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Abstract—In recent years, the WiFi channel state information
(CSI) has been increasingly used for human activity recogni-
tion (HAR) during activities of daily living, because of non-
intrusiveness and privacy preserving properties. However, most
previous works require complex processing of CSI signals, and
the large number of classification network parameters signif-
icantly increases the recognition time and deployment costs.
Accordingly, a WiFi signal based lightweight deep learning
(WIiLDAR) network is developed in this study to ensure sys-
tematic operation on edge computing devices. We combine the
random convolution kernel with deep separable convolution and
residual structure, so that WiLDAR can easily extract CSI signal
features without filtering and denoising. The parameter number
and training time of WiLDAR are thus much less than those of
previous neural networks. In addition, a tiny HAR system using
only Raspberry Pi and router is implemented. Experiments verify
that WiLDAR can achieve real-time HAR on IoT devices, which
makes HAR deployment more convenient. We test WiLDAR on
three different fine-grained action datasets to achieve 99 %, 93.5%
and 97.5% recognition accuracy, respectively. The demonstrated
learning capability of WiLDAR makes it an excellent option for
the remote HAR.

Index Terms—human activity recognition, WiFi sensing, Chan-
nel state information (CSI), IoT, neural network, Edge Comput-
ing.

I. INTRODUCTION

Uman activity recognition (HAR) is traditionally used
for monitoring of the elderly and chronic patients in their
homes. Recently, activity monitoring is increasingly important
as integral part of Internet of Things (IoT) in smart homes and
offices [1]. HAR, can facilitate remote control of smart home
appliances, security monitoring for special populations, and
smart health monitoring [2].
The need for unobtrusive and privacy preserving monitoring
of activity resulted in three types of HAR implementation:
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vision-based [3], [4], wearable device-based [5], [6] and
wireless sensing-based methods [7], [8].

The vision-based approach usually relies on high-resolution
camera or infrared camera, which allows for unobtrusive
continuous monitoring [3], [4]. However, the camera is highly
susceptible to the effect of ambient lighting and affected by ob-
structed view of the subjectys. Wearable devices-based method
include inertial sensors with accelerometers, gyroscope, mag-
netometers, and physiological sensors (e.g. electromyogram
for monitoring of muscle activity) [5]. However, these methods
require the subjects to regularly wear the sensors, which
exacerbates the physical burden and could be inconvenient for
some users, such as the elderly and the children.

With respect to wireless sensing-based methods, several
technologies have been developed, including radar technology
[7], RFID technology [9], and WiFi technology [10], [11],
among others. Radar sensors are known for their robustness,
interference immunity, and wide detection range, but their high
deployment costs, bulky devices, and high power consumption
can be drawbacks. In the context of HAR, RFID can be em-
ployed to track individuals and their movements by attaching
small RFID tags to clothing or accessories. However, this
method may not be suitable for motion detection unless special
reader designs are available. In contrast, pervasive deployment
of WiFi wireless networks make possible, inexpensive use
of existing devices and signals, without additional overhead.
WiFi Channel State Information (CSI) signals have more
propagation channels, and each channel works in a different
frequency band, which makes it easy for us to use algorithms
to reject the channels that are subject to more interference and
ensure the overall reliability of the signal. Furthermore, WiFi
based HAR is non-intrusive and protects privacy of users, as
the most significant concerns of users.

The basic principle of passive WiFi monitoring is to monitor
changes in the WiFi signal influenced by human movement
in the propagation path of the signal. Therefore, real-time
monitoring of signals in the physical network layer provides
information of human activity. Moreover, development of new
devices and tools [12]-[14] allow acquisition of the CSI using
commercial WiFi devices. Gradually, the application of CSI
in HAR has also evolved from coarse-grained actions [15],
such as running, jumping, to fine-grained actions, such as
identification [16], breathing [17] and even sleep monitoring
[18].

Nevertheless, within the field of CSI, several challenges
persist. These challenges encompass high signal dimension-
ality, intricate pre-processing procedures, and the absence
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of lightweight models. For dimensional processing of CSI,
a commonly used approach involves performing principal
component analysis (PCA) and subsequently removing the
first component, which is typically associated with higher
noise levels [19]. However, this method may lead to a loss
of relevant action information in cases where the actions
have small amplitudes. In addition, due to environmental
interference, refraction of signal transmission process, and lack
of synchronization between transceivers, the CSI signal often
needs preprocessing such as filtering, downscaling, and outlier
removing. Moreover, extracting meaningful features from the
CSI signal is a challenging task which demands specialized
expertise and algorithm development.

