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Abstract—We investigate the coexistence of task-oriented and
data-oriented communications in a IoT system that shares a
group of channels, and study the scheduling problem to jointly
optimize the weighted age of incorrect information (AoII) and
throughput, which are the performance metrics of the two types
of communications, respectively. This problem is formulated
as a Markov decision problem, which is difficult to solve due
to the large discrete action space and the time-varying action
constraints induced by the stochastic availability of channels. By
exploiting the intrinsic properties of this problem and reformu-
lating the reward function based on channel statistics, we first
simplify the solution space, state space, and optimality criteria,
and convert it to an equivalent Markov game, for which the large
discrete action space issue is greatly relieved. Then, we propose a
Whittle’s index guided multi-agent proximal policy optimization
(WI-MAPPO) algorithm to solve the considered game, where
the embedded Whittle’s index module further shrinks the action
space, and the proposed offline training algorithm extends the
training kernel of conventional MAPPO to address the issue of
time-varying constraints. Finally, numerical results validate that
the proposed algorithm significantly outperforms state-of-the-art
age of information (AoI) based algorithms under scenarios with
insufficient channel resources.

Index Terms—Task-oriented communications, data-oriented
communications, age of incorrect information (AoII), Whittle’s
index, Whittle’s index guided multi-agent proximal policy opti-
mization (WI-MAPPO), age of information (AoI)

I. INTRODUCTION

In the past decades, the spotlight of Internet of things
(IoT) is shifting towards enabling autonomous networked
control applications that require timely status updates [1], e.g.,
environmental monitoring [2], emergency detection [3], and
healthcare systems [4]. Under such scenarios, IoT devices
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are deployed to obtain real-time awareness of a monitored
physical process by continuous sampling and data upload-
ing. Considering the time-varying nature of environment, the
freshness of status updates is of critical importance to the
performance of subsequent tasks. Age of information (AoI)
[5] is proposed as a performance metric for such task-oriented
communications, which is defined as the time elapsed since the
latest received status update was generated at the monitoring
device. Note that conventional resource provisioning schemes
follow the data-oriented design philosophy of maximizing
network-level throughput. Therefore, in order to accommodate
time-sensitive data transmission in task-oriented communica-
tions, one straightforward approach is to reserve spectrum for
devices with critical status updates to guarantee the timely
delivery of data. However, such separate design degrades
the spectrum efficiency due to the intermittent nature of
monitoring devices. Therefore, it is important to establish a
flexible coexistence strategy between task-oriented and data-
oriented communications. This problem, if left unsolved, will
jeopardize the utility of networked control systems.

The focus of recent research on resource scheduling strate-
gies for time-sensitive applications is optimizing AoI among
multiple devices. The authors in [6] studied the scenario with
multiple IoT devices monitoring multiple processes and then
transmitting their statuses to one central base station (BS) over
one channel, and a near-optimal algorithm to minimize the
average AoI was proposed. The authors in [7] extended the
previous work to the multiple channels case, and proposed a
low-complexity algorithm based on the Lagrangian relaxation
method [8]. The authors in [9] studied the AoI minimization
problem in a time-framed system, where multiple statuses
can be transmitted during one time frame, and compared the
performances among the randomized policy, the max-weight
policy [10], and the Whittle’s index algorithm. In order to
strike a balance between the achievable throughput and age
under sparse sampling at source nodes, various strategies have
been proposed [11]–[13]. The authors in [11] studied the sce-
nario with multiple IoT devices, and aimed to minimize their
average AoIs while simultaneously satisfy the constraints on
their throughputs. In [12], IoT was utilized to simultaneously
monitor one process with a single monitoring device and
collect data from multiple traditional devices, and the average
AoI at the monitoring device and the throughputs of the
traditional devices were evaluated under the ALOHA protocol.
The authors in [13] considered the most general scenario with
multiple monitoring devices acquiring statuses from multiple
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processes and multiple traditional devices collecting data, and
a Lyapunov drift based scheduling policy was proposed to
jointly optimize the average AoI and throughput.

Recently, age of incorrect information (AoII) [14] is pro-
posed as a more advanced performance metric that captures
not only the aging of status updates, but more importantly
the change of context of the monitored process at source
node. To elaborate, the authors in [14], [15] discussed the
scenario where a base station (BS) in IoT predicts the state
of a process. Apparently, the BS prefers to collect new status
information from the monitoring device when the state of the
considered process indeed changes, not when the currently
reserved status at the BS is not fresh. This indicates that AoII
is more compatible with the prediction tasks than AoI.

There has been growing research interest in designing AoII-
based scheduling policy for monitoring devices [14], [16]–
[19]. Specifically, the authors in [16], [17] discussed the sce-
nario where the target process to be predicted simply follows
the binary distribution, and the optimal policy for the case with
one target process and a low-complexity suboptimal policy
for the case with multiple target processes were developed.
One step further, the authors in [14], [18], [19] discussed a
more complex prediction scenarios, where the target processes
have more than two states. Specifically, the authors in [18],
[19] discussed the scenario where the state transitions of
the processes only occur between the adjacent states, and a
Whittle’s index based suboptimal policies were proposed for
the case with multiple target processes. The author in [14]
considered the scenario where the state transitions between
any two states are allowable, and derived the optimal policy
for the case with one target process. However, the optimization
framework in [14] cannot be directly extended to the case with
multiple target processes and no existing work has touched this
case.

In this paper, we employ AoII as the performance metric for
task-oriented communications and investigate the coexistence
strategy of task-oriented and data-oriented communications
by jointly optimizing the average AoII and the throughput.
Specifically, we study a general scenario: multiple process-
aware monitoring devices monitor and transmit the status
updates of multiple random processes, respectively, which
have more than two states and the state transition between
any two states is allowable; multiple traditional devices purse
high throughput and each round of the data transmissions
for the traditional devices may last for multiple time slots;
limited channel resources are available in IoT for the data
transmissions of the monitoring and traditional devices. We
summarize our contributions as follows:
• We formulate the joint optimization problem as a Markov

decision problem, which is challenging due to the large
solution space, large state space, and average optimality
criteria. Moreover, it has a large discrete action space and
time-varying action constraints induced by the stochas-
tic availability of channels, where existing algorithms
to solve Markov decision problems cannot efficiently
address the problems of this type. To overcome these
challenges, we first analyze the intrinsic properties of
this Markov decision problem, and prove that there exist

stationary policies to achieve its optimum. Next, based on
this stationary feature, we reformulate the reward function
and transform the original problem to an equivalent
form with a much smaller state space and a simplified
state transitions. Then, we validate the existence of the
Blackwell policies for the equivalent problem, replace
the average optimality criteria by the discounted version,
and prove that the optimal policies under this discounted
criteria also optimize the problem with average optimality
criteria. Finally, we convert the above discounted Markov
decision problem as an equivalent Markov game by
treating each channel as individual agent, for which the
large discrete action space issue is relieved. Remarkably,
all these problem simplifications and conversions are
theoretically validated to be equivalent.

• We propose a multi-agent reinforcement learning algo-
rithm, namely the Whittle’s index guided multi-agent
proximal policy optimization (WI-MAPPO), to efficiently
solve the proposed Markov game. Specifically, WI-
MAPPO deploys a Whittle’s index guided action fu-
sion module to further shrink the action space of the
Markov game. To design this module, we first prove
that Whittle’s index for the monitoring devices exists
by validating their indexabilities, and then utilize an
efficient exhausted searching algorithm to approximate
the Whittle’s index. Finally, we construct this module
by generating a sufficient large Whittle’s index table.
Moreover, we modify both the actor network and the
probability ratio derivation of the training algorithm for
multi-agent proximal policy optimization (MAPPO) to
train the proposed WI-MAPPO. By doing so, the training
procedure will not violate the time-varying constraints
and ensure even faster and more accurate estimations
on the advantage functions of MAPPO. Remarkably,
although the time-varying constraints issue shrinks the
solution space of the considered Markov game and is
doomed to induce loss of optimality compared with the
non-constrained Markov game, it is validated that the
proposed WI-MAPPO can greatly narrow this optimality
gap and achieve almost the same performances for the
constrained and non-constrained Markov games.

The remainder of this paper is organized as follows. Section
II introduces the system model and formulates the joint
scheduling problem. Section III presents the proposed algo-
rithm. Section IV evaluates the performance of the proposed
algorithm. Finally, Section V concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a slotted IoT system as shown in Fig. 1, which
consists of a BS and a set of IoT devices. The set of devices
consists of two types, including I monitoring devices to enable
real-time situational awareness at BS and J traditional devices
for data collection. The monitoring devices are deployed at
I different monitoring spots to obtain real-time perceptions
about I different random process {Xi(t)}Ii=1 by periodical
data sampling and uploading, and the scheduling performance
for monitoring devices is quantified by AoII, which captures
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Figure 1: Joint schedule of the task-oriented and data-oriented communications.

the semantic attributes of information in terms of the relevance
of transmitted data to the subsequent task. As for traditional
devices, the scheduling performance can be quantified by the
achievable network-level throughput. We assume an OFDMA-
based system with M sub-channels. The data transmission for
traditional devices may last for multiple consecutive time slots
depending on the size of sampled packets, while the trans-
mission for monitoring devices is assumed to be completed
within one time slot due to small packet size for status update
information. Notably, we also call the ith monitoring device
as the ith device and the jth traditional device as the (I + j)th

device.

