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Abstract

In this paper, we propose a comprehensive framework to jointly analyze the angle estimation
error and design the three-dimensional (3D) positioning algorithm for a millimeter wave (mmWave)
positioning system. First, we estimate the angles of arrival (AoAs) at the anchors by applying the
two-dimensional discrete Fourier transform (2D-DFT) algorithm. Based on the property of the 2D-DFT
algorithm, the angle estimation error is analyzed in terms of probability density functions (PDF). The
analysis shows that the derived angle estimation error is non-Gaussian, which is different from the
existing work. Second, the intricate expression of the PDF of the AoA estimation error is simplified
by employing the first-order linear approximation of triangle functions. Then, we derive a complex
expression for the variance based on the derived PDF. Specifically, for the azimuth estimation error, the
variance is separately integrated according to the different non-zero intervals of the PDF. Finally, we
apply the weighted least square (WLS) algorithm to estimate the 3D position of the MU by using the
estimated AoAs and the obtained non-Gaussian variance. Extensive simulation results confirm that the
derived angle estimation error is non-Gaussian, and also demonstrate the superiority of the proposed

framework.
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I. INTRODUCTION

As an important requirement for the sixth generation (6G) wireless networks, high-accuracy
positioning service is of great importance in a wide range of applications [/1], such as automated
driving vehicles [2f], smart factory [3]] and virtual reality [4]. For example, it is predicted that
the 2020s will be the first decade for automated driving vehicles with the positioning accuracy
at decimeter level [S]]. However, the positioning accuracy of the prevalent global positioning
system (GPS) is about 5 meters even in ideal conditions [6], which cannot meet the stringent
requirement on positioning accuracy for these thriving applications [7]. Therefore, network-based
positioning systems are emerging as a promising alternative to GPS in 6G networks [8].

In current wireless positioning networks, the millimeter wave (mmWave) technique [9]] can
provide an extremely highly-accurate estimation of channel parameters, such as the channel gain,
time delays, and angle of arrival (AoA). These parameters can be used to estimate the position
of the mobile user (MU). Therefore, it is of much interest to explore positioning algorithms for
the mmWave positioning systems. Typically, positioning algorithms work through the following
two steps. First, channel parameters can be acquired through some estimation methods [10]—
[12]]. Second, positioning algorithms can be designed accordingly. Specifically, expressions of
the complex non-linear geometric relationships between the channel parameters and the position
coordinates are first derived [13]. Then, the estimation error of the channel parameters and the
non-linear geometric relationships are jointly utilized to derive the non-linear equations [14].
Finally, the position of the MU is determined by solving the equations using iterative or non-
iterative algorithms. From the above-mentioned positioning steps, the estimation error of the
channel parameters can directly determine the positioning accuracy. In general, different methods
for estimating different channel parameters lead to different types of parameter estimation errors
[15]).

To date, mmWave positioning systems have attracted extensive research attention [16]—[21].
To reduce the high computational complexity due to a large number of antennas, [[16] proposed a
novel channel compression method for the mmWave positioning systems. In [[17]], the successive
localization and beamforming scheme was proposed to estimate the long-term MU location
and the instantaneous channel state for the mmWave multiple-input multiple-output (MIMO)

communications. To provide an analytical performance validation, [18] studied the theoretical
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performance bounds (i.e., Cramér-Rao lower bounds (CRLB)) for positioning, and evaluated the
impact of the number of reflecting elements and the phase shifts of reconfigurable intelligent
surface (RIS) on the positioning estimation accuracy. Alouini et al. derived the CRLB for
assessing the performance of synchronous and asynchronous signaling schemes and proposed an
optimal closed-form expression of the reflecting phase shifts of the RIS for joint communication
and localization [19]. The authors of [20] demonstrated that accurate estimates of the position
of an unknown node can be determined using estimates of time of arrival (ToA), and AoA, as
well as data fusion or machine learning. [21] considered the channel estimation problem and
the channel-based wireless applications in MIMO orthogonal frequency division multiplexing
(OFDM) systems assisted by RISs.

However, the above contributions assumed that the estimation error of the channel parameters
follows the Gaussian distribution, which is inconsistent with practical scenarios. In practice,
the distribution of these parameters depends on the practical estimation methods (e.g., 2D-DFT
algorithm [22]), which may not follow the Gaussian distribution. Therefore, existing positioning
algorithms and performance analysis may not be applicable when considering practical channel
parameter estimation methods. Hence, it is necessary to model the estimation error of the
estimated channel parameters, so that the position of the MU can be estimated based on the
estimation error.

In this paper, we aim to propose a complete framework to jointly analyze the angle estimation
and design the three-dimensional (3D) positioning algorithm for the mmWave positioning system.
Our main contributions are summarized as follows:

1) We propose a comprehensive framework to jointly analyze the angle estimation and design
the 3D positioning algorithm for the mmWave positioning system. Specifically, we first
estimate the AoAs at the anchors by applying the 2D-DFT algorithm. Then, we derive the
closed-form expression of the PDF of the estimation error. We further derive the variance
of the estimation error based the PDF. Finally, by using the estimated AoAs and the derived
variance, we apply the weighted least square (WLS) algorithm to estimate the 3D position
of the MU.

2) The estimated AoAs are first derived in closed-form based on the 2D-DFT method. Based
on the expression of estimation, we find that the angle estimation error at the anchors
depends on the search grid, the panel size of the anchors, and the number of antennas of

the anchors. Moreover, due to the property of 2D-DFT, the angle estimation error follows
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the uniform distribution.

3) According to the uniform distribution of the estimation error of azimuth and elevation, the
angle estimation error is characterized in terms of the PDF, which is non-Gaussian. To be
specific, we first derive the PDF by using the geometric relationship between the AoAs and
their triangle functions. Then, we simplify the complex geometric expression of the PDF
by employing the first-order linear approximation of the triangle function. For the azimuth
angle estimation, we provide an algorithm to derive and approximate the PDF expression
of its estimation error.

4) Based on the PDF of estimation error, we theoretically derive the variance of the angle
estimation error. Since the PDF of the azimuth estimation error has three different non-
zero intervals, we separately calculate the integral in the different intervals according to the
variance calculation formula.

5) Simulation results verify the accuracy of the derived results and demonstrate the superiority
of the proposed framework. We observe that the variance decreases with the number of ele-
ments, which means that increasing the number of anchor antennas improves the estimation
accuracy.

The remainder of the paper is organized as follows. The system model for the mmWave
positioning system is described in Section |[lI} The details of the whole framework are given in
Section The procedures of estimating angles are given in Section Section |V| derives the
PDF in more details. Section [V]] calculates the variance. The positioning algorithm is given in

Section Simulation results are given in Section [VIIIL Section [IX]|concludes the work of this
paper.