In order to solve the problems just mentioned, a WiFi signal
based lightweight deep learning (WiLDAR) neural network
combining a random convolution kernel, a residual block and
a depthwise separable convolution is proposed. Accordingly,
our contributions are summarized in three aspects.

1) We propose a neural network captioned WiLDAR con-
sisting of two blocks: a) the feature extraction block,
updated from the MiniRocket algorithm to achieve fast
feature extraction of the original CSI signal without
parameter learning and back propagation, and b) the
learning block consists of a residual module combined
with a depthwise separable convolution, which reduces
the number of network parameters and decreases the
risk of overfitting. Overall, WIiLDAR is a lightweight
network with no pre-processing, high learning capability,
and simple structure.

2) By designing random convolution kernels with different
sizes, we can achieve automatic extraction of features
with different frequencies by using only a single layer
of the random convolutional network, which well corre-
sponds to the frequency differences of various activities
and greatly improves the model recognition capability
and interpretability. The diversity of extraction scales
also allows us to perform simple fusion of subcarriers or
multiple channels while preserving the amount of input
information, and avoiding data redundancy and complex
subcarrier selection algorithm design.

3) We tested WiLDAR on three different fine-grained ac-
tion datasets, all of which showed a significant improve-
ment in test accuracy. In addition, we also implemented
our algorithm on Raspberry Pi. This greatly reduced the
space and expense required for practical deployment,
and also demonstrated the feasibility of integrating CSI
collection and HAR recognition algorithms into IoT
devices.

The rest of the paper is organized as follows. Section II
describes the related works. Section III presents the details of
our proposed method. Section III-A introduces the signal pre-
processing. Section III-B introduces the system architecture.
Section III-C introduces the design of a tiny HAR system.
Then the performance of the proposed neural network is
evaluated in Section IV. Section V concludes the paper with
an outlook.

II. RELATED WORK

HAR research based on CSI signals can be broadly di-
vided into two categories: signal based systems utilize feature
engineering for signal feature extraction , and deep learning
based systems use signal representation generated by the deep
learning network. We summarize the comparison of related
work in Table I

Signal based: In [20], the preprocessed CSI signals were
divided into measurement matrices in the time and frequency
domains. Coherence histograms representing the feature dis-
tribution with self-organizing feature map and softmax regres-
sionbased are used for classification. In Wifinger [21], the au-
thors designed a fine signal denoising module to combine CSI
subcarriers into feature vectors for Dynamic Time Warping
(DTW) and K-NearestNeighbor (KNN) classification. Wang
in [22] extracted the duration and velocity of human motion
using discrete wavelet transform. The features extracted from
each movement were then modeled as a Hidden Markov Model
(HMM), which ignored the differences in movements between
individuals to focus only on the differentiation of movement
categories.

All these methods design a preprocessing and feature engi-
neering for CSI signals, and a simple classifier is used for the
identification of activity. However, they all require the design
of complicated feature extraction procedure, which increases
the development effort and requires significant expertise, and
decreases the scalability.

Deep Learning based: In WiSDAR [10], a comprehensive
framework is proposed, leveraging the synergistic capabil-
ities of Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM). This framework successfully
integrates hidden features derived from both temporal and
spatial dimensions and finally achieves the classification of
actions. Zhang in [11] proposed a Deep Q-Network (DQN)
network for data annotation, and designed a multi-sensor data
fusion algorithm to generate sequential motion data, and finally
achieved classification by LSTM. In [23], in order to solve
the problem that segmentation of CSI action samples depends
heavily on the threshold, Xiao et al. designed a Convolutional
Neural Network (CNN) to transform the segmentation prob-
lem into a classification problem. Moreover, Dempster [24]
proposed a MiniRocket algorithm for fast feature extraction
of signals. Zou [25] verified that adjusting the activation
function has an impact on the learning ability of the network.
Bergstra [26] proposed a Tree-structured Parzen Estimator
(TPE) for network parameter searching to simplify algorithm
development.

