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Implementation and Experimental Validation of
Data-Driven Predictive Control for Dissipating

Stop-and-Go Waves in Mixed Traffic
Jiawei Wang, Yang Zheng, Jianghong Dong, Chaoyi Chen, Mengchi Cai, Keqiang Li and Qing Xu

Abstract—In this paper, we present the first experimental
results of data-driven predictive control for connected and
autonomous vehicles (CAVs) in dissipating traffic waves. In par-
ticular, we consider a recent strategy of Data-EnablEd Predicted
Leading Cruise Control (DeeP-LCC), which bypasses the need
of identifying the driving behaviors of surrounding vehicles and
directly relies on measurable traffic data to achieve safe and opti-
mal CAV control in mixed traffic. We present the implementation
details of DeeP-LCC, including data collection, equilibrium esti-
mation, and control execution. Based on a miniature experiment
platform, we reproduce the phenomenon of stop-and-go waves
in two typical traffic scenarios: 1) open straight-road scenario
under external disturbances and 2) closed ring-road scenario
with no bottlenecks. Our experiments clearly demonstrate that
DeeP-LCC enables one or a few CAVs to dissipate the traffic
waves in both traffic scenarios. These experimental findings
validate the great potential of DeeP-LCC in smoothing practical
traffic flow in the presence of noisy data, uncertain low-level
vehicle dynamics, and communication and computation delays.
The code and videos of our experimental results are available at
https://github.com/soc-ucsd/DeeP-LCC.

Index Terms—Traffic wave, data-driven predictive control,
miniature experiments, mixed traffic flow.

I. INTRODUCTION

TRAFFIC instabilities propagating upstream traffic flow
can lead to periodical acceleration and deceleration of

individual vehicles. This phenomenon is also known as phan-
tom traffic jams when there are no apparent causes. The ex-
treme stop-and-go traffic pattern further results in a significant
societal loss of travel efficiency, fuel economy, and traffic
safety [1]. The seminal ring-road experiment in [2] has shown
that the traffic jams can be induced purely by the collective dy-
namics of human drivers without any external bottlenecks such
as intersections, on/off ramps, and lane changes. Thanks to the
rapid advances of vehicular communication and self-driving
technologies, the emergence of connected and autonomous
vehicles (CAVs) promises to revolutionize road transportation
and significantly mitigate undesired traffic jams [3]. It has been
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shown that a full-CAV traffic systemcontributes to a dramatic
increase in travel efficiency and safety guarantees [4]–[6].

The near future will meet an era of mixed traffic flow with
the coexistence of both human-driven vehicles (HDVs) and
CAVs. In such a human-in-the-loop mixed-autonomy system,
dissipating traffic waves via CAVs is a promising strategy
and has received increasing research interest. Despite the fact
that HDVs cannot be directly controlled, a series of recent
theoretical and experimental studies have revealed that CAVs
promise significant traffic performance improvements, even in
a low penetration rate, by incorporating the HDVs’ behavior
into controller design [7]–[13]. For example, the field tests
in [7] have empirically demonstrated the potential of one
single CAV in dissipating stop-and-go waves in the ring-
road setup of [2]. CAVs’ wave-dampening ability in mixed
traffic has also been validated via rigorous control-theoretic
analysis, including controllability and stabilizability [8], [9],
and head-to-tail string stability [11], [13]. More recently,
a notion of Leading Cruise Control (LCC) [12], [14] has
provided further insights into the role of CAVs in mixed
traffic on common open straight-road scenarios. In the LCC
framework, CAVs can not only adapt to the downstream traffic
flow (consisting of vehicles ahead), but also actively lead the
motion of upstream traffic flow (consisting of vehicles behind),
contributing to system-wise improvements for the global traffic
flow [12].

To realize the full potential of CAVs, it is important
to design effective CAV control strategies in mixed traffic.
One major challenge is how to incorporate the dynamics of
HDVs, where human behaviors are known to be uncertain and
stochastic. Most existing studies rely on HDVs’ microscopic
car-following models [15], and design control strategies for
CAVs based on the corresponding dynamical model of mixed
traffic systems [9], [16]–[18]. However, these model-based
strategies may not be easily deployed in practice since it
is non-trivial to accurately identify human driving behaviors
for the car-following models. On the other hand, model-free
or data-driven strategies [19], [20] can be used to stabilize
mixed traffic without requiring explicit HDV’s car-following
models a priori. With large-scale driving data of HDVs, some
studies have proposed to train CAV control strategies for
dampening traffic waves via reinforcement learning [21] and
adaptive dynamic programming [22]. Yet, the requirement
of extensive computational resources and the lack of safety
guarantees in [21], [22] remain practical limitations for real-
world implementation.
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(a) Straight-road experiment

(b) Ring-road experiment

Fig. 1. Overview of the miniature experiments. Two main scenarios are
under consideration: (a) Open straight-road scenario, where all the vehi-
cles drive in a fleet with the head vehicle assigned a prescribed velocity
trajectory. (b) Closed ring-road scenario, where each vehicle follows its
predecessor. The code and videos of our experiments can be found in
https://github.com/soc-ucsd/DeeP-LCC.

Data-driven predictive control has a great potential to re-
solve the aforementioned issues [23], [24]. Particularly, the
recently proposed Data-EnablEd Predictive Leading Cruise
Control (DeeP-LCC) strategy, which combines the Data-
EnablEd Predictive Control (DeePC) [25] with the LCC
framework [12], promises to improve traffic performance with
collision-free guarantees [26], [27]. DeeP-LCC enables the
CAVs to directly utilize measurable traffic data to obtain
wave-dampening strategies, where input/output constraints are
incorporated to avoid collision and actuation saturation. Rigor-
ous controllability/observability analysis in [27] has provided
theoretical insights for DeeP-LCC, and the extensive simu-
lations therein have confirmed the potential of DeeP-LCC in
mitigating traffic waves and reducing fuel consumption while
ensuring safety. To the best of our knowledge, however, all
the existing data-driven techniques for stabilizing traffic flow
(e.g., [21], [22], [26]–[28]) have only been verified via virtual
traffic simulations. It remains unclear about the performance of
these data-driven techniques for CAV control using real-world
noisy data in a practical setup.

A. Contributions

In this paper, we provide the first experimental results
to validate the performance of data-driven predictive control
in dissipating traffic waves. Precisely, a recent data-driven
technique for CAV control, namely, DeeP-LCC, is under
consideration. As shown in Fig. 1, we carry out real-world
experiments on a miniature traffic platform deployed with
robotic mini-vehicles. Compared to field tests with multiple
real vehicles in [7], [29]–[31], miniature experiments have
indeed received increasing attention for validating CAV tech-
nologies due to its greater flexibility, higher scalability, and

simpler reproducibility, with lower labor and material costs;
see, e.g., [32]–[34]. Meanwhile, real-world factors such as
vehicle dynamics and communication/computation delay can
be naturally integrated in the miniature experiments, rather
than being artificially generated based on pre-designed models
in the simulation-related work [21], [22], [26]–[28]. In our
experiments, we consider two specific traffic scenarios: open
straight-road scenario and closed ring-road scenario, both of
which are common in mixed traffic studies [2], [7], [11],
[13]. The robotic mini-vehicles are categorized into two types:
HDVs and CAVs. A car-following model is utilized to capture
the behavior of HDVs, and DeeP-LCC is implemented for
CAVs using real driving data collected from the platform. In
particular, the contributions of this paper are as follows.
• First, our experimental results are the first one that val-

idate data-driven predictive control for dissipating traffic
waves in a real-world environment. We provide a detailed
implementation methodology of DeeP-LCC, including
pre-collecting traffic data, estimating traffic equilibrium,
and executing predictive control, which is capable of
interacting with practical traffic flow and dealing with
real-world trajectory data.