II. SYSTEM MODEL

Consider a mmWave time division duplex (TDD) 3D positioning system, where an MU sends
pilot signals to the anchors to locate the MU. We assume that there are I anchors, each of which
is equipped with a uniform planar array (UPA) with N, , = N, x N, antennas, where N, and N,
denote the numbers of antennas along the y-axis and z-axis, respectively. The MU is equipped
with a single antenna.

As shown in Fig. [I] the anchors are placed parallel to the y-o-z plane with the center located
ats; = [x;,yi, 27,1 € [1,--- , I]. The true location of the MU is q = [z, ¥, 2,)* - The estimated

location of the MU is denoted as § = [Z,, Uy, 2,)* - Generally, once the anchors are deployed,
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Fig. 1: System model of considered mmWave positioning system.

the coordinate s; are known and invariant. In order to locate the MU, we need to obtain the
estimated q.

Assuming that the number of propagation paths between the MU and the ith anchor is N;, the
AoA of the n;th path from the MU to the ¢th anchor can be decomposed into the elevation angle
0 < 0,, < m in the vertical direction, and the azimuth angle 0 < ®,. < 7 in the horizontal
direction, respectively. As a result, the array response vector at the ith anchor of the n;th path

can be expressed as
a(@nia (bnl) = ae(q)ni) 2y aa(@nia q)nz)y (1)

where ® denotes the Kronecker product. Moreover, we have

—j2mdy sin Op; —j2n (Mg —1)dy sin @ T
a.(P,,)=11e e s € e 1, 2)
and
—j2ndy cos On,; cos Pp, —j2m(Mz—1)dy cos On,; cos Pp, T
a,(0,,,?,,)=[1,e Xe € Xe | 3)

where d, and A\, denote the distance between the antennas of the anchors and the carrier

wavelength, respectively. Then, the channel between the MU and the :th anchor, denoted as
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h;, can be modeled as

N; N,
h, = Z Oéma(@nia (I)nz) = oaL’ia(@Lyi, (I)L,i)/"i_ Z Ogma(@n“ (bnz), 4)
n LoS ni=2 )
NLoS

where «,,, denotes the complex channel gain of n;th path. Moreover, oy, ;, O ;,and ®; denote
the complex channel gain, the elevation AoA, and the azimuth AoA of the line-of-sight (LoS)
path, respectively. As we can see from (4], channel components of h; can be categorized into
two types, namely LoS and NLoS. LoS path component is the direct path between the anchors
and the MU, non-line-of-sight (NLoS) path component consists of the paths between the anchors
and the MU reflected by scatters, e.g., walls, human bodies, and etc. Moreover, according to
[23], the complex channel gain of LoS is given by

)\Ce—j2ﬂ'dL,7;

)

QLi = ——7——
’ 47TdL7Z' ’

where dy,; is the distance between the ith anchor and the MU.

III. JOINT ANGLE ESTIMATION ANALYSIS AND 3D POSITIONING ALGORITHM DESIGN

In the existing works concerning the positioning algorithm design, for tractability, the es-
timation error of channel parameters is assumed to be additive zero-mean complex Gaussian
noise. However, in practice, the distribution of these channel parameters depends on the practical
estimation methods, which may not follow the Gaussian distribution. To investigate the impact of
the practical estimation error of the channel parameters, we propose to design a comprehensive
framework to jointly analyze the angle estimation error and estimate the 3D position of the MU.

Based on the 2D-DFT angle estimation technique, the angle estimation error analysis and 3D
positioning algorithm design is investigated in this paper. First, we apply the 2D-DFT algorithm
to estimate (O ;, P, ;) |'} Then, based on the estimation of the AoAs, we first derive the PDF
of the angle estimation error, based on which the closed-form expression of the variance of
the angle estimation error is derived. Finally, we apply the WLS algorithm to estimate the 3D

position of the MU by using the estimated AoAs and the derived variance.

'As NLoS path component usually varies fast and its weight to the channel is marginal, especially in the mmWave band, we
are more interested in LoS path. Hence, we intend to estimate the path parameter (©r,;, ®r ;) of the LoS component from the
MU to the anchors, which can be used to derive the position of the MU.
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The details of the proposed framework are summarized in Algorithm |1} The descriptions of

each step of the proposed framework will be introduced in the following sections.

Algorithm 1 Joint Angle Estimation Error Analysis and 3D Positioning Framework

1. Estimate (O, ;, &, ;) by using the 2D-DFT estimation algorithm;

2: Derive the PDF of the angle estimation error;

3: Derive the closed-form expression of the variance of the angle estimation error;

4: Estimate the 3D position of the MU by using the variance of the angle estimation error.

IV. ANGLE ESTIMATION

The first step of the proposed framework is to estimate (O, ;, @, ;). Hence, in this section, we
apply the 2D-DFT algorithm [[12] to estimate the AoA at the anchors. For the sake of illustration,
we consider the estimation errors only for the noise-free scenario similar to [[12] and [24], the
performance of which is roughly the same as the general scenarios with sufficiently high received

signal to noise ratio (SNR).

A. Initial Angle Estimation
According to the expression of a(©p,;, @1 ;) in (1), a(©,;, Pr,;) can be further derived as

a(@L,i7 CI)L,i) = VGC{A(@L,z‘7 cDL,i)} = VeC{ae(‘bL,i)aa(@L,u CI)L,i)}- (6)

To estimate the AoA at the ith anchor, we define two normalized DFT matrices Fy, and

_amp
Fy., elements of which are written as [Fy, |, = € Ty (b;,0; = 0,1,--- N, — 1) and
Fn ] = eI R 44 (gisq; = 0,1,--- N, — 1), respectively. Meanwhile, let us define uy,; =

2rd, cos O, ; cos By ; 2rd, sin ®
TR LT and v = W”i\# Then, we define the normalized 2D-DFT of the matrix
c ’ c

A©p;, ®r;) in @) as Appr(©r,, Pr;) = Fn,A(OL;, ®r;)Fy,, whose (b;,¢;)th element is
calculated as

Ny—1N,—1 b; ny+qlnz

[Aprr(OLi Pri)lbg; Z Z (©L,i, Pri)]biq.e e e

ny=0 n,=0

. Ny —1 ‘_27Tb7; CN.—1 2mq;
— 72 (ur,i Ny ) d (L= 0)
: Nyur ; . N.vp
sin(mb; — —45=*) sin(mg; — —5=%)

. . 7
* sin((wb — ML) IN Y sin((mq — Y2i) /N 2

2 2
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When the number of reflecting elements becomes infinite, i.e., N, — oo, N, — oo, there

