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Abstract

The user-centric cell-free network has emerged as an appealing technology to improve the next-

generation wireless network’s capacity thanks to its ability to eliminate inter-cell interference effectively.

However, the cell-free network inevitably brings in higher hardware cost and backhaul overhead as a

larger number of base stations (BSs) are deployed. Additionally, severe channel fading in high-frequency

bands constitutes another crucial issue that limits the practical application of the cell-free network.

In order to address the above challenges, we amalgamate the cell-free system with another emerging

technology, namely reconfigurable intelligent surface (RIS), which can provide high spectrum and energy

efficiency with low hardware cost by reshaping the wireless propagation environment intelligently. To this

end, we formulate a weighted sum-rate (WSR) maximization problem for RIS-assisted cell-free systems

by jointly optimizing the BS precoding matrix and the RIS reflection coefficient vector. Subsequently, we

transform the complicated WSR problem to a tractable optimization problem and propose a distributed

cooperative alternating direction method of multipliers (ADMM) to fully utilize parallel computing

resources. Inspired by the model-based algorithm unrolling concept, we unroll our solver to a learning-

based deep distributed ADMM (D2-ADMM) network framework. To improve the efficiency of the

D2-ADMM in distributed BSs, we develop a monodirectional information exchange strategy with a

small signaling overhead. In addition to benefiting from domain knowledge, D2-ADMM adaptively

learns hyper-parameters and non-convex solvers of the intractable RIS design problem through data-

driven end-to-end training. Finally, numerical results demonstrate that the proposed D2-ADMM achieve
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around 210% improvement in capacity compared with the distributed noncooperative algorithm and

almost 96% compared with the centralized algorithm.

Index Terms

Cell-free system, reconfigurable intelligent surface, distributed cooperative design, algorithm un-

rolling.

I. INTRODUCTION

Next-generation wireless communication systems are expected to meet an even greater demand

for higher capacity, denser connectivity, and broader coverage with the advent of the internet of

everything [1]–[4]. The conventional communication network relies on cellular topology where

effective communication paradigms, such as small-cell network and cellular massive multiple-

input multiple-output (MIMO) are developed based on cell-centric principles [5], [6]. Specifically,

a single base station (BS) serves all users in the same cell while appropriate resource reuse

policies are adopted among different cells. As a result, users at the cell edge are more likely to

be disturbed by the uplink/downlink signals from other adjacent cells, resulting in the common

issue of inter-cell interference [7].

It has been demonstrated that small-cell network can achieve better energy efficiency than

cellular massive MIMO in some typical scenarios by properly reducing the cell size [8], [9].

However, as the cell density increases, the inter-cell interference will increase accordingly and

become the main bottleneck limiting the capacity of the cellular network [10]. Although cellular

massive MIMO is not affected by the inter-cell interference, the shadow fading due to blocking

will become a performance-limiting factor if a large number of antennas are centralizedly

configured on a single BS. Therefore, cellular massive MIMO’s coverage and network capacity

may be significantly deteriorated in some harsh environments [11].

In sharp contrast to the aforementioned cell-centric networks, a user-centric network paradigm

known as the cell-free massive MIMO network has recently received significant attention as a

potential and cutting-edge substitute [7], [12], [13]. In a cell-free massive MIMO network, a large

number of antennas is spread on numerous BSs in a distributed form [14]. These BSs provide

service to a relatively small number of users within the same time-frequency domain. Since cell-

free massive MIMO removes the underlying cell edge, it does not cause inter-cell interference as

existing cellular networks. Although cell-free massive MIMO has many appealing advantages,
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its application in higher frequency bands of future communication systems still has to overcome

issues related to severe transmission attenuation and coverage blind spots [15], [16]. In addition,

deploying a large number of BSs also brings prohibitive hardware cost and energy consumption.

Fortunately, a promising technology, reconfigurable intelligent surface (RIS), has recently been

introduced in various communication scenarios to significantly improve the system throughput

and spectrum/energy efficiency [17]–[20]. Specifically, an RIS is a metal panel equipped with

many low-cost passive elements. The phase shifts of these passive elements can be adjusted

to achieve intelligent manipulation of the wireless environment and enhance communication

quality-of-service (QoS) [21]. In view of the superiority of the RIS and cell-free systems, it is

of interest to develop an RIS-assisted cell-free approach for future wireless communications.

A. Prior Works

Downlink precoding is crucial to unleash the full potential of cell-free networks. Currently,

most existing precoding schemes for cell-free systems can be generally classified into non-

cooperative [7], [22], [23] and cooperative [13], [24]–[26]. Non-cooperative precoding assumes

that each BS can only utilize local channel state information (CSI) acquired through uplink

channel estimation, without performing any CSI exchange among BSs. Along this direction,

some rather simple strategies such as maximum ratio transmission (MRT) [7], local zero-forcing

(ZF) [22], and local minimum mean square error (MMSE) [23] designs have been employed for

precoding. Cooperative precoding including both centralized and distributed cooperative schemes

that perform joint precoding across all BSs achieves better system performance compared with

its non-cooperative counterpart. Specifically, in the centralized scheme, BSs upload their local

CSI to the centralized processing unit (CPU) through a specific backhaul link, based on which

the precoding matrices of all BSs are jointly designed and then distributed. Most existing works

on centralized precoding concentrate on developing precoding algorithms for the CPU, such as

the centralized ZF precoding [24], [25] and the centralized MMSE precoding [13]. Distributed

cooperative precoding distributes the computational load to multiple BSs, thus reducing the

computational burden of the CPU [27], [28]. The precoding of each BS is carried out locally

and updated based on the cross-term information exchange among different BSs to approach the

optimal performance of the centralized design.

Meanwhile, RIS reflection coefficient design has received much attention recently, e.g., [29]–

[32], by taking into account of various practical constraints and application backgrounds. How-



4

ever, the research on RIS-assisted cell-free network is still in its infancy stage [33]–[37]. Specif-

ically, the authors of [34] used the conjugate beamforming method with the local CSI to design

precoding vectors along with randomly adjusted RIS reflection coefficient vector to illustrate

the performance gain of the cell-free system. By assuming that BSs send their local CSI to the

CPU, the authors of [35], [36] adopted alternating optimization algorithms to jointly design the

BS precoding and the RIS reflection coefficient vector. Note that the works mentioned above are

based on either a non-cooperative scheme, which requires no CSI exchange but yields inferior

performance, or a centralized scheme, which trades system complexity for better performance.

Although recently [37] proposed a distributed cooperative optimization method for RIS-assisted

cell-free system, it has to perform a set of iterations at different BSs without fully taking

advantage of the distributed parallel computing capabilities of cell-free systems.

Also, most existing research efforts on RIS-assisted cell-free systems are focused on developing

iterative optimization algorithms, which are based on some sophisticated models derived from

the underlying physical processes or through handcrafting [38], [39]. On the contrary, deep

learning (DL) methods attempt to automatically infer model information and network parameters

directly from training data [19], [40]. Therefore, DL is very promising for scenarios where the

environment is complex and the system model is challenging to be constructed explicitly [41].

In addition, the number of layers of most neural networks is much fewer than the number

of iterations incurred by typical iterative algorithms, which allows DL methods to attain a

faster inference speed. Nevertheless, neural networks are often trained as a “black-box” with

poor interpretability and lack essential domain knowledge that is beneficial for generalization.