• Second, going beyond the simulation setup in [27], we
consider the influence of CAV penetration rates and
spatial locations of CAVs to demonstrate the applicability
and benefits of DeeP-LCC. Compared with numerical
simulations [21], [22], [26], [28], our experiments natu-
rally integrate multiple practical factors of real-world op-
erating features, including noisy measurement, uncertain
low-level vehicle dynamics and real-world communica-
tion and computation delays. Our experimental results
reveal that DeeP-LCC overcomes the implementation
challenges brought by these practical factors.

• Third, our experiments reproduce the phenomenon of
stop-and-go traffic waves not only in the straight-road
scenario under external disturbances, but also in the
ring-road scenario with no bottlenecks. Unlike existing
empirical studies which focus on one single scenario
(e.g., [7], [29]–[31]), the capability of DeeP-LCC in dis-
sipating traffic waves is validated in both scenarios, which
reveals the generalization and flexibility property of data-
driven predictive control. These experimental results val-
idate the potential of data-driven techniques, particularly
DeeP-LCC, for dissipating stop-and-go waves via CAVs.

The rest of this paper is organized as follows. Section II
reviews the basics of DeeP-LCC. Section III introduces the
miniature platform and experiment design, and the implemen-
tation of DeeP-LCC is detailed in Section IV. Experimental
results are presented in Section V. Section VI concludes this
paper.

II. OVERVIEW OF DEEP-LCC FOR MIXED TRAFFIC FLOW

In this section, we review the basics of the DeeP-LCC
strategy [26], [27] for CAV control in mixed traffic flow.

A. Input/Output Data for Mixed Traffic Control
We consider a general mixed traffic system, where there

exist n + 1 vehicles (n ∈ N), including one head vehicle,

https://github.com/soc-ucsd/DeeP-LCC
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Fig. 2. Schematic for DeeP-LCC. The head vehicle is indexed as 0, behind which there exist n vehicles consisting of m CAVs and n −m HDVs with
unknown driving dynamics. DeeP-LCC is deployed in a cloud server, which is responsible for data collection, equilibrium estimation/design, and predictive
control via DeeP-LCC. The collected data include velocity signals of all the vehicles (represented by black arrows), spacing signals of the CAVs (represented
by blue arrows), and control input signals of the CAVs (represented by red arrows).

indexed as 0, and n following vehicles, indexed from 1 to n.
Among the n following vehicles, we have m CAVs (m ∈ N,
m ≤ n) and n−m HDVs. The behaviors of the CAVs can be
controlled directly, while the HDVs’ car-following dynamics
are fixed but unknown. The schematic of the mixed traffic
system is shown in Fig. 2. Define Ω = {1, 2, . . . , n} as the
set of all the vehicle indices, and S = {i1, i2, . . . , im} ⊆ Ω
(i1 < i2 < . . . < im) as the set of the CAV indices. Note that
the cardinality of S, i.e., |S| = m, represents the number of
the CAVs, and thus m/n corresponds to the CAV penetration
rate, while the specific elements in S represent the CAVs’
spatial locations in traffic flow [35]. We denote si(t), vi(t) and
ai(t) as the inter-vehicle spacing, velocity and acceleration of
vehicle i at time t.

The main objective for CAV control in mixed traffic is
to stabilize traffic flow at a certain equilibrium, where each
vehicle moves with an identical equilibrium velocity v∗ and
a corresponding equilibrium spacing. The particular value of
v∗ can be deduced from the steady-state behavior of the head
vehicle [36], while the equilibrium spacing for the HDVs is
practically non-trivial to estimate and could be even time-
varying. In contrast, the equilibrium spacing of CAVs can be
designed, which is denoted as s∗. For notational simplicity,
we consider a homogeneous setup for the equilibrium spacing
of the CAVs, but all the results can be easily generalized to
the heterogeneous scenario. The specific design of s∗ will be
detailed in Section IV.

We next specify the input/output definition in mixed traffic.
Similar to [8], [17], [22], the control input signal ui(t) (i ∈ S)
of each CAV is assumed to be the acceleration ai(t), i.e.,
ai(t) = ui(t). Lumping the control inputs of all the CAVs
yields the aggregate control input of the entire mixed traffic:

u(t) =
[
ui1(t), ui2(t), . . . , uim(t)

]> ∈ Rm. (1)

Meanwhile, an external input signal ε(t) ∈ R is also introduced
for the mixed traffic system, given by

ε(t) = ṽ0(t) = v0(t)− v∗, (2)

which is the velocity error of the head vehicle from the
equilibrium velocity v∗.

For the system output, we define the velocity error of each
vehicle from the equilibrium as ṽi(t) = vi(t) − v∗ (i ∈ Ω),

and the spacing error of each CAV from the equilibrium as
s̃i(t) = si(t) − s∗ (i ∈ S). These measurable signals are
lumped into the aggregate output of the mixed traffic system:

y(t) =
[
ṽ1(t), ṽ2(t), . . . , ṽn(t), s̃i1(t), s̃i2(t), . . . , s̃im(t)

]>
,

(3)
where y(t) ∈ Rn+m. Note that most existing studies, includ-
ing [8], [16], [17], [22], [37], consider state-feedback control
by utilizing the velocity errors and spacing errors of all the
vehicles in Fig. 2. They assume that the state vector of mixed
traffic, defined as

x(t) =
[
ṽ1(t), s̃1(t), ṽ2(t), s̃2(t), . . . , ṽn(t), s̃n(t)

]>
, (4)

where x(t) ∈ R2n, is directly measurable. This is impractical
since the equilibrium spacing of the HDVs is unknown, and
thus the spacing errors of the HDVs, i.e., s̃i(t) (i ∈ Ω\S),
cannot be acquired in practice. In contrast, DeeP-LCC only
employs measurable traffic data y(t) in (3) for control design.

B. Non-Parametric Representation of Mixed Traffic Behavior

Model-based strategies for mixed traffic control typically
establish a parametric mixed traffic model for controller de-
sign. In particular, after specifying the system input, output
and state in (1)-(4), a discrete-time state-space model for the
mixed traffic can be derived, which is in the form of [26], [27]{

x(k + 1) = Adx(k) +Bdu(k) +Hdε(k),

y(k) = Cdx(k),
(5)

where Ad, Bd, Cd, Hd are system matrices of compatible di-
mensions. In [8], [16], [17], typical car-following models, e.g.,
IDM [38] and OVM [39], are utilized for dynamical modeling
of HDVs, and longitudinal vehicle dynamics are incorporated
for CAVs. After linearization around the equilibrium, lumping
the dynamics of all the HDVs and CAVs yields the mixed
traffic system model (5); see [27, Section II] for an exact form
under the LCC framework.