Deep learning based methods enable automatic feature
extraction and higher scalability. However, the correlation
network is less interpretable, very complex, has large number
of parameters, and requires large data sets for training.

III. PROPOSED METHOD

In this section we present the specific structure of WiLDAR.
Firstly we introduce the data preprocessing and the general
framework of the proposed network. Then the feature extrac-
tion module and the classification module in WiLDAR will be
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TABLE I
COMPARISON OF RELATED WORK
Categories Reference Model Task Accuracy
Wang et al. [20] | multi-domain features Gesture recognition 0.89
WiFinger [21] DWT Sign language recognition 0.90
Signal based CARM [22] HMM Human activity recognition |  0.96
WiSDAR [10] CNN+LSTM Human activity recognition 0.96
Deep Learning based | Zhou et al. [11] DNQ+LSTM Human activity recognition | 0.96
DeepSeg [23] CNN Human activity recognition 0.95
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TABLE II
ACCURACY PERFORMANCE OF DIFFERENT NETWORKS BEFORE AND
AFTER DATA FUSION

Method Accuracy! Accuracy?
LST™M 0.550 0.410
GRU 0.805 0.669
WiIiLDAR 0.866 0.863

T Use of unfused data
 Use of fused data.

analyzed. Finally, we present the implementation of the HAR
system.

A. Data Downscaling

Given the CSI data set has N samples {Cn}i:;l, C e
RTzxRaxNs XT “ywhere the dimensions represent the number of
transmitting (7)) , receiving antennas (R,), subcarriers (V)
and time (7") , as shown in the Fig. 1. To solve the excessive
dimensionality problem, complex subcarrier selection or fu-

sion algorithms need to be designed, because simply merging

Fig. 2. WIiLDAR feature extraction for unfused and fused signals. (a) and
(c) represent the unfused and fused CSI signals. (b) and (d)represent the
corresponding time-frequency features extracted by WiLDAR, respectively.

often results in information loss. However WiLDAR is able
to reconstruct different feature patterns to the fused signal
by designing multi-scale convolutional kernels. For example,
high-frequency action features are restored using smaller-
sized convolutional kernels, while, low-frequency actions are
restored using larger-sized convolutional kernels. Therefore,
WILDAR requires only simple average of the input signal’s
subcarriers to reduce data redundancy while maintaining the
information amount, as presented is

Crn = lzn:CmeRxxijT (1)

=

where C',, is the input signal after dimensionality reduction
and n represents the number of subcarriers. Fig. 2 demon-
strates that the features extracted from the fused signal are
almost indistinguishable from the unfused signal, and have no
significant effect on the experimental performance. Further-
more, in Table II we also compare the accuracy of different
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Fig. 3. Architecture of the WiLDAR. The convolution is followed by LReLU, PReLU, and ELU activation functions, respectively.

networks affected by the fused data. For convenience the
experiment epoch was set to 100. The results indicate that
the signals were simply fused, which causes information loss
and thus makes the recognition accuracy decrease. In contrast,
WILDAR undergoes multi-scale feature reconstruction, and
there is no significant variation in terms of accuracy before
and after the fusion.

In addition, please be noted that all processing in this place
is only for adjusting the dimensionality of the signal input, not
for PCA dimensionality reduction, Hampel outlier removal,
and filtering and denoising operations as recommended in
other works [19]. This greatly reduces the pre-processing
effort on the CSI signal and avoids the need to design the
corresponding signal-denoising works for different application
areas.

B. System Architecture

The overall pipeline of WIiLDAR consists of a feature
extraction module and a classification module is shown in
Fig. 3. The feature extraction module further consists of a
random convolution kernel that performs multi-scale feature
extraction on the input CSI sequence. Then, the extracted
features are recalibrated and relearned using a classification
module which combines residual structure and depthwise
separable convolution. Ultimately, the fast recognition of CSI
action sequences is achieved by the combination of the two
modules.

Feature Extraction: Our feature extraction module
WiRocket, updated from the MiniRocket [24], consists of 84
random convolution kernels of the same size, different weights,
and different dilation. In summary, the WiRocket algorithm
flow is shown in Algorithm 1.

Algorithm 1 WiRocket algorithm flow.