. . N . Novr s
always exist some integers b,, = —%=2, ¢,, = —5=* such that [Appr(Ori, Pri)lb, q., = 1.

while the other elements are all zero. Therefore, all power is concentrated on the (b,,, ¢,,)th

element and A ppr(Oy;, P ;) is a sparse matrix. However, the anchor size could not be infinitely

NyuL’i

large, thus o

and NZ;;“ may not be integers in general, which leads to the channel power
leakage from the (b,,, ¢, )th element to its adjacent element. However, Appr(©p;, P ;) can
still be approximated as a sparse matrix with the most power concentrated around the (b,,, g,,)th
element. Therefore, the peak power position of Appr(©r,;, P ;) is still useful for estimating

the AoAs at the achor. Then, the initial estimation is derived as follows:

e Ay
cos OF " cos P} = -,
bl bl Nydr
T ini )\an'
sin @ = : 8)
b Nd,

where ©7 and ®7" denote the initial estimated angles at the anchor.

B. Fine Angle Estimation

The resolution of the estimated sin 7% and cos ©%" cos 7 is limited by the half of the DFT
interval. In order to improve the estimation accuracy, angle rotation is provided to solve the
mismatch issue in this subsection [22].

Let us define the angle rotation matrix of A(Oy;, &, ;) as A™(O;, Dy ;), expressed as
A™(Or;, Pri) = Un, (@1,)A(Or,i, i) Un, (02,), )
where the diagonal matrices Uy, (c;;) and Uy, (02;) are given by

Uy, (¢1,) = Diag{1, e/, ..., e/ v D=L}

Uy, (@) = Diag{1, /™2, ..., /N DF2i1 (10)

with @, ; € [-7/N,,7/N,| and w,; € [-7/N,,7/N,] being the angle rotation parameters. By

using the angle rotation operation, the (b;,¢;)th element of the 2D-DFT of the rotated matrix
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ASpr(Or;, @) is calculated as

Ny—1N,—1

ny 4Nz 1 z”y wY Nz
ro + o 4+ ==
[ DFT(GLH(I)LZ biq; — E g @LZ,(PLZ)] biqi € Nz /el ( )
ny=0 n,=0
G g o, 25 Nam1 (e, 2T
= e 2 32 X Ny 6'7 5} L.,i 2,i e
. Nyup; Ny ) [
sin(mh; — —upht — 2L sin(mg; — Yoo _ NeFaa)
X i ) -
R Nyur, ; Ny, R Novr NoG2, s
sin((7d; — =57 — =52 /Ny) - sin((mg; — =57 — =5 /)

(1)

where @, ; and @3 ; could be optimized with the one-dimensional search. Then, we could obtain

the estimated results as

A T )\cbm /\cﬁl,i
cosOp;cos Py, = —

Nyd,  2nd,’
- /\c n; AC@ %
sin &y ; = qu -G (12)

where © L and o i denote the final estimated azimuth and elevation AoAs after angle rotation,

respectively. Furthermore, 6 i and P i could be expressed as

/\cbni . )‘0@2&'
N.d, 2rd,

A )\cbn cwl K ch )\CYbQ i 2
= : 1-— L — : i 13
Op; = arccos <(Nydr omd, /\/ ord, ) )) (13)

V. DERIVATION OF THE PDF OF ANGLE ESTIMATION ERROR

®y; = arcsin (

In this section, as the second step of the proposed framework, we derive the PDF of the angle
estimation error, which will be used for deriving the variance of the angle estimation error. To
obtain the PDF of the angle estimation error, the first step is to derive the PDF of P L based
on the estimated angle o ; and the property of the 2D-DFT. Then, the second step is to design
an algorithm by deriving the PDF of S ; based on the estimated angle ) r; and the property
of the 2D-DFT. The details are given as follows:

A. PDF of &,

Based on the above section, we can find that @, ; could be obtained by the one-dimensional

search in the interval of [—le, le] We assume that there are Sy; grids points in the interval
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[—%> ) and sp; € {1,---,55;} is the optimal point. Therefore, the optimal solution for the

271'82’1'

one-dimensional search is @y ; = + 5
z T

, and the estimation of sin @ ; is thus written as

Lo /\ch )\C@Zi >\ch >\052i
by, = el A2 Al i 14
SRPLIT NG, T 2nd,  N.d,  N.d, S (14)

For notation simplicity, let us define Y, = sin ® i and Y; = sin @, ;. Then, the estimation of

®y; could be expressed as

) A Al AcS2,
®;; = arcsin Y; = arcsin (qud; — deigm) . (15)

According to (14) and the property of the one-dimensional search method, the value of Y; follows

the uniform distribution within the region of [YZ — aj;, YZ + ai] , where a; = m, which is
given by
) R .
5.7 Yi—a; <y<Yi+a
frily) = > (16)
0,  others.

By denoting the estimation error of Y; as fﬁ, we have Yz =Y, + }71 Then, the distribution of }7;

is given by

~ 2(1]/7 —a; S g S a;
[y, (9) = ' (17)
0, others.

Since @, ; = arcsinY;, the cumulative density function (CDF) of ®; ; is derived as
Fo, ,(¢r:) =Pr(Pr; < ¢r;) = Pr(arcsinY; < ¢p;) = Pr(Y; <singr). (18)

By assuming that ®;; € (—7, 7), the PDF of ®; could be derived as

an’ i ¢L7’i .
f‘l’L,i(¢L,i) - # = COS QbL,z’in (sm ¢L,i)
Opr,i
_ %, arcsin(ffi —a;) < ¢r; < arcsin(f/i + a;) (19
0, others.
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As we have ® Li =i+ P L.i» the CDF of the estimation error d i 18 calculated as

F<T>L,¢ <§5L1> =Pr (‘i)L,i < CEL1> = Pr <(i)Lz —®,; < §Z~5Lz>
=Pr (q)L,i > (i)L,i - &LJ) =1-—Pr (CI)L,i < (i)L,z' — §Z~5L7Z‘> . (20)

Define a;; = arcsin (YZ + ai> and ay; = arcsin (YZ - ai>. Based on (20), the PDF of éL,i is
written as
oFy, . <¢~5Lz)

fa,, (&Lz) = T = fa,, <(i)L,z’ - Qsz)

cos(®Li—or.q) - o -
— 5 Pri—a < Or; < Pr;i—ag,;

= B ’ 2D
0,  others.