Therefore, combining conventional iterative algorithms and raw data-driven DL has become

a new surge of research. Recently, an appealing concept called algorithm unrolling has been

proposed, which unrolls iteration-based algorithms into learning-based neural network structures

[42]–[51]. Such a unfolding process can not only integrate domain knowledge but also learn

complex mapping functions and hyper-parameters from input data. Specifically, each step in the

traditional iterative algorithm is unrolled into a layer or a block of the neural network. Different

network layers or blocks are cascaded to form a holistic neural network framework for solving

the original problem more efficiently. The algorithm unrolling methods have shown advantages

in many application domains, such as computational imaging [48], [49], speech processing [50],

and remote sensing [51].
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TABLE I

CONTRAST OF THE PROPOSED D2-ADMM TO EXISTING WORKS FOR RIS-ASSISTED CELL-FREE SYSTEMS

Features Proposed [34] [35] [36] [37]

Optimization objective WSR ASR EE WSR WSR

BS precoding design DL Local MRT IA PDS ADMM

RIS passive beamforming design DL Random IA PDS MM

Centralized design × × X X ×

Distributed design
Noncooperative × X × × ×

Cooperative X × × × X

Convergence speed Fast N/A Moderate Moderate Slow

WSR: weighted sum-rate; ASR: average sum-rate; EE: energy efficiency; IA: inner approximation;

PDS: primal-dual subgradient; MM: majorization-minimization;

B. Contributions

Targeting RIS-assisted cell-free systems, we design a fully distributed joint BS precoding and

RIS reflection coefficient optimization scheme based on the alternating direction method of mul-

tipliers (ADMM). Furthermore, we unroll the proposed solver to a learning-based neural network

to attain better convergence and system performance. More specifically, the main contributions

of this paper in contrast with existing works are shown in Table I and further summarized as

follows:

• We propose a distributed RIS-assisted cell-free system, where multiple energy-efficient RISs

are deployed to assist in the downlink communications from a set of distributed BSs to

multiple users (UEs). A distributed cooperative BS precoding and RIS reflection coefficient

design scheme is developed to make full use of distributed computing resources.

• Furthermore, we propose a distributed design based on ADMM that iteratively updates

the corresponding auxiliary variables, BS precoding, RIS reflection coefficient vectors, and

multipliers involved. The proposed design considers the consensus problem when separately

designing the RIS reflection coefficients at each BS in parallel.

• We unroll the proposed distributed ADMM design into a learning-based deep distributed

ADMM (D2-ADMM) neural network structure, which consists of a cascade of multiple

neural blocks. Each neural block is designed by unfolding a single iteration of the proposed

distributed ADMM design. Moreover, an effective monodirectional information exchange
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strategy with a small information exchange overhead is proposed for implementing our

algorithm. In addition to obtaining deterministic variable updating strategies from domain

knowledge, D2-ADMM adaptively learns hyper-parameters and non-convex solvers of the

RIS design problem through data-driven end-to-end training. Furthermore, D2-ADMM re-

quires only a few neural blocks to reach convergence thanks to the strong inferential

capability of DL.

• Finally, we elaborate on the training and implementation of the proposed algorithm. Numer-

ical results demonstrate that the proposed algorithm has faster convergence, less computa-

tional complexity, and better performance compared with various traditional algorithms.

C. Organization and Notations

The rest of this paper is organized as follows. Section II introduces the system model and for-

mulates the joint precoding and RIS reflection design problem in RIS-assisted cell-free systems.

In Sections III, we propose a distributed ADMM-based design by maximizing the weighted

sum-rate. Section IV presents a D2-ADMM neural network structure and a monodirectional

information exchange strategy to design the BS precoding and the RIS reflection coefficients.

Numerical results are provided in Section V. Finally, we conclude the paper in Section VI.

Notations: In this paper, scalars are denoted by italic letters. Vectors and matrices are denoted

by bold-face lower-case and upper-case letters, respectively. The superscripts (·)T and (·)H

represent the operations of transpose and Hermitian transpose. |·| denotes the absolute value

of a real number. ‖·‖ denotes the 2-norm of a vector or a matrix. Re {x} and Im {x} denote the

real and imaginary parts of the complex number x, respectively. diag (·) denotes the diagonal

operation. The distribution of a circularly symmetric complex Gaussian (CSCG) with mean v

and variance σ is denoted as ∼ CN (v, σ). log2(·) represents the logarithmic function. C denotes

the set of complex values. S denotes the set of symmetric positive definite matrices.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section starts by introducing the system model of the RIS-assisted cell-free system. In

order to design the BS precoding and RIS reflection coefficient vector, a practical weighted

sum-rate (WSR) maximization problem is formulated.
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A. System Model

In this paper, we consider a downlink RIS-assisted cell-free system, as illustrated in Fig.

1, where multiple BSs and RISs are deployed in a distributed arrangement to serve all UEs

cooperatively. The sets of BSs, RISs, and UEs are defined as B = {1, 2, · · ·B},R = {1, 2, · · ·R},

and K = {1, 2, · · ·K}, respectively. The number of antennas of each BS and UE is Nt and 1,

respectively. Each RIS is equipped with a rectangular metasurface having N passive reflecting

elements.

As shown in Fig. 1, each RIS builds one virtual channel consisting of the BS-RIS and RIS-UE

channels between a BS and a UE to assist in the downlink communication. In this paper, the

BS-RIS channel between the b-th BS and the r-th RIS is denoted by Gb,r ∈ CN×Nt . The RIS-UE

channel between the r-th RIS and the k-th UE is denoted by vHr,k ∈ C1×N . Moreover, the direct

channel between the b-th BS and the k-th UE is denoted by hHb,k ∈ C1×Nt . We consider that the

proposed system operates in the mmWave band, where Gb,r, vr,k, and hb,k are described by the

Saleh-Valenzuela model [52], which are expressed as

Gb,r =

√
NtN

LG

LG∑
l=1

βb,r,laP (ψb,r,l, ςb,r,l) aHL (χb,r,l) ,

vr,k =

√
N

Lv

Lv∑
l=1

βr,k,laP (ψr,k,l, ςr,k,l) ,

hb,k =

√
Nt

Lh

Lh∑
l=1

βb,k,laL (ψb,k,l) (1)

respectively, where LG, Lv, and Lh denote the multi-path number of Gb,r, vr,k, and hb,k,

respectively. ψ∗,∗,l(ς∗,∗,l), and χ∗,∗,l denote the azimuth (elevation) angles of arrival (AoAs), and

azimuth angles of departure (AoDs), where ∗ represents the index of the BS, the RIS element, and

the UE, respectively. βb,r,l ∼ CN (0, PLb,r,l), βr,k,l ∼ CN (0, PLr,k,l), and βb,k,l ∼ CN (0, PLb,k,l)

denote the corresponding complex-valued path gain, where PL represents the path loss. Besides,

aL (ς) and a (ψ, ς) denote the array response vectors of uniform linear array (ULA) and uniform

planar array (UPA), which are defined as

aL (ψ) =
1√
NL

[1, · · ·, ejπnl sinψ, · · ·, ejπ(NL−1) sinψ]T , (2)

aP (ψ, ς) = 1√
NxNy

[
1, · · ·, ejπ(nx sinψ sin ς+ny cos ς), · · ·, ejπ((Nx−1) sinψ sin ς+(Ny−1) cos ς)

]T
, (3)



8

BS 1

BS b

BS B

RIS 1 RIS r RIS R

UE 1

UE k

UE K

,b rG

,

H

b kh

,

H

r kv

Fig. 1. The downlink RIS-assisted cell-free system.

respectively, where NL and nl denote the total antenna number and the antenna index of ULA;

Nx, Ny, nx, and ny represent the horizontal antenna number, the vertical antenna number, the

horizontal antenna index, and the vertical antenna index of UPA, respectively.

