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Abstract—Federated learning (FL) framework enables user
devices to collaboratively train a global model based on their local
datasets without privacy leak. However, the training performance
of FL is degraded when the data distributions of different
devices are incongruent. Fueled by this issue, we consider a
clustered FL (CFL) method where the devices are divided into
several clusters according to their data distributions and are
trained simultaneously. Convergence analysis is conducted, which
shows that the clustered model performance depends on cosine
similarity, device number per cluster, and device participation
probability. Besides, to quantify the training performance, the
utility of clustered model training is defined based on the analysis
results. Then, aiming at optimizing the system utility, a joint
problem of resource allocation and device clustering is formulat-
ed, which is solved by decoupling it into two sub-problems. First,
given the results of device clustering, a low-complexity iterative
algorithm based on the convex optimization theory is proposed to
make the bandwidth allocation and the transmit power control.
Then, according to the individual stability, a coalition formation
algorithm is proposed for the device clustering. Finally, the real-
data experiments on the classification tasks (e.g. MNIST, CIFAR-
10, CIFAR-100) validate the results of convergence analysis
and advantages of the proposed algorithm in terms of the test
accuracy.

Index Terms—Clustered federated learning, Internet of Things,
resource allocation, coalition formation, convergence analysis
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I. INTRODUCTION

Cisco’s recent estimation has shown that more than 850
zettabytes of data will be generated each year in the Inter-
net of Things (IoT) networks [2]. These valuable data can
bring intelligent services such as smart home and smart city
by leveraging machine learning techniques [3]. Conventional
learning algorithms need to collect a large number of training
samples from the devices and train the machine learning model
in a central server [4, 5]. However, due to limited wireless
resources in the wireless networks, uploading raw data to
the central server can cause extreme transmission latency.
Besides, since the data for the IoT applications may include
some sensitive information, devices are unwilling to share their
local training samples. To address the aforementioned issues, a
novel distributed learning framework named federated learning
(FL) [6] was recently proposed. In FL, each device can train
a machine learning model on their local datasets, and then
upload updated local model parameters such as model weights
and gradients to a central server. After that, the central server
performs the model aggregation and broadcasts the aggregated
model parameters to the devices for next round of training.
Since only the model parameters are exchanged between the
central server and the devices, less wireless resource is utilized
and privacy disclosure is mitigated.

However, when the local datasets of the devices are non-
independent and identically distributed (non-i.i.d), the high sta-
tistical heterogeneity can decrease the accuracy of training [7].
Specially, since the central sever does not have the authority
to access the local datasets of devices, some data preparation
operations such as outlier detection and balancing are not
work for FL [8]. To compensate the learning performance
degradation caused by the statistical heterogeneity, novel FL
algorithms have been proposed in recent works [9–12]. In
[9, 10], some novel stochastic gradient methods for the local
model updates were proposed. Besides, authors in [11, 12]
improved the convergence rate by considering the “impor-
tance” of local updates. Apart from the data heterogeneity
issue, training FL in IoT networks with limited computation
and communication resources can increase the training latency
and degrade the training efficiency. In this regard, recent works
have shown that the training efficiency can be significantly im-
proved by performing resource allocation [13–16] and device
scheduling [17–19]. Besides, given fixed participating devices,
the local computing power, the bandwidth, and the training
latency budget were optimized in [13–15]. Combing the wire-
less resources with the training parameters, adaptive FL was
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proposed in [16]. In terms of device scheduling, the authors
in [17] analyzed the convergence rate of FL with different
device scheduling schemes. Besides, aiming at minimizing
the training latency without prior information, multi-armed
bandit based online device scheduling methods was proposed
in [18, 19]. Moreover, authors in [20–23] jointly performed
the resource allocation and the device scheduling to reduce
the training latency and improve the learning performance
simultaneously.

Note that the most existing works are done under the
assumption that there exists a global model that can fit
well different data distributions of all devices, which may
not hold especially when the devices are with incongruent
data distributions. In particular, different devices have varying
labels about the similar training samples. For instance, in a
task of face recognition [24], assume that one half of the
devices judge that people wearing glasses can improve the
attraction, while the other half hold the opposite criteria. In
this situation, one single global model will never be able
to accurately predict the attractiveness of faces for all the
devices at the same time. Hence, improving the test accuracy
on the individual data distribution is an alternative metric of
FL. To achieve this goal, instead of optimizing a consensus
global model, Sattler et al. [25] first introduced the concept of
clustered FL (CFL), which exploited the similarity of devices’
local gradients and divided the devices into clusters based
on the bipartition method. There have been some works on
CFL [26–31]. Authors in [26] have shown the advantages
of model accuracy in CFL under different cases of the in-
congruent data distribution. A clustering method based on
the random initialization was proposed in [27]. Authors in
[28] proposed a soft clustering method, which enabled the
devices to share the overlapping clustered models. Moreover,
the convergence performance of CFL was analyzed in [29].
Latest work [30] reduced the identification accuracy of CFL
based visual classification tasks by dividing the devices into
multiple groups under the similarities of the data distributions.
Besides, in order to excessively consume devices with high
computing capability and low remaining energy, an auction-
based CFL framework was proposed in [31]. It is worth noting
that the CFL does not need to change the communication
protocol of the conventional FL. Nonetheless, the influences
of limited wireless resources on CFL training performance
has not been addressed yet. Although the authors in the above
works can achieve higher accuracy of clustering and model
testing in the congruent non-i.i.d FL setting, the performance
can hardly be guaranteed for the resource constrained wireless
CFL applications. Therefore, it is of significant importance
to jointly consider the learning performance and the resource
allocation in CFL.

In this paper, we consider improving the learning perfor-
mance of CFL by performing device clustering and resource
allocation. Based on the convergence analysis results, the
performance of CFL with respect to the cosine similarity, the
number of devices per cluster, and the device participation
probability are obtained. Then, aiming at improving the learn-
ing performance of CFL, a joint resource allocation and device
clustering problem is formulated, which can be decoupled into

two sub-problems. For the sub-problem of resource allocation,
an iterative algorithm based on the convex theory is proposed
to optimize the bandwidth allocation and the transmit power
control. Then, a coalition formation game model can be
considered for device clustering. Motivated by the advantages
of coalitional games in addressing various problems of wire-
less communications, e.g., device clustering [32] and pilot
clustering [33], a number of players in coalitional games, i.e.,
devices in the context of this paper, who cooperatively form
coalitions in order to improve the learning performance of
clustered models. We further develop a coalition formation
algorithm based on the individual stability [34]. Finally, the
solution to the original problem can be achieved by iteratively
solving the two sub-problems until convergence. Compared
to the previous works [25–31], we jointly consider the CFL
learning performance and the resource allocation with limited
bandwidth resources, and the proposed problem is strictly
formulated based on the analysis results in terms of the
average cosine similarity and the average cluster size, thus
we can improve the training efficiency of CFL in the resource
constrained wireless networks. Besides, compared to existing
FL works that consider resource allocation problem, one of
this paper’s method’s advantage lies in a rigorous derivation
of convergence and generalization, thus the interpretability and
learning performance of the CFL is enhanced. In addition,
compared with some simple personalized FL (PFL) methods,
such as FedRep [35], the considered CFL algorithm can better
cope with the problem of data inconsistency without learning
the head of local model. Moreover, compared to the previous
work in Globecom [1], we have added the convergence analy-
sis for CFL, and proposed a low-complexity iterative algorithm
for the resource allocation problem. Besides, in the simulation
section, we have used more CFL methods, learning models,
data distributions, and datasets for comparison. In general, this
work analyzes the effects of the average cosine similarity and
the average cluster size for CFL under wireless networks, and
can provide a theoretical basis for the implementation of FL
in multi-tasking scenarios.