However, the car-following dynamics for individual HDVs
are non-trivial to identify, and thus the system matrices
Ad, Bd, Cd, Hd in the parametric model (5) are unknown
in practice. Instead of using the parametric model (5),
DeeP-LCC relies on Willems’ fundamental lemma [40] to
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establish a data-centric non-parametric representation using
traffic data in (1)-(3). For notations, given a collection of
vectors a1, a2, . . . , am, we denote col(a1, a2, . . . , am) =[
a>1 , a

>
2 , . . . , a

>
m

]>
.

Definition 1: The signal ω = col (ω(1), ω(2), . . . , ω(T )) of
length T (T ∈ N) is persistently exciting of order l (l ∈ N, l ≤
T ), if the following Hankel matrix is of full row rank

Hl(ω) :=


ω(1) ω(2) · · · ω(T − l + 1)
ω(2) ω(3) · · · ω(T − l + 2)

...
...

. . .
...

ω(l) ω(l + 1) · · · ω(T )

 . (6)

DeeP-LCC begins by collecting a sequence of input/output
data of length T from the mixed traffic system (5) with
sampling time interval ∆t, given as

ud = col
(
ud(1), ud(2), . . . , ud(T )

)
∈ RmT ,

εd = col
(
εd(1), εd(2), . . . , εd(T )

)
∈ RT ,

yd = col
(
yd(1), yd(2), . . . , yd(T )

)
∈ R(n+m)T .

(7)

Then, these pre-collected data are partitioned into two parts:
1) past data with a time horizon of Tini (Tini ∈ N) and 2)
future data with a time horizon of N (N ∈ N). Precisely, the
data partition is as follows[

Up

Uf

]
:= HTini+N (ud),

[
Ep

Ef

]
:= HTini+N (εd),[

Yp
Yf

]
:= HTini+N (yd),

(8)

where Up and Uf consist of the first Tini block rows and the
last N block rows of HTini+N (ud), respectively (similarly
for Ep, Ef and Yp, Yf ). For the subsequent non-parametric
behavior representation, we introduce two assumptions.

Assumption 1: The pre-collected combined input data, de-
fined as ûd = col

(
ud(1), εd(1), . . . , ud(T ), εd(T )

)
, is persis-

tently exciting of order Tini +N + 2n.
Assumption 2: The mixed traffic system (5) is controllable

and observable by regarding u(t) and ε(t) as a combined input
û(t), i.e., û(t) = col (ε(t), u(t)).

The persistent excitation requirement in Assumption 1 can
be easily satisfied in experiments given the nature of uncertain
human behavior in εd and an i.i.d. random setup of ud in data
collection. The controllability and observability of the mixed
traffic system (5) in Assumption 2 have been proved under
a mild condition in [27, Theorem 1]. Motivated by Willems’
fundamental lemma [40] and standard DeePC [25], we have
the following result for DeeP-LCC [27].

Proposition 1: At the time step t, we define

uini = col (u(t− Tini), u(t− Tini + 1), . . . , u(t− 1)) ,

u = col (u(t), u(t+ 1), . . . , u(t+N − 1)) ,
(9)

as the past control input sequence of length Tini and the future
control input sequence of length N , respectively (similarly for
εini, ε and yini, y). Under Assumptions 1 and 2, any length-

(Tini +N) trajectory of the mixed traffic system (5), denoted
as col(uini, εini, yini, u, ε, y), can be constructed as

Up

Ep

Yp
Uf

Ef

Yf

 g =


uini
εini
yini
u
ε
y

 , (10)

where g ∈ RT−Tini−N+1. Furthermore, if Tini ≥ 2n, y is
uniquely determined from (10), ∀(uini, εini, yini, u, ε).

Willems’ fundamental lemma [40] reveals that for a con-
trollable linear time-invariant (LTI) system, the subspace
consisting of all valid trajectories is identical to the range
space of data Hankel matrices of the same order generated
by sufficiently rich inputs. DeeP-LCC applies this result to
mixed traffic control and derives the representation (10), which
allows one to use past input/output data to predict the future
input/output behavior of the mixed traffic system without
explicitly identifying a parametric mixed traffic model (5).

C. Formulation of DeeP-LCC
The non-parametric representation (10) can be utilized for

predictive control in mixed traffic. For the linearized mixed
traffic system (5) with noise-free data (7), we formulate the
following optimization problem

min
g,u,y

J(y, u)

subject to (10),
ε = ε̂,

u ∈ U , y ∈ Y,

(11)

where J(y, u) denotes a cost function, and u ∈ U , y ∈ Y
represents input/output constraints. Note that the future exter-
nal input sequence ε cannot be designed; instead, we use ε̂ to
represent its future estimation in (11). At the time step t, given
past trajectory (uini, εini, yini), solving (11) offers the optimal
future trajectory (u, y).

Problem (11) is valid for the linear time-invariant mixed
traffic system (5) with noise-free data. In practical traffic
flow, the HDVs’ car-following behavior is nonlinear and non-
deterministic, and the collected data from sensors are also
noise-corrupted. In this case, the non-parametric behavior
representation (10) is not consistent, and thus the optimization
problem (11) might have no feasible solutions. To deal with
nonlinear and non-deterministic mixed traffic flow, a regular-
ized version of (11) is proposed to compute the optimal control
input in [27] , given as follows

min
g,u,y,σy

J(y, u) + λg ‖g‖22 + λy ‖σy‖22

subject to


Up

Ep

Yp
Uf

Ef

Yf

 g =


uini
εini
yini
u
ε
y

+


0
0
σy
0
0
0

 ,
ε = ε̂,

u ∈ U , y ∈ Y,

(12)
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Fig. 3. Schematic for the architecture of the experimental platform. The
cameras capture a top view image of the road network on the sand table and
transmit the image to the cloud server via USB cables. The mini-vehicles
on the sand table transmit its state information to the cloud server via WiFi.
The cloud server then integrates the received information and calculates the
control command, which is then transmitted to each mini-vehicle.

which is the main optimization problem in DeeP-LCC at
each time step t. In (12), a slack variable σy ∈ R(n+m)Tini

is introduced, and it is penalized with a weighted two-norm
value in the regulated cost function. A sufficiently large value
of the weight coefficient λy > 0 allows for σy 6= 0 only
if the equality constraint is infeasible. In addition, a two-
norm penalty on g with a weight coefficient λg > 0 is also
incorporated to avoid over-fitting of noisy data. This regulation
has been shown to be consistent with distributional two-norm
robustness [41], [42]. More details on DeeP-LCC can be
found in [26], [27].

III. EXPERIMENTAL DESIGN FOR DEEP-LCC VALIDATION

In this section, we introduce our experimental platform and
setup for the validation of DeeP-LCC in mixed traffic.