In the downlink transmission, the transmitted symbol xb ∈ CNt×1 at the b-th BS is defined as

xb =
K∑
k=1

wb,ksk, b ∈ B, (4)

where sk is the transmitted symbol for the k-th UE. Thus, we have s = [s1, s2, · · · , sK ]T ∈ CK×1

representing the transmitted symbol vector that satisfies E[ssH ] = IK ; wb,k ∈ CNt×1 denotes the

precoding vector at the b-th BS for the k-th UE.

At each UE, the received signal component corresponding to one BS includes two parts,

one is that directly propagated from the BS to the UE, while the other is that superimposing

mutiple signal copies reflected by R RISs. Hence, the received signal component at the k-th UE

corresponding to the b-th BS can be expressed as

yb,k =

(
hHb,k +

R∑
r=1

vHr,kΘ
H
r Gb,r

)
K∑
k=1

wb,ksk

=
(
hHb,k + θHVH

k Gb

)
xb

= ĥHb,kxb, (5)

where Θr = diag([ejϕr,1 , ejϕr,2 , · · · , ejϕr,N ]T ) ∈ CN×N is the reflection coefficient matrix of

the r-th RIS; ϕr,n is the phase shift imposed by the n-th element of the r-th RIS; θ
∆
=

e

(
j[ϕ1,1,··· ,ϕ1,N ,ϕ2,1,··· ,ϕR,N ]

T
)
∈ CNR×1 denotes the phase shift vector of R RISs; Vk

∆
= diag([vT1,k,v

T
2,k,
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· · · ,vTR,k]) ∈ CNR×NR represents the equivalent channel from R RISs to the k-th UE; Gb =

[GT
b,1,G

T
b,2, · · · , GT

b,R]T ∈ CNR×Nt denotes the equivalent channel from the b-th BS to R RISs;

ĥb,k is the composite channel from the b-th BS to the k-th UE, incorporating one direct and NR

reflected channels.

We assume that all BSs are synchronized to ensure joint service for all UEs in the same

time-frequency resource block. Therefore, the received signal at the k-th UE is the superposition

of the signals transmitted from all BSs, which can be expressed as

yk =
B∑
b=1

yb,k + zk

=
B∑
b=1

K∑
j=1

ĥHb,kwb,jsj + zk

=
B∑
b=1

ĥHb,kwb,ksk︸ ︷︷ ︸
Desired signal

+
B∑
b=1

K∑
j=1,j 6=k

ĥHb,kwb,jsj︸ ︷︷ ︸
Interference of other UEs

+zk, (6)

where zk ∼ CN (0, δ2
k) denotes the additive white Gaussian noise (AWGN). Without loss of

generality, we assume that all UEs have the same noise power, i.e., δ2
k = δ2,∀k ∈ K.

B. Problem Formulation

Based on the signal model expressed in (6), the signal-to-interference-plus-noise ratio (SINR)

ζk of the k-th UE can be written as

ζk =

∣∣∣∣ B∑
b=1

ĥHb,kwb,k

∣∣∣∣2
K∑

j=1,j 6=k

∣∣∣∣ B∑
b=1

ĥHb,kwb,j

∣∣∣∣2 + δ2

. (7)

To evaluate the performance of the RIS-assisted cell-free system, the WSR is given as

WSR =
K∑
k=1

ωklog2 (1 + ζk), (8)

where ωk > 0 is the weight of the k-th UE, which indicates the priority of different UEs.
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In this paper, we endeavor to maximum the WSR of the RIS-assisted cell-free system by

designing the BS precoding W = {wb,k|∀b ∈ B,∀k ∈ K} and the RIS reflection coefficient

vector θ. Mathematically, the optimization problem can be formulated as

P0 : max
θ,W

WSR =
K∑
k=1

ωklog2 (1 + ζk) (9a)

s.t.
K∑
k=1

‖wb,k‖2 ≤ Pb,max, ∀b ∈ B, (9b)

|θr,b| = 1, ∀r ∈ R, ∀n ∈ N , (9c)

where (9a) is the WSR objective function; (9b) is the power constraints of BSs, where Pb,max

denotes the maximum transmit power budget at the b-th BS. Constraint (9c) represents that the

amplitude of reflection coefficient of each RIS remains constant in this paper.

Remark 1: Although the centralized algorithm can achieve the optimal solution to P0 [36],

it requires collecting the local CSI of all BSs for joint optimization at the CPU. This inevitably

increases both the CSI feedback and control signaling overhead as well as the computational

complexity of the CPU. Therefore, we aim to develop a distributed algorithm to solve P0 by

spreading the computational load to the distributed BSs.

Therefore, the distributed optimation problem of P0 is rewritten as

P1 : max
θ,W

WSR =
K∑
k=1

ωklog2 (1 + ζk) (10a)

s.t. (9b), (9c),

θb = θb̄,∀b ∈ B,∀b̄ ∈ Fb, (10b)

where (10b) is the consensus constraint, which means that θb optimized at adjacent BSs should

be consistent. Fb represents the index set of the adjacent BSs that can exchange information

with the b-th BS. Specifically, the b-th BS requires utilizing the information from the adjacent

BSs when designing the RIS reflection coefficients. Then, it sends its local information to the

adjacent BSs until the RIS reflection coefficients on all BSs reach a consensus.

Remark 2: Here we highlight that the optimization of Wb and θb in a distributed system

are distinctly different. Specifically, the downlink precoding matrix Wb is unique for different

BSs. By contrast, θb optimized by different BSs correspond to the same RIS and need to be

appropriately fused into a single reflection coefficient vector, which is known as the consensus
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problem in distributed systems. Although the centralized algorithm does not involve the consensus

problem, the distributed optimization strategy is more effective and practical considering the

distributed deployment of BSs as well as the limited backhaul capacity.

III. ADMM-BASED DISTRIBUTED OPTIMIZATION

In this section, we propose a distributed ADMM-based design for effectively optimizing the

precoder and reflection phase shifts in the practical RIS-assisted cell-free system. Specifically,

we first convert the non-convex P1 into a tractable form P2. Then, we propose a distributed

ADMM design to solve P2.

A. A Tractable Form of P1

Observe form (10a) that P1 is a non-convex optimization problem due to the coupling of the

optimization variables W and θ and the consensus constraint (10b). Therefore, we transform P1

into a tractable problem by applying the Lagrangian dual transform and the quadratic transform,

which are summarized in Lemmas 1 and 2, respectively.

Lemma 1 (Lagrangian dual transform): Given a sum-of-logarithmic-ratios problem, expressed

as [53]

max
x

D∑
d=1

ωdlog2

(
1 +

Qd (x)

Fd (x)

)
(11a)

s.t. x ∈ χ, (11b)

where ωd is a nonnegative weight; Qd (x) is a nonnegative function that satisfies Qd (x) ≥ 0;

Fd (x) is a positive function with Fd (x) > 0; x is the optimization variable, and χ denotes a

nonempty constraint set. Moving the ratio from inside of the logarithm to the outside, (11a) can

be rewritten as

min
x,γ

D∑
d=1

ωd

(
γd − log2 (1 + γd)−

(1 + γd)Qd (x)

Qd (x) + Fd (x)

)
(12a)

s.t. x ∈ χ, γd ≤
Qd(x)

Fd(x)
, (12b)

where γ = [γ1, γ2, · · · γD]T is the auxiliary variable vector.
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Lemma 2 (Quadratic transform): Given a sum-of-functions-of-ratio problem for the multidi-

mensional and complex cases, expressed as [54]

min
x

D∑
d=1

f̄d
(
Qd (x)F−1

d (x)QH
d (x)

)
(13a)

s.t. x ∈ χ, (13b)

where function Qd (x) : Cd1 → Cd2 , Fd (x)Cd1 → Sd2×d2 , x, and constraint χ ⊆ Cd1 . Let f̄d (·)

denotes a monotonically nondecreasing function, problem (13) can be transformed to

min
x,η

D∑
d=1

f̄d
(
2Re {ηdQd (x)} − η2

dFd (x)
)

(14a)

s.t. x ∈ χ, ηd ∈ Cd1 , (14b)

where η = [η1, η2, · · · ηD]T denotes the auxiliary variable vector.

