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Abstract—Mobile Edge Computing (MEC) is a new comput-
ing paradigm that enables cloud computing and information
technology (IT) services to be delivered at the network’s edge.
By shifting the load of cloud computing to individual local
servers, MEC helps meet the requirements of ultralow latency,
localized data processing, and extends the potential of Internet
of Things (IoT) for end-users. However, the crosscutting nature
of MEC and the multidisciplinary components necessary for its
deployment have presented additional security and privacy con-
cerns. Fortunately, Artificial Intelligence (AI) algorithms can cope
with excessively unpredictable and complex data, which offers a
distinct advantage in dealing with sophisticated and developing
adversaries in the security industry. Hence, in this paper we
comprehensively provide a survey of security and privacy in MEC
from the perspective of AI. On the one hand, we use European
Telecommunications Standards Institute (ETSI) MEC reference
architecture as our based framework while merging the Software
Defined Network (SDN) and Network Function Virtualization
(NFV) to better illustrate a serviceable platform of MEC. On
the other hand, we focus on new security and privacy issues, as
well as potential solutions from the viewpoints of AI. Finally,
we comprehensively discuss the opportunities and challenges
associated with applying AI to MEC security and privacy as
possible future research directions.

Index Terms—Mobile Edge Computing, 5G, Internet of Things,
Artificial Intelligence, Machine Learning, Security and Privacy,
Software Defined Network Security, Virtual Machine security.

I. INTRODUCTION

The number of end devices, which include smartphones,
wearable gadgets, tablets, and Internet-of-Things (IoT) de-
vices, etc., has exploded in recent years. Simultaneously,
a growing number of mobile and IoT applications, such
as online gaming, virtual reality, and self-driving vehicles,
have become more resource-intensive and latency-sensitive.
These applications render the conventional cloud computing
paradigm obsolete for its long propagation delays [1]. To meet
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the exponentially growing resource and latency requirements
of these applications, the Mobile Edge Computing (MEC)
paradigm was proposed [2]. The purpose of MEC is to push
the powerful cloud computing capacities onto the edge servers
that are in close proximity with end-users. MEC enables the
provision of IT services and cloud computing capabilities at
the mobile network’s edge, within the Radio Access Network
(RAN), and in close proximity to mobile subscribers. End
devices can access the applications, services, and data on these
edge servers with ultralow latency provided by the application
vendors [3].

As a new distributed computing paradigm, MEC has
brought many research topics to academic and industrial areas
such as computation offloading, data caching, and service
placement, etc [3]–[5]. The security and privacy issues of the
MEC environment have gradually attracted the attention of
researchers due to the complexity of the MEC service model,
multi-source heterogeneous data, and resource-constrained end
devices [6]. For example, a malware named "Mirai" man-
ages as many as 400,000 compromised smart devices into
a controlled "zombies" network to launch a DDoS attack
against edge servers, shutting down over 178,000 domains.
The number of cyberattacks on such facilities doubled again
between November 2020 and January 2021 [7]. These fragile
IoT devices directly or indirectly lead to this despondent result.

Compared with security and privacy issues in traditional
cloud computing, MEC possesses several unique character-
istics. First, in order to compete, a growing number of IoT
devices deployed in the MEC environment are produced
with economically manufactured circuitry that employs weak,
guessable, or hardcoded passwords and other brittle security
measures. Most such devices are easily preempted, contami-
nated, and destroyed by malicious users. Therefore, the MEC
system is vulnerable to security and privacy threats directly
brought by IoT devices. In this paper, we purposefully in-
corporate the IoT system’s security and privacy issues into
the MEC in order to thoroughly investigate the MEC’s se-
curity and privacy issues. Second, all end devices requesting
edge servers’ services must through RAN, and this critical
juncture is one of the weakest points in the entire network,
resulting in serious communication link security issues, such
as eavesdropping, hijacking and Distributed Denial-of-Service
(DDoS) attacks1 [8]. Third, in order to achieve a serviceable
platform with dynamic resource allocation capability and ease

1It is a malicious attempt to interrupt normal traffic to a targeted server,
service, or network by flooding the target or its surrounding infrastructure
with Internet traffic.
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the burden of the network management, Software Defined
Network (SDN)2 [9], Network Function Virtualization (NFV)3

[10], and virtualization technologies are vital for realizing
the MEC paradigm. These technologies are viewed as the
potential solution to MEC’s cost and efficiency problems.
However, each of these technologies has its own security
and privacy challenges which are easy targets for attackers.
Finally, in the MEC environment, user data such as user
identity information, location information, and sensitive data
is typically stored and processed by an honest-but-curious
authorized entity, and the user has no way of knowing whether
these semi-trusted authorized entities will secretly obtain the
user’s private information for the purpose of illegal profit.

To decrease the security and privacy burden associated
with MEC, numerous research directions have been explored,
such as context-aware security, microservices, and blockchain,
etc [6]. However, the unique characteristics of AI-based
approaches have attracted much more attention than other
approaches since it has the advantage of handling a large
amount of unpredicted and complex data automatically. [11].
AI technologies have been developed rapidly in the past few
decades, from initial laboratory research to various commercial
applications. As an important subset of AI, Machine Learn-
ing (ML) refers to the concept that computer programs can
automatically learn from and adapt to new data without being
assisted by humans. With the prosperity of Graph Processing
Units (GPU) and big data, ML has completed remarkable
achievements in many fields, such as Computer Version (CV),
robotic, social media marketing, and gaming [12], and the
simplicity and functionality of deploying learning algorithms
in these fields significantly surpass almost all traditional rule-
based algorithms. These leading advantages are also affecting
the development of the security and privacy field.

According to the AV-TEST report, more than 450,000 new
malware are registered every day [13]. However, most of
the instances are just minor variants of the existing mal-
ware. Nonetheless, the correct identification of these specific
malware needs to be based on many complex classification
methods, such as hashes, simple rules, or heuristic fingerprints
[11]. Fortunately, AI algorithms can manage vast amounts
of unpredictable and complex data, which offers a distinct
advantage in dealing with sophisticated and developing adver-
saries in the security industry. In order to meet the challenges
of security and privacy, many AI algorithms have been used
to protect data privacy and address security issues such as
spoofing attacks [14], DoS attacks [15], DDoS attacks [8], in-
trusions [16], jamming [17], eavesdropping [18], and malware
[19]. A suitable learning algorithm can particularly use the
trained model generated from the labeled data to recognize
new security and privacy threats. Due to the advantages
of learning algorithms, an increasing number of researchers
are focusing on how to use them to address security and
privacy concerns associated with MEC. The MEC environment
integrates a variety of devices, such as IoT devices, mobile

2It is a networking method that employs software-based controllers or APIs
to interface with underlying hardware infrastructure and direct network traffic.