A. System model

The joint scheduling between the task-oriented and data-
oriented communications is formulated as a Markov decision
problem and we introduce its state, action, transitions, and
reward as follows.

1) State: The state contains AoII vector, channel gains, and
channel availability.

AoII vector: AoII counts the age of the incorrect prediction
and increases as long as the predicted state is incorrect.
Particularly, it is defined as follows [14].

Definition 2.1(AoII): The AoII at the ith monitoring device in
the tth time slot is denoted as xi(t) ∈ Z≥0, where Z≥0 is the
set of all non-negative integers, and recursively defined by

xi(t+ 1) ,

{
0 X̄i(t+ 1) = Xi(t+ 1)
xi(t) + 1 X̄i(t+ 1) 6= Xi(t+ 1).

(1)

where X̄i(t) is the prediction on Xi(t) made by the BS.

Then, the AoII vector at I monitoring devices is defined as
x(t) , [x1(t), x2(t), · · · , xI(t)]T .

Channel gains: Denote the channel coefficient and the
channel gain of the link between the BS and the jth tradi-
tional device over the mth channel at the tth time slot as
hj,m(t) and gj,m(t), respectively, i.e., gj,m(t) = |hj,m(t)|2.
Then, define the channel gains at the tth time slot as matrix
G(t) ∈ GJ×M , where the (j,m)th entry of G(t) is gj,m(t),
i.e., [G(t)](j,m) , gj,m(t), and G is the value space of gj,m(t)
and considered as a finite set.

Channel availability: Each data transmission for the jth tra-
ditional device is considered to consume Tj ∈ Z+ consecutive
time slots with Z+ being the set of all positive integers, during
which the occupied channel is not available for new data
transmission. Specifically, denote the availability condition of
the mth channel for the data transmission of the jth traditional
device at the tth time slot as bj,m(t) ∈ {0, 1, · · · , Tj−1}: if the
mth channel is not transmitting data for the jth traditional de-
vice at the tth time slot, bj,m(t) is set to 0; otherwise, bj,m(t) is
equal to the number of the remaining time slots for the release
of the mth channel. Then, define the channel availability as a
J-by-M -dimension matrix B(t), where the (j,m)th entry of
B(t) equals bj,m(t), i.e., [B(t)](j,m) , bj,m(t). Note that the
status update transmission of monitoring devices is assumed
to be completed within one time slot, and thus the allocated
channel will always be released for new data transmission at
the next time slot.

Denote the state of the considered Markov decision
problem at the tth time slot as s(t). Obviously, s(t) =
(x(t),G(t),B(t)) holds and the state space S = ZI×1

≥0 ×
GJ×M ×B is countable, where B is the value space of B(t).

2) Action: Denote the scheduling decision for the mth

channel at the tth time slot as am(t) ∈ {0, 1, · · · , I + J}.
Specifically, am(t) = 0 means that the mth channel is not
scheduled to start a new data transmission; and am(t) > 0
means to transmit data for the am(t)th device over the mth
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channel. Then, denote the scheduling decision for all the chan-
nels at the tth time slot as a(t) , [a1(t), a2(t), · · · , aM (t)]T ,
and apparently a(t) is the action of the considered Markov
decision problem.

Remarkably, the actions in {0, 1, · · · , I + J}M×1 are not
always allowable. If the mth channel has been reserved for
data transmission in previous slots, i.e.,

∑J
j=1 bj,m(t) > 0

holds, it cannot be scheduled for any new data transmission.
That is, the action is constrained by

J∑
j=1

bj,m(t)am(t) = 0, ∀ m ∈ {1, 2, · · · ,M}. (2)

Then, we denote the allowable action space at state s(t), which
contains all the actions satisfying the constraints in (2), as
As(t).

3) Transitions: The transitions are to update AoII vector,
channel gains, and channel availability.

AoII vector: The transitions of AoII vector needs the
knowledge of the transitions of {Xi(t)}Ii=1. Particularly, this
paper considers that the state space of {Xi(t)}, denoted as Xi,
contains |Xi| real numbers, the self-transition probability of
{Xi(t)}, denoted as Pr{Xi(t+ 1) = x|Xi(t) = x} with x be-
ing any state in Xi, equals pi, and the probability of transition
to any other state, denoted as Pr{Xi(t + 1) = x|Xi(t) = y}
with x 6= y and y being any other state in Xi, equals
qi ,

1−pi
|Xi|−1 .

Now, we study the transitions of xi(t) and first consider
the case that we choose to transmit data for the ith mon-
itoring device over some channel at the tth time slot, i.e.,∑M
m=1 1i (am(t)) > 0, where the indicator function 1i(x)

equals 1 if x equals i and otherwise, it equals 0. For this case,
state Xi(t) is transmitted to the BS during the tth time slot and
the BS makes the prediction for the (t+1)th time slot by X̄i(t+
1) = Xi(t). Apparently, X̄i(t + 1) = Xi(t + 1) holds with
probability pi since Xi(t+ 1) = Xi(t) holds with probability
pi. Therefore, based on (1), when

∑M
m=1 1i (am(t)) > 0, we

have

xi(t+ 1) =

{
0 with probability pi
xi(t) + 1 with probability 1− pi.

(3)

Then, we consider the other case that we choose not to
transmit data for the ith monitoring device over any channel,
i.e.,

∑M
m=1 1i (am(t)) = 0. For this case, the BS has to inherit

its previous prediction, i.e., X̄i(t + 1) = X̄i(t), and xi(t)
updates itself based on the following rules:

• When xi(t) = 0, X̄i(t + 1) = Xi(t + 1) holds with
probability pi, since X̄i(t + 1) = X̄i(t) = Xi(t) holds
for sure and Xi(t) = Xi(t + 1) holds with probability
pi. Then, based on (1), when

∑M
m=1 1i (am(t)) = 0 and

xi(t) = 0, we have

xi(t+ 1)=

{
0 with probability pi
xi(t) + 1 with probability 1− pi,

(4)

• When xi(t) > 0, X̄i(t + 1) = Xi(t + 1) holds with
probability qi, since X̄i(t + 1) = X̄i(t) holds for sure
and X̄i(t) = Xi(t + 1) holds with probability qi. Then,
based on (1), when

∑M
m=1 1i (am(t)) = 0 and xi(t) > 0,

we have

xi(t+ 1)=

{
0 with probability qi
xi(t) + 1 with probability 1− qi.

(5)

Channel gains: For the link between the BS and any tra-
ditional device, the channel coefficient of this link is modeled
as a stationary ergodic process, and so is the channel gain.
Particularly,

Pr{gj,m(t+ 1) = g′|gj,m(t) = g}
=Pr{gj,m(1) = g′|gj,m(0) = g} , Prj,m{g′|g}, (6)

holds for all t ∈ Z+, j ∈ {1, 2, · · · , J}, m ∈ {1, 2, · · · ,M},
and g, g′ ∈ G, where Prj,m{g′|g} is a constant and represents
the probability for gj,m(t) transiting from g to g′. We also
consider G , {g1, g2, · · · , g|G|} as a finite real number set
with 0 < g1 ≤ g2 ≤ · · · ≤ g|G|.

Channel availability: We update the channel availability
in the following four cases: If the mth channel is currently
transmitting data for the jth traditional device, i.e., bj,m(t) > 0,
the remaining time for the release of the mth channel decreases
by one at the next time slot, i.e., bj,m(t + 1) = bj,m(t) − 1;
if the mth channel is reserved by another traditional device,
i.e., bj,m(t) = 0 and

∑
j′ 6=j bj′,m(t) > 0, bj,m(t+ 1) remains

0; if the mth channel is currently available and is about to
transmit data for the jth traditional device at the tth time slot,
i.e.,

∑J
j=1 bj,m(t) = 0 and am(t) = I + j, the mth channel

will be released after Tj − 1 time slots counting from the
(t+1)th time slot, i.e., bj,m(t+1) = Tj−1; finally, if the mth

channel is available and not going to transmit data for the jth

traditional device, i.e.,
∑J
j=1 bj,m(t) = 0 and am(t) 6= I + j,

bj,m(t+ 1) remains 0. To summary, we have

bj,m(t+1)=


bj,m(t)−1 bj,m(t)>0,
0 bj,m(t)=0,

∑
j′ 6=j bj′,m(t)>0

Tj − 1
∑J
j=1bj,m(t)=0, am(t)=I+j

0
∑J
j=1bj,m(t)=0, am(t) 6=I+j.

(7)

4) Reward: The reward of the whole system consists of
the AoIIs at I monitoring devices and the throughputs of J
traditional devices. Specifically, the throughput of transmitting
data for the jth traditional device over the mth channel at the
tth time slot is computed as

uj,m(t) ,Wm log

(
1 +

gj,m(t)P

N

)
, (8)

where Wm is the bandwidth of the mth channel, P is the trans-
mission power at the transmitters of the traditional devices, and
N is the noise power at the receiver of the BS. Notably, the
above throughput exists only if 1I+j (am(t))=1 or bj,m(t)>0
holds, when the mth channel starts to transmit data or has been
reserved for transmitting data for the jth traditional device at
the tth time slot. The reward of the whole system is defined as
the summation of all the AoIIs and throughputs at the t time
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slot, i.e.,

r(t) ,−
I∑
i=1

wixi(t) +

J∑
j=1

wI+j

M∑
m=1

(1I+j (am(t)) + I (bj,m(t)))uj,m(t),

(9)

where wi, i ∈ {1, 2, · · · , I + J}, measures the importance of
the ith device, and the indicator function I(x) equals 1 if x is
positive and otherwise, it equals 0.