Therefore, by using the Lagrangian dual transform, P1 can be reformulated as

LP1 : min
θ,W,γ

f1 (θ,W,γ) (15a)

s.t. (9b), (9c), (10b),

where f1 (θ,W,γ) is the new objective function via Lemma 1, which is described in (16).

Besides, γ = [γ1, γ2, · · · γK ]T represents the auxiliary variable vector.

f1 (θ,W,γ) =
K∑
k=1

ωk

γk − log2 (1 + γk)−
(1 + γk)

∣∣∣∣ B∑
b=1

ĥHb,kwb,k

∣∣∣∣2
K∑
k=1

∣∣∣∣ B∑
b=1

ĥHb,kwb,k

∣∣∣∣2 + δ2

. (16)

Then we use the quadratic transform shown in Lemma 2 to decouple the numerator and the

denominator of the fraction in LP1 to further simplify the optimization. Consequently, LP1 can

be transformed as

LP2 : min
θ,W,γ,η

f2 (θ,W,γ,η) (17a)

s.t. (9b), (9c), (10b),

where f2 (θ,W,γ,η) is given in (18); η = [η1, η2, · · · ηK ]T denotes the auxiliary variable vector.

f2 (θ,W, γ, η) =
K∑
k=1

(|ηk|2
K∑
j=1

∣∣∣∣∣
B∑
b=1

ĥHb,jwb,k

∣∣∣∣∣
2

+ |ηk|2δ2 + ωkγk

− 2
√

(1 + γk)ωk

B∑
b=1

Re
{
ηkĥ

H
b,kwb,k

}
− ωklog2 (1 + γk) . (18)
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Next, we rewrite problem LP2 in its augmented Lagrangian form, expressed as

L (θ,W,γ,η,λ) = f2 (θ,W,γ,η) +
B∑
b=1

µb

(
K∑
k=1

‖wb,k‖2 − Pb,max

)
︸ ︷︷ ︸

Power constraint

+
B∑
b=1

I (θb)︸ ︷︷ ︸
Feasible constraint

+
B∑
b=1

ρb
2

∥∥∥∥θb − θb̄ +
λb
ρb

∥∥∥∥
2

︸ ︷︷ ︸
Consensus constraint

. (19)

where λ =
{
λb ∈ CN×1|∀b ∈ B

}
is the Lagrange multiplier and ρb > 0. I (·) represents a

feasible function such that I (θb) = 0 for |θb| = 1 and I (θb) =∞ for |θb| 6= 1. As a result, the

final tractable form of P1 is given as

P2 : min
θ,W,γ,η,λ

L (θ,W,γ,η,λ) (20)

B. Proposed Distributed Design Based on ADMM

To solve the problem P2, we propose a distributed design based on ADMM [55], [56]. The

proposed design iteratively designs the local BS precoding and RIS reflection coefficient vectors

at each BS. Specifically, the i-th iteration at the b-th BS can be expressed as

γi = arg min
γ
f1

(
θi−1,Wi−1,γ

)
, (21a)

ηi = arg min
η
L
(
θi−1,Wi−1,γi,η,λi−1

)
, (21b)

Wi
b = arg min

Wb

L
(
θi−1,W̄i−1

b ,Wb,γ
i,ηi,λi−1

)
, (21c)

θib = arg min
θb

L
(
θ̄
i−1
b ,θb,W̄

i−1
b ,Wi

b,γ
i,ηi,λi−1

)
, (21d)

λib = λi−1
b + ρb

(
θib − θi

b̄

)
, (21e)

where Wb = {wb,k|∀k ∈ K} denotes the local precoding at the b-th BS; W̄b = W\Wb and

θ̄b = θ\θb are the downlink precoding and the RIS reflection coefficient vector of other BSs

except the b-th BS; Observe from (21) that γ, η, Wb, θb, and λb are updated locally in sequence.

Next, we give the solutions to problems (21a)-(21d) one by one. Note that P2 is an equivalence

problem to LP1, which means that the optimal γ of LP1 is equal to ones of P2. Besides, it is

easier to solve LP1 than P2 for optimal γ. Therefore, we solve LP1 for optimal γ.
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1) The Solver of (21a): For problem (21a), f1 (θ,W,γ) is a convex function for γ with fixed

θ and W. Therefore, the optimal γk can be obtained by taking ∂(f1(γ))
∂γk

= 0. Thus, we have

γ†k =

∣∣∣∣ B∑
b=1

ĥHb,kwb,k

∣∣∣∣2
K∑

j=1,j 6=k

∣∣∣∣ B∑
b=1

ĥHb,kwb,j

∣∣∣∣2 + δ2

=
|$k,k + ϑk,k|2

K∑
j=1,j 6=k

|$k,j + ϑk,j|2 + δ2

, (22)

where $k,j =
B∑
b=1

hHb,kwb,j and ϑk,j =
B∑
b=1

θHVH
k Gbwb,j are two defined cross-term information,

which contain the information of all BSs. Note that {$k,j|∀k, j ∈ K} and {ϑk,j|∀k, j ∈ K} are

then exchanged among different BSs to achieve the goal of cooperative design.

2) The Solver of (21b): For problem (21b), we note that only f2 (θ,W,γ,η) in (19) is

dependent on η. Therefore, problem (21b) can be reformulated as

η = arg min
η

K∑
k=1

|ηk|2
 K∑

j=1

∣∣∣∣∣
B∑
b=1

ĥHb,jwb,k

∣∣∣∣∣
2

+ δ2


−
√

(1 + γk)ωk

(
B∑
b=1

(
ηkĥ

H
b,kwb,k + η∗kw

H
b,kĥb,k

)))
. (23)

The optimal η†k can also be obtained by taking ∂(f2(η))
∂η∗k

= 0, which is expressed as

η†k =
($k,k + ϑk,k)

∗√(1 + γk)ωk
K∑
j=1

|$k,j + ϑk,j|2 + δ2

. (24)

3) The Solver of (21c): Given a set of tentative values of other variables, we have

L (wb,k) =
K∑
k=1

(|ηk|2
K∑
j=1

∥∥∥∥∥∥
 B∑
b′ 6=b

ĥH
b′ ,j

wb′ ,k

wH
b,kĥb,j

∥∥∥∥∥∥
2

+
∥∥hHb,jwb,k

∥∥2


−
√

(1 + γk)ωkRe
{
ηkĥ

H
b,kwb,k

}
) + µb‖wb,k‖2 + C1. (25)

where C1 is defined by

C1 =
K∑
k=1

(|ηk|2
K∑
j=1

B∑
b′ 6=b

∥∥∥ĥHb′ ,jwb′ ,k

∥∥∥2
K∑
j=1

−2
√

(1 + γk)ωk

B∑
b′ 6=b

Re
{
ηkĥ

H
b′ ,k

wb′ ,k

}
+|ηk|2δ2 + ωkγk

− ωklog2 (1 + γk)) +
B∑
b′ 6=b

µb′

(
K∑
k=1

∥∥wb′ ,k

∥∥2 − Pb,max

)
+ µb

 K∑
k′ 6=k

∥∥wb,k′
∥∥2 − Pb,max


+

B∑
b=1

I (θb) +
B∑
b=1

ρb
2

∥∥∥∥θb − θb̄ +
λb
ρb

∥∥∥∥2

. (26)
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Similarly, the optimal w†b,k can be obtained by taking
∂(L(wb,k))

∂wH
b,k

= 0, which is given as

w†b,k =

√
(1 + γk)ωkη

∗
kĥb,k −Ωb,k(

µb + |ηk|2
K∑
j=1

ĥb,jĥHb,j

) , (27)

where Ωb,k = |ηk|2
K∑
j=1

ĥb,k($j,k + ϑj,k − ĥHb,jwb,k); µb is a normalized factor used to scale wb,k

for satisfying the total power constraint, which needs to be dynamically updated in each iteration.