Input: S: Time series a: Series scaling factor
Output: F' : Feature
Fit:
1. generate 84 convolution kernels with different weights.
/I set the indices of 3
I+ [0,1,2],0,1,3],...,[6,7,8]]
2. derive the dilation group
max < logy(a * length (S) —1)/8
D — [LQOJ , LQmax /32J e, L232'max /32J]
3. randomly selected a sample to calculate the bias
4. Combine dilation/bias/padding to form a set kernel_set
Transform:

F=[]
for k in kernel_set do
for d in D do

feature = PPV (S ® k)
F = FU feature
end

end

We know that different types of actions not only differ in
action amplitude, but also correspond to different frequen-
cies. Therefore, in order to better achieve action recognition,
we need to extract different frequency features. Unlike the
convolution kernel with deterministic parameters, the random
convolution kernel can extract signal feature at different scales
and in different modes with various feature extraction patterns
for different signals. This allows extraction of features at
different frequencies, with more comprehensive and targeted
features. Previous work using random convolutional kernels
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for feature extraction such as the classical U-net [27], utilized
convolutional kernels of different sizes to extract features from
the input. However, the size and depth of this network need
to be adjusted for different inputs, and as a deep learning
network, the number of parameters is large and requires
more samples for training. The feature extraction module of
WILDAR consists of convolutional kernels of different sizes
with defined parameters, avoiding the need for model training,
which makes the model feature extraction easier and reduces
the deployment overhead of the model.

The length of each convolution kernel S € {57, S5, ..., Ssa}
is fixed to 9, and the weights are random combinations of «
and (8 under the condition that the sum of weights is 0. (We
set six of & = —1 and three of § = 2). When the weight sum
equals to 0, the convolution for the input X with weights W
will not be affected by panning, i.e., X * W = (X £ ¢) « W.
That is, adding this constraint ensures that the kernels are only
sensitive to the relative magnitude of the input values, making
the output of the convolution translation invariant and reducing
the operation burden.

Spectral power of human activity mostly concentrated from
0 to 20 Hz, and the common CSI acquisition frequency is
1,000Hz. The sampling points are calculated as follows.

N:f*% )

where N represents the number of sampling points, f rep-
resents the signal sending rate, and F' represents the fre-
quency corresponding to the action. Therefore, 20 Hz is
equivalent to 50 samples in the time domain. Accordingly,
we design the dilation to ensure the receptive field is within
this range. The range of the dilation group is determined by
the input length within the range D = [20,2“1“}, where
max = log, [(@ * Linpu — 1) / (Lkemet — 1)]. Linpue is the
input length, Lyeme is kernel size, and « is an artificial
parameter based on the input length to control the receptive
field. Dilation group will produce a geometric progression of
32 values from the range, and finally the dilation group is
combined with each kernel to extract features.

Bias is taken from the convolutional output by randomly
selecting a single training sample, with quartiles of its convo-
lutional output computed as bias. The convolution layer auto-
matically calculates the proportion of positive values (PPV)
metrics to enrich the extracted spatio-temporal features, in
addition to the convolutional output. PPV is calculated by the
following equation.

1
PPV(X « W b)—nZ[X*W b > 0] 3)
where X is the input sequence, W is the convolution kernel
weight, and b is bias. Calculating PPV is essentially equivalent
to calculating the empirical cumulative distribution function,
which allows the classifier to determine the prevalence of a
given pattern in a time series.

The random convolution layer automatically extracts multi-
channel features for each sample considering temporal coher-
ence, thus retaining more detailed information. The features
are automatically split according to the convolutional combi-
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Fig. 4. The classification module of WiLDAR. (a) Residual block. (b) the
posterior network.

BN+ELu

nations of different frequency. Finally we get a [84,119] multi-
channel message, where different channels are composed by
random convolution kernels at the same point of the sequence,
to maximize the spatio-temporal information of the extracted
feature.

Classification: To classify the features, a CNN network with
residual structure is designed, as shown in Fig. 4. We combine
the residual structure with depthwise separable convolution to
relearn and classify the features while reducing the parame-
ters. The TPE algorithm is applied for parameter search and
relevant updates are made to the activation function to improve
the network classification ability.