The main contributions of this paper are summarized as
follows.

• We consider a novel distributed learning algorithm named
CFL to improve the learning performance, in which the
devices are grouped into clusters, and several clustered
models are trained simultaneously. Besides, we analyze
the convergence performance and the generalization a-
bility of CFL with respect to the cosine similarity, the
number of devices per cluster, and the device participation
probability.

• Aiming at improving the learning performance of CFL,
the utility of clustered model training is defined based on
the convergence analysis results. Then a joint problem of
resource allocation and device clustering is formulated in
order to maximize the average device utility. To address
this issue, an iterative algorithm of bandwidth allocation
and transmit power control is proposed. Besides, accord-
ing to the individual stability, we develop a coalition
formation algorithm for the device clustering.
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Fig. 1. The structure of CFL system.

TABLE I
SUMMARY OF MAIN NOTATIONS

Notation Description
K, K Set of devices, size of K
S, S Set of coalition indexes, number of coali-

tions
W , ws, Set of clustered models, clustered model

of cluster s
Π, Vs Clustering strategy, device set of cluster s
Ck,k′ Cosine similarity between device k and

device k′

ςk, χk Fluctuation of the computation capability,
the maximum of the computation capabil-
ity

τ c
k Average local computation latency of de-

vice k
τ u
k Average uploading latency of device k
Us Utility of coalition s
uk(Π) Utility of device k under coalition struc-

ture Π

• Simulation results on three popular datasets (e.g. MNIST,
CIFAR-10 and CIFAR-100) are conducted and show that
compared to the representative baselines, the proposed al-
gorithm jointly considering the learning performance and
the resource allocation can achieve higher test accuracy
with limited wireless resources.

The remainder of this paper is organized as follows. Section
II presents the system model and makes the convergence
analysis. Then an optimization problem incorporating the
bandwidth allocation, the transmit power control, and the
device clustering is formulated. In section III, the problem
is transformed into two sub-problems, and can be solved
iteratively. In section IV, we present the simulation results,
and in section V, we conclude the paper.

II. SYSTEM MODEL

In this section, we first introduce the training procedure, the
training latency model, and the energy consumption model of
CFL. Then an optimization problem is formulated with the
results of the convergence analysis. The main notations are
summarized in Table I.

TABLE II
COMMON LOSS FUNCTIONS FOR TRAINING

Model Loss function
Linear regression 1

2‖yk −wTxk‖
K-means 1

2 mini‖xk − wi‖ with wi ,
[wT

1 ,w
T
2 , ...]

T

Squared-SVM 1
2‖w‖

2 + %
2 max{0; 1 − ykw

Txk}2
with constant %

Neural network Cross-entropy on cascaded transform
[3]

A. Learning model

As shown in Fig. 1, consider a wireless network consisting
of a set K of K devices and a central server. Each device k
has a local dataset Dk = {(xk,i, yk,i)}Dki=1, where xk,i denotes
the i-th input training sample and yk,i is the labeled output
of xk,i. Hence the dataset for all devices is defined as D =⋃
k∈KDk. These devices are divided into different clusters and

the cluster set is denoted as Π = {V1,V2, ...,V|Π|}, where S =
{1, 2, ..., |Π|} is the index set of clusters, and Vs is the s-th
cluster of the devices with Vs∩Vs′ = ∅ for s 6= s′. Let ak,s ∈
{0, 1} denote the clustering strategy of device k. Specifically,
if device k ∈ Vs, we have ak,s = 1, otherwise, ak,s = 0. The
clustered model of cluster s is denoted as ws, and the set of
clustered models is denoted as W = {w1,w2, ...,w|Π|}.

Then the objective function of CFL is expressed as [29]

min
W

∑
s∈S

∑
k∈K ak,sDkFk(ws)∑

k∈K ak,sDk
, (1)

where Fk(ws) =
∑
{xk,i,yk,i}∈Dk l(ws, xk,i, yk,i) and

l(ws, xk,i, yk,i) captures the error of the model parameter
wl on the training data pair {xk,i, yk,i}. Some examples of
popular loss functions are summarized in Table II.

The CFL training includes the following steps.
1) At the beginning of training, given a global model w,

the devices first perform local updates and evaluate the cosine
similarity. In particular, the cosine similarity between device
k and device k′ is denoted as [25]

Ck,k′(w) =
< ∇Fk(w),∇Fk′(w) >

‖∇Fk(w)‖‖∇Fk′(w)‖
, (2)

where ∇Fk(w) is the local gradient of device k on the
initialized model parameter w. Based on the obtained cosine
similarity, the central server evaluates the cluster structure Π
and initializes the clustered model set W . We assume that
all the local gradients can be received by the center server
successfully at the step of clustering. Then the initialized
clustered model of cluster s is given by

w(1)
s = w − η

∑
k∈K ak,sDk∇Fk(w)∑

k∈K ak,sDk
, (3)

where η > 0 is the learning rate.
2) In training round r, each device k ∈ Vs, ∀s ∈ S,

receives the clustered model w(r)
s from the central server, and

then evaluates its local gradient ∇Fk(w
(r)
s ) by applying the

gradient descent algorithm on its local dataset.
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Algorithm 1 The iteration procedure of CFL algorithm.
1: Initialize the model parameter w as a random vector.

2: Each device k ∈ K evaluates and uploads its local gradient

∇Fk(w) to the central server to evaluate the cosine similarity

and obtain the cluster structure Π with initialized clustered model

set W .

3: for r = 1, 2, ..., R do

4: Devices receive the corresponding clustered models from the

central server.

5: for cluster s = 1, 2, ..., |Π| in parallel do

6: If |Vs|=1

7: The device in Vs trains its clustered model locally without

cooperation.

8: else

9: Each device k ∈ Vs evaluates and transmits its local gradient

∇Fk(w
(r)
s ) to the central server.

10: Central server performs the clustered model aggregation

to evaluate the updated clustered model w(r+1)
s .

11: end if

12: end for

13: end for

3) If |Vs| > 1, ∀s ∈ S, each device k ∈ Vs uploads their
evaluated gradients to the central server for model aggregation.
Besides, if |Vs| = 1, ∀s ∈ S , each device k ∈ Vs can train
its clustered model locally without cooperation. Note that due
to limited computation and communication resources, some
devices may fail to finish local training or upload its local
gradient to the central server. Hence, we have q

(r)
k = 1 to

indicate that device k can participate in training successfully
and q(r)

k = 0 otherwise. Then the central server updates each
clustered model w(r+1)

s as

w(r+1)
s = w(r)

s − η
∑
k∈K ak,sq

(r)
k Dk∇Fk(w

(r)
s )∑

k∈K ak,sq
(r)
k Dk

. (4)

4) Steps 2) and 3) are repeated until convergence.
For a more clear description, we provide the iteration

procedure of CFL in Algorithm 1.