B. Problem formulation

1) Markov decision problem formulation
This paper aims to maximize the long-term average re-

ward for (9). However, the objective max{a(t)} limT→∞

EPr{x′|x,a},Pr{G′|G}

[
1
T

∑T
t=1 r(t)

]
may not exist under some

assignments of {a(t)} (cf. [20, Example 8.1.1]), where the
expectation is taken with respect to the AoII vector and the
channel gains. Therefore, we utilize liminf average optimality
criteria and formulate the joint scheduling problem between
the task-oriented and data-oriented communications as

(P1) max
{a(t)}

lim inf
T→∞

EPr{x′|x,a},Pr{G′|G}

[
1

T

T∑
t=1

r(t)

]
s.t. (2), (3), (4), (5), (6), (7).

To solve problem (P1), we need to find the optimal policy
π , (π1, π2, · · · , πt, · · ·), where πt is the optimal decision
rule at the tth time slot and maps the history of the states and
actions h(t) , (s(1),a(1), · · · , s(t − 1), a(t − 1), s(t)) to
the optimal distribution of the current action a(t), i.e., πt :
H(t)×As(t) → [0, 1] with H(t) being the set of all histories
h(t).

It can be checked that problem (P1) has upper-bounded
rewards and countable states, and thus the stationary policies
achieving its optimum exist if certain conditions are satisfied
[21]. Then, we obtain the following proposition.

Proposition 2.1: There exist stationary policies to achieve the
optimal value of problem (P1).

Proof: Please see Appendix A.
Based on Proposition 2.1, the liminf average optimality cri-

teria for problem (P1) can be replaced by lim, since the Cesaro
limit always exists for stationary policies [20]. Moreover, the
state occurrence probabilities are constants under stationary
policies [20], where the state occurrence probability of state
s is defined as limT→∞

∑T
t=1 1s(s(t))/T [20]. Based on

this property, we can simplify problem (P1) to an equivalent
Markov decision problem (P2), which is given as
• State: ŝ(t) , (x(t),G(t), b(t)), where b(t) , [b1(t),
b2(t), · · · , bM (t)]T ∈ ZM×1

≥0 is defined as the channel
release time. Here, bm(t) is equal to the number of the re-
maining time slots for the release of the mth channel and
defined as bm(t) ,

∑J
j=1 bj,m(t), m ∈ {1, 2, · · · ,M}.

Apparently, b(t) can be derived from B(t) and thus
ŝ(t) can be derived from s(t). The new state space is

Ŝ , ZI×1
≥0 × GJ×M × b, where b is the value space of

b(t);
• Action: a(t), which is constrained by (2);
• Transitions: (3), (4), (5), (6), and

bm(t+ 1)=

 bm(t)−1 bm(t)>0
Tam(t)−I−1 bm(t)=0,am(t)>I
0 bm(t)=0,am(t)≤I;

(10)

where (10) is derived by (7) and bm(t) ,
∑J
j=1 bj,m(t).

• Reward: r̂(t) is defined as

r̂(t),−
I∑
i=1

wixi(t)+

J∑
j=1

wI+j

M∑
m=1

1I+j (am(t)) ūj,m(t),

(11)

where, ūj,m(t) is defined as

ūj,m(t) ,
t+Tj−1∑
τ=t

EPr{G′|G}
[
uj,m(τ)|gj,m(t)

]
; (12)

• Problem formulation: with the lim average optimality
criteria, problem (P2) is reformulated as

(P2) max
π∈ΠS

lim
T→∞

Eπ,Pr{x′|x,a},Pr{G′|G}

[
1

T

T∑
t=1

r̂(t)

]
(13)

s.t. (2), (3), (4), (5), (6), (10),

where ΠS is the set of all stationary policies and the
expectation is taken with respect to the policy π, the AoII
vector, and the channel gains.

Apparently, problem (P2) has a much simpler structure
than problem (P1), where the dimension of the state space
is reduced from I + 2JM to I + JM + M , the transitions
in (10) evolves much simper than the ones in (7), and the
reward in r̂(t) no longer involves the high-dimension matrix
B(t) compared with the reward in r(t). Moreover, compare
problems (P1) and (P2), we obtain the following proposition.

Proposition 2.2: Problem (P2) is equivalent to problem (P1).
Particularly, for any stationary policy optimizing problem
(P1), there exists another stationary policy that optimizes
problem (P2), and the inverse holds, too. Moreover, the
optimal values of the two problems are the same.

Proof: Please see Appendix B.

However, problem (P2) is still difficult to be solved since it
is a Markov decision problem with the lim average optimality
criteria, and the existing algorithms addressing such problems,
e.g., relative value iteration algorithm [22], still suffer from
the curse of dimensionality. To tackle this issue, we refer [23,
Proposition 4.1.7] and verify the existence of the Blackwell
policies in problem (P2). If the Blackwell policies do exist, the
optimal policies of problem (P2) can be found by solving a
discounted version of it, which is much easier to be addressed.
Particularly, the discounted version of problem (P2) is given
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as

(P3) max
π∈ΠS

lim
T→∞

Eπ,Pr{x′|x,a},Pr{G′|G}

[
T∑
t=1

αt−1r̂(t)

]
(14)

s.t. (2), (3), (4), (5), (6), (10),

where α ∈ (0, 1) is the discount factor. Then, we derive the
relationship between problems (P2) and (P3) in the following
proposition.

Proposition 2.3: When the discount factor α ∈ (0, 1) is
sufficiently close to 1, there exist stationary policies to simul-
taneously achieve the optimal values of problems (P2) and
(P3).

Proof: Please see Appendix C.

Remark 2.1: With Proposition 2.3, we can solve problem (P2)
by first selecting a proper discount factor α and then deriving
a stationary optimal policy of problem (P3) with the chosen
discount factor. However, how to solve problem (P3) is still
challenging due to its three features: 1) large state space; 2)
large and discrete action space; and 3) multiple time-varying
action constraints in (2). However, conventional approaches
including dynamic programming [22] and Lyapunov drift opti-
mization [10], can barely deal with Markov decision problems
with the first two features. Modern DRL algorithms [24] can
neither efficiently address the Markov decision problems with
large and discrete action space1, and most of them deploy the
trial and error mechanism [24], where the trial part would
always violate the time-varying constraints in (2) and thus
the training procedure would be terminated.

2) Markov game formulation
To overcome the three challenges in problem (P3), we treat

each channel as one virtual agent, which can first observe the
system state and then independently determine the device for
data transmission over itself. Therefore, problem (P3) can be
reformulated as an equivalent Markov game (P4), which has
the same state, transition, and optimality criteria as those of
problem (P3) and also contains
• Observation sm(t) , (x(t), gm(t), bm(t)) at the mth

agent: gm(t) contains the channel gains for transmit-
ting data for J traditional devices over the mth chan-
nel, respectively, and is defined by gm(t) , [g1,m(t),
g2,m(t), · · · , gJ,m(t)]T ;

• Action am(t) at the mth agent: it is now individually
constrained by bm(t)am(t) = 0;

• Reward rm(t) for the mth agent: it is set to be r̂(t) in
(11).

Remark 2.2: On the design of the agent observation, although
the whole state ŝ(t) is observable for each agent, only sm(t)
is reserved as the mth agent’s observation. The reasons are: 1)

1The most advanced algorithm to address Markov decision problem with
large discrete action space is the Wolpertinger policy [25], which adds an
action-embedding module right after the deep deterministic policy gradient
(DDPG [26]) algorithm and directly discretizes the continuous-valued action
generated by DDPG. However, the Wolpertinger policy has a poor inter-
pretability and could generate really large training variance even when the
action space is small [25].

the dimensionality of ŝ(t) is too large and difficult to be dealt
with; 2) except the elements in sm(t), the rest ones in ŝ(t)
are weekly correlated to the mth agent; 3) the union of sm(t)
among all agents covers all the elements in state ŝ(t) and
thus the algorithms developed based on sm(t) can achieve the
same optimum with the algorithms based on ŝ(t) (see Fig. 4
in Section IV).

Markov game (P4) is obviously equivalent to problem
(P3) since all its agents cooperatively optimize the common
reward r̂(t) in problem (P3). Meanwhile, it faces similar
challenges to problem (P3). Fortunately, the existing multi-
agent reinforcement learning (MARL) algorithms can well
address the challenge from the large state space issue by
approximating the optimal policy with neural network (NN),
and relieve the challenge from the large discrete action space
issue by deploying decentralized learning mechanism, where
each agent needs only to determine its own action in a much
smaller action space {0,1, · · · , I + J}.

However, there are still two obstacles for MARL algo-
rithms to solve (P4): 1) the action space for each agent, i.e.,
{0, 1, · · · , I + J}, is still large and would slow down the
training procedure for MARL algorithms to a great extent
(see Fig. 4 in Section IV); 2) the action space for each agent
is constrained by one time-varying constraint, which again
collides with the trial and error mechanism deployed in MARL
algorithms;

III. WHITTLE’S INDEX GUIDED MULTI-AGENT PROXIMAL
POLICY OPTIMIZATION

To address Markov game (P4), we propose WI-MAPPO,
which mainly comprises one Whittle’s index guided action
fusion (WIAC) module and multiple proximal policy optimiza-
tion (PPO) modules. Particularly, the WIAC module calculates
the Whittle’s index for I monitoring devices based on their
AoIIs, and accordingly determines the priorities for their data
transmissions. Then, all agents only need to transmit data
for the group of monitoring devices with the highest priority,
and thus the action space for each individual agent is greatly
shrunk. Meanwhile, we modify both the actor network and
the probability ratio derivation of the training algorithm for
multi-agent proximal policy optimization (MAPPO) to train
the proposed WI-MAPPO, which perfectly addresses the time-
varying constraint issue.