We apply the power normalization approach below to bypass the update of µb in D2-ADMM.

Specifically, wl
b,k is scaled by

w†b,k =

√
Pb,maxw

†
b,k√

K∑
k=1

∥∥∥w†b,k∥∥∥2

. (28)

4) The Solver of (21d): For problem (21d), we first rewrite (19) in a more intuitive form as

L (θb) = θHb Sθb − 2Re
{
θHb Z

}
+

B∑
b=1

I (θb) + C2, (29)

where S, Z, and C2 are independent of θb and given in (30), (31), and (32) respectively. Note

that (29) is a non-convex problem due to the feasible constraint. To solve this problem, we build

a neural block based on DL, and the details will be discussed in Section IV.

S =
K∑
k=1

|ηj|2
K∑
j=1

VH
j Gbwb,kw

H
b,kG

H
b Vj +

ρb
2
. (30)

Z =
K∑
k=1

|ηk|2
K∑
j=1

VH
j Gbwb,k

(
wH
b,kĥb,j −$∗j,k − ϑ∗j,k −wH

b,khb,j

)
+
√

(1 + γk)ωkηkV
H
k Gbwb,k.

(31)

C2 =
K∑
k=1

|ηk|2 K∑
j=1

 B∑
b′ 6=b

∥∥∥ĥHb′ ,jwb′ ,k

∥∥∥2

+ 2Re

hHb,jwb,k

 B∑
b′ 6=b

wH
b′ ,k

ĥb′ ,j

+
∥∥hHb,jwb,k

∥∥2


−
√

(1 + γk)ωk

B∑
b′ 6=b

Re
{
ηkĥ

H
b′ ,k

wb′ ,k

}
+ ωkγk − ωklog2 (1 + γk) + |ηk|2δ2


+

B∑
b′ 6=b

ρb′

2

∥∥∥∥θb′ − θb̄′ +
λb′

ρb′

∥∥∥∥2

+
ρb
2

∥∥∥∥λbρb − θb̄

∥∥∥∥2

. (32)



16

Ini-Block 
Mid-

Block1 

Mid-

Block2

Mid-

Block3

Out-

Block
BS b

BS b+1

,, ,b k b kG V h
1 1

,,b b k w

2 2,b b 

0

b

0

,b kw

1 11 1

,,
l l

b b k − −
w

1 1,
l l

b b 

1 1

,,
l l

b b k w

2 2,
l l

b b 1 11 1
,

l l

b b + +

3 31 1

,,
l l

b b k − −
w2 21 1

,,
l l

b b k − −
w 2 2

,,
l l

b b k w

2 21 1
,

l l

b b + + 3 3,
l l

b b 

3 3

,,
l l

b b k w 1 1

,,L L

b b k − −
w

3 31 1
,

l l

b b + +
,L L

b b 
,,L L

b b k w

1 1ˆˆ ,b b  1 1ˆˆ ,
l l

b b  2 2ˆˆ ,
l l

b b  3 3ˆˆ ,
l l

b b 

3 3

1 1
ˆˆ ,

l l

b b + +
2 2

1 1
ˆˆ ,

l l

b b + +
1 1

1 1
ˆˆ ,

l l

b b + +

1 1

1 1
ˆˆ ,b b + +

BS b-1

{B  

1

1b +
1

1

l

b +

1l

b
2l

b
3l

b

3

1

l

b +
2

1

l

b +

1

b

Fig. 2. The structure of D2-ADMM.

IV. D2-ADMM: A LEARNING-BASED ALGORITHM UNROLLING METHOD

This section proposes a D2-ADMM neural network structure to design the BS precoding and

the RIS reflection coefficient by unfolding the proposed distributed ADMM design. Furthermore,

an efficient monodirectional information exchange strategy is proposed to link different BSs to

improve the performance of our distributed designs. Finally, we elaborate on the training and

the implementation of D2-ADMM.

A. Structure of Deep Distributed ADMM

The proposed distributed ADMM design iteratively updates auxiliary variables, BS precoding,

RIS reflection coefficient vectors, and multipliers. However, it has high computational complexity

since the conventional distributed ADMM may take hundreds or thousands of iterations to achieve

convergence. System performance and convergence are additionally hampered by the requirement

to manually choose crucial hyper-parameters, such as the power normalized factor {µb|∀b ∈ B}

and the penalty factor {ρb|∀b ∈ B}. To overcome these shortcomings, we unfold the proposed

distributed ADMM design into the D2-ADMM to learn the hype-parameters {ρb|∀b ∈ B} auto-

matically and bypass {µb|∀b ∈ B}. Besides, we create a neural block called θ-Block to solve

the complicated problem (21d). The specific D2-ADMM structure is illustrated in Fig. 2.

As shown in Fig. 2, a total of B D2-ADMM are respectively implemented at B BSs. A D2-

ADMM is composed of L ≥ B cascaded neural blocks. Each neural block is designed according

to one iteration of the distributed ADMM design, which means that a neural block is equivalent to

a single iteration in traditional iterative algorithms. The (l−1)-st neural block’s output constitutes
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Fig. 3. The structure of Ini-Block relying on algorithm unrolling.

the input of the l-th neural block. The input of the first neural block is initialized, and the last

neural block outputs the optimized BS precoding matrix and RIS reflection coefficient vectors.

More specifically, we have five different kinds of neural blocks, namely the initialization neural

block (Ini-Block), the middle neural block 1 (Mid-Block1), the middle neural block 2 (Mid-

Block2), the middle neural block 3 (Mid-Block3), and the output neural block (Out-Block). For

the sake of illustration, we give the schematic diagram of the Ini-Block in Fig. 3. The structures

of other neural blocks are based on the Ini-Block by replacing or pruning certain parts. Ini-Block

initializes the network, which includes a cross-term information initialization layer (I-Layer), an

auxiliary variable update layer (A-Layer), a BS precoding update layer (W -Layer), an RIS update

block (θ-Block), a multiplier update layer (λ-Layer), and a cross-term information exchange layer

1 (I1-Layer). The first neural block of D2-ADMM is an Ini-Block. The 2nd to (B−1)-st network

blocks of D2-ADMM are created as the Mid-Block1, which contains an A-Layer, a W -Layer,

a θ-Block, a λ-Layer, and a I1-Layer. The B-th neural block of D2-ADMM is Mid-Block2,

which has a similar structure as Mid-Block1, except that I1-Layer is replaced with a cross-term

information exchange layer 2 (I2-Layer). Moreover, the (B + 1 ∼ L − 1)-st neural blocks are

Mid-Block3, which is constructed similarly as Mid-Block2 with the exception of using a cross-

term information exchange layer 3 (I3-Layer). The last neural block of D2-ADMM is referred

to Out-Block, which consists of an A-Layer, a W -Layer, and a θ-Block.