B. Latency Model

According the CFL training process, we find that the
training latency contains two main parts. The first part is the
local computation latency and local gradient uploading latency
of devices. The second part is the clustered model aggregation
latency and the clustered model downlink transmission latency
of central server. Since the central server is commonly rich in
computation resource and typically has high transmit power
compared to the devices, the second part is ignored in this
work.

Due to the randomness of the local computation capability,
we adapt the shifted exponential distribution to characterize the

probability distribution of computation latency τ c
k for device

k to perform local updates in each training round [21], i.e.,

P(τ c
k ≤ ψk) =

{
1− e−

ςk(ψk−Dkχk)
Dk , if ψk ≥ Dkχk,

0, otherwise,
(5)

where ψk is the time reserved for device k to perform local
updates, ςk > 0 and χk > 0 are the constants that indicate the
fluctuation and the maximum of the computation capability,
respectively, and Dkχk is the minimal time consumed by
device k to perform local updates.

The spectrum resource is divided into K orthogonal ra-
dio access channels for the devices, and each device can
access to at most one channel. Then the average uplink
rate from device k to the central server can be written as
rk = bk log2(1+ |hk|

2pk
N0

), where bk is the bandwidth allocated
for device k, pk is the transmit power of device k, |hk|2 is
the average channel gain between device k and central server,
and N0 is the background noise. We assume that the devices
in the same cluster can share the bandwidth resources, then
the total bandwidth allocated to each cluster is set as B,
and the bandwidth allocation strategy of cluster s satisfies∑
k∈Vs bk ≤ B. Besides, since a device k ∈ Vs with |Vs| = 1

can train the clustered model locally without uploading its
local gradient, the time consumed for each device k to upload
its local gradient is calculated as

τ u
k =


M

rk
, if k ∈ Vs and |Vs| > 1,∀s ∈ S,

0, otherwise,
(6)

where M is the size of local gradient in bits.
In addition, due to the synchronous model aggregation of

training, the training latency budget for all clusters can be
defined as τmax, and the time reserved for device k to perform
local updates per round can be evaluated as ψk = τmax − τ u

k .
Then, according to the definition of q(r)

k , the average probabil-
ity for device k to successfully participate in training in each
round r satisfies

P (τ c
k ≤ ψk) = E

(
q

(r)
k

)
. (7)

C. Energy Consumption Model

The energy consumption of each device k consists of the
energy consumed by local updates and the energy for local
model uploading, i.e.,

ek = ec
k + pkτ

u
k , (8)

where ec
k is the average energy consumption for local training,

which is determined by the frequency of the CPU clock,
the size of training samples, and the number of CPU cycles
required for per bit data [36].

D. Convergence Analysis

Note that the cosine similarity and participation probability,
which determine the clustered model performance, and depend
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on the device clustering, bandwidth allocation, and transmit
power control strategies. In order to quantitatively analyze the
influence of the three variables on convergence performance
of the CFL, we first introduce the following assumptions and
then give a theorem. Besides, to facilitate the analysis, we
introduce the following assumptions.

Assumption 1. Local gradient ∇Fk(w) is Lipschitz con-
tinuous with respect to w, i.e., ‖∇Fk(w) − ∇Fk(w′)‖ ≤
L‖w −w′‖, ∀w,w′, where L is a positive constant.

Assumption 2. Local loss Fk(w) is strongly convex with
respect to w, i.e., Fk(w) ≥ Fk(w′) + (w −w′)T∇Fk(w′) +
µ
2 ‖w −w′‖2, ∀w,w′, where µ is a positive constant.

Assumption 3. Training loss of cluster s is defined as
F̄s(w) which is twice-continuously differentiable, i.e., µI ≤
∇2F̄s(w) ≤ LI. Besides, the local gradient ∇Fk(w) satisfies
ζ2
1 ≤ ‖∇Fk(w)‖2 ≤ ζ2

2 with ξ1, ξ2 > 0, ∀w.

Above standard assumptions have been widely used in
the convergence analysis of FL [20, 37, 38], which can be
used to describe the characters of the loss functions and the
gradients. This is because these assumptions are satisfied by
many popular learning models, such as the least-squared SVM
and the linear regression. It is worth noting that our analytical
results also work well for some popular loss functions which
do not satisfy these assumptions. Hence we can derive that
these assumptions can contribute to reliable analytical results.

Theorem 1. Denote by w∗s the optimal learning model for the
devices in Vs. Then, we have

E
(
F̄s(w

(r+1)
s )− F̄s(w∗s)

)
≤
(

1− µ

L

)r+1

E
(
F̄s(w

(1)
s )− F̄s(w∗s)

)
+
L(A2

1,s − (1− µ
L

)r+1A2
1,s)

µ
, (9)

where

A1,s =

max
r

∑
k∈K ak,sDk

∑
k′∈K ak′,sDk′

√
2ξ22 − 2Ck,k′(w

(r)
s )ξ21∑

k∈K ak,sq
(r)
k Dk

∑
k′∈K ak′,sDk′

.

(10)

Proof : See Appendix A for reference.

In addition, note that the types of data distribution are
unknown in advance and devices can perform local updates
without collaboration in order to minimize the local loss in
problem (1). However, due to the limited number of training
samples carried by the devices, the trained local models only
have limited generalization ability with poor test accuracy
[20, 39]. To jointly consider the generalization ability in our
analysis, we further define the global training loss function
as F (·), and investigate the performance of F (·) under the
obtained clustered model w(r+1)

s .

Theorem 2. The upper bound of E
(
F (w

(r+1)
s )− F (w∗s)

)
is

given by

E
(
F (w(r+1)

s )− F (w∗s)
)
≤
(

1− µ

L

)r+1

E
(
F (w(1)

s )− F̄s(w∗s)
)

+
L(A2,s − (1− µ

L
)r+1A2,s)

µ
, (11)

where

A2,s =
4ξ22

(∑
k∈KDk −

∑
k∈K ak,sDkE

(
q
(r)
k

))
∑
k∈KDk

. (12)

Proof : See Appendix B for reference.
According to Theorem 1, we find that a gap

L(A2
1,s−(1− µL )r+1A2

1,s)

µ exists between F̄s(w
(r+1)
s ) and

F̄s(w
∗
s), which relies on the cosine similarity among the

devices. This gap decreases as the data distributions of the
devices in the same cluster are more congruent. Specially,
due to limited communication and computation resources, the
central server collects gradient information from all devices
will cause a large latency and it is impractical to calculate the
cosine similarity in each round. Hence, we perform the device
clustering before training and calculate the cosine similarity
Ck,k′(w) to approximate the cosine similarity Ck,k′(w

(r)
s ).