3It is the replacement of network appliance hardware with virtual machines.

devices, and third-party servers, so that MEC naturally has
a complicated network architecture, communication links,
and various network protocols. In addition, the subscription
nodes and the service nodes in the MEC have the defect of
resource constraints. Therefore, in such a resource-scarce and
heterogeneous distributed environment, traditional AI-based
methods can no longer cope with the security and privacy
challenges brought by MEC. However, the prosperity of vari-
ous distributed, lightweight and green learning algorithms has
paved the way for deploying such algorithms in the MEC
environment.

In this paper, we comprehensively consider security and
privacy issues in the ETSI reference architecture from the
viewpoints of AI.

The key contributions of this survey are listed as follows:

• We purposefully incorporate the security and privacy of
IoT systems as well as the SDN/NFV into the MEC
environment to thoroughly investigate the MEC’s security
and privacy issues.

• We provide an in-depth review of recent security and
privacy issues in the MEC environment and from the layer
viewpoints of ETSI reference architecture to thoroughly
discuss the solutions for implementing AI technologies.

• At the end of this paper, we meticulously highlight the
possible future directions about AI approaches for MEC
security and privacy issues.

Fig. 1 depicts the overall architecture of this paper. In the
following content of this section, we investigate the current
survey on discussing MEC’s security and privacy and compare
the papers that have been published so far and summarize the
uniqueness and importance of our work. Then, we systemat-
ically overview the reference architecture of ETSI MEC in
Section II. In Section III, we start to comprehensively study
the MEC-specific security and privacy issues in the MEC en-
vironment. Based on the presented security and privacy issues,
in Section IV, we thoroughly discuss the most promising AI
algorithms, their advantages, disadvantages, and applications
in the MEC security and privacy domains. Then, in Section
V and VI, we systematically introduce the AI approaches for
layer-based MEC’s security and privacy issues. In Section VII,
we summarize the overall work of this paper and propose
research problems and future directions. Finally, we draw
conclusions in Section VIII.

A. Related Work

In order to meet the increasing demand for sensitive appli-
cations and the proliferation of IoT devices, some papers have
proposed to add an edge side fall between the cloud and users
to reduce the pressure on the bandwidth and network traffic
of cloud servers and increase the Quality of Services (QoS)
of users. The papers [20]–[24] proposed an initial three-tier
framework about edge computing paradigms. The authors of
[20] defined "edge" as any computing and network resources
located between data sources and cloud data centers, and they
provided several case studies involving computing offloading,
data caching, data processing, and service delivery.
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Fig. 1. Overall architecture of this paper.

The development of fifth-generation (5G) wireless networks
is gaining momentum, with the goal of connecting almost
every aspect of life via the network at a significantly faster
speed, with extremely low latency and ubiquitous connectivity.
Additional to this, 5G networks, based on the 3GPP (The 3rd
Generation Partnership Project) 5G specifications [25] will
be a key future target environment for MEC deployments
in the coming years. Mao et al. [1] provided an in-depth
overview and future research directions for MEC from a 5G
communication perspective. The authors of [26] presented
a comprehensive survey of MEC from the standpoint of
service adoption and provision. To meet the stringent latency
requirements of applications (e.g., real-time applications) and
to reduce energy consumption at User Equipment (UE), the
authors [27] proposed a survey about computing offloading
issues from different aspects.

The MEC’s ability to ensure security and privacy has been
widely questioned due to the use of multiple communication
technologies, complex network structures, and multi-source
heterogeneous data types [6], [8], [28]. The papers [26],
[27], [29], [30] made no mention of security or privacy as
critical aspects of MEC. Although certain surveys, such as
[8], [23], [31], [32] and [29], mainly focused on security
and privacy, the contexts are not concurring to the ETSI
standardized MEC architecture and its components. When it
comes to security and privacy, the MEC paradigm is closely
aligned with ETSI standards, according to a survey published
in [6]. This survey aimed to guide the research communities
on their way toward a feasible MEC deployment. Ali et al.
[28] proposed a survey about the data security and privacy
based on the ETSI standardized MEC architecture. At the
same time, some surveys about MEC security and privacy
around ML began to appear [8], [33], [34]. In [35], they
provided a comprehensive survey of ML methods and recent
advances in deep learning (DL) methods that can be used to
develop enhanced security methods for IoT systems. Authors
in [36] specifically summarize the application of some AI
technologies in IoT-based hajj and umrah scenarios. Singh et
al. [37] presented a review of ML for assisting security and
privacy issues of Edge Computing (EC), however, they only
discussed the naive three-tier architecture and did not consider

the security and privacy issues that two critical auxiliary
technologies (i.e., SDN/NFV) brought to the EC environment.

To the best of our knowledge, we are the first survey that
synthetically investigates ETSI standardized MEC, IoT system
as well as their assistive technologies SDN/NFV’s security and
privacy issues from the perspective of AI. On the one hand,
this survey identifies and compares the opportunities, benefits,
and drawbacks of various AI approaches for MEC security
and privacy. On the other hand, we comprehensively consider
various possible AI solutions from the layer viewpoints of
ETSI MEC reference architecture. Based on reviewing poten-
tial AI applications in the MEC security and privacy context,
we discuss and present the identified challenges and future
directions.

II. OVERVIEW OF MOBILE EDGE COMPUTING

European 5G PPP (5G Infrastructure Public Private Part-
nership) research body recognizes the MEC as one of the
key technologies in the development of 5G and beyond 5G
technologies [2]. MEC opens up services to mobile users
and enterprise entities as well as to adjacent manufactories,
these entities now can deliver their resource-intensive and
latency-sensitive applications over the mobile network. ETSI
and Information Services Group (ISG) proposed the primitive
standards and architecture of MEC which illustrated in Fig.
2. As an extension of cloud computing, the purpose of MEC
is to push the powerful cloud computing capacities onto the
MEC servers that are in close proximity with end-users. MEC
has the following unique characteristics which differ from the
traditional computing paradigms:

• On-Premises: MEC can run independently of other net-
works, this is an essential attribution in machine-to-
machine (M2M) scenarios.

• Proximity: The MEC servers are often attached to the base
stations or access points close to the end-users, improving
real-time response ability.

• Lower Latency: End-users data can be directly processed
on the nearby MEC servers without delivering to the re-
mote cloud. Hence, the end-users QoS and QoE (Quality
of Experience) will get a considerable improvement.

• Location Awareness: The MEC servers can only serve the
specific geographic location’s users covered by the base
station to which it is connected.