In the following, we first introduce the structure of the
proposed algorithm. Then, we present the offline training
algorithm in details. Finally, we briefly introduce the online
applying algorithms for solving Markov game (P4).

A. Structure of proposed algorithm

As illustrated in Fig. 2, the main body of the proposed
algorithm consists of one observation derivation (OD) module,
M PPOs, and one WIAC module.

1) OD module: This module derives the agent observations
s1(t), s2(t), · · ·, sM (t) from the state ŝ(t) based on the
definition sm(t) , (x(t), gm(t), bm(t)).



7

Observation 

derivation 

module

Whittle's 

index guided 

action fusion 

module

Environement

PPO11

PPO12

PPO1M

ˆ( )ts

1( )r t

2( )r t

( )Mr t

1( )a t

2( )a t

( )Ma t

1
ˆ( ),( ( ))t ts s

2
ˆ( ( ), ( ))t ts s

ˆ( ( ), ( ))Mt ts s

Actor network

( )m ts

Experience 

buffer

Critic network

Actor network

Input

Loss function

Generation of experiences

Update of actor-critic networks

Training procedure for PPO

ˆ( )ts

PPO1
( )ma t

( )mr t

ˆ( ), (( ))mt ts s
m

m

{ˆ }( )ts

ˆ( ), ( ), (( ))m mt t r ts s

ˆ( ), ( ), (( ))m mt t r ts s
1,( ( )( ), ( ) | ( ))m m m ma t a t t θ s

1,{( ( )ˆ( ), ( ), ( ), ( ) | ( ) ( ), )}m m m m m mt t a t a t t r t θs s s

1,{( ( )ˆ( ), ( ), ( ), ( ) | ( ) ( ), )}m m m m m mt t a t a t t r t θs s s

( ), ({( )})m mt a ts

1 1, ,{( ( ),( ) | ( ) ( ( )| ( ) ))}m m m m mHa t t t   θ θs s

1, ( ( ) | ({( })), ( ))m m m ma t t r t θ s

2,{ ( ))}ˆ(mV tθ s

( )ta

Experience 

buffer( )ma t

Output ( )ma t

mL

mL

Figure 2: Structure of the proposed WI-MAPPO algorithm.

2) PPOs: Each agent utilizes a PPO module to determine
the device for data transmission over its channel. Specifically,
The PPO utilized by the mth agent is named as PPOm and it
has a simple structure:

• Actor network: It contains a fully connected NN pa-
rameterized by θ1. Particularly, this NN takes sm(t)
as the input and thus has I + J + 1 nodes at the
input layer; the output layer has J + 2 nodes and rep-
resents the probabilities of transmitting data for all J
traditional devices, transmitting data for one monitoring
device, and not starting new transmission, respectively,
which are denoted by πm,θ1(1|sm(t)), πm,θ1(2|sm(t)),
· · ·, and πm,θ1(J + 2|sm(t)). The output of the actor
network, which is named as the PPO action, is denoted
as ām(t) ∈ {1, 2, · · · , J + 2}. Particularly, when the mth

channel is currently available, i.e., bm(t) = 0, ām(t) is
equal to a discrete random variable X , whose probability
mass function is Pr{X = j} = πm,θ1(j|sm(t)), ∀j ∈
{1, 2, · · · , J+2}. And when the mth channel is occupied,
i.e., bm(t) > 0, ām(t) is equal to J+2. To summary, we
have

ām(t) =

{
J + 2 bm(t) > 0
X bm(t) = 0.

(15)

Remarkably, trivial action selection in the actor network
of PPO simply follows the second line in (15) [27].
While in our design, we introduce the first line of (15)
to manually change the action ām(t) to not starting new
transmission, i.e., ām(t) = J + 2, when the mth channel
is currently occupied. Such modification will benefit the
offline training procedure discussed in III-B and we will
explain the reasons in Remark 3.2.

• Critic network: It contains a fully connected NN param-
eterized by θ2. Specifically, this NN takes ŝ(t) as the
input and thus has I+JM +M nodes at the input layer;
the output layer of the NN has only one node and gives
the estimation on the maximum total discounted reward

starting from state ŝ(t), which is also called as the value
function of state ŝ(t) and denoted by Vm,θ2(ŝ(t)),;

• Experience buffer: It stores the experiences
generated in the offline training procedure, where
the experiences are the five-component tuples
(ŝ(t), sm(t), ām(t), πm,θ1(ām(t)|sm(t)), rm(t)).

Remark 3.1: On the design of the actor network, it is reason-
able to set the output dimension of the actor network’s NN as
I +J + 1 and let the output values represent the probabilities
of transmitting data for all I + J devices, and not starting
new transmission, respectively, at state sm(t). By doing so,
the mth agent can directly determine its action by sampling
from the action distribution generated by the trained actor
network’s NN. However, high dimensionality of the output,
which is equal to I + J + 1, requires large NN, and the
convergence of the training procedure among multiple agents
might be very difficult. In the proposed algorithm, we design
the WIAC module to figure out the group of monitoring device
with the highest potential to minimize their long-term average
AoIIs, by which each agent only needs to determine whether
it is willing to transmit data for one monitoring device. If it
is, the agent will select any one in the group figured out by
the WIAC module for data transmission. Therefore, the actor
network in the proposed algorithm only requires an output
with J + 2 dimensions.

3) WIAC module: This module determines the action
a(t) based on state ŝ(t) and M PPO actions ā(t) ,
[ā1(t), ā2(t), · · · , āM (t)]T . In this subsection, we first intro-
duce the design intuition of this module, and then introduce
the explicit method to compute a(t).

Design intuition: WIAC module first solves the following
problem (P5): Given the current AoII values at I monitoring
devices, which group of the monitoring devices should be
selected for status update transmissions over limited number of
channels to minimize the long-term average weighted AoIIs?
Problem (P5) is a restless multi-armed bandit (RMAB) prob-
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lem and a typical Whittle’s index algorithm is deployed to
solve it [8]. Particularly, we first model I monitoring devices
as I individual agents and the goal of each agent is to minimize
its own long-term average AoII. Then, by studying the AoII
evolution of each agent, the maximum offer that each agent is
willing to pay for hiring one channel at the current time slot
can be derived, which is named as the Whittle’s index for this
agent. Finally, the group of agents with the highest Whittle’s
indices will be selected for data transmissions. Remarkably,
the Whittle’s index algorithm is validated to be a near-optimal
algorithm to solve RMABs [8].

However, to apply this algorithm, the existence of the Whit-
tle’s index should be guaranteed. Therefore, in the following,
we first validate the existence of the Whittle’s index for
problem (P5), and then derive a Whittle’s index table with
an exhausted search algorithm. Finally, to derive the final
action a(t), we first check the values of ā(t) and obtain
the number of channels willing to transmit data for one
monitoring device, i.e.,

∑M
m=1 1J+1(ām(t)). Then, we look

up the Whittle’s index table and transmit data for the group
of the monitoring devices with the highest Whittle’s indices
over these channels, where the size of this group is also equal
to
∑M
m=1 1J+1(ām(t)).

Existence of Whittle’s index: The following proposition
validates the existence of the Whittle’s index for problem (P5).

Proposition 3.1: There exists Whittle’s index for problem (P5).

Sketch of proof: To validate the existence of Whittle’s
index, we first decouple problem (P5) to I sub-problems,
where the ith sub-problem is to minimize the average AoII
at the ith monitoring device. Next, we analyze the properties
of these sub-problems and validate that the optimal policies
for these sub-problems are of threshold type. Then, based on
the “threshold” feature on the optimal policy, we prove the
indexability for the decoupled sub-problems, which validates
the existence of the Whittle’s index for problem (P5). Please
check Appendix D for more details.

Derivation of Whittle’s index table: The Whittle’s index
for the ith monitoring device with its AoII being x, notated
as Ii(x), is defined as the additional cost C that makes
both transmitting data and not transmitting data for the ith

monitoring device equally desirable, i.e.,

fi(x,C) = fi(x+ 1, C), (16)

where the additional cost C and the average cost function
fi(x,C) are introduced in Appendix D. Since to derive the
closed-form formulation of Ii(x) by solving (16) is very
difficult, we use exhausted search algorithm to obtain Ii(x)
with the searching step and searching area as ∆c and [CL, CU ],
respectively. Moreover, by exploiting the fact that Ii(x) is
non-decreasing with respect to x [8], the above exhausted
searching algorithm can be improved. Notably, we would
generate a sufficiently large Whittle’s index table by executing
this algorithm before the offline training procedure.