The average cosine similarity of each cluster can be used to
approximate the cosine similarity during the training process,
i.e.,

Ā1,s =

∑
k∈K ak,sDk

∑
k′∈K ak′,sDk′Ck,k′(w)∑

k∈K ak,sDk
∑
k′∈K ak′,sDk′

. (13)

In addition, from Theorem 2, it is also observed a gap
L(A2,s−(1− µL )r+1A2,s)

µ exists between F (w
(r+1)
s ) and F (w∗s),

which relies on the clustering strategy. In particular, for cluster
Vs, as the number of devices or the device participation
probability increases, the gap between F (w

(r+1)
s ) and F (w∗s)

decreases. Hence, the generalization ability of clustered model
ws can be denoted as

Ā2,s =
∑
k∈K

ak,sDkE
(
q
(r)
k

)
. (14)

Motivated by Theorem 1 and Theorem 2, we can improve
the learning performance by grouping the devices with con-
gruent data distribution into the same cluster and enable more
devices participate into the training process. Thus, taking into
the two factors, we define the utility of cluster s as

Us = ρĀ1,s + (1− ρ)Ā2,s, (15)

where ρ is the weight to balance the cosine similarity and the
generalization ability.

In addition, considering the devices in the same cluster share
the clustered model, the utility of device k is defined as

uk(Π) =
∑
s∈S

ak,sUs. (16)

where |Π| represents the cluster structure. Denote N(|Π|) as
the number of devices that train the local models without co-
operation and denote |Π|max as the maximal number of clusters
that can occupy the bandwidth resources. Accordingly, the
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Algorithm 2 Iterative algorithm for resource allocation.
1: Initialize: device clustering strategy Π.
2: for s = 1, 2, ..., |Π| do
3: repeat:
4: With given Ps, obtain the solution of Bs according to (20).
5: With given Bs, obtain the solution of Ps according to (21).
6: until Objective value of problem (19) converges.
7: if

∑
k∈Vs b

min
k > B do

8: Cluster s is not feasible for training.
9: end if

10: end for

number of clusters with cooperative training can be evaluated
as |Π|−N(|Π|). Due to the scarcity of bandwidth resource, the
number of clusters occupying bandwidth resources is limited,
i.e.,

|Π| −N(|Π|) ≤ |Π|max. (17)

E. Problem Formulation

Define B = {B1,B2, ...,B|Π|} with Bs = {bk|k ∈ Vs} and
P = {P1,P2, ...,P|Π|} with Ps = {pk|k ∈ Vs}. We aim to
maximize the average utility of devices by jointly optimizing
resource allocation and device clustering, which is formulated
as

max
B,P,Π

1

K

∑
k∈K

uk(Π) (18a)

s.t.
∑
k∈Vs

bk ≤ B, ∀s ∈ S, (18b)

bk ≥ 0,∀k ∈ K, (18c)
ek ≤ emax

k ,∀k ∈ K, (18d)
0 ≤ pk ≤ pmax

k ,∀k ∈ K, (18e)

E
(
q

(r)
k

)
≥ 0,∀k ∈ K, (18f)∑

s∈S
ak,s = 1,∀k ∈ K, (18g)

ak,s ∈ {0, 1},∀k ∈ K, s ∈ S, (18h)
|Π| −N ≤ |Π|max, (18i)

where emax
k and pmax

k are the transmit power budget and the
energy consumption budget of device k, respectively. Note
that problem (18) is a mixed-integer nolinear programming
(MINLP) problem and is hard to solve. To find solutions to
problem (18), we can decompose it into two sub-problems with
separated objectives: a resource allocation problem including
bandwidth allocation and transmit power control with fixed
device clustering, and a device clustering problem given the
results of resource allocation.

III. RESOURCE ALLOCATION AND DEVICE CLUSTERING

A. Resource Allocation

Given Π, the resource allocation problem is equivalent to

max
B,P

(1− ρ)
∑
s∈S

∑
k∈K

ak,sDk

max

1− e
− ςk
Dk

τmax− M

bk log2(1+
|hk|2pk
N0

)

−Dkχk


, 0

 (19a)

s.t. (18b)− (18f). (19b)

From problem (19), given the training latency budget τmax,
the participation probability of some bandwidth resource allo-
cated devices can be less than 0. To avoid this situation and
improve the bandwidth utilization, we can solve problem (19)
by using the follow theorem.

Theorem 3. For cluster Vs, ∀s ∈ S, if |Vs| > 1, the optimal
solution {b∗k, p∗k}, ∀k ∈ Vs, of problem (19) is

b∗k = max

{
bmin
k ,

ςkM

2Dk log2

(
1 +

|hk|2p∗k
N0

)
W

√√√√ ν∗s ςkMe

ςk
Dk

(τmax−Dkχk)

4D2
k
(1−ρ)ak,s log2

(
1+
|hk|2p

∗
k

N0

)

}
,

(20)

and

p∗k = min{pk(b∗k), pmax
k } (21)

where W(·) is the Lambert W function, ν∗s is evaluated
according to the constraint

∑
k∈K ak,sb

∗
k = B,

bmin
k =

M

(τmax −Dkχk) log2(1 + |hk|2pk
N0

)
(22)

and pk(b∗k) is the solution of

pkM

b∗k log2(1 + |hk|2pk
N0

)
= emax

k − ec
k (23)

Specially, if
∑
k∈K ak,sb

min
k > B, we can infer that the cluster

Vs is not feasible for training.

Proof : See Appendix C for reference.
Note that ν∗s and pk(b∗k) can be found with the bisection

method, and the time complexity of which is O(log2(1/ς1))
and O(log2(1/ς2)), respectively, where ς1 > 0 and ς2 > 0 are
the accuracy that can be obtained using the bisection method.
Since the objective function of the problem (19) is convex with
respect to the optimization variables which are bounded and
continuous, we can notice that the proposed algorithm yields a
non-decreasing sequence of the objective value. Therefore, the
resource allocation problem based on the proposed iterative
algorithm is guaranteed to converge. Besides, The detailed
steps of iterative algorithm are provided in Algorithm 2, and
the complexity of which is O (IK (log2(1/ς1) + log2(1/ς2))),
where I is the number of iterations. Our algorithm can be
performed with lower complexity for two main reasons. On the
one hand, in each iteration step, the low complexity is reflected
in that our iterative algorithm is based on the closed-form
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solution, and bandwidth and power values can be obtained
quickly with a logarithmic complexity in each iteration. On
the other hand, given accuracy ς3 and ς4, compared with some
classical algorithms, such as gradient descent algorithm with
L-smooth and µ-strongly convex, and newtonian method with
matrix evaluation complexity ι, whose complexity are evalu-
ated as O(LKµ log(1/ς3)) and O(ιK log(1/ς4)), respectively,
However, gradient descent algorithm needs a proper setting
of the step size η = O( 1

L ), and the convergence rate is vari-
ational under different smooth and convex assumptions with
different optimization variables. Newtonian method is more
dependent on the initial value setting and requires updating
a K-dimensional matrix in each iteration, which is costly
to calculate in computation. Specially, since the proposed
algorithm is based on the closed-form solution, in a normal
case, the proposed algorithm can achieve lower complexity
without other limitations. In addition, compared with other
heuristic optimization methods, such as discrete optimization
and random walk, the proposed algorithm is obviously to have
lower complexity with exact convergence policy. Moreover,
if the proposed iterative algorithm is performed completed
independently in each cluster, the complexity can be evaluated
as O (I (log2(1/ς1) + log2(1/ς2))) with I << K. Hence,
under the derived closed-form solution, the proposed algorithm
has lower complexity.