In this subsection, we divide the edge server system into
two layers according to the ETSI-published MEC framework
and the reference architecture [6], [38]. Each layer has several
submodules, and there are three groups of reference points to
link different submodules. Where Mx, Mm, and Mp denote
reference points connecting to external entities, management
reference points, and reference points regarding the MEC
platform functionality, respectively.

1) MEC System Level
User Equipment (UE) and Customer Facing Service (CFS)

Portal are all external devices subscribed to the edge server
services. Users interact with the mobile edge system through
the UE application that is instantiated in the UE. Specifically,
the CFS Portal enables third-party customers to select and
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order a variety of edge applications to meet their unique
requirements. Both UE application and CFS Portal connect
the edge server through Access Networks (AN). User App
Life-Cycle Management Proxy (UALCMP) determines the UE
applications can initialize, terminate or relocate mobile edge
applications and decides on the granting of these requests
to be forwarded to Operations Support System (OSS) and
Mobile Edge Orchestrator (MEO). Then it can send the status
information of mobile edge applications to UE applications.
In particular, UALCMP can only receive requests which are
within the geographic area that MEC servers covered, which
means that it needs to fulfill the proximity constraint. OSS
receives requests for initiation or termination that forwarded
from UE applications and CFS Portal, then decides whether
to authorize these requests for further processing on MEO.
MEO, as the backbone functional block of mobile system
layer, manages both MEC system level and MEC host level.
Specifically, it can grant requests forwarded from MEC system
level to initiate, terminate or relocate mobile edge applications,
and dominate the resources of mobile host layer, such as
selecting the appropriate mobile edge host to tackle low-
latency or resource-incentive requests.

2) MEC Host Level
MEC host level can be divided into MEC server man-

agement level and MEC server level. Mobile Edge Platform
Manager (MEPM) as the backbone of MEC host level, is
responsible for the management of various functional blocks
in Mobile Edge Host (MEH), including MEC platform ele-
ment management, Mobile Edge (ME) application rules and
requirements management (i.e., service authorizations, traffic
rules formulation, Domain Name System (DNS) configuration
and resource conflict resolution). MEPM is also responsible
for managing the life cycle of applications and forwarding in-
formation to related applications through MEO. Virtualization
Infrastructure Manager (VIM) is mainly responsible for allo-
cating and releasing virtual resources (storage, compute and
networking resources) of Virtualization Infrastructure (VI),
and using VI resources to create software images for serving
CFS Portal and UE applications. VIM also collects the current
status information of VI resources to MEO and MEPM. ME
applications are software entities built on the top of VI. In
a MEH, the connectivity among different ME applications
is established through Local Area Data Network (LADN)
[39]. After receiving traffic rules and DNS records from
MEPM, MEC Platform uses traffic rules controller and DNS
handling to configure the traffic rules of MEC applications and
DNS proxy/server. MEC Service contains different services to
facilitate MEC applications and MEC platform.

III. SECURITY AND PRIVACY CHALLENGES OF MEC

Edge computing scenarios are centred on time-sensitive
services, such as industrial IoT, autonomous driving, smart
cities, etc. As a result, when designing network protocols and
topologies, security and privacy are frequently sacrificed in
favor of real-time and effective communication. Edge servers
with on-demand and close proximity attributions are exposed
to the network edge, shortening the distance between the
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Fig. 2. MEC reference architecture.

attacker and the MEC physical devices. At the same time, the
widely open Application Programming Interfaces (APIs) make
it easy for attackers to initiate security threats such as data
theft, information tampering, and node intrusion [40]. Finally,
end-users’ mobile nature allows them to dynamically join or
exit the edge servers that cover them, and frequent topology
changes between mobile devices and edge servers will have an
impact on network resource management, allowing attackers
to launch adaptive attacks by exploiting the calculation trans-
forming between different edge servers. Fig.3 [41]–[43] shows
the overall architecture of a typical MEC deployment with its
security and privacy issues.

A. Security Threats

In this subsection, we comprehensively consider the secu-
rity issues in MEC and IoT systems with their serviceable
platforms SDN and NFV.

1) IoT Systems Security
From the perspective of the ETSI MEC architecture, MEC

enabled IoT systems consists of two parts, one is IoT devices
deployed in the actual environment, and the other is MEC
IoT platform hosts as software instance which is migrated to
the MEC facilities. IoT devices easily suffer various security
risks due to current manufacturing and service vendors’ lack
of security awareness, lagging security standards, limited
software and hardware resources, and the weakness of security
protection capabilities. Large-scale cyber attacks targeting or
originating from IoT have sparked widespread concern. For
example, a malware named Mirai can exploit as many as
400,000 compromised smart devices into a controlled "zom-
bies" network to launch a DDoS attack [44]. The MEC IoT
platform appears as a service provider for MEC applications
running on MEC hosts and enabled via the Mp1 interface as
depicted in Fig.2 [41]. In other words, MEC applications can
find the MEC IoT platform by querying its service registry,
and interact with it using a defined IoT API exposed by the
MEC IoT platform.
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a) Perception Layer
The main goals of the perception layer are to interact

with the complicated real world and cooperatively connect
heterogeneous sensors to provide diversely intelligent services.
The perception layer can also be called the “sensors” layer.
Considering the economic pressure brought by the massive
deployment of IoT devices, they are generally designed as
resource-constrained devices with low power and limited com-
puting resources [45]. Therefore, it is a challenge to identify
malicious data and authenticate benign equipment through
traditional intrusion detection and authentication methods [14].

DoS/DDoS Attacks: The notorious DDoS attack, which has
been intensively studied in the traditional cloud computing
environment, is a new challenge and an open research topic
in the MEC environment. Unlike traditional DDoS attacks in
the cloud environment that mainly utilize computers as bots,
a DDoS attack in the EC environment is often coordinated
via control of mobile and IoT devices [46]. There are many
applications with different functions installed on mobile user
devices, but the security consciousness of different application
developers is uneven, and some malicious applications often
try to require permissions that are out of scope. Especially
for some android devices, although the open-source android
framework brings convenience for developers to require APIs
to implement various functions, the fragile supervision capa-
bilities of android communities make users easily threatened
by malware. Simultaneously, some applications may hijack the
user device’s microphone in order to collect private informa-
tion from daily conversations.

TCP/IP Attacks: If a fake base station can easily transmit

a spoofing synchronizing signal with sufficient high power
during the cell selection stage, wireless mobile UE may be
drawn to and attempt to camp on the fake base station rather
than any legitimate base station [47].

b) Network Layer
The network layer is the backbone of the IoT system and

has three main functions. First, it is responsible for establishing
the network topology among IoT devices, then receiving and
processing the raw information of the perception layer, and
finally, the refined information is transmitted to the application
layer to provide services for real-world customers [35].

