption is achieved with
more than a 7/8 LEO satellite access time rate.
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VII. CONCLUSIONS

In this paper, a marine IoT system using hybrid LEO
and UAV computing for real-time utilization of marine data
has been analyzed according to the different LEO satellite
access scenarios: “Always On,” “Always Off” and “Inter-
mediate Disconnected”. For each scenario, we proposed the
joint optimization problem of bit allocation for computing
and communication in offloading and UAV path planning to
minimize the total UAV energy consumption under latency,
energy budget, and UAV operational constraints. To solve the
optimization problem, we developed an SCA-based algorithm
whose performance in terms of energy efficiency was validated
via numerical results compared to conventional approaches
with partial optimization that design only the bit allocation or
UAV trajectory. According to LEO satellite access time and
its orbit direction, the path planning of the UAV is optimized
differently for energy saving, whose impact is pronounced for
the case when the LEO connectivity is unstable or discon-
nected. In future works, different existing LEO deployments
should be further considered with various heights of multiple
satellites and UAVs.
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