A. Experiment Platform

We test DeeP-LCC in a specially designed platform at Ts-
inghua University [43]. The platform architecture is shown in
Fig. 3. A sand table of miniature road network is constructed,
whose size is 9 m× 5 m and the lanes are of width 240 mm.
Commercially available robotic mini-vehicles (on-board CPU:
Raspberry Pi 4 Model B) are deployed on the sand table and
they are of size 200 mm× 200 mm× 130 mm; see Fig. 4 for
illustration. A cloud server (CPU: Intel Core i7-10700K, GPU:
NVIDIA GeForce RTX 2080 SUPER) collects platform data
and computes the control commands for each mini-vehicle.
Four cameras (focal length: 2.4 mm, operating frame rate:
30 FPS, image resolution: 1920 × 1080) are installed on the
ceiling to take a real-time top view picture of the sand table
for vehicle localization in the road network. We present the
details of state measurement and control computation below.

Fig. 4. Experimental robotic mini-vehicles. The mini-vehicles receive velocity
and steering angles commands from the cloud server, and have on-board
actuators (motors and steering gears) to execute these commands. A piece of
colored cardboard is sticked to the top of each vehicle for vehicle localization
via cameras installed on the ceiling.

TABLE I
LOCALIZATION AND WIFI COMMUNICATION DELAYS

Mean Value Standard Deviation
Localization Delay 49.55ms 1.39ms

WiFi Communication Delay 1.71ms 0.66ms

TABLE II
STATIC MEASUREMENT NOISE

Mean Value Standard Deviation
Position.X 2.28mm 1.77mm
Position.Y 6.13mm 1.16mm

Heading Angle 0.032 rad 0.0159 rad
Velocity −0.0010m/s 0.0054m/s

1 Position.X and Position.Y represent the horizontal axis and the
vertical axis in the top view in Fig. 3, respectively.

2 The mean value of measurement noise can also be regarded as an
average measurement error.

1) State measurement: For each mini-vehicle, the measur-
able signals in the platform include velocity, position and
heading angle. Specifically, the velocity signal is measured
by the on-board sensors of each vehicle, and then transmitted
to the cloud server via WiFi 6 (AX3 Pro WLAN Router). For
localization, the real-time top view picture of the sand table
taken by the cameras is transmitted to the cloud server via
USB 3.1 cables. The cloud server then processes this picture
to measure the position and heading angle of each vehicle in
the road network by detecting the color cardboard installed on
the vehicle top via OpenCV (see Fig. 4 for the hardware layout
of the mini-vehicles). It is inevitable that the whole system
has time delays of localization and WiFi communications. We
have conducted 7500 random tests to get statistics for these
delays, which are listed in Table I. The measurement noise of
velocity, position and heading angle are also tested for a time
period of 500 s, and the results are listed in Table II.

2) Control computation: The executable control commands
for the mini-vehicles include command velocity and command
steering angle, which are computed and issued by the cloud
server. The cloud server has a prescribed trajectory for each
vehicle to follow, and the longitudinal control and lateral
control are decoupled to derive the command velocity and
steering angle, respectively. For the longitudinal control, either
an HDVs’ car-following model or DeeP-LCC is adopted,
depending on the type of the vehicle (HDV or CAV). For the
lateral control, a typical preview trajectory tracking controller
is used [44]. These control commands are then transmitted to
each vehicle via WiFi and executed by the on-board actuators
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Fig. 5. Real driving performance of HDVs under the OVM model (13) in
the experiment platform. The OVM parameters are shown in Table III. The
profile of “Ideal OVM” represents the velocity trajectory directly from OVM
with no low-level dynamics, while the profile of “Real HDV” represents the
real-world trajectory of the mini-vehicles in the experiments.

(motors and steering gears). As for the software, MATLAB
R2021a is utilized for control computation in the cloud server,
and ROS Melodic is employed for interaction between the
server and the vehicles.

For the longitudinal control of HDVs, we utilize a car-
following model to capture HDVs’ driving behavior, as mo-
tivated by existing experimental work on mixed traffic [33],
[34]. We consider the OVM model in our implementation [17],
[39], which is in the form of

ai(t) = α (vdes (si(t))− vi(t)) + βṡi(t), i ∈ Ω\S, (13)

where ṡi(t) = vi−1(t) − vi(t) denotes the relative velocity
of vehicle i at time t, and α, β > 0 denote the sensitivity
coefficients. We use vdes(s) to represent the spacing-dependent
desired velocity for HDVs, given by a continuous piece-wise
function

vdes(s) =


0, s ≤ sst;
vmax

2

(
1− cos(π

s− sst
sgo − sst

)

)
, sst < s < sgo;

vmax, s ≥ sgo,
(14)

where vmax denotes the maximum velocity, and sst, sgo denote
the stand-still spacing and free-driving spacing, respectively.

We note that the vehicle acceleration is regarded as the
control signal in both the OVM model (13) and DeeP-LCC
(12), but the executable longitudinal control command for the
mini-vehicles in the platform is the velocity signal. To address
this gap, the command acceleration ai(t) of each vehicle is
translated into the command velocity signal vi,cmd(t) in the
cloud server by

vi,cmd(t) = vi(t− 1) + ai(t)∆treal, (15)

where vi(t − 1) denotes the measured velocity of vehicle i
at the last time step t − 1, and ∆treal denotes the real time
interval between time t and time t− 1, which keeps updated
during the real-time experiments.

Remark 1 (Uncertain lower-level dynamics): Due to the up-
dating mechanism (15) of control commands and the original
low-level dynamics of the mini-vehicles, the real driving be-
havior of the mini-vehicles shows some inconsistency with the
ideal car-following model. Consider a straight-road scenario
where the head vehicle has a sinusoid perturbation and one
HDV with OVM following behind. The comparison results of

TABLE III
PARAMETER SETUP FOR OVM

Symbol Meaning Value
sst Spacing lower bound 0.5
sgo Spacing upper bound 1.1
α Sensitivity coefficient 1.2 (straight road) or 2.4 (ring road)
β Sensitivity coefficient 1.8 (straight road) or 3.6 (ring road)

vmax Maximum velocity 0.6

TABLE IV
VELOCITY OF THE HEAD VEHICLE IN STRAIGHT-ROAD EXPERIMENTS

Segment Velocity Trajectory
C → D → A→ B v0 = vc

B → C v0 = vc − 0.13 sin (4πdB−0/dB−C)

1 dB−0: the distance from vehicle 0 to point B; dB−C: the length
of the road segment B → C.

the velocity trajectories between the ideal OVM model (13)
(see Table III for parameter values) and the real-world driving
behavior observed in the platform are shown in Fig. 5. This
influence of uncertain low-level dynamics from the control
command in the cloud server to the real driving behavior of
the vehicles is naturally integrated and tested in our experiment
platform.

B. Experiment Design

In our experiments, we have considered two different traffic
scenarios: straight-road experiment and ring-road experiment.

1) Straight-road experiment: We first consider an open
single-lane track of lap 17.5 m in the platform; see A→ B →
C → D → A in Fig. 6(a). A fleet of 6 mini-vehicles running
along this track is deployed in this experiment. Although
there exist four bends where the vehicles need to turn (see
the location at A,B,C,D), the longitudinal control strategies
remain unchanged for each vehicle. Thus, this experiment is
close to the scenario where a fleet of vehicles are driving along
an infinite-length straight-road.