Ad-hoc Network Security: Some short-range communication
technologies can establish connections between UE equip-
ments such as Bluetooth, WiFi, IrDA, ZigBee, etc. This type of
connection is device-to-device which establishes a direct com-
munication link among UE equipments in IoT systems without
requiring any edge servers for connection, and we call this type
of network as Mobile Ad-hoc Network (MANET) [40]. These
communication technologies allow billions of heterogeneous
devices to connect to the backbone and communicate with
each other to complete complex and diverse intelligent func-
tions. However, most end devices that adopt these technologies
are resource-constrained so that the adversary can violate the
route structure, congest wireless channels, and inject malicious
nodes with ease.

Routing Attacks: While the MANET’s nodes roam in a
hostile environment, some statical security solutions are unable
to adapt to the dynamic change in topology. The routing
protocol of MANET such as Dynamic Source Routing (DSR)
establishes route paths from a source node to a destination
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node by exchanging the network topology information be-
tween these two nodes. Since all messages are transmitted
through wireless channels, so that any intruder can forge a
valid routing updates and maliciously furnish incorrect routing
states information. Intruders can also modify the route request
(RREQ) or route replay (RREP) packets to delete a node,
switch the order of the nodes, and append a node.

Attack on Short-range Communication Technologies: In
an ad-hoc network, all communication signals must pass
through a bandwidth-limited wireless channel, making the
network vulnerable to physical-layer threats. The attacker
can also eavesdrop and modify the information within the
wireless communication channels or impersonate a legitimate
participant to intentionally inconsistent wireless channels.
Bandwidth-limited wireless channels are also vulnerable to
DoS attacks via network-layer packet blasting. These packets
exhaust a significant proportion of the computing resources,
which introduce the wireless channel contention and network
congestion.

Malicious Nodes: In a hostile environment, it is impractical
for an ad-hoc network to rely on the cooperation of all nodes
to complete decentralized control, while malicious nodes can
suspend the cooperation algorithm by refusing to respond.
This situation also makes some centralized intrusion detec-
tion mechanisms incapable of detecting a node failure or a
malicious intrusion.

Side Channel Attacks: Some IoT devices, such as smart
medical devices, wearable devices, and smart home devices,
collect raw data about the users’ behavior and status [48].
These data are much more detailed and accurate, which
contain much more sensitive information. As a result, an
adversary can exploit these raw data to obtain additional
privacy information. For example, Liu et al. [49] analyze the
data collected by the accelerometer sensors in the smartwatch
via the new and practical side-channel to successfully infer
the user’s keystroke behavior [49].

c) Application Layer
The application layer serves application subscribers by

providing intelligent services. For instance, the application
layer can provide surveillance video data and humidity mea-
surements to subscribers. The importance of the application
layer is to provide users with high-quality intelligent services.

Malware: IoT system applications are most closely con-
nected with users, and they are required to defend against
security and privacy threats while providing services for users.
However, malware will deliberately obtain extra information
beyond its requirements, resulting in the leakage of user’s
sensitive data and the preempt of IoT devices. For example,
Fernandes et al. [50] analyzed the source code of SmartThings
apps and found that more than 50% of the apps on the
Samsung smart home platform have significant overprivileged.

2) MEC system level with 5G Core Network
Mobile core network needs to ensure that end devices

are securely connected to edge servers through an access
interface and run a series of authentication protocols to prevent
unauthorized devices. It also needs to provide some security
measures such as integrity protection and encryption to pro-
tect the communication information from manipulating and

eavesdropping on the wireless communication channel. At the
same time, the mobile core network is eager for the necessary
differentiated security mechanisms to serve various personal
businesses and vertical services.

a) Access Network security
As part of a mobile telecommunication system, AN resides

between end devices and provides wide-area wireless connec-
tivity to edge servers. It traverses the emanated service requests
located at the different geographic locations to the edge
servers due to the resource-constrained UE. In order to enable
high network throughput, ubiquitous connections, and low
latency, some novel technologies such as massive multiple-
input-multiple-output (MIMO), interference-aware receivers,
and advanced coding/modulations are proposed to improve
the spectral efficiency [51]. The connectivity between the UE
and edge servers through these heterogeneous technologies
raises several security concerns that could be exploited by the
attacker [6].

Denial of Service (DoS): Jamming a wireless channel or
compromising a service via DoS is to destroy the availability
of AN connected to edge servers. The attacker raises a DoS
attack in the MEC environment can only affect the edge
servers where the botnets can access [46]. Therefore, it is
difficult for the attacker to use their global botnets to launch
a tremendous DDoS attack on a specific target edge server.
However, the MEC has deployed a large number of latency-
tolerant applications, disrupting legitimate users’ access to
services will greatly affect the QoS of MEC systems. It is
difficult to detect such malicious network activities because of
the direct connection between MEC systems and end devices
[27]. Novel botnet type DDoS attacks will also affect the
availability of UALCMP and CFS Portal in the MEC system
level.

Eavesdropping and Hijacking: A wireless channel between
UE equipment and edge servers is prone to cyber risks such
as eavesdropping and hijacking due to the broadcast nature
of the wireless medium. As a result, wireless communication
channels are vulnerable to being hijacked to retrieve infor-
mation by cyberattacks such as man-in-the-middle (MitM),
replay, Advanced Persistent Threat (APT), Sybil, and spoofing
attempts [52]. Traditional wireless channels mainly use some
encryption protocols to secure the transmission process [52].
However, the process of information encryption and private
key exchanges between channels largely hinders its applica-
bility for massive latency-sensitive applications in the MEC
environment.

b) MEC System Level
MEC system level as part of the core network of MEC

system connecting to end devices, MEH, and 5G core net-
work. It has the following three aspects of functions. First, it
determines to grant services for further process and handle
services life cycle forwarded from end devices. Second, it
guards the resource utilization status, and the configuration of
VMs and underlying hardware in the MEH. Finally, it switches
control signals with a 5G core network via wireless, wired, or
optical. Thus, the MEC system level is critical to attackers for
gaining unauthorized access, manipulating or misusing ME
applications, etc.
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DoS/DDoS Attacks: As the UALCMP is the entity handling
the life cycle of requests, while the OSS grants the approval
for subscribers to use a particular MEC service. The attacks
over them can be targeted at congesting the access interfaces
between them and UE so that both of them have to be protected
from DoS/DDoS attacks.