B. Device Clustering

Given the results of resource allocation, let u∗k(Π) denote
the utility of device k under the cluster structure Π, then the
clustering problem can be formulated as

max
Π

1

K

∑
k∈K

u∗k(Π) (24a)

s.t. (18g)− (18i), (24b)

Theorem 4. Problem (24) is NP-hard by nature.

Proof : We conduct the proof through a polynomial-time
reduction from the 0− 1 knapsack problem, which is known
to be NP-hard [40]. Given a knapsack with capacity W , the
goal of the 0 − 1 knapsack problem is to maximize the total
value, in which each item can be use 0 or 1 time. In particular,
the value for the item k to join in knapsack s can be defined
as Vk,s, and the capacity of each item is defined as Ck. We
further use Xk,s = 1 to denote that item k is in knapsack s,
and Xk,s = 0 otherwise. The strategy of the 0 − 1 knapsack
problem is defined as X , then the 0−1 knapsack problem can
be defined as

max
∑
k∈K

Xk,sVk,s (25a)

s.t. Xk,s ∈ 0, 1,∀k ∈ K, s ∈ S, (25b)∑
k∈K

Xk,sCk ≤M,∀k ∈ K, s ∈ S. (25c)

We then treat the item, the capacity, and the value as the
device, the bandwidth, and the device utility. Consequently,
we can obtain a special case for device clustering problem
where only one device cluster exists and such a transformation

Algorithm 3 Coalition formation algorithm for device clus-
tering.

1: Initialize i = 0, Π(0) = {{1}, {2}, ..., {K}}.
2: Repeat:
3: for k = 1, 2, ...,K do
4: Device k finds acceptable coalitions Πk ⊆ Π(i) ∪∅ that can

strictly improve its utility and accepts the deviation.
5: If |Πk| > 0 do
6: Device k leaves its current coalition and joins a coalition

V∗ ∈ Πk that can achieve the largest utility.
7: end if
8: end for
9: Update the coalition structure Π(i+1) = Π(i).

10: Update the coalition structure index i = i+ 1.
11: Until there exists no device deviation is admissible.
12: if the number of coalitions occupying bandwidth resources

|Π(i)| −N(Π(i)) > |Π|max do
13: According to Algorithm 2, |Π(i)|−|Π|max coalitions with lower

average utility are split into multiple singleton coalitions.
14: end if
15: Find the optimal clustered model:
16: Given the cluster structure Π, devices train the clustered models

according to Algorithm 1.
17: Devices download all clustered models from the central server.
18: Each device selects the clustered model with the best learning

performance.

is obviously in polynomial time. Therefore, if we can easily
obtain an optimal solution to the 0 − 1 knapsack problem
instance, an optimal solution to the device clustering instance
yields, which reaches a contradiction as device clustering
problem is NP-hard. Hence we can complete the proof.

To reduce the complexity, rather than using a traversal
method, we introduce the coalitional game theory [33, 41],
in which each cluster can be seen as a coalition and the
devices need to select the coalition they belong to. Besides,
in the considered coalitional game, each device’s behavior
follows the maximization of its utility and achieving the stable
coalition structure. We consider the individual stability [34],
and use three elements to describe the coalition formation: 1)
device deviation, 2) admission of deviation, and 3) individual
stability checking.

Definition 1. (Device Deviation) A device k ∈ Vs leaves
coalition Vs and join coalition Vs′ , s 6= s′ and Vs′ ∈ Π ∪∅.
Then the coalition structure Π changes to Π′. We can denote

this change as Π
k,s,s′→ Π′.

According to the concept of individual stability [34], a
device deviation can be admitted only if a device can strictly
improve its utility and ensure that the devices in the coalition it
joins do not reduce their utility. Such a deviation requirement
is based on the fact that a device that wants to join a coalition
will share the bandwidth resources of the others, thus must
asking for the permission of deviation.

Definition 2. (Admission of Deviation) A deviation of device
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Fig. 2. A sketch map of the proposed coalition formation algorithm.

k ∈ Vs to join coalition Vs′ , s 6= s′, i.e., Π
k,s,s′→ Π′, is

admissible only if

u∗k(Π) > u∗k(Π
′
), (26)

and

u∗k′(Π
′) > u∗k′(Π),∀k′ ∈ Vs′ . (27)

Then, to ensure the convergence of the proposed coalition
formation algorithm, we need to check the individual stability.

Definition 3. (Individual Stability Checking) If there exists no
device deviation is admissible, we can derive that the coalition
structure Π is individually stable.

In Algorithm 3, we provide the implementation of coalition
formation. The initialized coalition structure is denoted as
Π(0), which can be the form of singleton coalitions. In line 3,
each device k is selected to check if a deviation is profitable,
then according to the utility of the current coalition structure
Π, device k evaluates its utility if it can joint other coalitions
Πk ⊆ Π∪∅, where Πk includes the coalitions that can strictly
improve its utility and accept the deviation. In line 5, if |Πk| >
0, a coalition V∗ ∈ Πk that can achieve the largest utility is
selected by device k. Iterations terminate when no deviations
of devices take place anymore. Specially, in line 13, according
to Algorithm 2, since the maximal number of clusters that
occupy bandwidth resources is limited, we need to check
the constraint (18i) when the coalition formulation converges.
Note that the objective function is to maximize the average
utility of devices, thus we can simply dismantle coalitions
with lower average utility into multiple singleton coalitions.
In addition, after performing the clustered model training,
each device downloads all clustered models from the central
server and selects the clustered model with the best learning
performance for utilization. The complexity of Algorithm 3
largely depends on the number of iterations which can be
denoted as G. Combined with the resource allocation in each
iteration, then the computational complexity of our proposed
algorithm is O (GIK (log2(1/ς1) +G log2(1/ς2))). Since the
central server has the powerful computation capability to solve
the problem (19) and (24), the overhead of problem solving
can be negligible.

Fig. 3. A sketch map of the incongruent data distribution.

TABLE III
EXPERIMENTAL DATA SETUP

Parameter Value
K 600
B 400 KHz
N0 −107 dBm
τmax 4 seconds
|Π|max 70
Training samples per device 1000
Types of labels per device 10
Incongruent training samples per device 200
Types of incongruent labels per device 2

IV. SIMULATION RESULTS

In this section, we conduct experiments to validate the
theoretical analysis and test the performance of the proposed
algorithm. All simulations are carried out with tensorflow 2.0
on a personal computer with NVIDIA GeForce RTX 2080 Ti.

A. Experiment Settings

1) Network Settings: Unless otherwise specified, consider
a network of K = 600 devices which are uniformly deployed
in a disc with a radius of 500 m, and a central server
at the center of the disc. The path loss model is set as
L[dB] = 128.1 + 37.6 log10 d[km], and the standard deviation
of the log-normal shadowing fading is 8 dB [42]. We also
set the bandwidth B = 400 KHz and the background noise
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Fig. 4. Comparison among different algorithms as the latency budget τmax varies. (a) the average cosine similarity C̄. (b) the average device size S̄.
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Fig. 5. Comparison among different algorithms as the cluster number budget |Π|max varies. (a) the average cosine similarity C̄. (b) the average cluster size
S̄.