Derivation of a(t): During the offline training procedure,
WIAC module first counts the number of agents willing to
transmit data for monitoring devices, i.e., the agents satisfying
ām(t) = J + 1, m ∈ {1, 2, · · · ,M}. Particularly, this

number at the tth time slot is denoted as A(t) and defined as
A(t) ,

∑M
m=1 1J+1(ām(t)). Next, WIAC module looks up

the generated Whittle’s index table and obtains the Whittle’s
indices for I monitoring devices according to their current
AoII values x(t). Then, the index of the monitoring device
with the lth highest Whittle’s index is denoted as Wl(t) ∈
{1, 2, · · · , I} and A(t) monitoring devices with the top A(t)
Whittle’s indices are picked out. Finally, the A(t) agents
satisfying ām(t) = J + 1, m ∈ {1, 2, · · · ,M} transmit data
for the picked out A(t) monitoring devices over their channels
and accordingly the action a(t) = (a1(t), a2(t), · · · , aM (t)) is
computed as

am(t) =

 I + ām(t) ām(t) < J + 1
Wlm(t) ām(t) = J + 1
0 ām(t) = J + 2,

(17)

where lm is the number of elements equaling J + 1 in
[ā1(t), ā2(t), · · · , ām(t)]T .

B. Offline training

Based on the historical observed samples, we can easily
approximate the values of Pr{G′|G}, pi, and qi, and then sim-
ulate an offline environment accordingly. Finally, we develop
the offline training algorithm by interacting with it.

1) Offline environment simulation: To mimic the real envi-
ronment, the offline environment needs to fulfill two functions:
• State evolution: Given ŝ(t) = (x(t),G(t), b(t)) and a(t),

we first simulate x(t+ 1) based on (3), (4), and (5), and
simulate G(t + 1) based on (6) and the approximated
Pr{G′|G}, pi, and qi. Then, we directly compute b(t+1)
based on (10). Thus, ŝ(t+ 1) is obtained;

• Reward generation: Given ŝ(t) and a(t), we compute
r1(t), r2(t), · · ·, rM (t) based on (11), (12) and the fact
rm(t) = r̂(t).

2) Offline training: As illustrated in the right part of
Fig. 2, we alternatingly generate experiences by deploying the
latest actor-critic network and update the actor-critic network
according to the latest generated experiences. We specific these
two steps as follows.
• Generation of experiences: First, obtain the s1(t), · · ·,
sM (t) from the observed ŝ(t) based on OD module.
Next, by utilizing the actor networks for PPOs, obtain
PPO action ā(t) and the value of πm,θ1(ām(t)|sm(t))
for all m ∈ {1, 2, . . . ,M} according to (15). Then,
with the known ā(t) and ŝ(t), derive action a(t) by
using the WIAC module. Finally, obtain the agent rewards
r1(t), · · · , rM (t) by interacting with the offline environ-
ment. We pack the above information as experiences
e1(t), e2(t), · · · , eM (t), where em(t) is defined as

em(t),(ŝ(t),sm(t),ām(t), πm,θ1(ām(t)|sm(t)), rm(t)),
(18)

and then we store em(t) in the experience buffer in
PPOm. Remarkably, we can continuously generate NB
experiences for each PPO before the update of the actor-
critic networks and empty all the experience buffers after
each update.
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• Updation of actor-critic networks: Each updation per-
forms NU epochs of optimization on the generated NB
experiences and each epoch would modify the parameters
of the actor-critic networks for all PPOs. Particularly, at
the beginning of each epoch, we first denote the actor
and critic networks for PPOm at this moment as πm,θ′1
and Vm,θ′2 , respectively, Next, we estimate NB value
functions as

Vm(t,ŝ(t))=rm(t)+αrm(t+ 1)+· · ·+αNBrm(NB) (19)

with t ∈ {1, 2, · · · , NB}, where {Vm(t, ŝ(t))}NB
t=1 are the

value functions of states {ŝ(t)}NB
t=1 for PPOm [27]. Then,

we utilize the current critic network Vm,θ′2 to estimate NB
advantage functions as

Am(t)=Vm(t,ŝ(t))−Vm,θ′2(ŝ(t)),t∈{1, 2,· · ·,NB}, (20)

where {Am(t)}NB
t=1 are the advantage functions for PPOm

[27], and utilize the current actor network πm,θ′1 to derive
NB probability ratios as

Rm(t) =

{
1 bm(t) > 0
πm,θ′1

(ām(t)|sm(t))

πm,θ1
(ām(t)|sm(t)) bm(t) = 0,

(21)

for all t ∈ {1, 2, · · · , NB}. Finally, the surrogate loss for
PPOm is computed as [27]

Lm =

NB∑
t=1

1

NB

(
−min (Rm(t)Am(t),

clip(Rm(t), 1− ε, 1 + ε)Am(t))

+ c1(Vm(t, ŝ(t))− Vm,θ′2(ŝ(t)))2

− c2H
(
πm,θ′1(·|sm(t))

))
,

(22)

where clip(x, a, b) , min(max(x, a), b) clamps x into
the area [a, b]; H(πm,θ′1(·|sm(t)) is the entropy of the
stochastic output generated by the current actor network
πm,θ′1 with sm(t) as input; ε, c1, and c2 are some con-
stants. Particularly, the first term in (22) is a pessimistic
bound, which could improve the actor-critic networks for
PPO in a considerably stable manner; the second MSE
term is essential for the convergence of the training of
the actor-critic network [27]; and the last term adopts an
entropy bonus to ensure sufficient exploration. Remark-
ably, both the actor and critic networks backpropagate
this surrogate loss to update their parameters θ′1 and θ′2.

The details of the offline training algorithm are summarized
in Algorithm 1.

Remark 3.2: Compared with the conventional training algo-
rithm for MAPPO, the proposed training algorithm modifies
the actor network for each PPO in (15) and the probability
ratio derivation in (21). Such modifications have two advan-
tages:

• The proposed training algorithm will not violate the time-
varying constraints in (2) nor terminate the training pro-
cedure. The conventional training algorithm for MAPPO
selects action by sampling from the action distribution
generated by the actor network, and thus may select

Algorithm 1 Offline training algorithm for joint scheduling

1: Randomly initialize the actor-critic networks PPO1, PPO2,
· · ·, and PPOM ;

2: Initialize one experience buffer for each PPO;
3: Input the values of Pr{G′|G}, {pi}Ii=1, {qi}Ii=1, {wi}I+Ji=1 ,
{Wm}Mm=1, P/N , α, ∆c, CL, CU , NB , NU , ε, c1, c2;

4: Derive the Whittle’s index table by executing the ex-
hausted search algorithm specified in III-A3;

5: Generate the offline environment based on III-B1;
6: for episode = 1, 2, · · ·
7: Let x(1) = 0I×1 and b(1) = 0M×1. Let G(1) be any

element in GJ×M ;
8: ŝ(1) = (x(1),G(1), b(1));
9: for t = 1, 2, · · · , NB

10: Send ŝ(t) to OD module and derive {sm(t)}Mm=1;
11: for m = 1, 2, · · · ,M
12: Send sm(t) to the actor Network for PPOm and

derive ām(t), πm,θ1(ām(t)|sm(t));
13: end for
14: Send ŝ(t) and ā(t) to the WIAC module and derive

a(t);
15: Send ŝ(t) and a(t) to the offline environment and

derive ŝ(t+ 1), r1(t), · · ·, rM (t);
16: for m = 1, 2, · · · ,M
17: Pack experience em(t) by (18) and store it into

the experience buffer in PPOm;
18: end for
19: end for
20: for epoch = 1, 2, · · · , NU
21: for m = 1, 2, · · · ,M
22: Load the experiences {em(t)}NB

t=1 from the
experience buffer in PPOm;

23: Derive {Vm(t, ŝ(t))}NB
t=1, {Am(t)}NB

t=1,
{Rm(t)}NB

t=1 based on (19), (20), (21);
24: Derive Lm based on (22);
25: Update the actor-critic networks for PPOm by

backpropagating Lm;
26: end for
27: end for
28: Empty the experience buffers for PPOs;
29: end for

infeasible ones. However, based on the modification in
(15), the proposed algorithm forces the agent not to start
new data transmission when its channel is occupied, by
which the generated action never violates the constraints
in (2);

• The proposed training algorithm perfectly extends the
conventional training algorithm for MAPPO to solve
Markov games with time-varying constraints. Particu-
larly, the principal component for the surrogate loss
of the conventional MAPPO utilizes both the advantage
functions in (20) and the probability ratios in (21). The
former ones are directly derived from the value functions,
which are estimated based on the generated trajectory
in (19). Now, with the modification in (15), the agent
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action selected at the states satisfying bm(t) > 0 in the
generated trajectory is the optimal agent action since
no other agent action is allowable at these states. Thus,
based on the trajectory generated in this way, the value
functions and advantage functions can be estimated faster
and more accurately. The latter ones, i.e., the probability
ratios, are modified by (21) and the reason for this
modification is quite straightforward: when encountering
the states satisfying bm(t) > 0, the modified actor
network by (15) always selects J+2 as the action. Thus,
the probability ratio at these states is equal to 1

1 = 1.

C. Online applying

The online applying algorithm is very similar to the offline
one while only uses the trained actor networks for PPOs.
Moreover, the values of x(t + 1) and G(t + 1) can only be
derived from the online interactions with the real environment.
Thus, we omit the details.