Manipulate and Misuse: Since all the ME application sub-
scribers should be registered in OSS or UALCMP, the attackers
could attempt to inject craftily constructed information to ma-
nipulate or misuse the functionality of these two. At the same
time, malicious UE can inject fake information to impersonate
legitimate entities to disrupt the everyday activities of MEO
and MEPM. The malicious intrusions are improbable at MEO
since MEO is deployed at the in-depth MEC system level that
is difficult for attackers to reach. However, resource allocation
and service manipulation attacks are highly possible such as
DNS amplification and VM escape.

TCP/IP Attacks: Separate physical hosts for the 5G core
network and MEO are more prevalent [53], which introduce
typical TCP/IP attacks such as eavesdropping, spoofing, DoS,
replay, and reset attacks.

c) SDN Threats
In the MEC environment, in order to reduce network

management costs and improve the network scalability and
flexibility, infrastructure providers have introduced SDN. SDN
separates the network architecture into a three-tier architecture
of application, control and data plane [54], controlling the
network with software to achieve centralized management of
the network and programmability of network applications.
This convenient network management approach is not only
convenient for operators but also for attackers. A capable
attacker can preempt SDN applications or tamper with the
flow tables in SDN controllers to chaos packets forwarding.

Applications Plane Threats: Network functions are imple-
mented as applications in this plane, and these applications
are created by using the VI’s computing resources in the
MEH. These applications aim to provide network services
such as QoE, monitoring, load balancing and security, etc.
These services host as one type of special MEC application
in the MEH and exchange data with the SDN controllers
through the north-bound interface. Thus, an authorized ma-
licious application can invade other applications to control
the network. This malicious threat can be caused by the open
APIs of network equipment, the lack of mutual authentication
mechanism between the application plane and the control
plane, or the implementation of the wrong access control
method for third-party applications [55].

Control Plane Threats: The SDN control plane communi-
cates with the application plane and the data plane through
the north-bound interface and the south-bound interface re-
spectively, and there can be multiple controllers in SDN. In
ETSI MEC architecture, these controllers are as one of the
support functions that deployed in the MEC platform [43]. The
control plane adopts a centralized management architecture,
which relies on programming to achieve overall control of
SDN data plane devices. Thus, an attacker can directly send
specifically crafted DDoS flows to overwhelm the resources
of control plane [56] or IP packets with random header fields

to disturb legitimate flow setup [57]. Also, it is incompetent to
secure application authorization, resource usage and tracking
while malicious applications in control plane [58].

Data Plane Threats: The main elements of the data plane
are switches and routers. They are simple packets forwarding
elements without embedded intelligence to take autonomous
decisions. These data plane devices communicate with the
controller through a standard OpenFlow interface, ensuring
the compatibility and interoperability of configuration and
communication among different devices. Since the packet
forwarding of the data plane depends on the flow tables issued
by the control plane, an attacker can control the forwarding
of data packets by intercepting or tampering with the flow
tables sent to the SDN switches [9]. In addition, three types of
attacks may be used to compromise the data plane, including
device attack, protocol attack, and side-channel attack [59].
Device attacks aim to exploit SDN software or hardware
vulnerabilities to compromise the SDN data plane. Protocol
attacks exploit network protocol loopholes in the forwarding
equipment (e.g., as Border Gateway Protocol (BGP) attacks) to
attack the data plane. Side-channel attacks infer the network’s
forwarding strategy by analyzing the performance metrics
of the forwarding equipment. For example, by analyzing
the processing time of data packets, attackers can identify
forwarding strategies [60].

3) MEC Host Level Security
In the MEC paradigm, the MEH is the primary host-level

functional entity that performs computational, storage, and
networking operations. Furthermore, the User Plane Function
(UPF) is a 5G access network entity included within the MEH
for integrating the 5G core network into the LADN. Since the
SDN security threats and the MEC IoT platform have been
illustrated above, we will focus on the virtualization threats
and NFV threats in this subsection.

a) VM Threats
Virtualization integrates physical resources into a resource

pool providing various on-demand services, which decreases
the high management complexity and operational expenses,
and enhances the efficiency for usage and fine-grained control.
However, novel security threats and vulnerabilities introduced
in the following contents become one of the major concerns
in the MEC environment.

The overall VM entities are actually composed of SDN ap-
plications, VNFs, IoT applications, and the MEC applications,
which provide services for users or MEC architecture. The
threats and vulnerabilities target to the VMs are as follows:

Infected VM images: VM image, as a pre-packaged software
file, contains the configuration templates used to initiate the
VM instances on demand. The resource renters can either
create their own VM images from an image software or down-
loading VM images stored in the third-party’s repository [54].
Thus, this gives the attacker the opportunity to upload VM
images injected with malicious code such as a Trojan horse
to the third-party repository, and the victim will be infected
with the hidden malware after uploading such malicious VM
images.

Compromising VM migration: VM migration allows net-
work operators to optionally initiate, terminate a VM, or move
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VMs from one physical machine to another. The migration of
VM benefits the workload balancing and system management.
Due to the dynamic nature of VM and the plaintext presented
in migration data, an attacker can easily launch MitM attacks
to sniff or tamper the traffic.

VM hopping: The attacker gains access to a host with
multiple VMs by renting or hacking a guest VM. From the
persecuted guest VM, the attacker then compromises other
guests’ VMs through privileged access to the host. The reason
for this could be that the Memory Management Module
(MMU) of the hypervisor allows attackers to perform illegal
manipulation on the memory pages of other guest VMs based
on the access rights they have obtained [10].

VM escape: Any interaction between VM and hypervisor
may become a potential attack vector [61]. VM escape refers to
the program running in the virtual machine using the vulnera-
bility of the VM to break through the Virtual Machine Monitor
(VMM) or hypervisor. After that, the adversaries may obtain
the host OSS management authority, control other virtual
machines running on the host machine [62], and completely
destroy the original security architecture.

b) NFV Threats
NFV, as one of the key emerging technologies for 5G

networks, consolidates multiple network functions onto the
software, running on a range of industry-standard hardware
[10]. The infrastructure that hosts MEC and NFV is quite simi-
lar [2]. Thus, it will be beneficial to reuse the infrastructure and
infrastructure management of MEC by hosting both Virtual
Network Functions (VNFs) and MEC applications on the same
platform. VNFs can be recognized as software that encapsulate
network functions in a VM. Therefore, most NFV threats
also are inherited from VM threats. NFV-specific security
threats may from the NFV management and orchestration
(NFV MANO). It is mainly responsible for the orchestration
and management of virtual resources, the creation of virtual
network functions, and NFV lifecycle management. ETSI has
published an official document about NFV MANO to describe
how the NFV and its interfaces work without specific details
about interface design and implementation [10]. Thus, an
adversary may exploit the insecure interface to obtain sensitive
data or launch a Cross Site Scripting (XSS) or Cross Site
Request Forgery (CSRF) attack by injecting a well-constructed
script into the web surfaces provided by the management
interface.