Next, we will discuss the structure and function of each layer and the θ-Block.
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1) Auxiliary Variable Update Layer (A-Layer): A-Layer updates two auxiliary variables, γ

and η, according to (22) and (24). To reflect the iteration order, we rewrite (22) and (24) as

γlb,k =

∣∣$l
b,k,k + ϑlb,k,k

∣∣2
K∑

j=1,j 6=k

∣∣$l
b,k,j + ϑlb,k,j

∣∣2 + δ2

, (33)

ηlb,k =

(
$l
b,k,k + ϑlb,k,k

)∗√(
1 + γlb,k

)
ωk

K∑
j=1

∣∣$l
b,k,j + ϑlb,k,j

∣∣2 + δ2

, (34)

respectively, where $l
b,k,j and ϑlb,k,j denote the cross-term information of the l-th neural block

for the b-th BS; γlb,k, and ηlb,k are the two auxiliary variables of the l-th neural block for the b-th

BS.

2) BS Precoding Update Layer (W -Layer): According to (27), W -Layer updates the BS

precoding matrix W as

wl
b,k =

√(
1 + γlb,k

)
ωb,k
(
ηlk
)∗

ĥl−1
b,k −Ωl−1

b,k

K∑
j=1

∣∣ηlb,j∣∣2ĥl−1
b,j

(
ĥl−1
b,j

)H , (35)

where Ωl−1
b,k =

K∑
j=1

∣∣ηlb,j∣∣2ĥl−1
b,k ($l

b,j,k+ϑlb,j,k−(ĥl−1
b,j )Hwl−1

b,k ) and ĥl−1
b,j = (hHb,j + (θl−1

b )
H

VH
k Gb)

H .

In order to satisfy the power constraint, wl
b,k can be rewrited as

wl
b,k =

√
Pb,maxw

l
b,k√

K∑
k=1

∥∥wl
b,k

∥∥2

. (36)

3) RIS Update Block (θ-Block): As previously mentioned, (29) is a non-convex function that

is challenging to solve by conventional methods. Therefore, we introduce the θ-Block, which

aims to exploit the inference ability of DL to solve this problem. θ-Block is composed of multiple

convolutional layers. Specifically, we first rewrite (29) as

∠ (θb) = fθ (S,Z) , (37)

where fθ denotes a non-linear function that applied as the solver of problem (29).

We then use multiple convolutional layers to approximate this complicated non-linear function

fθ. Since the neural network is more amenable with real-valued data, we first convert S and Z

into real-valued sequences Inθ as the input of the θ-Block, expressed as follows.

Inθ = [Re {S} , Im {S} ,Re {Z} , Im {Z}] . (38)
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Therefore, the working principle of θ-Block can be expressed as

∠ (θb) = fC,U (· · · fC,u (· · · fC,1 (Inθ|υ1) |υu) |υU) , (39)

where fC,u is the u-th convolutional layer; U denotes the number of convolutional layers; υu is

the parameter set of the u-th convolutional layer. In this paper, we empirically choose U = 3

which is sufficient for our problem.

Note that in the proposed architecture, the parameters of each convolutional layer can be

automatically learned through end-to-end training.

4) Multiplier Update Layer (λ-Layer): The multipliers are updated through this layer using

the following strategy

λlb = λl−1
b + ρb

(
θlb − θl

b̄

)
, (40)

where ρb is a learnable parameter; θl
b̄

is the RIS reflection coefficient vector exchanged from

the b̄-th BS.

5) Cross-Term Information Initialization Layer (I-Layer): Again, in the cooperative design

of distributed RIS-assisted cell-free systems, CSI sharing is necessary among BSs. However,

considering the security and the excessive overhead associated with direct CSI exchange, we

define {$b,k,j, ϑb,k,j|∀b ∈ B; ∀k, j ∈ K} as two types of necessary cross-information in A-layer,

W -Layer, and θ-Block.

I-Layer initializes the local cross-term information, which is expressed as $̂0
b,k,j = 0,

ϑ̂0
b,k,j = 0,

(41a)

 $1
b,k,j = hHb,kw

0
b,k,

ϑ1
b,k,j =

(
θ0
b

)H
VH
k Gbw

0
b,k,

(41b)

where $̂0
b,k,j and ϑ̂0

b,k,j are two initialized cross-term information, which will be sent to the

adjacent BSs; $1
b,k,j and ϑ1

b,k,j denote two cross-term information, which will be used for updating

the next neural block; w0
b,k and θ0

b are initialized randomly.

6) Cross-Term Information Layer 1 (I1-Layer): I1-Layer includes two processes. The process

1 is to send the updated cross-term information to the adjacent BSs, expressed as (42a), where

$̂l
b,k,j and ϑ̂lb,k,j are two cross-term information that needs to be shared with the adjacent BSs.

Moreover, $̂l−1
b̄,k,j

and ϑ̂l−1
b̄,k,j

represent two cross-term information symbols that are received from

the adjacent BSs. θlb and wl
b,k denote the l-th update of the RIS reflection coefficient vector and
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the BS precoding vector, respectively. In the process 2, the cross-term information required for

updating the next neural block will be determined based on the received cross-term information

from the adjacent BSs, as demonstrated in (42b), where $l+1
b,k,j and ϑl+1

b,k,j denote the two cross-

term information symbols that are required for updating the (l + 1)-st neural block. I1-Layer is

configured for the (1 ∼ B−1)-st neural blocks. $̂l
b,k,j = $̂l−1

b̄,k,j
+ hHb,kw

l
b,k,

ϑ̂lb,k,j = ϑ̂l−1
b̄,k,j

+
(
θlb
)H

VH
k Gbw

l
b,k,

(42a)

 $l+1
b,k,j = $̂l

b̄,k,j
+ hHb,kw

l
b,k,

ϑl+1
b,k,j = ϑ̂l

b̄,k,j
+
(
θlb
)H

VH
k Gbw

l
b,k.

(42b)

7) Cross-Term Information Layer 2 (I2-Layer): I2-Layer has the similar process 1 but distinct

process 2 as I1-Layer. Specifically, the updates of the b-th BS in the first neural block is included

in the cross-term information needed for updating the (B + 1)-st neural block. Thus, we have

to eliminate the obsolete updates from the cross-term information and add the B-th update to

guarantee that only the new update is included. The specific process 2 is expressed as follows $B+1
b,k,j = $̂B

b̄,k,j
− hHb,kw

1
b,j + hHb,kw

B
b,j,

ϑB+1
b,k,j = ϑ̂B

b̄,k,j
−
(
θ1
b

)H
VH
k Gbw

1
b,j +

(
θBb
)H

VH
k Gbw

B
b,j.

(43)

Therefore, I2-Layer is only exploited in the B-th neural block.

8) Cross-Term Information Layer 3 (I3-Layer): When l ≥ B + 1, both the cross-term infor-

mation to be sent to the adjacent BSs and the cross-term information used for updating the next

neural block need to eliminate obsolete updates. Therefore, the two processes of I3-Layer can

be described as $̂l
b,k,j = $̂l−1

b̄,k,j
− hHb,kw

l−B+1
b,j + hHb,kw

l
b,j,

ϑ̂lb,k,j = ϑ̂l−1
b̄,k,j
−
(
θl−B+1
b

)H
VH
k Gbw

l−B+1
b,j +

(
θlb
)H

VH
k Gbw

l
b,j,

(44a)

 $l+1
b,k,j = $̂l

b̄,k,j
− hHb,kw

l−B+2
b,j + hHb,kw

l
b,j,

ϑl+1
b,k,j = ϑ̂l

b̄,k,j
−
(
θl−B+2
b

)H
VH
k Gbw

l−B+2
b,j +

(
θlb
)H

VH
k Gbw

l
b,j.

(44b)

We deploy I3-Layer in the (B + 1 ∼ L− 1)-st neural blocks.