The residual structure can transform network learning
objectives by introducing shortcut connections and identity
mappings. In turn, the gradient disappearance and gradi-
ent explosion problems could be avoided. Given the input
F = {f1, fo, ..., [n} € RVN>*84X19 where N is the number
of inputs and f is the feature extracted by WiRocket, the
transforming function is represented as follows.

y=H(f)+F (W) )

where y represents the output, H represents the identity
mappings, and F represents the residual function which is
often a series of convolution operations. After the residual
structure, we use a posterior network consisting of multiple
convolution layers, as shown in Fig. 4 for classification.
Three different activation functions, Leaky Rectified Linear
Unit (LReLu), Parametric Rectified Linear Unit (PReLLU) and
Exponential Linear Unit (ELu) [28], are implemented after the
convolutional layers to improve the network mapping ability
and avoid the gradient problem caused by a single activation
function. Specifically, LReLU can be used to alleviate the
problem of the activation function encountering zero gradients
by slightly tilting it in the negative range. The PReLU, on
the other hand, uses the parameters of the adaptive learning
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rectifier to avoid parameter settings for the activation function.
The last used ELU can produce negative outputs, which helps
to speed up the learning process and increase the robustness
to noise. This function does not produce smaller derivatives
and can avoid the problem of gradient disappearance due to
the mismatch between the input and output space sizes.

To reduce the computational effort, we replace all the
convolutions in the network with one-dimensional depthwise
separable convolutions. It uses depthwise convolution to re-
duce the depth and pointwise convolution to feature fusion
and depth expansion. After that, the number of convolutional
parameters can be reduced to about one-ninth, which greatly
reduces the overhead of convolutional operations.

Algorithm 2 TPE algorithm flow
Input: Search Target 7' Search Scope S
Maximum number of iterations N
Output: Specific results for each search OUT
1: Create an objective function applied in 7' and output a
score that we want to minimize.

2: Get couple of observations (score) using randomly se-
lected set of S.

3: Sort the collected observations by score and divide them
into two groups x1, £ based on some quantile.

4: Two densities ¢(x1) and g(x2) are modeled using Parzen
Estimators.

5. Draw sample hyperparameters from ¢(x), evaluating

them in terms of 5((2; , and returning the set that yields the
£(z1)

minimum value under (@) corresponding to the largest
expected improvement. These hyperparameters are then
evaluated by the objective function.

6: Update the observation list from step 3.

7: Repeat step 3-6 with a fixed number of trials or until time
limit is reached

To avoid manually tuning the hyperparameters of the net-
work, the TPE algorithm is used to automatically search the
hyperparameters. The algorithm flow is shown in Algorithm
2. It fuzzily slices the sample points into two categories of
superiority g(z) and inferiority £(z). The optimal parameters
are obtained by iterating to update the two sets and finally
maximize the Expected Improvement (EI) function. The EI
after the Bayes’ rule transformation is shown below.

ytla) — ) [ ply)dy

Bl (2) = — i T 0 =)o@ )
o)\
. <"}’ 4 ) (1 7))

Equation 5 indicates that to maximize EI we need to make
Z(—z)) minimum, so the set of 2 which makes g(x) smaller and
ééx) larger is returned in each iteration. The hyperparameters
in the set are evaluated on the objective function. Eventually

the process is repeated to achieve the hyperparameter search.

Fig. 5. Raspberry Pi 4B Platform.

TABLE III
TRAINING AND TESTING TIME ON RASPBERRY PI

Method Training(sec) Testing per sample(sec) Parameters
T-Unet [29] 1152.56 0.154 5.18M
WiLDAR 60.01 0.031 0.14M

C. Tiny HAR System

In order to apply CSI signals to remote monitoring of spe-
cial population and controlling of smart home in application
scenarios of the IoT, we designed a tiny HAR system using
Raspberry Pi and existing WiFI router. By modifying the
Raspberry Pi’s network card configuration [14], CSI signal
can be acquired through Raspberry Pi and WiFI router. The
specific version is the Raspberry Pi 4B with 8GB RAM and
64GB ROM, as shown in Fig. 5. The deployment scenario is a
typical office scenario, with furniture such as desks and chairs,
and the presence of more electronic devices such as computers,
cell phones, etc. The placement of the devices ensures the
existence of the Line of Sight (LoS). The actual performance
of the system is shown in Table III.