B. Privacy Threats

User data in the MEC environment, such as user identity
information, location information, and sensitive data, is typi-
cally stored and processed by an honest-but-curious authorized
entity (e.g., edge data center and infrastructure provider),
and the user has no way of knowing whether these semi-
trusted authorized entities will secretly obtain the user’s private
information to achieve the purpose of illegal profit. At the
same time, in the open ecosystem of MEC, multiple trust do-
mains are dominated by different infrastructure providers, and
users cannot identify which service provider is trustworthy.
Thus, MEC, with the complexity and real-time nature of the

service mode, multi-source heterogeneous data, and resource-
constrained end devices, has more delicacy privacy threats.

In this subsection, we will focus on three aspects of privacy
concerns: data, location, and identity privacy.

1) Data Privacy
Users outsource data to edge nodes (i.e., IoT devices or

edge servers) with computing resources, which give edge
nodes the opportunity to control over the data, introducing
the same security risks as cloud computing. It is challenging
to ensure the confidentiality and integrity of the data since
the complicated communication link may cause data to be
lost or maliciously modified. Additionally, through privilege
escalation, unauthorized entities may exploit the uploaded data
for their own gain. Compared to cloud servers, edge servers
have partially circumvented the data security and privacy
issues caused by the long-distance transmission of multi-
hop routing. However, the applications that are dominated
by different application vendors and the access networks that
belong to different telecom operators have compelled MEC to
introduce more severe data privacy issues, such as coexistence
of multiple security domains and data in multiple formats.

2) Location Privacy
LBS refers to using a certain positioning technology (e.g.,

global positioning system, mobile phone positioning, and po-
sitioning through WiFi access points) to provide mobile users
with personalization related to their current location service.
However, these services frequently collect location data in the
background without the user’s knowledge or consent. As a
result, figuring out how to protect a user’s location privacy
has become a pressing issue [63]. The leakage of location
information can be divided into three major kinds of threats:

• Tracking Threat: The adversary may obtain continuous
location updates, allowing him to pinpoint the user in real
time. For example, in Vehicle Ad-hoc networks (VANET),
an attacker can eavesdrop on the communication between
vehicles to lock and track the target vehicle; the attacker
can tamper with the traffic information in the network and
publish false information on the network, which creates
the illusion of road congestion for other vehicles and
affects the route selection of other vehicles.

• Identification Threat: Even if the adversary only accesses
the user’s location on a sporadic basis, he may be able
to isolate the user’s frequently visited locations, such as
home and work. The adversary can use these locations
as pseudo-identifiers to deduce the user’s identity from
anonymous location traces [64].

• Profiling Threat: The mobility track of the user may
not include places that reveal his identity but can be
used to profile him by the adversary. Some Location
Service Providers (LSPs) collect and analyze the location
attributes in the user’s request to infer the user’s personal
information, behavioral preferences, and physical condi-
tion [65]. For instance, if a user sends a location request
that frequently includes a specific hospital location, the
LSP can infer the user’s physical condition, and the user’s
home address can be inferred based on the user’s resident
location at night.
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TABLE I
AI METHODS FOR MEC SECURITY AND PRIVACY.

Classification Method Advantages Disadvantages Example Application Scenarios

Supervised
learning

kNN
Simple, cheap and efficient in

detection tasks Weak transferability
Intrusion detection [66]–[68]

and privacy-preserving [69], [70]

SVMs
High performance with small
samples, strong generalization

ability

Hard to acquire the optimal
kernel function, sensitive

to missing data

Authentication [71], intrusion [72]
and malware [73] detection

LR
Cheap, capacity of description

the relationship between
input and output

Easy to be underfitting,
weak performance with

missing data and large feature

Intrusion detection [74],
PUF [75]

DTs
Interpretable inference,

fast execution

Sensitive to noise,
ignoring relationship among

different attributions in dataset

Intrusion detection [76],
privacy-preserving [77], [78]

RFs
Parallel efficient framework,
strong generalization ability,
and robust to missing data

Performing overfitting on
datasets with large noise

Intrusion [79]–[81] and
anomaly [82]–[84] detection

CNN

Low network complexity,
reducing weight parameters,

improving performance by BP
algorithm and better scalability

Large training cost,
requiring excessive computation

resource and memory

Intrusion detection [85],
attack recognition [86]

and privacy-preserving [87]

RNN
High performance through
correlation extraction for

sequential data

Gradient explosion in training
process with long-time

sequence dataset
Malware detection [88]

Unsupervised
learning

K-Means
Fast execution, interpretability

and performing well in clustering
with unlabeled data

Sensitive to abnormal data,
dependence on the value of 𝐾

Secure links decision [89],
privacy-preserving [90], [91]

PCA
Reducing the data dimension,
eliminating the effect between

different components

Ignoring the influence of
non-principal components, requiring
to be combined with other methods

Attack recognition [92],
privacy-preserving [93]

RBM
Strong representation capacity,

high inference performance with
unlabeled data

Overfull computation cost,
challenges in deployment on-board Anomaly detection [94]

DBNs
Flexible and efficient parallel
framework, better scalability

Overfull computation cost,
slow convergence rate

Intrusion detection [16], [95],
anomaly detection [34]

AE
Strong generalization capacity

providing privacy-preserving through
the encoding-decoding process

Requiring benign data for
training in malicious detection

Anomaly detection [96],
privacy-preserving [97]

Semi-supervised
learning

𝑆3𝑉𝑀
Improving the performance with

scarce labeled data

High computational complexity,
requiring to resolve the program-

ming when new data is added
Anomaly detection [98]

GANs

Generative model based on BP
algorithm instead of Markov chain,

generating clearer and faster
samples

Unstable training process,
inefficient for discrete data

Anomaly detection [99],
PUF [100]

RL Non-deep RL
Framework for sequential decision-

making problem
Excessive training iterations, risk
of falling into suboptimal solution

Malware detection [101],
anti-jamming [102]

DRL
Efficient inference, high perfor-
mance in MEC offloading game

Complex model setting and high
computation cost

Anti-jamming [103]
threat edge game [104]

Non-ML based
methods

Bayesian
Networks

Capacity of dealing with the
unsure information High computational complexity Intrusion detection [105],

privacy-preserving [106]
Evolutionary
Algorithms Efficient, potential scalability

Complex manual programming,
unsuitable to large datasets Malware detection [107]

3) Identity Privacy
Personal Identifiable Information (PII), also known as user

identity, is the information about a person that has been
collected, assessed, or used on demand by edge or cloud
services [65]. Compared with the cloud computing data center
located in the core network, edge nodes are located at the edge
of the network, enabling the collection of more high-value
sensitive information of users, such as location information,
lifestyle habits, social relationships, and even health status, etc.
A considerable privacy crisis will occur while an attacker can
map each private data to the corresponding user. For instance,
in early 2018, the Facebook data scandal resulted in the
disclosure of 50 million users’ PII to a third-party company,
Cambridge Analytica, via service providers for "analysis"
purposes.