N0 = −107 dBm. For each device k, the parameters of the
computation latency model are set as χk = 0.1 ms/samples
and ςk = 1

χk
, respectively [21]. We set an equal maximum

transmit power pmax
1 = pmax

2 =, ...,= pmax
K = 10 dBm, an equal

energy consumption of local training ec
1 = ec

2, ...,= ec
K = 0.4

J, and an equal energy consumption budget emax
1 = emax

2 , ...,=
emax
K = 0.5 J. The training latency budget is τmax = 4 s,

the maximal number of the bandwidth occupying clusters is
|Π|max = 70, and the weight parameter is ρ = 0.99995.

2) Learning Settings: To evaluate the performance of the
proposed algorithm, we consider a classification task using the
MNIST dataset with 60,000 training samples and 10,000 test-
ing samples of 10 types of digits [43]. A standard multilayer
perceptron model is adopted for training, which has one hidden
layer of 128 hidden nodes and finally a output layer. The
batch size is 32, the optimizer is SGD, and the learning rate is
0.05. To simulate an incongruent data distribution, each device
has 1000 training samples with 10 types of labels, in which
200 training samples with 2 types of labels can be randomly
selected and modified by swapping [25]. A sketch map of the

incongruent data distribution is shown in Fig.3. For device 1,
the data samples ”0” and ”1” are labeled as ”1000000000”
and ”0100000000”, respectively. However, for device 2, the
data samples ”0” and ”1” are re-labeled as ”0100000000” and
”1000000000”. Similarly, the labels of the same data samples
in device 3 and device 4 can be modified by swapping.

It is worth noting that the similar operations as the training
samples are done on the test samples of each device. Besides,
to investigate the test accuracy on the individual data distri-
bution, different from the settings in the conventional FL, the
test samples of each device in the considered CFL is with
the same assignment labels of the training samples [25]. The
experimental data setup are summarized in Table III.

3) Baseline Settings: Five baseline algorithms are intro-
duced for comparison as follows. This first one (labelled as
EB algorithm) is introduced where Algorithm 3 is adopted for
device clustering and equal bandwidth allocation is adopted.
The second one (labelled as TC algorithm) divides the devices
with congruent data distributions into the same cluster [29].
The third one (labelled as LT algorithm) assumes all devices
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Fig. 6. Comparison of the average test accuracy among different algorithms. (a) the average test accuracy under the MNIST dataset. (b) the average test
accuracy under the CIFAR-10 dataset. (c) the average test accuracy under the CIFAR-100 dataset.

train their clustered models without cooperation. The fourth
one (labelled as CS algorithm) assumes 400 newcome devices
are added to the existing clusters [26]. The fifth one (labelled
as OC algorithm) assumes each device can be repeatedly
added into multiple clusters [28].

B. Comparison of Different Algorithms

In Fig. 4, we first compare the performance of the proposed
algorithm with the baseline algorithms as the latency budget
τmax varies. Fig. 4(a) and 4(b) show the trends of the average
cosine similarity C̄ =

∑
s∈S Ā1,s

|Π| and the average cluster size

S̄ =
∑
s∈S Ā2,s

|Π|
∑
k∈KDk

, respectively. As shown in Fig. 4(a), the
average cosine similarity of the proposed algorithm decreases
as the latency budget increases. This is because given more
time for training, devices prefer to collaborate with others, thus
increase the variability of data distribution. It is interesting
to find that the cosine similarity obtained by the proposed
algorithm and the EB algorithm is almost the same and is
closed to that of the TC algorithm. This fact suggests that the
device clustering is mainly based on the data distribution. In
Fig. 4(b), we can observe that the average cluster size of the
proposed algorithm increases with more latency budget due
to the fact that a larger latency budget enables each cluster to
include more devices and increase the participation probability.
Specially, given a smaller latency budget, i.e, τmax ≤ 2, the
average cluster size is equal to 1 due to the limited time
reserved for local training and model transmission. Besides,
as the latency budget increases, i.e, τmax ≥ 5, the performance
of the TC and MT algorithm is close to that of the proposed
algorithm. This is because under a larger latency budget, the
proposed algorithm can seek to let all devices with congruent
data distribution be grouped into the same clusters. Besides, al-
though the average cosine similarity of the proposed algorithm
is lower than that of the LT, CS and OC algorithms, a larger
average cluster size can be obtained. In general, the proposed
algorithm can achieve larger cluster size than the benchmarks.
This is because the proposed algorithm jointly optimizes the
resources and the device clustering, while the bandwidth is
fixed in the EB algorithm, and the number of devices per
cluster is not optimized in the other baselines. In addition,
we investigate the percentage of the same distribution devices
per cluster. For instance, in cluster s, if the data distribution of

device k ∈ Vs is congruent with device k′ ∈ Vs, we can derive
dk,k′ = 1, and dk,k′ = 0 otherwise. Then the percentage of
the same distribution devices in cluster s can be defined as
zs =

∑
i,j∈Vs,i 6=j di,j

|Vs|(|Vs|−1) . Specially, in the proposed algorithm,
we can obtain zs = 1,∀s ∈ S, which can prove that the
devices with consistent data distribution are divided into the
same cluster.

Fig. 5(a) and 5(b) show the trends of the average cosine
similarity C̄ and the average cluster size S̄ as the cluster
number budget |Π|max varies. We can see that both the average
cosine similarity and the average cluster size of the proposed
algorithm increase as the cluster number budget increases, then
remain unchanged. This suggests that the utility obtained by
local training, i.e., devices in the LT algorithm, is lower than
the cooperative training, and the devices prefer to formulate the
clusters with other devices. Although the proposed algorithm
outperforms the benchmarks, the advantages are not significant
especially under a smaller number budget. This is because
given a smaller cluster number budget, i.e., |Π|max ≤ 50, the
cosine similarity and the cluster size of devices with local
training play a major role in the calculation of the average
values thus the benefits derived from the cluster formulation
are not significant.

In Fig. 6, we compare the test accuracy of the proposed
algorithm with baseline algorithms. For generality, aside from
the MNIST dataset, the CIFAR-10 dataset and the CIFAR-
100 dataset are also considered for training [44]. CIFAR-
10 has 50,000 training samples and 10,000 testing samples
of 10 types of images, and CIFAR-100 has 50,000 training
samples and 10,000 testing samples of 100 types of images.
A CNN model is utilized for CIFAR-10, which has two 3x3
convolution layers with respective 32 and 32 channels, also
followed with 2x2 max pooling, two fully connected layers
with 384 and 192 units, and finally a softmax output layer.
The batch size is 32, the optimizer is SGD, and the learning
rate is set to 0.01. ResNet-18 is utilized for CIFAR-100 [45],
which uses 3 × 3 filters with stride and pad of 1, and the
average pooling layer contains 1 × 1 filter, and one fully
connected layer, with a final softmax layer. The batch size
is 64, the optimizer is Adam, and the learning rate is set to
0.02. Besides, to further demonstrate the advantages of the
proposed algorithm, we add extra three baseline algorithms for
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Fig. 7. Performance of the proposed algorithm under different weight parameter ρ̄ and device number K. (a) the average cosine similarity C̄. (b) the average
cluster size S̄.
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Fig. 8. Comparison of the average test accuracy among different algorithms with the default setting. (a) Average clustering accuracy. (b) Average test
accuracy.