We use the ARIL dataset for testing on the Raspberry Pi
platform, and the training time for a single epoch across all
samples is presented in Table III. From the results, it can
be seen that compared to other CSI based HAR networks,
WILDAR has a substantially lower training and testing time.
This is because of the feature extraction module in WiLDAR
has no parameters to learn and therefore does not need back
propagation, which greatly reduces the training time of the
network. The depthwise separable convolution reduces the
network parameters and time consumption. Furthermore, the
test time of WiLDAR is only 0.03 seconds, which can fully
achieve the purpose of real-time monitoring of the action. This
shows that it is feasible to migrate WiLDAR to IoT devices
and the simultaneous acquisition and real-time classification
of CSI signals on IoT devices in the future. The system
can also significantly reduce the actual cost and facilitate the
deployment of HAR.
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IV. EXPERIMENTAL EVALUATION

In this section, we present the effectiveness of WiLDAR by
comparing the test accuracy, number of parameters and time
complexity with other networks. Furthermore, we analyze the
impact of individual diversity and ablation experiments.

A. Experimental Setup

We tested WiLDAR on three different fine-grained public
datasets. The key information of these datasets are shown in
Table IV.

1) SignFi: In [30] CSI data for 276 sign language poses
were collected from 5 males, either at home or in the
laboratory, which is more complex. In our experiments,
a total of 8280 samples from laboratory and home were
used.

2) ARIL: The dataset [31] was originally captured to
enable remote control of smart homes. Six hand gestures
such as hand up, hand down, hand left, etc. were
collected from 16 different location to form a total of
1394 samples.

3) CSI-HAR: In [32] the CSI data of seven actions were
collected from three subjects. The collected actions are
common sitting, standing, running, etc. Each action, with
unfixed duration, was performed 20 times per person,
and therefore the number of sample packets acquired
was not fixed. In this paper, we downsample irregular
time series to the same length.

In the actual experiment, we use Adam as the optimizer, Cross
Entropy as the loss function, batch size set to 32, learning rate

TABLE IV
INFORMATION ABOUT CSI DATASETS

Name Acquisition Platform Action Type Data Dimension

SingFi Intel WiFi Link 5300 sign language 1x3x30x200

ARIL USRPs hand gestures 1x52x192
CSI-HAR Nexmon daily activities 1x52

TABLE V
COMPARISON WITH CLASSIFICATION MACRO INDICATORS

Method  Precision Recall Specificity F1-Score

LST™M 0.564  0.554 0911 0.560
RNN 0.784  0.778 0.956 0.780
GRU 0.857  0.852 0.970 0.850
ARIL [31] 0.884  0.883 0.977 0.880
WIiLDAR 0936  0.934 0.987 0.934

set to 0.0001, and a weight decay of 0.01 in the training. All of
our training and testing processes are conducted on a Lenovo
r9000p laptop with AMD Ryzen 7 5800H CPU and NVIDIA
GeForce RTX 3070 Laptop GPU.
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TABLE VI
COMPARISON OF CLASSIFICATION INDICATORS AT DIFFERENT MOVEMENTS

Model Metrics ARIL CSI-HAR
up down left right circle cross | bend fall lie-down run sit-down stand-up walk
Precision | 0.654 0.510 0.431 0.538 0.688 0.565|0.574 0.740 0.609 0.816 0.759 0.565 0.748
LSTM Recall |0.723 0.553 0.532 0.438 0.512 0.565|0.690 0.791 0.585 0.802 0.518 0.600  0.777
Specificity | 0.922 0.892 0.857 0.922 0.957 0914|0919 0952 0934 0.969 0.974 0.925 0.956
F1-Score | 0.681 0.530 0.476 0.482 0.587 0.565|0.626 0.764 0.596 0.808 0.615 0.581  0.780
Precision | 0.815 0.977 0.816 0.820 0.800 0.919 |0.972 0.965 0975 0.983 0.955 0.948  0.981
GRU Recall |0.936 0.894 0.851 0.854 0.837 0.739 |0.981 0.986 0.960 0.994 0.936 0.931  0.990
Specificity | 0.957 0.996 0.961 0.961 0.962 0.987 | 0.995 0.994 0.996 0.997 0.993 0.992  0.997
F1-Score |0.871 0.933 0.833 0.836 0.818 0.819]0.976 0.975 0.967 0.988 0.945 0.939  0.985
Precision | 0.936 0.974 0.881 0.912 0.947 0.964 | 0.997 0.995 0.996 0994 0.99%4 0.998  0.995
WILDAR Recall |0.978 0.864 0.881 0.945 0.973 0.964 |0.998 0.997 0985 0.995 0.995 0.994  0.998
Specificity | 0.987 0.996 0.979 0.978 0.992 0.991|0.998 0.997 0.994 0.994 0.994 0.996  0.998
F1-Score | 0.956 0915 0.881 0.928 0.959 0.964 | 0.997 0.995 0.990 0.994 0.994 0.995  0.996