IV. REVIEW OF ARTIFICIAL INTELLIGENCE APPROACHES
ON MEC SECURITY AND PRIVACY

In this section, we make a comprehensive review of the
MEC security and privacy from the perspective of AI. Firstly,

we introduce the classification of ML approaches and summa-
rize advantages, disadvantages as well as applications of the
typical approaches. Then, considering the entire AI categories,
we present some other applications of non-ML approaches.
The summary of the AI-based methods and their correspond-
ing advantages and disadvantages are introduced in Table I.

A. Classification of Machine learning Methods in MEC Secu-
rity and Privacy

Discussions and researches around AI have focused on the
field of ML in recent years [108]. We divide ML approaches
into four categories: supervised learning, unsupervised learn-
ing, semi-supervised learning and reinforcement learning. In
this subsection, the characteristics of these four categories,
classic algorithms and their applications in MEC are discussed
in detail.

1) Supervised Learning
Supervised learning has attracted more and more attention

in the field of the security and privacy protection of MEC due
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to its outstanding performance in prediction and classification.
Generally, utilizing the labeled data as the input of supervised
learning, the model can predict the label of test data through
learning from the distribution of labels. We discuss the classic
algorithms of supervised learning and their applications in the
protection of security and privacy of MEC in the following.

a) k-Nearest Neighbor (kNN)
Based on the unsurpassed performance on classifica-

tion tasks, kNN has been widely used in network mali-
cious intrusion detection [66]–[68]. As to the MEC privacy,
computational-hungry algorithms are not suitable for the prac-
tical applications with massive data and computation load.
Therefore, a lightweight edge-based kNN (EBkNN) model
was proposed to protect users’ security and privacy in [69].
However, the transferability of kNN is poor. A trained model
often needs to be retrained to determine the optimal 𝑘 value
when the dataset changes, which will increase the resource
consumption of the light-weighted edge devices.

b) Support Vector Machines (SVMs)
Due to the advantages of SVMs in solving linear and non-

linear data classification problems, they have been widely
used in abnormal intrusion detection in the MEC environment.
The research [71] chose the SVM algorithm to detect cloning
attacks and Sybil attacks in industrial edge networks. For the
actual data without labels, this work adopted the threshold
detection method to generate labels for training, so that the
model obtained improved detection accuracy. Nevertheless,
for the scenarios with complex data distribution, the optimal
kernel function is hard to acquire in SVM, which may decrease
the performance of Intrusion Detection System (IDS)4 [97],
and this disadvantage will be further amplified in the data-
heavy MEC environment.

c) Logistic Regression (LR)
LR has been widely used in protecting the security and

privacy of MEC. In response to the vulnerability in Physical
unclonable function (PUF), [75] proved that PUF can be
cloned without prior knowledge of its structure. Based on ML,
this work proposed a non-invasive attack method against the
PUF of edge nodes and the corresponding defence strategy,
which adopted LR, RF, artificial neural network (ANN) and
merged algorithms, respectively. The attack effectively cloned
the PUF in MEC and the countermeasure greatly improved the
accuracy of recognizing authentic and cloned PUF. However,
LR is with the drawback of falling into the dilemma of
overfitting that limits the accuracy, and has poor performance
with missing data and large feature in MEC environments.

d) Decision Trees (DTs)
For the data with high-dimensional features in MEC, DTs

can reduce the number of features in the internal nodes while
ensuring a certain performance in inferring. Based on this,
the DTs-based algorithm has been widely used in the network
intrusion detection [109]. In the edge-cloud computing (ECC)
scenario, a private random DT framework based on differential
privacy (DP) was used to analyze the impact of different
applications on privacy, so as to better coordinate the overall

4It is a system that analyzes network traffic for suspicious or unusual
activity and generates notifications when it detects it.

system to ensure the data privacy [77]. Whereas, DTs are
sensitive to the noise data and ignore the relationship among
different attributions in the dataset, and these disadvantages
affect the performance of preserving security and privacy
seriously.

e) Random Forests (RFs)
RFs have been widely used in the IoT system for intrusion

detection [79]–[81] and anomaly detection [82]–[84]. Espe-
cially in the detection of DDoS attacks, a mass of previous
work has analyzed the performance of RFs [82], [110]. A
research [111] proposed an automatic anomaly detection sys-
tem based on RFs; the proposed system effectively detected
anomalies in distributed edge devices. The disadvantage of
RFs is that it is prone to overfitting on datasets with large
noise.

f) Convolutional Neural Network (CNN)
As one of the most classic DL models, CNN has been

fully employed in protecting the MEC security and privacy
[112]. Using the CNN model, Tian et al. [85] proposed a
web server attack detection system based on a distributed
framework. The Uniform Resource Locator (URL) in the IoT-
cloud environment was analyzed and a high detection rate was
obtained. However, the problem of CNN is that the amount
of calculation under the application of high-dimensional data
is huge, and it is difficult to guarantee sufficient computing
resources in some resource-constrained MEC environments.
Some current neural network scale compression technolo-
gies and partition training technologies [113], [114] provide
support for the deployment of lightweight CNN on mobile
terminals.

g) Recurrent Neural Network (RNN)
Another classic DL model called RNN, which is aimed at

sequence type data, has also been fully used in the malware
detection in the IoT network [88], [115]–[117]. Conventional
RNN models use the back-propagation training time (BPTT)
to extract sequence data, but it will cause gradient explosion
in the training process with long-time sequence data. Previous
work [118] applied LSTM to the cloud-edge scenario to
achieve distributed network attack detection. In the experi-
ment, the performance of the proposed model was compared
with LR, which proved that the utilization of LSTM can
fully extract the correlation information from the long-term
continuous network state data. However, the RNN model
generally has the disadvantage of gradient explosion, which
will limit its performance in long-term sequence training.