B. Information Exchange Strategy

Next, we elaborate on the proposed information exchange strategy. To safeguard the informa-

tion privacy of different BSs and reduce the proposed system’s information exchange overhead,



21

BS 1 BS 2

BS b

BS B

2 2
ˆˆ ,l l 

2

l

1

l1 1
ˆˆ ,l l 

l

B

1

l

b +

3

l
3 3

ˆˆ ,l l 

ˆˆ ,l l

b b 

l

b

1 1
ˆˆ ,l l

b b + +

ˆˆ ,l l

B B 

Fig. 4. The proposed information exchange strategy.

we define two types of cross-term information used for the update at each BS. The updating of

each neural block needs to guarantee the integrality and timeliness of the cross-term information,

as demonstrated by the updating process of the I1-layer, the I2-layer, and the I3-layer. In most

existing distributed information exchange strategies, each BS often receives information shared

by multiple BSs [35], [36]. This exchange strategy will reduce the integrality and timeliness of

the cross-term information defined in our paper, affecting the convergence and performance of

the system. Therefore, we propose an effective monodirectional information exchange strategy,

assuming all BSs have a monodirectional topology, as illustrated in Fig. 4.

Each BS performs a monodirectional information exchange with two adjacent BSs through

a dedicated link. For instance, the b-th BS receives cross-term information from the (b + 1)-st

BS and sends its cross-term information to the (b − 1)-st BS. Such a strategy requires at least

B exchanges to ensure the integrality of the cross-term information. As the iteration proceeds,

the timeliness of the cross-term information is guaranteed by replacing the obsolete information

with the latest information. The specific cross-term information processing are completed at the

I1-Layer, I2-Layer, and I3-Layer.

In addition to exchanging cross-term information, we also need to exchange the RIS reflection

coefficient vectors updated by each neural block among various BSs to update the multiplier

λ. Therefore, the b-th BS needs to send {$̂l
b,k,j|∀k, j ∈ K} (K2 dimension), {ϑ̂lb,k,j|∀k, j ∈ K}

(K2 dimension), and θlb (RN dimension) in the l-th neural block. As a consequence, the total

dimension of exchanged data in the practical RIS-assisted cell-free system is B(L− 1)(2K2 +

RN), which is significantly reduced compared with that exchanging CSI directly.
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Fig. 5. The 3D scenario of the RIS-assisted cell-free system.

C. Training of D2-ADMM

In this section, we give the specific training and practical application methods of the proposed

D2-ADMM. The input to D2-ADMM at the b-th BS is its local CSI, the initialized w0
b,k and

θ0
b , while the output is the optimized wL

b,k and θLb . Then the parameters of θ-Layer and ρb in

D2-ADMM are updated through an end-to-end training. The loss function for training is set as

fLoss =
1

Q

Q∑
q=1

B∑
b=1

∥∥θq,b − θq,b̄
∥∥2︸ ︷︷ ︸

Consensus error

−WSRq, (45)

where Q is the sample number of one training batch.

By minimizing the loss function fLoss, the consensus error is minimized while maximizing

WSR. It is worth noting that the training process is completed on a single CPU. After complet-

ing the training, we deploy B D2-ADMMs to the corresponding BSs for practical distributed

implementation.

V. NUMERICAL RESULTS

This section provides simulation results to demonstrate the effectiveness of our proposed D2-

ADMM framework for the RIS-assisted cell-free system.

A. Simulation Setup

We consider a typical RIS-assisted cell-free system 3D scenario shown in Fig. 5. In this

scenario, the b-th BS is deployed at (200× b
B
,−50, 3) m. Without loss of generality, we consider
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R = 2 RISs, which are deployed at (75, 10, 6)m and (125, 10, 6) m. K UEs served by B BSs

are randomly distributed in a circular area with a center at (75, 0, 1.5) m, a radius of 5m, and

a height of 1.5 m. The number of antennas at each BS is set to Nt = 2. Given the location

information of each device, the corresponding channel can be determined by (1). In this setup,

we assume that the multi-path number of each channel is 3 (1 LoS, 2 NLoS), and their AOAs

and AODs are chosen randomly in the range [−π
2
, π

2
]. Likewise, all BSs have the same maximum

transmit power, i.e., Pb,max = P . The received noise power is set to δ2 = −80 dBm.

To better demonstrate the performance of the proposed D2-ADMM, we consider several

representative benchmarks, as listed below.

• Centralized: Assuming that all BSs send their local CSI to the central CPU for the centralized

design of the BS precoding matrix and the RIS reflection coefficient vectors [36].

• MRT Random θ: A distributed design method, where the RIS reflection coefficient vector

is randomly configured, and the precoding of BS is designed as the conjugate of local CSI

[7].

• MRT Comb MaxAO: A distributed algorithm that maximizes the channel gain of cascaded

channels for configuring the RIS, and the design of BS precoding is the same as MRT

Random θ.

• Local ZF Comb MaxAO: This distributed algorithm has the same design of RIS as MRT

Comb MaxAO and exploits the local ZF algorithm proposed in [57] for optimizing the BS

precoding matrix.

B. Training Performance of D2-ADMM

In order to show the convergence of D2-ADMM, we first conduct experiments to evaluate

various indicators in the training process of D2-ADMM, as shown in Figs. 6(a)-6(c), where we

set B = 4, N = 50, K = 4, P = 30 dBm.

Specifically, Fig. 6(a) illustrates the training loss of the D2-ADMM under the different number

of neural blocks. It can be seen that the D2-ADMM training loss can converge as the training

proceeds. In addition, the final convergent training loss gap for different L is negligible when

L ≥ 6. Furthermore, Fig. 6(b) shows the fluctuation of the consensus error of D2-ADMM

against different L. From Fig. 6(b), we can observe that the consensus error of D2-ADMM can

converge to a minimal value as the training proceeds, and varied L does not severely impact the

convergence result of the consensus error. The WSR in the training phase against the number
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Fig. 6. (a) The training loss of D2-ADMM; (b) The consensus error of D2-ADMM in the training process; (c) The WSR of

D2-ADMM in the training process;
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Fig. 7. The WSR comparison against transmit power P , where B = 4, Nt = 2, N = 50, K = 4.

of neural blocks is plotted in Fig. 6(c), demonstrating that D2-ADMM can gradually converge

to performance comparable to the centralized algorithm as the training progresses. Moreover,

D2-ADMM converges more quickly as the number of neural blocks increases. Again, the final

convergence performance reaches saturation when L ≥ 6 in the simulation setups considered.

By comparing Fig. 6(a)-6(c), it can be concluded that the performance of D2-ADMM can

converge nearly to that of the centralized algorithm and gradually saturate as the number of

neural blocks L grows. Considering the tradeoff between the number of neural blocks and

system performance, we provide a empirical selection criterion for the number of neural blocks

as L = B + 2.

C. Performance of D2-ADMM under Various Setups

This section presents the performance comparison of D2-ADMM and benchmark algorithms

under various setups.
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Fig. 8. The WSR comparison against the number of RIS elements N , where B = 4, Nt = 2, K = 4, P = 30 dBm.

In Fig. 7, we compare the WSR against the transmit power P of different algorithms when

B = 4, N = 50, K = 4. According to the conclusions given in Section V-A, we choose

L = 6 to balance the computational complexity and system performance. As shown in Fig. 7,

the WSR of all algorithms increases as P increases. The centralized algorithm performs the best

because it perfectly utilizes the CSI of all BSs. D2-ADMM is demonstrated to have comparable

performance, e.g., 95.6% when P = 30 dBm, to the centralized algorithm. The MRT Rand

θ algorithm performs the worst because the unoptimized RIS reflection coefficient does not

attain any benefits. Since Local ZF Comb MaxAO and MRT Comb MaxAO algorithms are non-

distributed algorithms without incorporating all BSs for system design, they suffer from severe

performance penalty compared with the proposed D2-ADMM, e.g., the WSR by applying the

D2-ADMM attains about 213% WSR improvement compared with the Local ZF Comb MaxAO

when P = 30 dBm.