Particularly, the velocity of the head vehicle (vehicle 0 in
Fig. 6(a)) is pre-designed. Similar to the simulation stud-
ies [18], [45] and experimental work [36], [46], the head
vehicle suffers from a sinusoid perturbation when it drives
along B → C, while in other segments it maintains a constant
velocity vc = 0.3 m/s. This setup simulates the scenario where
there exists an external disturbance on the road B → C (e.g.,
cut in, ramp in/out, and intersection), which causes the head
vehicle to be caught in traffic waves. The designed velocity
trajectory of the head vehicle is shown in Table IV.

2) Ring-road experiment: Motivated by the seminal field
experiments [2], [7], we further consider a single-lane circular
track scenario of circumference 6.77 m. As shown in Fig. 6(b),
a fleet of 9 mini-vehicles are involved in this experiment,
driving in the counter-clockwise direction (E → F →
G → H → E). Compared with the straight-road experiment,
there is no head vehicle that leads the whole fleet and each
vehicle needs to follow its predecessor. Additionally, there
is no external disturbance incorporated in the experiment.
We aim to reproduce the traffic wave phenomenon without
bottlenecks [2]. Similarly to the experimental setup in [7],
four phases are included in this experiment:



7

(a) straight-road experiment (b) ring-road experiment

Fig. 6. Top view of the two experiments. The yellow dashed line represents the prescribed trajectory of each vehicle in the experiments. (a) In the experiments
for the straight-road scenario, the vehicles drive along the direction A→ B → C → D → A. (b) In the experiments for the ring-road scenario, the vehicles
drive along the direction E → F → G→ H → E.

(a) In the beginning, all the vehicles are uniformly distributed
on the ring-road.

(b) Initially t1 = 0, all the vehicles are HDVs (utilizing the
OVM model) and they start to drive from idle velocity
0.05 m/s.

(c) At some time point t2 (t2 > t1), one vehicle is switched
to CAV under DeeP-LCC control.

(d) At a later time point t3 (t3 > t2), the CAV is switched
back to HDV (utilizing the OVM model). All the vehicles
continue to drive until the end of the experiment.

IV. IMPLEMENTATION OF DEEP-LCC FOR
MIXED TRAFFIC FLOW

This section presents the implementation methodology of
DeeP-LCC in real experiments.

A. Detailed Design of DeeP-LCC

We first present some details in the DeeP-LCC formula-
tion (12). A quadratic form of the cost function J(y, u) is
under consideration

J(y, u) =
t+N−1∑
k=t

(
‖y(k)‖2Q + ‖u(k)‖2R

)
, (16)

where Q = diag(Qv, Qs) with Qv = diag(wv, . . . , wv) ∈
Rn×n, Qs = diag(ws, . . . , ws) ∈ Rm×m and R =
diag(wu, . . . , wu) ∈ Rm×m. The specific weight coefficients
wv, ws, wu represent the penalty for the velocity errors of all
the vehicles, the spacing errors of all the CAVs, and the control
inputs of the CAVs, respectively.

To guarantee driving safety and avoid control saturation, the
input/output constraints are designed as follows. Both a lower
bound and an upper bound are imposed on the spacing errors
of the CAVs, in the sense that not only rear-end collisions for
the CAVs can be avoided, but also the CAVs tend not to leave
an extremely large inter-vehicle distance, which might cause
other vehicles to cut in. Precisely, we have

s̃min ≤ s̃i ≤ s̃max, i ∈ S, (17)

where s̃min, s̃max denote the minimum and maximum spacing
error, respectively. Given the definition of system output (3),

the output constraint y ∈ Y in the original DeeP-LCC
formulation (12) is then specified as

s̃min ≤ IN ⊗
[
0m×n Im

]
y ≤ s̃max. (18)

Considering the practical actuation limit of individual vehicles,
the input constraint u ∈ U in (12) is formulated as

amin ≤ u ≤ amax, (19)

where amin and amax denote the minimum and the maximum
acceleration, respectively.

For the estimation ε̂ of the external input ε, i.e., the velocity
error of the head vehicle from the equilibrium velocity v0−v∗,
we assume that

ε̂ = 0N , (20)

where 0N denotes a N×1 vector of all zeros. This assumption
is valid since the head vehicle always attempts to maintain its
current equilibrium velocity. With an appropriate estimation of
the equilibrium velocity, which can be deduced from historic
trajectories [36], [47], this assumption (20) has been confirmed
in traffic simulations [27] to be able to yield satisfactory
control performance. We will provide further details on the es-
timation of the real-time equilibrium velocity in Section IV-B2.

With this detailed design, the DeeP-LCC problem (12) can
be specified as

min
g,u,y,σy

t+N−1∑
k=t

(
‖y(k)‖2Q + ‖u(k)‖2R

)
+λg ‖g‖22+λy ‖σy‖22

subject to


Up

Ep

Yp
Uf

Ef

Yf

 g =


uini
εini
yini
u
ε
y

+


0
0
σy
0
0
0

 ,
ε = 0N ,

amin ≤ u ≤ amax,

s̃min ≤ IN ⊗
[
0m×n Im

]
y ≤ s̃max.

(21)
This is the final optimization control problem solved at each
time step in the experiments. Problem (21) can be further
reformulated as a quadratic program (QP), and be solved
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efficiently via commercial solvers. The MATLAB QP solver
quadprog is employed in the experiments.

B. Implementation of DeeP-LCC

We now present the implementation of DeeP-LCC, which
consists of two parts: offline data collection and online pre-
dictive control.

1) Offline Data Collection: Before presenting the data
collection process, we first need to clarify the vehicles that
are incorporated into the DeeP-LCC formulation. In practice,
it is not necessary to collect the driving data of all the vehicles
in traffic flow for CAV controller design.
• In the straight-road experiment shown in Fig. 6(a), we

have 6 vehicles in total, and all the vehicles are involved
in DeeP-LCC. Vehicle 0 is literally the first vehicle
of the fleet, and also serves as the “head vehicle” in
DeeP-LCC (see Fig. 2). Different cases of the CAV
number and locations, i.e., the choice of S, will be under
consideration.

• In the ring-road experiment shown in Fig. 6(b), there
exist 9 vehicles in the traffic system, but only 5 of
them, vehicles 3 − 7, are incorporated into DeeP-LCC.
Particularly, vehicle 3 is regarded as the head vehicle in
DeeP-LCC formulation, and vehicle 5 will be switched
to CAV at certain time period.

For each choice of S, i.e., the CAV number and locations,
independent experiments are carried out for data collection in
DeeP-LCC. For the HDVs, i.e., vehicle i with i ∈ Ω\S, they
have a fixed but unknown car-following dynamics (13). For the
CAVs (i ∈ S), it is required to have a prior controller with ac-
ceptable performance in data collection. One natural way is to
adopt the HDVs’ car-following model as the CAVs’ controller,
where random disturbances are added on the control input to
satisfy the persistent excitation requirement in Assumption 1.
Accordingly, we design the following CAVs’ control input for
data collection based on the OVM dynamics (13)

ui(t) = α (vdes (si(t))− vi(t)) + βṡi(t) + U[−δu, δu], (22)

where U[·, ·] denotes the uniform distribution and δu > 0
denotes the perturbation upper bound for control input. Note
that although we utilize a similar OVM model to control the
CAVs in data collection, the CAVs have no knowledge of the
driving behavior of the surrounding HDVs.