B. Performance Evaluation

We will show the specific performance of WiLDAR on the
relevant datasets. The metrics we calculate include accuracy,
precision, recall, specificity, and F1-Score [33], all of which
are calculated on a macro-average. The confusion matrix and
classification performance of the experiment are shown in Fig.
6, Fig. 7 and Table V.

Confusion matrices of ARIL and CSI-HAR are presented
in Fig. 6, where SignFi is not included due to the large
number of classification categories. It can been seen that in
the ARIL dataset, the gesture with the highest recognition
accuracy is “down” and the lowest is “left”. All the actions
except the left and right gestures achieve an accuracy higher
than 95%. Considering that the left and right gestures are
consistent in terms of movement amplitude and frequency, the
network will cause confusion in classification. In the CSI-HAR
dataset, characterized by notable action amplitudes and clear
distinctions among individual actions, all actions demonstrate
classification accuracies exceeding 99%. This can be attributed
to the inherent robustness and efficacy of WiLDAR’s feature
extraction capabilities, which enable it to leverage the dataset’s
characteristics effectively.

In Fig. 7 and Table V, we compared WiLDAR with other
methods, including some classical networks and some recent
networks using the same dataset [29]-[32], [34]. By analyzing
the charts, we achieved the highest accuracy of 97.5%, 93.5%,
and 99.5% on the three datasets, respectively. It can be seen
that the classical network shows the worst learning ability for
CSI signals, indicating that the high dimensionality and multi-
channel characteristics of the CSI signal make the feature
extraction difficult. Although previous work tried to improve
the accuracy by refining the network structure, the single
feature extraction mode cannot adapt to multiple actions.
However, with the combination of random convolution and
residual structure, WiLDAR is able to extract action features

on different frequencies in multi-dimensional CSI signals.
Multi-scale random convolution makes it easier to capture the
expression patterns of different action information in different
dimensions. Furthermore, by designing different activation
functions, a more comprehensive feature map is achieved.
Through multi-channel reduction of the extracted features
according to time nodes, the spatio-temporal characteristics
could be maximized. All this ensures WiLDAR’s feature
extraction ability and action recognition performance.

We also tested the recognition performance of different
movements as shown in Table VI. The bolded data are the
actions with the highest F1-score for each network, from which
it can be seen that different networks fit different actions,
however WiLDAR achieves a very high recognition accu-
racy for each action. Notably, WiLDAR showcased reduced
fluctuations in Fi scores across different actions, indicating
a significant enhancement in its capacity to extract multi-
scale features. This improvement can be attributed to the
integration of the WiRocket algorithm, facilitating automatic
feature extraction within the network.

C. Discussion

We test the effect of WiLDAR’s structure on accuracy, and
verification associated with its time complexity and indepen-
dence.

Hyperparameter search: Results of hyperparametric search
are shown in Fig. 8. We use the TPE algorithm described in
Section III to automatically search for the structural param-
eters of WILDAR. Three search parameters are batch size,
convolutional kernel size, and the number of kernels.

The yellow line represents the combination with higher
accuracy, so the more concentrated the yellow line crosses,
the better choice of the parameters. From the Fig. 8, we can
see that the best choice of batch size is 64, convolutional
kernel size is [7,5,3], and the number of kernels is 256. It
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TABLE VII
THE ABLATION TEST OF WILDAR

Method Accuracy
Baseline 0.916
Residual block 0.917
Residual block + DS-Conv 0.957
Baseline + Residual block + DS-Conv 0.975

can be seen that a moderate batch size and convolutional
kernel size are more conducive to the extraction of detailed
features by the network, and more convolutional kernels bring
more feature extraction patterns. However, considering the
number of parameters in the actual deployment, the number
of convolution kernels was chosen to be 64, which can
reduce a lot of operation overhead without notable accuracy
degradation.