Fig. 8 shows the performance comparison between D2-ADMM and benchmarks for different

number of RIS elements N , where B = 4, K = 4, P = 30 dBm. Observe from Fig. 8

that the centralized algorithm, the D2-ADMM, and the local ZF Comb MaxAO algorithms

improve as N increases. However, MRT Comb MaxAO and MRT rand θ algorithms hardly

benefit from increasing the number of RIS elements. Besides, D2-ADMM outperforms the other

three distributed design algorithms, e.g., 223% compared with the Local ZF Comb MaxAO when

N = 30, and can attain comparable performance, e.g., 96.6% when N = 30, to the centralized

method.

Next, we show the WSR of various algorithms versus the number of UEs in Fig. 9, where
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Fig. 9. The WSR comparison against the number of UE K, where B = 4, Nt = 2, N = 50, P = 30 dBm.

B = 4, N = 50, P = 30 dBm. The centralized algorithm, the D2-ADMM, and the Local

ZF Comb MaxAO algorithm increase with K thanks to the spatial multiplexing gain brought

by the increased number of UEs. Again, the D2-ADMM can perform as well as the centralized

algorithm, e.g., about 96.5% when K = 5, and better than the Local ZF Comb MaxAO algorithm,

e.g., about 216% when K = 5. When only a single UE is served, the performance of the other

four algorithms is the same except for the MRT rand θ algorithm since the inter-user interference

disappears in this situation. However, as a larger number of UEs access into the network, the MRT

Comb MaxAO algorithm’s performance declines, due to the fact that the distributed algorithm

fails to suppress the inter-user interference.

Finally, we evaluate the D2-ADMM algorithm’s performance against other benchmarks by

considering various numbers of BSs B in Fig. 10, where N = 50, K = 4, P = 30 dBm.

Again, the D2-ADMM can achieve comparable performance, e.g., about 96.2% when B = 5, to

the centralized algorithm with different B. The performance of D2-ADMM also increases as B

increases since that more BSs can provide more power for UEs.

VI. CONCLUSION

In this paper, we considered a RIS-assisted cell-free system that can boost communication

capacity and overcome the drawbacks of conventional cellular networks. To jointly design the

downlink precoding of BSs and the reflection phase shifts of RISs, we proposed a distributed

cooperative design based on ADMM, which can fully utilize the parallel computing resources.

Subsequently, we developed a neural network framework, D2-ADMM, by unrolling each iteration
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Fig. 10. The WSR comparison against the number of BS B, where Nt = 2, N = 50, K = 4, P = 30 dBm.

of the proposed distributed cooperative design, to automatically learn hyper-parameters and non-

convex RIS solvers through end-to-end training. Compared with conventional iterative algorithms,

D2-ADMM has a faster convergence speed. Moreover, we proposed an effective monodirectional

information exchange strategy to attain the cooperative design of all BSs with a small exchange

overhead. Finally, numerical results demonstrated that the proposed D2-ADMM achieve around

210% improvement in capacity compared with the distributed noncooperative algorithm and

almost 96% compared with the centralized algorithm.
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[28] J. Kaleva, A. Tölli, M. Juntti, R. A. Berry, and M. L. Honig, “Decentralized joint precoding with pilot-aided beamformer

estimation,” IEEE Trans. Signal Process., vol. 66, no. 9, pp. 2330–2341, May 2018.

[29] Q. Wu and R. Zhang, “Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming,”

IEEE Trans. Wireless Commun., vol. 18, no. 11, pp. 5394–5409, Nov. 2019.

[30] J. An and L. Gan, “The low-complexity design and optimal training overhead for IRS-assisted MISO systems,” IEEE

Wireless Commun. Lett., vol. 10, no. 8, pp. 1820–1824, Aug. 2021.

[31] C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep

reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1839–1850, Oct. 2020.

[32] C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. Di Renzo, and M. Debbah, “Holographic

MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27, no. 5,

pp. 118–125, Oct. 2020.

[33] E. Shi, J. Zhang, S. Chen, J. Zheng, Y. Zhang, D. W. Kwan Ng, and B. Ai, “Wireless energy transfer in RIS-aided cell-free

massive MIMO systems: Opportunities and challenges,” IEEE Commun. Mag., vol. 60, no. 3, pp. 26–32, Mar. 2022.

[34] B. Al-Nahhas, M. Obeed, A. Chaaban, and M. J. Hossain, “RIS-aided cell-free massive MIMO: Performance analysis and

competitiveness,” in Proc. IEEE ICC Workshops, Montreal, QC, Canada, Jun. 2021, pp. 1–6.

[35] Q. N. Le, V.-D. Nguyen, O. A. Dobre, and R. Zhao, “Energy efficiency maximization in RIS-aided cell-free network with

limited backhaul,” IEEE Commun. Lett., vol. 25, no. 6, pp. 1974–1978, Jun. 2021.

[36] Z. Zhang and L. Dai, “A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network,”

IEEE Trans. Signal Process., vol. 69, pp. 4085–4101, Jun. 2021.

[37] S. Huang, Y. Ye, M. Xiao, H. V. Poor, and M. Skoglund, “Decentralized beamforming design for intelligent reflecting

surface-enhanced cell-free networks,” IEEE Wireless Commun. Lett., vol. 10, no. 3, pp. 673–677, Mar. 2021.

[38] J. An, C. Xu, L. Wang, Y. Liu, L. Gan, and L. Hanzo, “Joint training of the superimposed direct and reflected links in

reconfigurable intelligent surface assisted multiuser communications,” IEEE Trans. Green Commun. Netw., vol. 6, no. 2,

pp. 739–754, June 2022.

[39] J. An, C. Xu, Q. Wu, D. W. K. Ng, M. D. Renzo, C. Yuen, and L. Hanzo, “Codebook-based solutions for reconfigurable

intelligent surfaces and their open challenges,” IEEE Wireless Commun., pp. 1–8, 2022, Early Access.

[40] W. Xu, J. An, Y. Xu, C. Huang, L. Gan, and C. Yuen, “Time-varying channel prediction for RIS-assisted MU-MISO

networks via deep learning,” IEEE Trans. Cogn. Commun. Netw., vol. 8, no. 4, pp. 1802–1815, 2022.

[41] H. Huang, S. Guo, G. Gui, Z. Yang, J. Zhang, H. Sari, and F. Adachi, “Deep learning for physical-layer 5G wireless

techniques: Opportunities, challenges and solutions,” IEEE Wireless Commun., vol. 27, no. 1, pp. 214–222, Feb. 2020.

[42] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable, efficient deep learning for signal and image

processing,” IEEE Signal Process. Mag., vol. 38, no. 2, pp. 18–44, Mar. 2021.

[43] B. Xin, Y. Wang, W. Gao, D. Wipf, and B. Wang, “Maximal sparsity with deep networks?” Adv. in Neural Inf. Process.

Syst., vol. 29, 2016.

[44] J. Liu and X. Chen, “Alista: Analytic weights are as good as learned weights in lista,” in Proc. ICLR, 2019.

[45] X. Chen, J. Liu, Z. Wang, and W. Yin, “Theoretical linear convergence of unfolded ista and its practical weights and

thresholds,” Advances in Neural Information Processing Systems, vol. 31, 2018.

[46] Y. Yang, J. Sun, H. Li, and Z. Xu, “ADMM-CSNet: A deep learning approach for image compressive sensing,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 42, no. 3, pp. 521–538, Mar. 2020.

[47] S. A. H. Hosseini, B. Yaman, S. Moeller, M. Hong, and M. Akçakaya, “Dense recurrent neural networks for accelerated
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