IV. NUMERICAL RESULTS

This section evaluates the performance of the proposed
algorithm and compares it with the stat-of-the-art AoI-based
algorithms. Specifically, we consider a IoT system with M=
10 channels collecting data from I = 90 monitoring devices
and J = 10 traditional devices, where the corresponding
action space has a magnitude of 10110. Each monitoring device
monitors one random process, where each random process has
|Xi|= 10 states. Meanwhile, the self-transition probabilities
{pi}90

i=1 of these random processes satisfy pi = 0.6, 1 ≤
i ≤ 60 and pi = 0.9, 61 ≤ i ≤ 90. The consumed time
duration Tj for each data transmission of the jth traditional
device is uniformly picked from T , {1, 2, · · · , 10}, i.e.,
T , [T1, T2, · · · , TJ ]T ∈ TJ×1. The channel gain model
refers [28], where each channel gain gj,m(t) takes value
in {ḡj,m, ḡj,m + 1, · · · , ḡj,m + 9}, ḡj,m is uniformly picked
from {0, 1, · · · , 40}, and gj,m(t) transits to the current value
with probability 0.6 and to two adjacent values with equal
probability 0.2. The bandwidths for all channels are set as
Wm = 1 and the importance weights for all devices {wi}I+Ji=1

are uniformly picked from {1, 2}. Other parameters are set as
P/N = 1, ∆c = 0.1, CL = 0.1, CU = 4000, ∆C = 0.1,
NB = 4000, NU = 80, ε = 0.2, c1 = 0.5, and c2 = 0.01.
Moreover, both the actors and critics in WI-MAPPO utilize
two hidden layers, each of which has 128 nodes. We compare
the proposed WI-MAPPO with two AoI-based algorithms. The
first one is AoI-based WI-MAPPO, which utilizes the same
structure with WI-MAPPO, while the employed WIAC module
is designed for minimizing AoI according to the method in [7];
The other algorithm, namely age-aware policy (AAP), utilizes
the Lyapunov drift optimization and is currently the state-of-
the-art algorithm for joint schedules [13]. Remarkably, AAP
cannot address the time-varying constraints issue and thus can
only be applied in the scenario where the data transmissions
for all traditional devices consume only 1 time slot, i.e., the
scenario with T = 1J×1, where 1J×1 is the J-by-1 vector
with all entries as 1.
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Figure 3: Performance comparisons between WI-MAPPOs
with different discount factors.
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and other MARL algorithms.

In Fig. 3, we investigate the performance of the proposed
WI-MAPPO with different discount factors and approximate
the value range of the discount factor satisfying the statement
in Proposition 2.3. Specifically, it is observed that when α is
no smaller than 0.8, WI-MAPPO achieves the same maximum
on the average reward. This indicates that [0.8, 1) could be
a proper value range as aforementioned. Meanwhile, it is
observed that a too large discount factor, e.g., α = 0.95, would
slow down the convergence. Therefore, we select α as 0.9 for
all the following experiences.

In Fig. 4, we validate the performance advantages of the WI-
MAPPO over other MARL algorithms. The first algorithm we
concerned is the conventional MAPPO. Compared with WI-
MAPPO, MAPPO does not have the action space shrinkage
provided by the WIAC module and thus suffers from a much
larger output dimensionality on its actors, which equals 101.
We test two MAPPO algorithms with separately 128 and 256
nodes on their hidden layers, and it is observed that both of
them have far too slow convergence speeds, which also val-
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idates Remark 3.1. The second algorithm simply extends the
agent observation from sm(t) to ŝ(t) and then designs a new
WI-MAPPO accordingly. Certainly, this modified WI-MAPPO
contains larger PPO actor networks and consumes more offline
training and online applying computational resources than the
original WI-MAPPO. Moreover, it is observed that it has bare
extra gain over the original WI-MAPPO, which also validates
Remark 2.2.

In Fig. 5(a), we simulate the scenario satisfying T = 1T×1,
and compare the performances of WI-MAPPO, AoI-based WI-
MAPPO, and AAP. It is observed that when the throughput
of the traditional devices is not important, the two AoI-
based algorithms achieve almost the same average accuracy on
predicting the monitored processes, which is around 0.37, and
the original WI-MAPPO, which is AoII-based, performs much

better and is around 0.42. This validates the advantage of AoII
over AoI in pure task-oriented communications. Meanwhile,
if we concern the throughput more, both AoII-based and
AoI-based WI-MAPPOs gain much larger throughput than
AAP when their achieved average accuracies are equal. And
AoII-based WI-MAPPO greatly outperforms AoI-based WI-
MAPPO. The reason for such performance advantages is also
straightforward: AoI captures the aging of sampled status
updates, while AoII further factors the semantic of status
updates which refers to the usefulness of the transmitted
updates relative to prediction of real-time status at data source.
Therefore, AoII-oriented scheduling reduces the required data
traffic for monitoring devices to guarantee a certain level of
prediction performance. In Fig. 5(b), we validate the ability
of WI-MAPPO on handling the time-varying constraints by
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comparing its performances in the non-constrained case, i.e.,
T = 1J×1, and the constrained case, i.e., T ∈ TJ×1.
Remarkably, in the constrained case, the solution space is
much smaller than the non-constrained case. Consequently,
the optimal performance that any algorithm can achieve in the
constrained case is also supposed to be worse than the non-
constrained case. However, it is observed that both AoII-based
and AoI-based WI-MAPPOs have almost the same perfor-
mances in these two cases. This amazing result indicates that
WI-MAPPO perfectly addresses the time-varying constraints
issue for the considered Markov games.

In Fig. 6, we simulate a simple scenario with 30 monitoring
devices and 10 traditional devices. Since there are only 40
devices requesting for data transmissions, both AoII-based and
AoI-based algorithms could achieve the maximum average
accuracy, which is around 0.685, when the throughput is not
important. Moreover, WI-MAPPO algorithms again greatly
outperform AAP. Remarkably, it is observed that AoII-based
WI-MAPPO slightly outperforms the AoI-based WI-MAPPO
in both the non-constrained and constrained cases. This in-
dicates that the advantages of AoII-based algorithms over
AoI-based ones would be more significant when the channel
resources are not sufficient.

V. CONCLUSIONS

In this work, we study the joint schedule of task-oriented
and data-oriented communications and formulate this prob-
lem as a challenging Markov decision problem. Insightful
techniques and innovative algorithm are utilized to solve this
problem as efficiently as possible. Specifically, to simplify this
problem, we analysis its “stationary” feature and Blackwell
policies and redesign the reward function based on the channel
statistics, by which the solution space and state space are
greatly shrunk in an equivalent manner and the optimality
criteria is equivalently replaced by a discounted one. To
overcome the large discrete action space issue, we convert this
problem to an equivalent Markov decision game, where the
original action for Markov decision problem is decomposed
into low-dimension agent actions. Then, we validate the exis-
tence of Whittle’s index and design a Whittle’s index guided
module to further shrink the action space. To overcome the
time-varying action constraints issue, we modify the advantage
function estimation kernel for MAPPO and extend the training
algorithm to solve the constrained Markov games.

APPENDIX A
PROOF OF PROPOSITION 2.1

It can be easily checked that: problem (P1) has infinite and
countable states; and the reward of problem (P1) satisfies

r(t) ≤
J∑
j=1

wI+j

M∑
m=1

Wm log

(
1 +

g|G|P

N

)
(23)

and thus it is upper bounded. Based on the above two
properties, problem (P1) has stationary optimal policies if the
following two conditions are satisfied [21, Proposition 5 &
Theorem 1]:

1) Problem (P1) has a stationary policy which induces an
ergodic Markov chain and has a finite average reward.

2) Define Vα(s) , supθ limT→∞ Eπθ,Pr{s′|s,a}

[∑T
t=1

αt−1r(t)
∣∣∣
s(1)=s

]
, where α ∈ (0, 1) is a discount factor; θ

parameterizes policy πθ; the expectation is taken with respect
to policy πθ and state s(t); Vα(s) is the maximum total
discounted reward that can be achieved by any policy starting
from state s. Then, there exists a non-negative real number C
such that Vα(s) − Vα(s0) ≤ C holds for all state s ∈ S and
all α ∈ (0, 1), where s0 is a reference state in S.

To validate the first condition, we investigate the do-nothing
policy π, where no device would be selected for data trans-
mission over any channel or at any time slot. Apparently, this
policy is stationary. In the following, we first show that the
average reward under policy π is finite, and then show that
the induced Markov chain is ergodic.

As for the average reward under policy π, it equals
lim infT→∞ Eπ,Pr{x′|x,a}

[
1
T

∑T
t=1

(
−
∑I
i=1 wixi(t)

)]
.

Specifically, the process {xi(t)} under policy π forms an
ergodic Markov chain, the transition of which is specified by
equations (4), (5). And accordingly, the transition equations
are µ1 = (1 − pi)µ0 and µx = (1 − qi)µx−1, x = 2, 3, · · · ,
where µx is the state occurrence probability of the
state x. Then, we can solve that µ0 = qi

1+qi−pi and

µx = qi(1−pi)(1−qi)x−1

1+qi−pi ,∀x ∈ Z+. And it follows

lim inf
T→∞

Eπ,Pr{x′|x,a}

[
1

T

T∑
t=1

(
−

I∑
i=1

wixi(t)

)]

=−
I∑
i=1

wi

∞∑
x=1

xµx = −
I∑
i=1

wi
1− pi

(1 + qi − pi)qi
<∞,

which implies that the average reward under policy π is finite.
Now, we show that the process {(x(t),G(t),B(t))} under

policy π induces an ergodic Markov chain. This is pretty
obvious, since {B(t)} = {0J×M} holds and processes
{x1(t)}, · · · , {xI(t)}, {g1,1(t)}, · · · , {gJ,M (t)} are ergodic
and independent.