Additionally, the external input in DeeP-LCC, i.e., the
velocity of the head vehicle, should also be carefully designed,
in order to guarantee the persistent excitation of combined
input (consisting of control input and external input), as
required in Assumption 1. Precisely,
• For the straight-road experiment, the velocity of the head

vehicle is designed as

ε(t) = U[−δε, δε], (23)

where δε > 0 denotes the perturbation upper bound for
the velocity of the head vehicle. This design allows the
head vehicle to maintain the prescribed constant velocity
vc, while also suffering from random perturbations.

• For the ring-road experiment, the head vehicle, i.e.,
vehicle 3, needs to follow its own predecessor. Motivated
by the control strategy in [10], its acceleration is designed
as

ε(t) =α (vdes (si(t))− vi(t)) + βṡi(t)

− kr(vi(t)− vr) + U[−δu, δu].
(24)

In (24), the original OVM dynamics is utilized as (22)
in CAV’s control input for data collection. Moreover, a
feedback term kr(vi(t)− vr) is also added, enabling the
head vehicle to maintain a reference equilibrium velocity
vr = 0.25 m/s in data collection; otherwise, stop-and-go
waves might quickly occur and the collected data is far
from the equilibrium state.

Under the design of (22) combined with (23) or (24), given
sufficient data, the persistent excitation requirement in As-
sumption 1 is often satisfied, as verified in our experiments.

Then, we carry out independent experiments and collect the
original measurable traffic data for DeeP-LCC, including the
control input sequence ud, the external input sequence εd, and
raw output sequence ydraw. Particularly, instead of the output
y(t) defined in (3), we consider the raw output at time t,
defined as

yraw(t)=
[
v1(t), v2(t), . . . , vn(t), si1(t), si2(t), . . . , sim(t)

]>
,

(25)
where yraw(t) ∈ Rn+m contains no information of the equi-
librium traffic state, but consists of the original data of vehicle
velocity and spacing. This raw output signal and the defined
output signal have the following relationship

y(t) = yraw(t)− [

n︷ ︸︸ ︷
v∗, . . . , v∗,

m︷ ︸︸ ︷
s∗, . . . , s∗]>. (26)

By design, we have prior knowledge of equilibrium velocity
in offline data collection, which is v∗ = vc in straight road
experiments and v∗ = vr in ring road experiments. The
equilibrium spacing s∗ is also a designed value. Therefore,
we can obtain the pre-collected data sequences ud, εd, yd, and
then construct data Hankel matrices by (8).

2) Online Predictive Control: The online control process
is sequentially divided into two steps: 1) Past data collection
and equilibrium estimation, and 2) control computation and
implementation. This process is executed in a receding horizon
manner.

(a) Past data collection and equilibrium estimation

During control process, the following raw past data before
current time t should be collected:

u(t− Tini), u(t− Tini + 1), . . . , u(t− 1);

v0(t− Tini), v0(t− Tini + 1), . . . , v0(t− 1);

yraw(t− Tini), yraw(t− Tini + 1), . . . , yraw(t− 1),
(27)

which correspond to control input, head vehicle velocity, and
raw output, respectively. The control input sequence can be
directly utilized to construct uini by (9), but to obtain εini, yini,
the current equilibrium state needs to estimated.

Particularly, the equilibrium velocity v∗ of traffic flow needs
to be estimated and updated, while the equilibrium spacing s∗
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Algorithm 1 Implementation of DeeP-LCC
Input: Pre-collected traffic data Hankel matrices Up, Uf ,

Ep, Ef , Yp, Yf , initial time t0, terminal time tf ;
1: Initialize past traffic data (uini, εini, yini) before t0;
2: while t0 ≤ t ≤ tf do
3: Collect raw past data in (27);
4: Estimate equilibrium velocity v∗ by (28) and design

equilibrium spacing s∗ by (29);
5: Update past traffic data (uini, εini, yini);
6: Solve (21) for optimal control input uopt =

col (uopt(t), uopt(t+ 1), . . . , uopt(t+N − 1));
7: Apply the input u(t)← uopt(t), u(t+ 1)← uopt(t+

1), . . . , u(t+Nc − 1)← uopt(t+Nc − 1) to the CAVs;
8: t← t+Nc;
9: end while

for the CAVs needs to be designed. At the time step t, we
utilize a natural approach for equilibrium velocity estimation,
given by

v∗ =
1

Tini

t−1∑
t−Tini

v0(t), (28)

which is obtained by averaging the past velocity of the head
vehicle from time t − Tini to time t − 1. Note that the
time horizon Tini is consistent with the past time horizon in
DeeP-LCC, and thus we can utilize the same collected past
data (27) in the control process for both equilibrium estimation
and DeeP-LCC formulation (21). For CAVs’ equilibrium
spacing, we consider a velocity-dependent spacing policy,
identical to the human driving policy in OVM (14) which
describes the relationship between current spacing and desired
velocity. Precisely, we have

s∗ = arccos

(
1− 2

v∗

vmax

)
· sgo − sst

π
+ sst, (29)

which is the inverse function of (14) given 0 ≤ v∗ ≤ vmax.
Note that although we design a human-type spacing policy for
the CAVs, the CAVs have no knowledge of the car-following
dynamics of the surrounding HDVs, as well as their individual
spacing policy.

With the equilibrium information (v∗, s∗) available, the past
sequences of external input εini and traffic output yini before
time t can be calculated based on the raw data in (27).

(b) Control computation and implementation

The DeeP-LCC problem (21) is numerically solved and the
obtained optimal control inputs are applied. At the time step
t, solving (21) provides the optimal control sequence in the
future time horizon N :

uopt = col (uopt(t), uopt(t+ 1), . . . , uopt(t+N − 1)) .
(30)

The first Nc (Nc ∈ N, Nc ≤ N ) steps of control inputs are
applied into the system, and the aforementioned process is
repeated in a receding horizon manner after setting time t to
time t + Nc. The implementation procedures are shown in
Algorithm 1. The code for DeeP-LCC is available at https:
//github.com/soc-ucsd/DeeP-LCC.

TABLE V
PARAMETER SETUP FOR DEEP-LCC

Symbol Meaning Value
δε Perturbation in (23) for data collection 0.05
δu Perturbation in (22), (24) for data collection 0.2
kr Feedback gain in (24) for data collection 8
T Length for pre-collected data 1500
N Length for future data horizon 50
Tini Length for past data horizon 20
Nc Control horizon for predicted input 10
s̃max Upper bound of spacing error 1.2
s̃min Lower bound of spacing error −0.4
amax Upper bound of acceleration 0.4
amin Lower bound of acceleration −0.4
wv Weight coefficient for velocity error 5
ws Weight coefficient for spacing error 40/k
wu Weight coefficient for control input 2/k
λg Regularized coefficient for g 10
λy Regularized coefficient for σy 105

1 k represents the CAV number, which could be 1 or 2 in the
experiments.