comparison. The first one (labelled as MF algorithm) assumes
the full participation of devices, in which the latency budget is
increased to let all device participate in training successfully.
The second one is the conventional FedAvg algorithm, in
which all devices form a grand cluster, and all bandwidth
resources in the system can be utilized for training. The
third one is FedRep algorithm [35], in which devices are
selected to perform personalized local gradient-based updates
to solve for its optimal model head, and once the local updates
with respect to the head finish, the device participates in
the aggregation by sending its locally-updated representation
to the server. Results shows that the proposed algorithm
can achieve higher test accuracy with lower training latency
compared to the baseline algorithms on the both two datasets.
We can also observe that even though the convolutional layers
in CIFAR-10 and CIFAR-100 are not convex, the proposed
algorithm can also improve the learning performance. The LT
and the FedAvg algorithms have the worst performing, because

they do not jointly consider the convergence performance
and the generalization ability of training. Besides, compared
to the EB, TC, CS, OC, and MF algorithms, the proposed
algorithm achieves a balance between the cosine similarity
and the cluster size, thus improving the training efficiency.
In summary, the advantage of the proposed algorithm is
twofold: firstly, the proposed algorithm addresses the issue of
statistical heterogeneity by grouping devices with congruent
data distribution into the same clusters. Besides, with limited
wireless resources, the number of devices per cluster and
the participation probability are optimized simultaneously to
improve the generalization ability of the trained clustered
models. Moreover, as shown in Table IV, to have a more
intuitive understanding of the tradeoff between the average co-
sine similarity and the average cluster size, we present a table
under default parameters and MNIST dataset. Considering the
limited bandwidth in each cluster and the differences of data
distribution among devices, when we increase the number of
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TABLE IV
ILLUSTRATE THE TRADEOFF BETWEEN THE AVERAGE COSINE SIMILARITY AND THE AVERAGE CLUSTER SIZE.

algorithm average cosine similarity average cluster size maximal test accuracy
Proposed 0.9673 5.9400 0.9505

EB 0.9673 5.5440 0.9391
TC 0.9668 3.1920 0.9127
LT 1 1 0.8916
CS 0.9947 1.7859 0.9040
OC 0.9964 1.5403 0.8937

FedAvg 0.5842 600 0.7193
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Fig. 9. Comparison of the average test accuracy among different algorithms under a more general data partition method without label swapping. (a) the
average test accuracy under the MNIST dataset. (b) the average test accuracy under the CIFAR-10 dataset. (c) the average test accuracy under the CIFAR-100
dataset.
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Fig. 10. Comparison of the average test accuracy among different algorithms under a more general data partition method with label swapping. (a) the average
test accuracy under the MNIST dataset. (b) the average test accuracy under the CIFAR-10 dataset. (c) the average test accuracy under the CIFAR-100 dataset.

devices in the cluster, the similarity will inevitably be affected.
The most intuitive case is to compare the LT algorithm with
the proposed algorithm. Although the LT algorithm can obtain
a similarity of 1, the number of devices in a single cluster
is only one, so the learning performance obtained is lower
than the proposed algorithm. A similar phenomenon can also
be seen in the proposed algorithm and other comparison
algorithms. For instance, although the proposed algorithm has
lower cosine similarity than the LT, CS, and OC algorithms,
the proposed algorithm can achieve larger cluster size with
higher learning performance. However, in a extreme case, the
FedAvg algorithm has the largest cluster size with the minimal
similarity, and the learning performance is lower than the
proposed algorithm. Hence, we can clearly see that the tradeoff
between the average cosine similarity and the average cluster
size does exist.

C. Effects of the weighted parameter

In Fig. 7, to have a deeper understanding of how the
proposed algorithm works, we further investigate performance
of the proposed algorithm as the weight parameter ρ̄ = 1− ρ
and the device number K vary. In particular, Figs. 7(a)-
7(b) show the trends of average cluster cosine similarity C̄
and the average cluster size S̄, respectively. In Fig. 7(a),
we can observe that the average cluster cosine similarity of
the proposed algorithm decreases as the weight parameter ρ̄
increases. It is because increasing the weight of the general-
ization ability enables the devices to achieve higher utility by
increasing the cluster size. In particular, given a smaller weight
parameter ρ̄, the proposed algorithm emphasizes the cosine
similarity among the devices and ensures the devices with
similar data distribution to be grouped into the same cluster.
On the contrary, given a larger weight parameter ρ̄, since the
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effects of the cosine similarity are almost negligible and the
devices focus on the number of devices per cluster and the
participation probability, the average cluster cosine similarity
C̄, is almost random. In Fig. 7(b), results show that the average
cluster size S̄ of the proposed algorithm is increased and
trends to be unchanged as ρ̄ or K increases. It is because
the utility can be improved by including more devices or
increasing the participation probability of the existing devices.
This observation is also aligned with the previous discussions
of CFL.

D. Performance under different data partition methods

Our proposed algorithm, while showing higher learning
performance, is based on a data distribution in [25] that
considered the swapping of labels. Hence, it is important
to design a more generalized data partitioning method by
overlapping the labels among the devices to demonstrate the
validity and generality of the proposed clustering method. We
jointly consider and advance the data partitioning methods
used in references [26, 28] where each device has only a subset
of labels, which from different distribution types overlap
without any label swapping. We can observe that there are
significant differences in cosine similarity among the devices
for the following four examples. 1) devices with the same data
distributions. 2) data distributions with the subset relationship.
3) data distributions have disjointed parts. 4) data distributions
are un-intersected. According to the clustering results, in
each cluster s, we first select |Ṽc1

s | devices which have label
distributions with the most occurrences, as a benchmark. We
further denote the number of remaining devices which belong
to example 2, example 3, and example 4 as |Ṽc2

s |, |Ṽc3
s |,

and |Ṽc4
s |, respectively, then the accuracy of clustering is

defined as the proportion in each example, i.e., EA1 =
|Ṽc1
s |
|Vs| ,

EA2 =
|Ṽc2
s |
|Vs| , EA3 =

|Ṽc3
s |
|Vs| , EA4 =

|Ṽc4
s |
|Vs| . In addition,

according to the previous simulation results, we notice that
the weighted parameter in the optimization problem is critical
to the clustering results. Hence, given the generalizable data
partitioning, we evaluate the weighted parameter ρ̄ for the
three datasets, which can be divided into three cases. Case
1: a smaller weight parameter 10−6 < ρ̄ < 2 × 10−5. Case
2: a moderate weight parameter 4 × 10−5 < ρ̄ < 7 × 10−5.
Case 3: a larger weight parameter 9× 10−5 < ρ̄ < 2× 10−4.
As shown in Fig. 8(a), we can notice that with a smaller or
moderate weight parameter, all devices with inconsistent data
distributions can be well distinguished. Besides, in Fig. 8(b),
based on the MNIST dataset, the test accuracy is influenced by
the clustering results, and setting a proper weight parameter
can achieve higher test accuracy. In addition, as shown
in Fig. 9 and Fig. 10, we further add experiments of all
baselines under the proposed general data partition method
with and without label swapping, and we adapt a moderate
weight parameter for training. Similar to Fig. 6, our proposed
algorithm can achieve higher test accuracy with lower training
latency. Specially, it is worth nothing that we can achieve
higher accuracy compared with Fig.6 under the case that each
device has only a subset of label types. This is because the
classifier is less difficult to train when there are fewer label

types. In addition, for the proposed method, the influence of
label swapping is not significant, because our method does not
group devices with the conflicting data distribution into the
same cluster. Therefore, for each cluster, devices with similar
data distributions still participate in the same task of training.