Moreover, as the estimation techniques are relatively mature, it is assumed that the estimation
error is very small. Therefore, we have sin ((f;Lz) ~ <;~§L7i and cos (&m) ~ 1. Consequently, we

have the following approximation:
COSs (ci)Lﬂ‘ — &L,i) = COS (i)Lﬂ' COS Q;L,i + sin (i)Lﬂ' sin éL,i =~ COS (i)L,i + éL,i sin (i)L,i- (22)

Then, the PDF of & L 1s approximated as

~ COS(I)L’iJr;aL.’i Sinq}L’i, (i)L,i —ay; < éL,i < (i)L,i — Qg
foo, (614) = : (23)
’ 0,  others.
B. PDF of Oy,

In this subsection, we derive the PDF of the estimation error éL,i. As the derivations are

complicated, we summarize the main procedure in Algorithm [2]

Algorithm 2 Algorithm of deriving the PDF of ® Li

1: Derive the PDF of cos ®r,; by using the PDF of YZ in (17);

2: Derive the PDF of cos ©, ; for two cases by using the PDF of cos @, ; in (30) and the PDF
of cos ®y,; cos Oy ; in (32);

3: Derive the PDF of O ; based on the two cases of the PDF of cos ©; in and (42).

1) PDF of cos®; ;: First of all, we need to derive the PDF of cos ®; ;, so that the PDF of

cos ©r,; could be calculated.
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Let X; = cos ®r ;, which can be expressed as a function of ?Z as follows:

Xi:cos<I>L7Z~:\/1—sin2(I>L7i:\/1—Y;2: 1— (Y, — V)2 (24)

By defining the estimation of X; as Xi = cosd Li =X+ Xi, the estimation error )~(,~ could be

calculated as:
Xi=Xi— 1= (Yi-Y)2 (25)

However, the expression is complicated and thus challenging to derive a compact form of
the PDF of X;. Fortunately, since the value of Y; is relatively small, we can approximate X; in

(25) by using the Taylor expansion, which is given by

Y, < x) :Pr(Y;- > —T’fi) =1 —Pr( ;< —%@-).
i Y Y;
Then, by using (27), the PDF of X, could be calculated as

% X; Y; ~ Y;
ey B £ ) zay X W <xz; < < Qi
fx, (i) = fy T | = (28)
Y 0, others.

Furthermore, by using XZ =X;+ Xi, the CDF of X, can be calculated as

(29)
By using and (29), the PDF of X; could be written as
OFx,(x;) o X K- Y <o <X - Y
fx(wi) = —— = fx,(Xi —a) = ¢ 2% i i (30)
O ' 0, others.

2) PDF of cos©y,;: By using the PDF of cos ®;; and cos ®,; cos O ;, we can derive the
PDF of cos©p, ; as follows.
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Firstly, from the above section, we know that <o, ; could be obtained by using the one-
dimensional search in the interval of [— N N, —-]. Similarly, we assume that there are S; grids

points in the interval [— and s;,; € {1,---,51,} is the optimal point. Therefore, the opti-

N > Ny ]
27sy 4

mal solution for the one-dimensional search is @;; = WL
’ yo1,i

and the estimated cos @, ; cos Oy ;

is given by

~ ~ A )\cbn )\6@1 i )\cbn )\csl 4
Z = © i s O P = L — — = L — . 31
cos Op,; cos Py, Nyd  2nd, Ny, Nd.Si 3D

By using and the nature of the one-dimensional search method, the real value of Z; =
cos Oy, ; cos @ ; follows the uniform distribution within the region of [Z — b, Zi + b; |, where

b; = W The PDF of Z; is thus given by

e Zi—bi <5 < Zi+ b
fz(z) =4 2 (32)
0, others.
By denoting the estimation error of Z; as Z~z~, we have ZAl =7+ Z~7;. Then, the distribution of
Z; is given by
o —b; < 2z < b

fZi (Z~z> _ 2b;? = = (33)
0, others.

Next, for simplicity, let us denote U; = cos Oy, ;. Then, by utilizing the definition of Z; below
and X; above (24)), we have Z; = U, X;. By combining the PDF of X; in (30) and the PDF
of Z; in (32), we could derive the PDF of U; as follows

fu, (u;) = /Xﬁyxl ; xfx,(z) f7,(u;x)dx. (34)
Xi-

According to (32)), it is observed that f, (u;z) is non-zero when ZAz —b; <wux < Zi+bi, which
determines the PDF of U,. Therefore, we need to discuss the different conditions according to
the non-zero intervals of f, (uzx) and fx,(z) in the following. For notation brevity, we denote
ay; = Xz — X%al-, g, = X + % az, Bri = Z b, and B, = ZAZ + b;.

Bi,i B2,i

Condition 1: If ay; < § ag; < =2, the integral interval of z in (34) can be recast as
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[%, 04272‘] , thereby yielding the PDF of U; as

~

2l X, X; / X; B i)z
(u;) = — — - xdx = - rdxr = — | o f—(—’ . (35
fUl( ) /Bl’l 2bz 2CL1Y; 4(1@61}/@ PLi 8a1bZY; ( % U;

Ug Uqg

Furthermore, the interval of u; is given by

[ﬁ ﬁ) N (—oo, 52”’) . (36)
Qg Q4 Qg
Based on (36), it is necessary to compare % with %, so that the interval of u; can be further

determined. If % > % holds, the interval can be rewritten as [5# B#> Otherwise, the

i g’ oy

interval is [ﬁ; ﬂi)

az; ) ag

B2,

Us

[au, Bui] , thus the PDF of U; is given by

Ba.i A N B2,i ~ 2
w1 X, X; /ul X (ﬁzz) 2
(u;) = — — - xdr = ~ xdr = p — | —a;7 ). (37
fU( ) /0417' le 2CL,Y; 4@1613/, o 8azb,Y; < Us !

k3

Condition 2: If 24 < a,; <

< @y, the integral interval of z in (34) can be recast as

The interval of u; is given by

[Bi f@i) N [ﬁl’i,—koo) . (38)

7
Qg Q4 Q1

As a result, if % > % holds, the interval can be further recast as [@ @) Otherwise, the

az;’ oy

aii’ alg

interval can be derived as [& BL)
Condition 3: If % <ap; < agy < Bui, the integral interval of x in @) can be derived as

[Oél’i, Oég}i]. Thus, the PDF of Uz 1s

A

azi q X X /QQ,i X,
(u;) = — . .xdr = - rdr = — (ag® —ay®
o / 2 20, 10:bY; Jou, sy, 3T

A~ N 2 R 9 .
Xi % }/; O YZ XZ
The interval of w; is accordingly given by [%, %)

Condition 4: If a;; < 2

< % < iy, the integral interval of x in (34) can be derived as
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[B;ii, BUQii]. Thus, the PDF of U; is

B2,i ~ ~ B2,i ~ 2 2 ~ A
v Xy Xi i Xi Ba,i B XiZ;
fu (ui) = — - xdr = = xdr = = — ) — | — =
P dabY; 4a;b;Y; J L 8a;b;Y; U; Uj 2a;Y;u?