Ablation test: Accuracy performance of ablation test is
shown in Table VII. We performed ablation tests on the
individual blocks of WIiLDAR, where Baseline refers to the
MiniRocket [24] network, Residual block refers to the residual
block structure proposed in Section III, and DS- Conv refers
to the depthwise separable convolution. The experiments use
the SigFi dataset with the training epoch set to 250.

From the results, the accuracy performance of MiniRocket
and residual convolution is similar. With the combination of
depth-separable convolution, the feature extraction and fusion
is separated, bringing some degree of accuracy improvement.
The combination of the three shows the highest accuracy
and maximum accuracy improvement, which indicates that
the combination of MiniRocket and the residual structure
greatly improves the learning ability of the network, and
the improvement is more pronounced than that of depthwise
separable convolution.

Impact of Individual Diversity: In Table VIII, we performed
the impact of individual diversity on WiLDAR. The network
was trained using the data of the first two users in CSI-HAR,
and tested by the third one.

The recognition accuracy decreases substantially when there

9
TABLE VIII
IMPACT OF INDIVIDUAL DIVERSITY OF WILDAR
Method Precision Recall Accuracy
Without user 3 0.584 0.566 0.566
Add 7% of user 3 sample 0.891 0941  0.890
All data 0.995 0996 0.995
TABLE IX
COMPARISON OF TIME COMPLEXITY OF DIFFERENT NETWORKS
Time Complexity ~ T-Unet [29]  ARIL [31] WIiLDAR
Training(sec) 104.03 65.77 24.45
Testing(sec) 4.21 3.17 0.04
Parameters 5.18M 3.49M 0.14M

is a difference between the source and target domains. This is
because the network extracts the environment and background
features during feature extraction, and when these conditions
change, it affects the specific performance of the model. We
also add 7% of the target domain samples to the training set,
and the performance improved dramatically. This indicates that
only a small number of target domain samples are needed to
significantly improve the recognition capability of WiLDAR.
In tests, WiLDAR recognized key actions such as falls with up
to 95% accuracy, even with a small number of target domain
samples. This verifies that WiLDAR is able to perform well
in remote health monitoring even when the subject changes.

Time complexity: We compared the number of parameters
and the time complexity of WiLDAR with ARIL and T-Unet,
and the results are shown in Table IX. The data are taken
from the ARIL dataset, the batch size is taken as 128, and the
training epoch is 200. The testing time is the time required to
test all 278 samples.

It can be seen from the Table IX that both the training
and testing time of WiLDAR are much smaller than the other
two networks. This is precisely due to the random convolution
kernel, which does not use backpropagation, reducing the
gradient calculation in training. In addition, WiLDAR has less
than one-tenth of the parameters compared with the other
two networks, due to the adaption of depthwise separable
convolution. These results demonstrate the lightweight features
of WiLDAR.

V. CONCLUSION

In this paper, we propose the WiLDAR, a lightweight net-
work that can easily perform feature extraction on the original
CSI signal for HAR. We design multi-scale convolution to ex-
tract different action features and eliminate the tedious signal
preprocessing and manual feature extraction. A block combin-
ing residual networks with depthwise separable convolution is
proposed to reduce the number of parameters and the training
time. We tested WiLDAR on three different finegrained public
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datasets, and achieved the highest classification accuracy with
less than one-tenth of the parameters comparing to other net-
works, resulting in shorter training. Finally, we implemented
a tiny HAR system with only Raspberry Pi and WiFi router,
which can greatly reduce the space requirements and cost of
the deployment. The experimental results show that WiLDAR
is fully capable of real time human activity monitoring. In
the future, we can build an all-round monitoring system with
multi-terminal interconnection using embedded terminal, cell
phone terminal, and PC terminal around the home WiFi LAN,
which aligns with the IoT development trend of the Internet
of everything. We believe that WiLDAR can be well applied
to the Internet of Things, human-computer interaction, remote
medical monitoring, and other applications that require the
lightweight implementation and learning ability.
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