V. CONCLUSION

In this paper, the convergence analysis of CFL in terms of
the cosine similarity, the number of devices per cluster, and
the device participation probability was conducted. Besides,
based on the obtained analysis results, an optimization problem
incorporating the bandwidth allocation, the transmit power
control, and the device clustering was proposed, aiming at
maximizing the learning performance of the CFL. The joint
problem was decoupled into two sub-problems and solved
iteratively. In particularly, given fixed results of device cluster-
ing, an iterative algorithm based on the convex optimization
theory was proposed for bandwidth allocation and transmit
power control. Besides according to the individual stability,
we developed a distributed coalition formation algorithm for
device clustering. The simulation results have shown that the
proposed algorithm, compared to state of the art benchmarks,
can achieve higher test accuracy with limited wireless re-
sources.

APPENDIX

A. Proof of Theorem 1
Based on the second-order Taylor expansion of F̄s(w

(r+1)
s )

we can derive that

F̄s(w
(r+1)
s ) = F̄s(w

(r)
s ) + (w(r+1)

s −w(r)
s )T∇F̄s(w(r)

s )

+
1

2
(w(r+1)

s −w(r)
s )T∇2F̄s(w

(r)
s )(w(r+1)

s −w(r)
s )

≤ F̄s(w(r)
s ) + (w(r+1)

s −w(r)
s )T∇F̄s(w(r)

s )

+
L

2
‖w(r+1)

s −w(r)
s ‖2. (28)

Given the learning rate η = 1
L , the expected loss

E(F̄s(w
(r+1)
s )) can be expressed as

E(F̄s(w
(r+1)
s )) ≤ E(F̄s(w

(r)
s ))− 1

2L
‖∇F̄s(w(r)

s )‖2

+
1

2L
E

∥∥∥∥∥∇F̄s(w(r)
s )−

∑
k∈K ak,sq

(r)
k Dk∇Fk(w

(r)
s )∑

k∈K ak,sq
(r)
k Dk

∥∥∥∥∥
2

. (29)

From the perspective of cosine similarity, we have∥∥∥∥∥∇F̄s(w(r)
s )−

∑
k∈K ak,sq

(r)
k Dk∇Fk(w

(r)
s )∑

k∈K ak,sq
(r)
k Dk

∥∥∥∥∥
2

=∥∥∥∥∥
∑
k∈K ak,sq

(r)
k Dk(∇F̄s(w(r)

s )−∇Fk(w
(r)
s ))∑

k∈K ak,sq
(r)
k Dk

∥∥∥∥∥
2

=∥∥∥∥∥
∑
k∈K ak,sq

(r)
k Dk

∑
k′∈K ak′,sDk′(∇Fk′(w

(r)
s )−∇Fk(w

(r)
s ))∑

k∈K ak,sq
(r)
k Dk

∑
k′∈K ak′,sDk′

∥∥∥∥∥
2

.

(30)

Let

Ck,k′(w
(r)
s ) =

< ∇Fk(w
(r)
s ),∇Fk′(w(r)

s ) >

‖∇Fk(w
(r)
s )‖‖∇Fk′(w(r)

s )‖
, (31)
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then we have

‖∇Fk′(w(r)
s )−∇Fk(w(r)

s )‖2

= ‖∇Fk′(w(r)
s )‖2 + ‖∇Fk(w(r)

s )‖2

− 2
〈
∇Fk′(w(r)

s ),∇Fk(w(r)
s )
〉

≤ 2ξ2
2 − 2Ck,k′(w

(r)
s )ξ2

1 , (32)

and∥∥∥∥∥∇F̄s(w(r)
s )−

∑
k∈K ak,sq

(r)
k Dk∇Fk(w

(r)
s )∑
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(r)
k Dk
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2
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2
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(33)

By substituting (33) into (29), we can obtain

E(F̄s(w
(r+1)
s )) ≤ E(F̄s(w

(r)
s ))− 1

2L
‖∇F̄s(w(r)

s )‖2

+ E
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∑
k∈K ak,sDk
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s )ξ21∑

k∈K ak,sqkDk
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2

︸ ︷︷ ︸(
A

(r)
1,s

)2
.

(34)

According to assumptions 2 and 3, we further have [46]

‖∇F̄s(w(r)
s )‖2 ≥ 2µ

(
F̄s(w

(r)
s )− F̄s(w∗s)

)
, (35)

where w∗s is the optimal clustered model of cluster s. Substi-
tuting (35) into (34), we have

E
(
F̄s(w

(r+1)
s )− F̄s(w∗s)

)
≤
(

1− µ

L

)
E
(
F̄s(w

(r)
s )− F̄s(w∗s)

)
+
(
A

(r)
1,s

)2

. (36)

Let A1,s = maxr A
(r)
1,s. Then, applying (36) recursively, we

can complete the proof.

B. Proof of Theorem 2
From the perspective of participation probability, we have

[20] ∥∥∥∥∥∇F (w(r)
s )−

∑
k∈K ak,sq

(r)
k Dk∇Fk(w

(r)
s )∑

k∈K ak,sq
(r)
k Dk

∥∥∥∥∥
2

≤
4ξ2

2

(∑
k∈KDk −

∑
k∈K ak,sq

(r)
k Dk

)
∑
k∈KDk︸ ︷︷ ︸
A

(r)
2,s

. (37)

Then, substituting (37) into (29), and applying recursively, we
can complete the proof.

C. Proof of Theorem 4
Given device set Vs, since the objective function of problem

(19) is convex, we can solve it by using the Karush-Kuhn-
Tucker (KKT) conditions, and the corresponding Lagrange
function is

L(B, ν) = νs

(∑
k∈Vs

bk −B

)
−

(1− ρ)
∑
k∈Vs

Dk

1− e
− ςk
Dk

τmax− M

bk log2(1+
|hk|2pk
N0

)

−Dkχk


 ,

(38)

where νs > 0 is the Largrange multiplier. The first order of
(38) with respect to bk, ∀k ∈ Vs, is

∂L(B, νs)
∂bk

= νs

− (1− ρ)ak,sςkM

b2k log2(1 + |hk|2pk
N0

)
e

− ςk
Dk

τmax− M

bk log2(1+
|hk|2pk
N0

)

−Dkχk


.

(39)

By solving (39), we can obtain the optimal solution b∗k.
Besides, increasing the transmit power pk can also increase
the objective function of (19), thus we can choose the maximal
pk that satisfies the energy consumption budget. Then we
complete the proof.
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