(40)

Additionally, after some mathematical manipulations, we can derive the interval of u; as [ﬁ 2.4 ’BL> .

Qg Qi

Based on the above discussions, by comparing % with %, the PDF of U; can be simplified
as the following two cases:

Case 1: If % > % holds, the intervals of u in Condition 1 and Condition 2 are given by

3

[& &> and [ﬁi BL) Additionally, Condition 3 is valid, whereas Condition 4 is invalid.

Qg o ;) o

Therefore, the PDF of U, is written as

( 5 2
X; '2 _ & ﬁl,i < X ﬁl,i
8a;b;Y; (OQ’Z ( w; ) ) ’ a; — Ui < o
X, Pri U < B2,i
_ 2 .Y 041, J— (A a27
fu ) = < B2\ 2 A o “1)
i Boi\~ ) 2i g < P2
8a;b;Y; < u; ) Qi ’ g — Ui = o1,
0, others.

Case 2: If % < % holds, the intervals of u; in Condition 1 and Condition 2 are given by

[ﬁ# &> and [BL Bi), respectively. Moreover, Condition 4 is valid, while Condition 3 is

az; ) ag ay;’) alg

invalid. Accordingly, the PDF of U; can be derived as

( ¢ 2
Sa)iy <a2’i2 B (%z) > ; % <wy < %
)@2127 @ S u < &
fUi (Uz) = X ) 2a; Y;u? Q2 o W)
\ 0, others.

3) PDF of ©p;: By using the PDF of cos ©;, the PDF of O, ; can be derived as follows.
First of all, the CDF of ©; can be derived as follows

Fo, ., (0r:) =Pr(©p,; < 0L;) =Pr(arccosU; < 0p;) =1 —Pr(U; < cosflp;). (43)
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Then, the PDF of O ; is obtained as follows

aF@L,i (QLJ')

(Or:) =
fou0ni) = =55~

= sin QL,ifUi (COS eL,i) . (44)

Furthermore, we consider the indoor positioning system in this paper, where the RISs are
supposed to be mounted on the wall. Hence we have ©; € (0,7). Thus, ©; decreases
monotonically with U;. According to the PDF of U; in the aforementioned two cases, we can
derive the PDF of Oy ; in the following.

Case 1: When % > % according to (1), we can derive the PDF of © ;, which is given
by

(& . 2 ]

X;sinfp, ; B2,i 2 B2,i < < 521

. s 01 a1, arccos ;= < 0L < arccos ==
XiSinoL-i ﬁ2z Bui

bt arccos o~ < 01 ; < arccos ==

fo O =4 o s < O @
i SIMUL g 2 _ 1,i )2 § < i
"7 [ 2. (COSQM) |+ arccos I < 0 < arccos 7+
0, others.

\

Case 2: When g z 5 Lt we can derive the PDF of © 1; based on (42), which is given by

XJZOYL [(ciﬁ;’;,i)Z —ay?|,  arccos £ <0, < arccos S
XiZisin0p arccos B“ - < 0p; <arccos g 62’
f@L,i(eL,i) = Py 2a;Y;(cos 01, )%’ P (46)
SZZZIYLZZ [ 72'2 - (C(ﬁlﬁ)z ) arccos - B = < 01 < arccos 51’1
0,  others.

\

4) PDF of ©,;: By using the CDF and PDF of ©; in (#3), and (46), we can calculate
the CDF and PDF of © i as follows.
Firstly, based on 6 Li=0r;+ S L.i» the CDF of &} ; can be derived as follows

Fo, (1) =Pr(6r; <0;) = Pr(Op; — O, < 01,)

=Pr(©p; > éL,i — éLz) =1-Pr(0.; < éL,i — éLz) (47)

Then, based on the above two cases of fo, ,(01;) in and (46)), the PDF of ©; can be
derived accordingly by using (@7).
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Case 1: When % > %, by using (@3)), the PDF of O ; is calculated as

f@L7i< L,z) = é— - f9L,i( Ly LJ)
0L
. I _

XiSIH(QLyi*HL’i) 2 Bl,i 2 A 51,1’ < n - 51,1'
8a;b;Y; 2,0 (COS(éL,i—éL,i) ’ @L’Z arccos az,; — L < ®L’Z arccos aii
X; sin(é)Lﬂ-féL’i) A B1,i 0 A Ba,i
- g,  ©r,; —arccos oy S0 < O ; — arccos ans
< Oy, — arccos ﬁ%

’ a2 4

)

LA - 2
X;sin(Or ;—0r : A i 0
i8in(Op i =01 ) |:< Ba,i > _ auﬂ 7 O, — arccos 52,2. <0,

8a;b;Y; COS(éL,i—éL,i)

0,  others.
(48)

Case 2: When % < %, we can derive the PDF of ©;; by using (@6), which is given by

X3

OF;, (0L.:)
A Op\" Lt A ;i
fo, ., (0L:) = i fo,.(Ori—0L;)
L
¢ R < 27
X sin(Or i—0r i) 2 Bi,i A Bi,i 0 A Ba,i
kst W2 CHE I VA L . —ar [N . . —ar at1XH
by Qg Ty , ©r,; — arccos s = 0r; < ©r,; — arccos o
XiZisin(©p,i—0L) A B2,i N A B,
= — . — ar [ I . . — ar Pl
_ 2a;Y;[cos(Or,;—0L,:)]?’ @L’l arccos az; — HL’Z < @L’Z arccos ai,;
Xisin(©r,;—0r.:) Ba,i 2 a Bri « g, < @ Ba2,i
P Ty a7, ©p,; — arccos s 0r; < ©Or; — arccos o
0, others.
\
(49)

To facilitate the error analysis, we now aim to derive the approximation of féL’i(éLﬂ') in this
paper. As we have assumed that the estimation error is very small, we have sin 0~L7i ~ éL,z‘ and

cos éL’i ~ 1, leading to

sin(©r; — 0r;) =sin Oy ;cosb,; —sinfy,cosOp,; ~sinOp,; — 0 ;cosOp ;,

cos(Or,; —0r,;) =cosOp;cosbp; +sinOy;sinfr; ~ cosOp,; +0,;sinO ;. (50)

Using the approximations in (50), we can derive the approximation of fo,, (é 1i) according to the

above two cases. Furthermore, by denoting sin©;; = V; ,cos O, = U;, By ; = ©p ;—arccos %
K3
By, = ©p,; — arccos 51, Bs, = ©p,; — arccos gz, B,;, = ©,; — arccos f)%, the expression

could be further simplified in the following.