To validate the second condition, we show that for all
α ∈ (0, 1), Vα(s) is non-increasing with respect to xi and
bj,m, where s = (x,G,B) is any state in S and xi and bj,m
are the ith and (j,m)th entries of x and B, respectively. Con-
sequently, by selecting s0 as (0I×1,G0,0J×M ) with G0 ,
arg maxG∈GJ×M Vα ((0I×1,G,0J×M )), Vα(s)−Vα(s0) ≤ 0
holds for all s ∈ S and thus the second condition is verified.

Here, we only prove that Vα(s) is non-increasing with
respect to xi, and the proof for bj,m is very similar and thus
omitted. First of all, based on the upper bound on reward
in inequality (23), we compute the upper bound of Vα(s),
denoted as Vα,0(s), as

Vα,0(s) , lim
T→∞

T∑
t=1

αt−1
J∑
j=1

wI+j

M∑
m=1

Wm log

(
1 +

g|G|P

N

)

=
1

1− α

J∑
j=1

wI+j

M∑
m=1

Wm log

(
1 +

g|G|P

N

)
,
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which is a constant and independent of s. Next, define Vα,n(s)
for n ∈ Z+ by

Vα,n(s) , max
a∈As

{
α
∑
s′

Pr{s′|s,a}Vα,n−1(s′)

+ r(t)|s(t)=s,a(t)=a

}
.

Then, we show that Vα,n(s) is non-increasing with respect to
xi for all n ∈ Z≥0 by induction:
• Rewrite s as (xi,x−i,G,B), where x−i consists of all

entries of x except xi, and construct s∗ by s∗ , (xi +
1,x−i,G,B). Suppose Vα,n(s) is non-increasing with
respect to xi, i.e., Vα,n(s) ≥ Vα,n(s∗) holds, which is
certainly true for n = 0.

• It can be easily verified that As = As∗ holds and

α
∑
s′

Pr{s′|s,a}Vα,n(s′) + r(t)|s(t)=s,a(t)=a

≥α
∑
s′

Pr{s′|s∗,a}Vα,n(s′) + r(t)|s(t)=s∗,a(t)=a

holds for all a ∈ As. Thus, Vα,n+1(s) ≥ Vα,n+1(s∗)
holds.

Finally, since for all α ∈ (0, 1), Vα,n(s) converges to Vα(s)
as n goes to infinity [22, Proposition 7.3.1], we know that
Vα(s) ≥ Vα(s∗), i.e., Vα(s) is non-increasing with respect to
xi.

APPENDIX B
PROOF OF PROPOSITION 2.2

To begin with, we rephrase the optimal value of problem
(P1) as

max
{a(t)}

lim inf
T→∞

EPr{x′|x,a},Pr{G′|G}

[
1

T

T∑
t=1

r(t)

]
(i)
= max
π∈ΠS

lim
T→∞

Eπ,Pr{x′|x,a},Pr{G′|G}

[
1

T

T∑
t=1

(
−

I∑
i=1

wixi(t)

+
J∑
j=1

wI+j

M∑
m=1

(1I+j (am(t)) + I (bj,m(t)))uj,m(t)


(ii)
= max

π∈ΠS
lim
T→∞

Eπ,Pr{x′|x,a},Pr{G′|G}

[
1

T

T∑
t=1

(
−

I∑
i=1

wixi(t)

+

J∑
j=1

wI+j

M∑
m=1

1I+j (am(t))

t+Tj−1∑
τ=t

uj,m(τ)

 ,
(24)

where equality (i) holds due to Proposition 2.1 and equality
(ii) can be easily derived by combining equalities in (2) and
(7). In the following, we first show that for each stationary
policy π for problem (P1), there exists another stationary
policy π̂ for problem (P2) such that their objective functions
are equal, i.e., (24)|π=(14)|π̂ . Then, we show that the inverse
holds, too. Based on these two results, problems (P1) and (P2)
are obviously equivalent.

1) We first derive (24)|π . Then, we develop another policy
π̄ for problem (P1), which is simpler than while equivalent

to policy π, i.e., (24)|π=(24)|π̄ . Finally, we introduce policy π̂
for problem (P2) and show that (24)|π̄=(14)|π̂ .

To derive (24)|π , we list the countable states of problem (P1)
as s1, s2, · · ·, sl, · · ·, respectively, where sl = (xl,Gl,Bl)
is regarded as the lth state in S and the ith entries of
xl is denoted as xl,i. Then, denote the state occurrence
distribution for problem (P1) under stationary policy π as
µπ , [µπ1 , µ

π
2 , · · · , µπl , · · ·]T , where µπl (≥ 0) is the state

occurrence probability of the state sl. And it follows

(24)|π
(i)
=

∞∑
l=1

µπl Ea∼π(sl)

[
EPr{x′|x,a},Pr{G′|G}

[(
−

I∑
i=1

wixl,i

+

J∑
j=1

wI+j

M∑
m=1

1I+j (am)

Tj−1∑
τ=0

uj,m(τ)|gj,m(0)=[Gl](j,m)

∣∣∣∣∣
sl,a


=
∞∑
l=1

µπl

(
−

I∑
i=1

wixl,i

∣∣∣
xl

+ Ea∼π(sl)EPr{G′|G} J∑
j=1

wI+j

M∑
m=1

1I+j (am|a)

Tj−1∑
τ=0

uj,m(τ)
∣∣∣
gj,m(0)=[Gl](j,m)


(ii)
=

∞∑
l=1

µπl

− I∑
i=1

wixl,i

∣∣∣
xl

+ Ea∼π(sl)

 J∑
j=1

wI+j

M∑
m=1

1I+j (am|a) ūj,m(0)
∣∣∣
gj,m(0)=[Gl](j,m)

])
,

(25)

where a = [a1, a2, · · · , aM ]T is the action in Asl ; π(sl) is
the action distribution at state sl under policy π; equality (i)
holds since policy π is stationary; equality (ii) holds due to
the definition in equality (12). An essential observation is that
(25) does not involveBl. Thus, we realign it as

(25)

(i)
=
∑
ŝ∈Ŝ

∑
l∈{l|sl∈N(ŝ)}

µπl

(
−

I∑
i=1

wixi

∣∣∣
x

+ Ea∼π(sl) J∑
j=1

wI+j

M∑
m=1

1I+j (am|a) ūj,m(0)
∣∣∣
gj,m(0)=[G](j,m)


(26)

(ii)
=
∑
ŝ∈Ŝ

µπ(N(ŝ))

(
−

I∑
i=1

wixi

∣∣∣
x

)
+
∑
ŝ∈Ŝ

∑
l∈{l|sl∈N(ŝ)}

µπl Ea∼π(sl) J∑
j=1

wI+j

M∑
m=1

1I+j (am|a) ūj,m(0)
∣∣∣
gj,m(0)=[G](j,m)


(27)

where in equality (i), x and G are the components of ŝ,
i.e., ŝ = (x,G, b) holds, and N(ŝ) is the state set defined
as N(ŝ) , {sl = (xl,Gl,Bl) ∈ S|xl = x;Gl =
G;
∑J
j=1[Bl](j,m) = bm,∀m ∈ {1, 2, · · · ,M}} with bm

being the mth entry of b; in equality (ii), µπ(N(ŝ)) is
the summation of the state occurrence probabilities of all
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the states in state set N(ŝ) under policy π and defined by
µπ(N(ŝ)) ,

∑
l∈{l|sl∈N(ŝ)} µ

π
l .

Now, we introduce a new policy π̄ for problem (P1) and
prove that (27) = (24)|π̄ holds. Specifically, denote π̄(s,a)
and π(s,a) as the probabilities of applying action a at state
s = (x,G,B) under policies π̄ and π, respectively. Then,
construct policy π̄ as

π̄(s,a) =
∑

l∈{l|sl∈N(ŝ)}

µπl π(sl,a). (28)

Here, we highlight again that ŝ = (x,G, b) at the sub-
script of the RHS of (28) is induced from s by using
b = [b1, b2, · · · , bM ]T and bm =

∑J
j=1[B](j,m). Obviously,

the action distribution that policy π̄ follows at state s is
actually the expected action distribution that policy π follows
over the state set N(ŝ) and the input of policy π̄ needs to
know only (ŝ,a) rather than (s,a). Therefore, policy π̄ is
simpler than policy π and accordingly we directly denote the
action distribution at state s under policy π̄ as π̄(ŝ). Based on
equality (28), (27) is equal to∑
ŝ∈Ŝ

µπ(N(ŝ))

(
−

I∑
i=1

wixi

∣∣∣
x

)
+
∑
ŝ∈Ŝ

µπ(N(ŝ))Ea∼π̄(ŝ) J∑
j=1

wI+j

M∑
m=1

1I+j (am|a) ūj,m(0)
∣∣∣
gj,m(0)=[G](j,m)

 .
(29)

Now, we prove that (29) = (24)|π̄ holds, and an essential
step is to show that µπ(N(ŝ)) = µπ̄(N(ŝ)) holds for all
ŝ ∈ Ŝ. Specifically, it can be easily checked that the transition
probabilities of the state sets are equivalent in policies π and
π̄, i.e., Prπ{N(ŝ′)|N(ŝ)} , Ea∼π(N(ŝ))[Pr {N(ŝ′)|N(ŝ),a}]
equals Prπ̄{N(ŝ′)|N(ŝ)} , Ea∼π̄(N(ŝ)) [Pr{N(ŝ′)|N(ŝ),a}]
for all ŝ, ŝ′ ∈ Ŝ. Consequently, the Markov chains for state
sets under policies π and π̄ are the same. And the occurrence
probability of each state set is unique and can be derived
by solving the Cerso limit of the Markov chain. Therefore,
µπ(N(ŝ)) = µπ̄(N(ŝ)) holds for all ŝ ∈ Ŝ. Based on this
condition, it follows

(29)=
∑
ŝ∈Ŝ

µπ̄(N(ŝ))

(
−

I∑
i=1

wixi

∣∣∣
x

)
+
∑
ŝ∈Ŝ

µπ̄(N(ŝ))Ea∼π̄(ŝ) J∑
j=1

wI+j

M∑
m=1

1I+j (am|a) ūj,m(0)
∣∣∣
gj,m(0)=[G](j,m)


(30)

=(24)|π̄.