Remark 2 (Time-varying equilibrium states): Compared
with standard DeePC [25], DeeP-LCC includes an equilib-
rium estimation process for implementation, since practical
traffic flow has time-varying equilibrium states. In our exper-
iments, the offline data collection is carried out around one
prescribed equilibrium state (see Fig. 2). Since the system
output (3) is defined as error signals from equilibrium, we
assume that the error dynamics of mixed traffic around dif-
ferent equilibrium states are similar to each other, and they
are already captured in the data Hankel matrices (8). Still, we
have observed that such a simple implementation strategy has
allowed DeeP-LCC for effectively mitigating traffic perturba-
tions in the experiments. Note that Algorithm 1 may have a
comprised optimization performance, due to the inconsistency
between the traffic equilibrium when collecting data and the
current traffic condition when applying data-driven predictive
control. One future direction is thus to collect traffic data from
different equilibrium states and adaptively choose appropriate
data in the online predictive control process.

V. EXPERIMENTAL RESULTS

This section presents the experimental results for validation
of DeeP-LCC. The parameters of the OVM model for HDVs
are listed in Table III, and the DeeP-LCC parameter setup
is listed in Table V. The sampling time interval ∆t for
DeeP-LCC offline data collection is chosen to be 50 ms, and
the offline data are all collected around an velocity of 0.3 m/s.

A. Straight-road Experiments

In the straight-road experiments, recall that the head vehicle
drives according to the velocity trajectory in Table IV. For
the following five vehicles, we consider various mixed traffic
cases depending on the number and location of the CAV(s),
i.e., the choice of S. Particularly, we consider five cases: S =
∅, {1}, {2}, {1, 3}, {2, 4} (the case S = ∅ corresponds to the
scenario where all the vehicles are HDVs).

Fig. 7 demonstrates the snapshots of the recorded video
from different viewing angles in the experimental platform.
The velocity profiles in different cases of S are shown in

https://github.com/soc-ucsd/DeeP-LCC
https://github.com/soc-ucsd/DeeP-LCC
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(a) All the vehicles are HDVs (b) DeeP-LCC with S = {2}
Fig. 7. Snapshots of the straight-road experiments under different cases of mixed traffic. The vehicle fleet is running on the B → C road segment, as
shown in Fig. 6(a). Different camera angles are incorporated to provide a full view of the experimental process. The complete video can be found in
https://www.youtube.com/watch?v=ZZ2cWhapqpc. (a) All the vehicles are HDVs. (b) The vehicle indexed as 2 (see the vehicle below the yellow angle, or
the vehicle highlighted in the yellow box) is CAV under DeeP-LCC control.

Fig. 8, where the head vehicle is shown in black and the
following vehicles are colored in gray for HDVs and red
for CAVs. As clearly observed from Fig. 7(a), when all the
vehicles are HDVs, the entire vehicle fleet is caught up in the
traffic wave triggered by the external sinusoid perturbation in
the B → C road segment. The inter-vehicle distances are
rapidly changing, and the velocity profiles in Fig. 8(a) further
show that the amplitude of the velocity oscillation is amplified
against the traffic moving direction, from the head to the tail.
Even after the vehicle fleet passes the B → C road segment,
i.e., the external disturbance is no longer imposed, an apparent
traffic wave still persists for a while, until all the HDVs
finally return to the equilibrium. This experiment reproduces
the traffic wave phenomenon when there exist some apparent
wave triggers, such as road bottlenecks or lane changes.

Then, one or several vehicles in this experiment are changed
from HDVs to CAVs with DeeP-LCC. Fig. 7(b) demonstrates
the snapshot when the second following vehicle is CAV, i.e.,
S = {2}. It is well-observed that the traffic instabilities are
apparently reduced and the following vehicles keep a relatively

TABLE VI
REDUCTION OF ASVE FROM EQUILIBRIUM AT STRAIGHT-ROAD

EXPERIMENTS

ASVE Reduction from EE ASVE Reduction from PE
S = {1} 6.09% 50.15%
S = {2} 8.99% 67.96%
S = {1, 3} 9.40% 67.68%
S = {2, 4} 9.54% 73.14%

1 EE: estimated equilibrium, which is set as (28).
2 PE: prescribed equilibrium, which is set as vc = 0.3m/s.

stable inter-vehicle distance. As shown in Fig. 8(c) (the veloc-
ity profiles), the propagation of traffic waves occurring from
the sinusoid perturbation is mitigated to a large extent. Similar
results are observed in other choices of S, including the case
with one CAV or two CAVs; see Fig. 8 for demonstrations.
These results reveal the capability of DeeP-LCC in dissipating
stop-and-go waves induced from external perturbations.

We further use an index of accumulated squared velocity
error (ASVE) [12], [27] to quantify the traffic instabilities at
different mixed traffic cases (i.e., different values of S), given

https://www.youtube.com/watch?v=ZZ2cWhapqpc
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(a) All the vehicles are HDVs

(b) DeeP-LCC with S = {1} (c) DeeP-LCC with S = {2}

(d) DeeP-LCC with S = {1, 3} (e) DeeP-LCC with S = {2, 4}
Fig. 8. Velocity profiles of all the vehicles in the straight-road experiments under different cases of mixed traffic. The black profiles, gray profiles, and red
profiles represent the velocity of the head vehicle, the HDVs and the CAV, respectively.

by ASVE =
∑n

1

∫ tf
t0

(vi(t)− v∗)2dt, which sums up the inte-
grated deviation of each vehicle from the equilibrium velocity
over time. In particular, we consider two kinds of equilibrium
velocity: 1) an estimated equilibrium velocity from historic
trajectory of the head vehicle, with the same definition of v∗

in (28); 2) a prescribed equilibrium velocity from designed
trajectory of the head vehicle, which is the same as the value
of vc in Table IV. The reduction rate of ASVE under different
choices of S compared with the case where all the vehicles
are HDVs is listed in Table VI. In all cases, DeeP-LCC
enables the CAV(s) to dampen traffic perturbations, with slight
performance differences depending on the penetration rate and
locations of CAVs. Note that we have considered an identical
parameter setup in different mixed traffic cases S, and thus the
performance might be compromised without parameter tuning
at each case of S. Nevertheless, these results have already
validated the effectiveness and applicability of DeeP-LCC in
stabilizing traffic flow in different market penetration rates and
CAV spatial locations.

Remark 3 (Wave-damping CAV control strategies emerging
from DeeP-LCC): From the snapshots in Fig. 7(b), we can
see an interesting response behavior of vehicle 2 when facing

a traffic wave: it leaves a relatively large distance from
the preceding vehicle when the perturbation happens, which
gives enough space to absorb the upcoming traffic wave;
then, it leads the following vehicles to smoothly catch up
with the traffic flow ahead, with smaller velocity overshoot
with respect to the estimated equilibrium. Indeed, similar
driving behavior patterns have been designed for the CAVs
to mitigate traffic waves before, which require the knowledge
on the future evolution of traffic waves [48], [49] or careful
tuning of controller structure and parameters [7], [50]. With
only measurable traffic data, by contrast, our DeeP-LCC
strategy achieves a desired behavior in Fig. 7(b) (one CAV,
sinusoid perturbation), and further demonstrates a cooperation
potential at multi-CAV cases with more complex behaviors
(see Fig. 8(d) and Fig. 8(e)) and an applicability to various
traffic scenarios (see the ring-road experiments next).