Case 1: When SL > %, based on (48), we can derive the approximation of féL,i(éL7i)’

T
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which is written as

( - -

o VB D) 2

Xi(Vi—0r,:Us) 2 Bu,i < i, '

8a;b;Y; Q2,i 0i+§L,iV% 5 Bl,l = 9L,1 < BQ,z

X000, <Gy < By,

~ n ~ 2b; > 2,5 =~ VL, 3,4
fo, i)~ . . .~ 7 &1y

@L,z ) X(V—QL U) 52 . 2 5 ~
7 T A,’L 1 _ ~,’L _ _ . . < . < .
8a;b;Y; <Ui+6’L,iVi> AL | B3’l - GL’l - B4’l
0,  others.

\

. B2,i B1,i . . ) ~
Case 2: When % < jﬂ_, as we have (9], we could derive the approximation of f@LJ(GL,i),

which is written as

) .
Xi(Vi=0L,:U;) 2 Bi.i i '
8a;b;Y; Qo Uz"‘éL_sz ) Blﬂ < 0L7Z < BS,'L
) XiZi(Vi=01,:07) i
5 () ~ 2aY; (U407, V;)?” BS’Z - eLvZ < BQ,Z
f3, (O0;) = ) V) 52)
Bt 5t X (Vi—0r, ;U;) B2,i 2 2 N
1 T A,z K] _ ~,z _ . . ) < ) < ‘
8a;b;Y; (UiJrGL’l-Vi) Qi | BQ,z > HL,Z < B4,z
0, others.

\

VI. VARIANCE OF ANGLE ESTIMATION ERROR

In this section, we aim to calculate the variance of ® L and S i by using the PDF in the

above section, which will be used for the 3D position estimation in the next section.

A. Variance of (i)L,i

In this subsection, we provide the variance expression of P - Based on the PDF of P L in

([@3), the variance of ®; ; can be calculated as
D(¢r:) = E(97,) — (E(dr.))?

éL,i*GZ,i ~ - - i)L,i*aZi - . -
:/ (bL,iféL’i((bL,i)d(bL,i - / ¢L,if&>L’i<¢L,i>d¢L,i
d

L,i—01, D7 a1

~3 74 Ci)Lﬂ'fagy'

1 (914 - PrLi . L

=5 3 cos @y ; + sin @y, ;
i Ppi—ai
~ ~ 2 2
1 ¢% ' ¢3 bri—az;
Y

: (53)

- Li . =
— cos Py, + —=sin Py,
4a? 2 ' 3 ’

®ri—a1q

where f(:c)|2 — f(x1) — f(x2) and E(¢y;) denotes the expectation of ¢y ;.
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B. Variance of &} L

In this subsection, we aim to derive the variance of © 1;- Different from the PDF of P Li» the
PDF of © i 18 more complicated. Therefore, we need to analyze the variance according to the
aforementioned two cases as follows.

Case 1: When % > %, based on the PDF of QNL,i in (51), the variance of 0 L is derived as

2
D(1) = / ei,,-f@L,iwL,i)deL,i—( / eL,if@M(eL,adeL,i) | (54)
) l;;i . ) liii

For D, ; in (54), we divide it into three different non-zero intervals that can be expressed as
Dy = Dy1; + Dia; + Das, (55)

where Dy ;, D12, and D3 ; are the integral expressions in the intervals of [By ;, Ba;), [Ba.i, Bs.)
and [Bs;, By, respectively. The expressions of Dy ;, D12, and D;3; are given in Appendix A.
For D, in (54)), it is the expectation of éLZ which is denoted by E(éL,) It can be divided

into three different non-zero intervals that are given by
Dy = Dy ;i + Dag; + Das, (56)

where Doy ;, Do ; and D ; are the integral expressions in the intervals of [By ;, Ba;), [Ba.i, Bs.)

and [Bs;, By, respectively. The expressions of Ds; ;, Dag; and Dog; are given in Appendix B.

Case 2: When 221 < Pui according to the PDF of éL,i in (32), the variance of 0 L can be

Qg ; ay g’

s

calculated as

2
D'(0,) = /Hi,iféLxeL,i)deL,i_(/QL,iféL’i(eL,i)deL,i> : (57)
Eii ’ ) B/;,z ’

For D ;, we divide it into three different non-zero intervals that are given by
Dll,i = Dlll,i + D/12,i + D/13,z'a (58)

where Dy, ;, D', ; and D15 ; are the integral expressions in the intervals of [By ;, Bs;), [B3, Ba.:)
and [By;, By;]. The expressions of Dj, ;, D', ; and Djs; are given in Appendix C.
For Dj; in (57), it is the expectation of 0., which is denoted by E(f ;). It is also divided
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into three different non-zero intervals that are given by
é,i = D/21,i + D/22,¢ + DéS,i’ (59)

where Dy, ;, Dj, ; and Dy, ; are the integral expressions in the intervals of [By ;, Bs;), [Bs, Ba.:)

and [By;, By;]. The expressions of Dy, ;, Djy,; and Djs; are given in Appendix D.

VII. 3D POSITION ESTIMATION

Using the estimated AoA in Section and the variance of the estimation error in Section
we aim to derive the expression of the estimation of the MU’s 3D position at this section.

First, we have the AoAs at the ith anchor given by

OL; =01+ O,

Gpi=pi+ Pr, (60)
where © i and P 1; denote the estimated AoAs at the ith anchor, O, ; and ® ; denote the true

AoAs at the ith anchor, and &} i and P 1 denote the estimation error at the ith anchor. For the

sake of illustration, we collect all the estimated AoAs in the following vectors:

A

R

A

® +0,
P +

P, (61)

where

A A

(Ap: [qDLla"' 7(I)Lf]a
)]

)

= [CI)L,la e 7(I)L,I]7

©=1[0p1,,01], ®=[Pry, -, Pry] (62)

In the existing works, for tractability, © and ® are assumed to be the additive complex
Gaussian noise with zero mean. However, according to the angle estimation error analysis in
our previous section, the PDF of the estimation error ® should be modeled as (23), while the

PDF of the estimation error @ should be modeled as or (52)). Furthermore, the covariance
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matrices can be written as

. 2 2
Qo = dlag[a@L’l, . ,a@“],
. 2 2
Q‘I) = dlag[U‘PL’l? o 7U<I>L,1]7 (63)
where aéw and a(%w denote the variance of Oy ; and ®;, respectively. a?bm_ can be calculated
. 2 .
according to (53)), and 0o, can be calculated according to (54) or (57).