Finally, we construct the policy π̂ for problem (P2) by

π̂(ŝ,a) =
∑

l∈{l|sl∈N(ŝ)}

µπl π(sl,a). (31)

and show that (24)|π̄= (14)|π̂ . Specifically, based on (28) and
(31), the policy π̄ for problem (P1) makes the same decision
with the policy π̂ for problem (P2) when their encountering
states are ŝ and s, respectively. And based on (30), the instant

reward for problem (P1) under policy π̄ can be equivalently
regarded as

−
I∑
i=1

wixi(t) +

J∑
j=1

wI+j

M∑
m=1

1I+j (am(t)) ūj,m(t),

which is exactly the instant reward r̂(t) for problem (P2).
Consequently, the average rewards of problem (P1) under
policy π̄ is equals to that of problem (P2) under policy π̂,
i.e., (24)|π̄= (14)|π̂ holds.

2) As for the proof for the inverse, i.e., for each stationary
policy π̂ for problem (P2), there exists another stationary
policy π for problem (P1) such that (24)|π= (14)|π̂ holds,
the utilized techniques are similar to the proof in 1) and thus
omitted. We only highlight that the policy π for problem (P1)
is constructed by π(s,a) = π̂(ŝ,a).

APPENDIX C
SKETCH PROOF OF PROPOSITION 2.3

Define V̂α(ŝ) by V̂α(ŝ) , supθ limT→∞ Eπθ,Pr{ŝ′|ŝ,a}[∑T
t=1 α

t−1 r̂(t)|ŝ(1)=ŝ

]
, where ŝ can be any state in Ŝ;

α ∈ (0, 1) is a discount factor; θ parameterizes the policy πθ.
Similar to the proof in Appendix A, we can show that V̂α(ŝ)
is non-increasing with respect to xi and consequently, the
optimal policies for problem (P3) are of threshold type with
respect to xi: if the optimal policy is to transmit data for the
ith monitoring device at state (xi,x−i,G, b), it also transmits
data for the ith monitoring device at state (xi + 1,x−i,G, b).
Since the optimal threshold cannot be infinitely large, there
are finite number of threshold-type policies possibly being
the optimal policies. Accordingly, based on [23, Proposition
4.1.3], there exist Blackwell optimal policies for problem (P3),
and based on [23, Proposition 4.1.7], these policies optimize
problem (P2). Thus, Proposition 2.3 holds.

APPENDIX D
PROOF OF PROPOSITION 3.1

We first introduce the explicit formulation of the decoupled
sub-problems. Next, we validate that the optimal policies for
these problems are of threshold type. Then, we derive the
optimal policies for these sub-problems. Finally, we validate
the existence of the Whittle’s index for problem (P5).

1) Decoupled sub-problem: To decouple the problem (P5),
we let all monitoring devices be selfish such that each of them
aims to minimize its own average weighted AoII. Moreover,
each monitoring device is allowed to transmit data at any
time slot as long as it pays an additional cost C for each
transmission. The goal of each sub-problem is to find the
optimal scheduling policy which strikes the balance between
the average additional costs and the average weighted AoII for
each monitoring device. We formulate the ith sub-problem as
the following Markov decision problem.
• state: xi(t) ∈ Z≥0;
• action: a(t) ∈ {0, 1}, where a(t) = 1 means to transmit

data for the ith monitoring device at the tth time slot and
a(t) = 1 means not;
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• transitions: Pr{xi(t + 1) = 0|a(t) = 1} = pi; Pr{xi(t +
1) = xi(t) + 1|a(t) = 1} = 1 − pi; Pr{xi(t + 1) =
0|a(t) = 0, xi(t) = 0} = pi; Pr{xi(t + 1) = 1|a(t) =
0, xi(t) = 0} = 1−pi; Pr{xi(t+1) = 0|a(t) = 0, xi(t) >
0} = qi; Pr{xi(t+1) = xi(t)+1|a(t) = 0, xi(t) > 0} =
1− qi;

• cost: c(t) = xi(t) + a(t)C;
• optimality criteria: lim average optimality criteria.

2) The structure of the optimal policy: We first study the
decoupled sub-problem with total discounted cost criteria and
analyze the corresponding optimal policies. Specifically, define
Vα(x) by Vα(x) , infθ limT→∞ Eπθ,Pr{x′i|xi,a}

[∑T
t=1 α

t−1

c(t)|xi(1)=x

]
, where α ∈ (0, 1) is a discount factor; θ

parameterizes the policy πθ. Similar to the proof in Appendix
A, we can show that Vα(x) is non-decreasing with respect to
x, i.e., Vα(x) ≤ Vα(x + 1) holds for all x ∈ Z≥0. Now, we
show that the optimal policy for the discounted version of the
decoupled sub-problem is of threshold type: 1) consider the
optimal policy is to transmit data for the ith monitoring device
at the state x ∈ Z+; 2) then, based on Bellman’s optimality
equation (Prop 7.3.1 in [22]), x + C + α(piVα(0) + (1 −
pi)Vα(x+1)) ≤ x+α(qiVα(0)+(1−qi)Vα(x+1)) holds; 3)
since Vα(x+ 1) ≤ Vα(x+ 2) holds, x+ 1 +C+α(piVα(0) +
(1− pi)Vα(x+ 2)) ≤ x+ 1 +α(qiVα(0) + (1− qi)Vα(x+ 2))
holds, too; 4) thus, the optimal policy will also transmit data
for the ith monitoring device at the state x+1, which completes
the proof.

Similar to the proof in Appendix C, there are finite number
of threshold-type policies possibly being the optimal policies
for the discounted decoupled sub-problems. Then, based on
Prop 4.1.3 and Prop 4.1.7 in [23], there exist threshold-type
optimal policies for the original decoupled sub-problem with
lim average optimality criteria.

3) The derivation of the optimal policy: To derive the op-
timal policy, we randomly investigate a threshold-type policy
πx0

: if x ≥ x0, the ith monitoring device transmits data; if
x < x0, the ith monitoring device does not transmit data. By
solving the transition equations, we derive that

µi,x=


1

1+
1−pi
qi
−(1−pi)

(
1
qi
− 1

pi

)
(1−qi)x0−1

x=0

(1− pi)(1− qi)x−1µi,0 x=1, 2, · · · , x0

(1− pi)x−x0+1(1− qi)x0−1µi,0 x=x0+1, x0+2, · · · ,
(32)

where µi,x is the state occurrence probability of the state x
in the ith sub-problem under policy πx0

. And the average cost
equals

fi(x0, C) ,
x0−1∑
x=0

wixµi,x +

∞∑
x=x0

(wix+ C)µi,x

=
β1 + (β2 + β3x0)(1− qi)x0

β4 − β5(1− qi)x0−1
, (33)

where

β1 = wi
1− pi
q2
i

> 0;

β2 = wi
(1− pi)2

p2
i (1− qi)

− wi
1− pi
q2
i

+
1− pi

pi(1− qi)
C;

β3 = wi
1− pi
1− qi

(
1

pi
− 1

qi

)
< 0; β4 = 1 +

1− pi
qi

> 0;

β5 = (1− pi)
(

1

qi
− 1

pi

)
> 0.

Thus, we can derive the optimal policy by finding the op-
timal threshold xi(C) ∈ Z+, which is defined by xi(C) =
arg minx0∈Z+ fi(x0, C). Notably, it is not easy to derive the
exact value of xi(C) and neither will we derive it. Instead, the
analyses here are used to prove the existence of the Whittle’s
index for problem (P5).

4) The indexability for the decoupled sub-problem: Based
on [8], the existence of the Whittle’s index is guaranteed if
all the sub-problems are indexable. Specifically, we give the
explicit definition of the indexability as follows.

Definition D.1(indexability): Define Zi(C) = {x ∈ Z≥0|x <
xi(C)} as the set of states where the optimal policy is not
to transmit data for the ith monitoring device. Then, the ith

decoupled sub-problem is said to be indexable if it follows

C ′ ≥ C ⇒ Zi(C
′) ⊇ Zi(C).

Apparently, it is difficult to directly validate the indexability
for the decoupled sub-problem based on the above definition.
Instead, we refer [29, Proposition 2.2], according to which, the
ith decoupled sub-problem is indexable as long as

∑∞
x=x0

µi,x
is decreasing with respect to x0. Based on (32), it follows

∞∑
x=x0

µi,x =
1− pi

qi

(
1+

1−pi
qi

(1−qi)x0−1 − (1− pi)( 1
qi
− 1

pi
)

) ,
and apparently,

∑∞
x=x0

µi,x is decreasing with respect to x0.
This completes the proof.
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