B. Ring-road Experiments

As clarified in Section III-B, the ring-road experiment is
motivated by the setup in [7]. At the beginning, all the vehicles
are initially HDVs under the OVM model. They are distributed
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(a) Snapshot at time 0 s (b) Snapshot at time 66.15 s (all the vehicles are HDVs)

(c) Snapshot at time 134.75 s (DeeP-LCC is activated for one vehicle) (d) Snapshot at time 197.35 s (all the vehicles are HDVs)

Fig. 9. Snapshots of the ring-road experiments at different times. From time 0 s to time 68.85 s, all the vehicles are HDVs under the OVM model. Since
time 68.85 s, DeeP-LCC is activated for vehicle 5. After time 139.05 s, DeeP-LCC is deactivated and all the vehicles are back again acting as HDVs under
the OVM model. The complete video can be found in https://www.youtube.com/watch?v=YhxCZImcZL4.

Fig. 10. Velocity profiles of all the vehicles in the ring-road experiments. The black profile and the red profile represent the velocity of vehicle 5 as an HDV
or CAV with DeeP-LCC, respectively. The gray profiles represent the velocity of the other vehicles in traffic flow. DeeP-LCC is activated for vehicle 5 at
time 68.85 s and deactivated at time 139.05 s.

uniformly in the ring-road system, and start to move from an
idle velocity of 0.05 m/s (see Fig. 9(a)). As observed in Fig. 10
(the velocity profiles), a traffic wave gradually appears: the
velocity of each vehicle begins to oscillate and the amplitude
grows up during the propagation. Finally, all the vehicles are
involved in a stop-and-go pattern. The snapshot at time 66.15 s
in Fig. 9(b) clearly shows that in the ring-road system, some
vehicles are clustered together with almost zero velocities
and small inter-vehicle distances, while some other vehicles
are moving with large velocities to try to catch up with its
predecessor. This experiment reproduces the phenomenon of
stop-and-go waves with no bottlenecks, similar to the field
experiments in [2], [7].

After the stop-and-go wave emerges, vehicle 5 is switched
to CAV under the DeeP-LCC control strategy at time
68.85 s. We can clearly observe from the velocity profiles
in Fig. 10 that the stop-and-go wave is rapidly mitigated.

After DeeP-LCC is activated, vehicle 5 completely dampens
the traffic wave and steers the ring-road traffic system to
the equilibrium, where all the vehicles are moving with a
homogeneous velocity and a stable spacing; see Fig. 9(c) for
the snapshot at time 134.75 s. Although some small velocity
oscillations still persist, DeeP-LCC keeps the traffic flow in
stability and prevents any traffic waves to reoccur. From time
139.05 s, DeeP-LCC is deactivated, and all the vehicles are
again under OVM control. Then, a stop-and-go wave reappears
after a while of system evolution without the influence of
DeeP-LCC, as shown in Fig. 9(d) and Fig. 10. This experi-
ment demonstrates the wave-dampening effect of DeeP-LCC
in closed traffic scenarios without bottlenecks.

C. Discussions on Practical Factors

In our experiments, several practical factors that are com-
mon in real-world applications of CAV technologies have been

https://www.youtube.com/watch?v=YhxCZImcZL4
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(a) System delay with S = {2} (b) System delay with S = {2, 4}
Fig. 11. Total system delay in the straight-road experiments with respect to
each time step.

TABLE VII
AVERAGE TOTAL SYSTEM DELAY IN STRAIGHT-ROAD EXPERIMENTS

Delay when
solving DeeP-LCC

Delay when
applying control inputs

S = {2} 292.80ms 60.88ms
S = {2, 4} 405.69ms 60.41ms

naturally incorporated. In the following, we present further
discussions on low-level dynamics, data noise and system
delay.

1) Low-level dynamics: As clarified in Section III-A, the
cloud server translates the command acceleration to command
velocity via (15), and sends it to each vehicle for low-level
execution. Thus, the real driving behavior of each vehicle is
different from the ideal control model in the cloud server;
see Fig. 5 for example. Most existing model-based control
strategies need to estimate this dynamics from upper-level
command to low-level behavior for controller design [6], [17],
[36], [46]. However, DeeP-LCC has no need to know the
low-level vehicle dynamics. It directly utilizes available data,
including input from cloud and output from traffic, to capture
the mixed traffic behavior and design valid control inputs for
the CAVs. Indeed, the control input (1) in DeeP-LCC is not
necessarily defined as the acceleration of the CAVs; it could
be any command signal transmitted from the cloud to the
CAVs, as long as Assumptions 1 and 2 are satisfied. System
identifications for vehicle dynamics and HDVs’ behavior are
both bypassed in DeeP-LCC.

2) Data noise: This has been offline tested and illustrated
in Table II for our experiment platform. Existing validations
for data-driven control in mixed traffic are mostly based
on numerical simulations where artificially designed noise is
added into the system; see, e.g., [21], [22], [26], [28]. In
particular, for the ring-road traffic system, the simulated noise
in the control process plays a significant role in reproducing
the traffic wave phenomenon without bottlenecks. By contrast,
our experiment platform naturally incorporates the effect of
noise, and the potential of DeeP-LCC has been revealed in
addressing real-world noisy measurements.

3) System delay: The localization and communication de-
lays have been independently tested, as shown in Table I. Here
we further show the total system delays in the experiments. We
take the straight-road experiments with S = {2} or S = {2, 4}
as examples, and show the real-time system delay at each
time step in Fig. 11. The average total delays are illustrated
in Table VII. Recall that the DeeP-LCC optimization prob-

lem (21) is solved every Nc time steps via a receding horizon
manner (see Algorithm 1). It can be clearly observed that when
DeeP-LCC is being solved, the time delay is much higher than
other time steps due to the process of numerical computations.
Moreover, with more CAVs incorporated, as shown in the
comparison between the cases of S = {2} and S = {2, 4},
solving the optimization problem (21) costs more computation
time. Nevertheless, DeeP-LCC has shown practical robustness
against the influence of time delays in our experiments.

VI. CONCLUSIONS

In this paper, we have presented the methodology for
practical implementation of DeeP-LCC, and experimentally
validated the performance of DeeP-LCC for CAV control
in mixed traffic. Our results have shown that by directly
utilizing real-world traffic data, DeeP-LCC enables the CAVs
to mitigate traffic waves and smooth traffic flow, either on
the straight-road scenario or on the ring-road scenario. From
a miniature experimental perspective, these results suggest
the great potential of data-driven techniques, particularly
DeeP-LCC, in stabilizing traffic flow.

All the HDVs in our experiments have a human-like car-
following model, and this is common in many studies via
numerical validations [8], [17], [21] or miniature experi-
ments [33], [34]. It is an interesting future direction to test the
performance of DeeP-LCC with real human data by involv-
ing human drivers to control the HDVs. Another interesting
direction is to develop adaptive parameter tuning techniques
for DeeP-LCC at various cases of mixed traffic, especially the
penetration rates and spatial locations of CAVs. Robust design
for DeeP-LCC against measurement noise and system delays
is worth further investigations as well. Finally, considering the
real-time requirement in large-scale implementation, it is also
interesting to develop techniques to reduce the computation
time of solving the optimization problem at each time step for
DeeP-LCC.
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