Accordingly, we propose to derive the closed-form expression of the MU’s estimated 3D
position. First, we can derive the pseudolinear equations [25] based on the estimated AoAs as
follows:

égisi - é&q ~ _@L,idL,i cos Py ;,

655 — 5.0~ —OpdL;, (64)

where d;; denotes the distance between the ith anchor and the MU, and we have

go, = [—cos éLJ-, sin éL’i, 0", gs, = [~ sin ci)L,i sin éL,i, sin (iDL’i coS éL,i7 — Cos @Lyi]T. (65)
As a result, we can derive the following compact form of equations as

h— Gq=Bz (66)
where
h=[1"(Ge ®S)",17(Ge ®8)T]",G = [GL,GL" B = [B,,B,)",z = [©7, &"]",
Go = [8o,, - 180, Go = [8a,, -~ ,8a,]",S = [s1,--- ,8/]", B1 = [Bo,0]", B, = [0, By]"

B@ = —diag[dL,l COSs Ci)L’l, ce 7dL7] COS qA)LJ]T, Bq> = —diag[dLJ, s ,dLJ]T. (67)

Based on (66]), we can apply the WLS algorithm [25] to derive the closed-form expression of

the MU’s estimated position, which is written as:
q=(G"TWG) 'G"Wh, (68)

where W = BQB” and Q = diag|Qe, Qo). The details of the derivation can be found in [25].
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Fig. 4: Variance of O, ; versus anchor size. Fig. 5: Variance of ®;,; versus anchor size.

VIII. SIMULATION RESULTS

This section presents simulation results to validate the accuracy of our derivations and ap-
proximations. In our simulation, we consider a mmWave multiple input single output (MISO)
channel from the MU to the anchors. Moreover, the MU, the anchors are assumed to be
placed in a 3D area. The locations of four anchors are s; = [2,20, 3], s, = [—12, —16, 58]7,
s3 = [—10,—6, —8]T and s, = [10, 6, —20]”" It is assumed that the inter-antenna spacing of UPA
at the anchors is d, = \./2. The following results are obtained by averaging over 10,000 random
estimation error realizations. Unless otherwise stated, we assume S = S; X Sy, = 64 x 64 for
rotation angle search grids, and the SNR is assumed to be 10 dB. The positioning accuracy is
assessed in terms of the mean-square error (MSE).

Fig. [2| and Fig. ]3| illustrate the PDF of estimation errors. It is assumed that the anchor size is
N, = N, = 16. It can be observed from Fig. 2| and Fig. [3| that our derived results match well
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Fig. 6: Comparison of the proposed framework and Fig. 7: MSE of the proposed framework versus
geometry algorithm. anchors number.

with the simulation results, which verify the accuracy of our derived results and confirm that
the angle estimation error is non-Gaussian.

Fig. 4| and Fig. [5| display the variance agm_ of estimation error © r; and the variance a;m
of estimation error ® 1, as the functions of anchor size N,(NN,), respectively. Fig. 4| and Fig.
display the variance Ugw, which show that the theoretical results coincide with the simulation
results, which validates the correctness of the derived results. Moreover, it is observed that the
variances of © i and P 1. decrease with the anchor size, which means that increasing the number
of antennas could improve the estimation accuracy.

Fig. [6] compares the MSE of the proposed framework aided by 2 anchors with that aided by
3 anchors when the size of anchors increases from Ny, = N, =1 to N, = N, = 20. As shown
in the figure, the MSE decreases with the anchor size as expected. Furthermore, it is shown that
the MSE of 2 anchors is larger than that of 3 anchors. It implies that increasing the number of
anchors can significantly improve the positioning accuracy of the proposed framework.

In [26], the position of the MU is derived by using the geometry relationship between the
estimated AOA and the 3D position, which is denoted as the geometry algorithm in this paper.
Fig. [0] also presents the positioning performance comparison of the proposed framework with
the geometry algorithm. It is seen from Fig. [f] that the proposed framework outperforms the
geometry algorithm even with only 2 anchors.

Fig. [7] illustrates the impact of the number of anchors and the size of the anchors on the
performance of the proposed framework. To be specific, we present the comparison of the

proposed framework with Ny, = N, =1, N, =N, =2, Ny = N, =4, and N, = N, = 8. As
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it can be seen from Fig. [/, MSE decreases with the number of anchors. This implies that the
positioning accuracy is better with a larger number of anchors. Furthermore, as shown in Fig.
there is a large gap between the curve of IV, = N, = 1 and the curve of N, = N, = 2, while
the curve of IV, = N, = 8 is only a little better than the curve of NV, = N, = 4. This implies

that the impact of the anchor size becomes small when N, (NN,) is larger than 4.

IX. CONCLUSION

In this paper, we designed a comprehensive framework to analyze the angle estimation error
and design the 3D positioning algorithm for the mmWave system. First, we estimated the
AoAs at the anchors by applying the 2D-DFT algorithm. Based on the property of the 2D-
DFT algorithm, the angle estimation error was analyzed in terms of PDE. We then simplified the
intricate geometric expression of the error PDF by employing the first-order linear approximation
of triangle functions. We also derived the variance expression of the error by using the error
PDF and theoretically derived the variance from the error PDF. Finally, we applied the WLS
algorithm to estimate the 3D position of the MU by using the estimated AoAs and the obtained
non-Gaussian variance. Extensive simulation results confirmed that the derived angle estimation

error is non-Gaussian, and also demonstrated the superiority of the proposed framework.
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APPENDIX A

DERIVATION OF D ;

Firstly, we derive the expression of Dy ; as

Xiap 2 [P0 - 55308 95 iBri® (P2 Vil — Uiy, -
11, = i / (V;H%i - Uieii)deL,z‘ - ﬁl / #ﬂww
8a;b;Y; By ’ ’ 8a;b;Y; B, (Ui +Vifr;)?
XiOézi /BQ’i " 32 703 ]
8a:b;V; 5, ( L, L,) L,
Xiﬁl 1'2 B Z 0%’2 o B é%z ;5
HE AV T nel i S
aibiYiUi \Jo (14 25ks) o (I1+-5)
_ Xia2,i2 (Uzéiz ‘A/Zé%w) B
N 8&,(%1}, 4 3 Bi;

X812 Bs, v X ’Vi B3,
[(_ b Bas 2F1<2,4;5;—732,i>+ Bui Vi Zas. 2F1<2,3;4;—

8a;b;Y;U; 4

( Xip®  Bi,
Sab;Y;U; 4 ’

8az’biYiUi2 3
Vi X:6.°Vi B},
_TB”)JF Bll i 2,
8a;b;Y;U; 3

i

where f . % = F (V, w1+ p; —Bu) is a generalized hypergeometric series [27].
Then, D12, in (59) is derived as

~

Boi Xo(Vi— 0,00~ ~ X (Vi
D i = / : ! i 92 idem - —Z<
AN 2b L. 20;

BSZ

03, UoL,
4

BQ’L

Finally, D3, in (59) is given by

X;B®  Bi; Vi XiBs°Vi  Bi;
Di3; = [<— ﬂ%’ — 2F1<2,4;5§—UTB4,1') + b : ;’ : 2F1(2,3§4;

7

25

(70)

~

Vi

—534,1-))

)

Xifhi®  Bs, Vi Xifoi*Vi B3 V.
B (_ 52 3, JF, (2’4;5;_53379 i 52; it o F <2,3;4;_UTB3,1'>):|

8azb YU 4 % SCLZblY;ﬁZQ 3 7
X i0 < Uz‘é4L,z‘ X V;éil) Bas
8a7,sz; 4 3 B3 ;
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APPENDIX B

DERIVATION OF Dy ;

Firstly, Doy ; in (56) is derived as

Xia2i2 [Zé%z ‘zé%z Pa
Dy = —| — — + :
8a;b;Y; 3 2 Bi;

Xib> B3, 4 X:°V; Bi; 4
- |:( - 61: ~ 2 oI (2,3;4§_7B2,i> + 61; 5 2L o F <2,2;3;—7B2,i))
8a;b;Y;U; 3 U. 8a;b;Y;U, 2 U,

X2 B, V; Xip1:2V;  Bi; Vi
(- i TN e (2,34, - 2By, iV TN p (2,238 ) )|
< 3 211 | 2,954 7 15 ] 5 21" - 1,

% )

Saibiyfi[}i i 8aibiﬁ-lj¢2 i
(72)
Then, Dy ; in (56) is written as
Bs,i X(V _ éL U) " " X’ Uzéi . ‘A/Zé% N\ | B3
D i — S " 10 Zd@ i:_z - " 71 . 73
22, o, %, Lialvr, 2bi< 3 + 5 ) . (73)

Finally, D3 ; in (56) could be formulated as

~

Xi z’2 Bgi ‘7z Xz i2‘7i BZi ‘/z
Dos; = [(— i Dii g (2,3;4;—734,1-) + BQ; LR (2,2;3;—734,1-))
8aib;Y;U; 3 8abY;U; 2 Ui

Xi i2 Bg‘ ‘A/z Xz i2‘7i BZ’ ‘/z
- (— P P op (2,3;4;—733,@-) L AV D g (2,2;3;—733,1-))}
8a;b;Y;U; 3 U 8a;b;Y;U; 2 Ui

Xi i Uiési VzéZz P
a1,A (_ 3L, I 2L,) ‘ (74)

% %

~

APPENDIX C

DERIVATION OF D1 ;

As for D} ; in (58), it could be expressed as

% 2 p4 03 Bs;

, Xiagg Uiby, Vibr,

1, = o U + 3 -
8a;b;Y; Bi;

Xib*  Bs, Vi XipVi B, Vi
{( - Blﬁ S L O (2, 4;5; _TB3,”£> + 61; ~3 R <27 3;4; _TB?»,Z'))

Xipri® Bl Vi Xipi*Vi B, Vi
_ <_ ﬁl; e T 2F1<2,4;5;—TB1,¢> + 511 Y 01 (2,3;4;—731,7:))}

%

7
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Then, D1, ; in (58) is given by

~

XzZz B4i ‘}; XzZz Az’ B3i Vi

Dy = (— 2V 0. —j Y (2,4;5;—732,1‘) + gy : 32 - ok (2,3§4;—UTBQ,1‘)>
ar;U; i aY;U; i
XzZz B47; Vz XzZz Ai B3i Vz

- (—ﬁi 2F1<2,4,5,_TB372) + NP 3 . 2F1(2,3,4,_TB371))
2aY;U; 4 Ui 2aY;U; 3 Ui

(76)

Finally, Df,; in (58) is derived as
Xifeit  Bi, v XiB2:2V;  Bi; v
Dy, = [(— boi” Pis, 2F1(2,4;5;—TB4,2-) + ﬁQ; A 2F1(2,3;4;—TB4¢)>
’ 8a;b;Y;U; 4 8a;b;Y;U; 3 Ui

X@' i2 B4z‘ ‘A/z Xz i2‘}; Bgz’ ‘/z
- (— Pri j - 2F1(2,4;5;—TBQ,@-) + ﬁQ; — - ; : 2F1(2,3;4;—TBQ,,~))}
8a;b;Y;U; 8a;b;Y;U; Ui

_ XiOél,iQ ( o Uzéiﬂ + ‘A/lé%,l)
4

i

i

(77

APPENDIX D

DERIVATION OF D,
Firstly, D5, ; in (39) is formulated as
B3 ;

/ Xia2,12 ( Ulé:zz Vzéiz>
21,4 — ~ - + -
8a;b;Y; 3 2 Bi;

Xt B3, 4 Xip’Vi B3, 4
|:< — 61: ~ 3, . 2F1 <2,3;4;—733,2‘> + /Bl; ~92 3, . 2F1 <2,2;3; _TBg’i))
8a;b;Y;U; 3 U 8a;b;Y;U; 2 Ui

Xib*  Bi, Vi X’V B Vi
- (— Pri . 5 - oFy (2;3§4;—UTBL7;) + b — 2F1<272;3;_UTBI,1‘)>:|-

%

~

(78)
Then, Dj, ; in (59) is written as
Xz B Vi X2V, B3, Vi
Dé?ﬂ == ( - — == i . 2F1 (2, 3; 4; _TBQ’i) + ~ ~ 9 2 . 2F1 (2, 2; 3; _TBQJ;)>
2aY;U; 3 i 2aY;U; 2 Ui
XiZ B Vi X2V, Bj, Vi
- (_?i 2F1(2,3;4;—733,i) + ~ ~9 237 . 2F1(2,2;3;—733’i)>.
2aY;U; 3 Ui 2aY;U; Ui
(79)
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Finally, Djs; in (59) is obtained as

/

23,0 —

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

(13]

- 8@1;1%3}1‘@ 3 7 i
( Xzﬂz,iz Bg,i
8aibz’§>¢Uz‘ 3

8aibi}>z‘UAi2 2

Vi XiB2i2Vi B3,
oI (2, 3;4; —UTBQ z) b, 2

i

Vi

)
7

i l,A (_ L, + L,> ) (80)
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