2) Unsupervised Learning
Unsupervised learning is a ML method for unlabeled

datasets, which clusters different classes by learning their
associations [119]. In addition, unsupervised learning can mine
the structure information in depth, which may be hidden by
labels in supervised learning [120]. Thus, the unsupervised
learning algorithm has obvious advantages in the classification
task in MEC security and privacy with a large number of unla-
beled data. For example, the next-gen cloud security company,
Bitglass, exploits unsupervised learning approaches to provide
Advanced Threat Protection (ATP) services for detection both
known and zero-day threats on cloud applications [121]. The
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emblematic unsupervised learning methods in MEC security
and privacy are listed as follows:

a) K-Means
Based on the excellent performance of K-Means in feature

clustering on unlabeled data, it has been applied to the field
attack detection and privacy protection in MEC. In order to
solve the complex link attack problem caused by the open
and multi-source characteristic in the MEC environment, Li
et al. [89] proposed a link decision scheme based on attribute
attack graphs, which used K-Means to de-redundate complex
network alarm information to construct the attribute attack
graphs, and utilized the greedy algorithm to make decisions on
the link defense by the solution of the minimum dominating
set of the attribute attack graph. However, K-Means is sensitive
to the abnormal data, and the progress of K-Means clustering
mainly depends on the value of 𝐾 , which is usually set
manually. And these disadvantages cause the weak robustness
of K-Means-based methods.

b) Principal Component Analysis (PCA)
Due to the effective feature extraction and dimension reduc-

tion capacity for large datasets, PCA fits the MEC environment
well. The previous work [92] proposed a multi-attack detection
model with low complexity in the cloud-edge environment.
The computationally efficient and low-cost PCA was selected
as the feature extractor, and the deep neural network (DNN)
was used as the classifier. In the experiment, the model
was used to detect 10 types of attacks with higher accuracy
rate than other ML methods. Nevertheless, PCA ignores the
influence of non-principal components, which may play a
crucial role in inferring. Discarding them directly will decrease
the classification accuracy. And PCA is effective for feature
extraction, while requires to be combined with other AI-based
methods to fully finish the inference task.

c) Restricted Boltzmann Machine (RBM)
RBM is a deep generative neural network based on unsuper-

vised learning, which is a variant of the Boltzmann machine,
and has been adopted in MEC security protections. In terms of
malicious detection classifiers, the adopted features are the key
factor affecting its accuracy. Benchea et al. [94] used RBM
to improve the feature generation, and generated new features
in a non-linear manner to train the classifier and improve its
performance. However, the drawback of RBM is also obvious.
The training of RBM takes a mass of computation cost, and
it is still a challenge to deploy the model on-board in the
resource-limited edge sever.

d) Deep Belief Networks (DBNs)
DBNs are widely employed in the intrusion detection in IoT

networks due to the efficient performance with a mass of unla-
beled data [16], [73], [95], [122]. In order to realize the attack
detection in the edge transmission network, an unsupervised-
based model based on DBNs was proposed in [8]. In this work,
the Android data package files in edge devices were utilized
to extract the permissions information, sensitive program APIs
and dynamic information as features, which were adopted by
DBNs for attack detection. Unfortunately, the disadvantages
of DBNs are manifested in their high computational cost and
slow convergence rate, which limit the performance of DBNs
in MEC security and privacy-preserving.

e) Deep Autoencoder (AE)
Deep AE is widely used in IDS for the MEC environment

due to its feature extraction capabilities [97], and the process
of feature extraction-reconstruction also provides privacy pro-
tection for user information in the original data. The previous
work [96] utilized Deep AE to realize anomaly detection based
on the characteristics of MEC. The model was trained in a
distributed manner on multiple edge severs. The abnormal data
from each edge sever was aggregated to update the model on
the central server, and then the updated model was sent to each
edge sever to reduce the load on the central server. While in
terms of malicious detection, it requires a large amount of
benign data for training an AE model, which is unrealistic in
practice.

3) Semi-supervised ML Learning
Semi-supervised learning is a technology that falls between

supervised learning and unsupervised learning [123]. It can
solve the inability to construct a reliable supervised classifier
caused by scarce labeled data. Thus, the semi-supervised
learning method is well-suited to the MEC scenario, in which
a large amount of raw data is generated at any time and
in any location but is incapable of being used efficiently.
This inherent advantage makes it easier for Semi-supervised
learning algorithms to address security and privacy concerns
in MEC.

a) Semi-supervised Support Vector Machine (𝑆3𝑉𝑀)
The discovery of the distributed 𝑆3𝑉𝑀 architecture [98]

enables it to solve the security problems in the MEC en-
vironment which owns tremendous unlabeled raw data and
a small amount of labeled data. Wang et al. [98] proposed
a hybrid approach including 𝑆3𝑉𝑀-based appliance pattern
matching classifier and the hidden Markov model (HMM)-
based energy consumption habit classifier to defend against
anomaly intrusion.

b) Other Non-DL Semi-supervised Approaches
MEC has a number of characteristics, including real-time

processing, low computation costs, and a distributed architec-
ture. Some of the above characteristics are already present
in security and privacy-preserving methods based on semi-
supervised learning. In [124], an ELM-based Semi-supervised
Fuzzy C-Means (ESFCM) attack detection framework was
proposed to secure the IoT system. At the same time, an
optimized, low-cost semi-supervised IDS model which com-
bines an Active learning Support Vector Machine (ASVM) and
Fuzzy C-Means (FCM) clustering was proposed in [72]. To
defend Sybil attacks that appeared in distributed environments,
recently, Gong et al. [125] designed a Markov random fields-
based, noisy-tolerated and scalable semi-supervised learning
approach. The above security defense mechanisms are more
or less satisfying the conditions for deployment in the MEC
environment. Despite the fact that researchers dislike the
current semi-supervised learning method, it cannot be ruled out
that it has the potential to become a new mainstream solution
to the security and privacy issues in the MEC environment.

c) Generative Adversarial Networks (GANs)
GANs have been recently implemented in MEC security and

privacy. In [99], a supply chain risk management architecture
that mixes machine learning, cryptographic hardware mon-
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itoring, and distributed system coordination techniques was
proposed to detect normal and abnormal system behaviors in
IoT systems. GANs can learn the distribution of attack samples
from existing attacks in MEC, thereby generating zero-attack
samples that do not exist in the set of known attack samples.
Even for degenerate distributions, GANs can generate sharp
samples without Markov chains requirement. As a DL-based
semi-supervised approach, GANs are suitable for training
classifiers with limited ground-truth datasets. Hence, GAN
is a promising method for developing security and privacy
applications in the MEC environment. The latest paper about
compressed CGANs models [126] made it feasible to deploy
GANs in the MEC environment.

However, the disadvantages of GANs are also obvious, such
as "the Helvetica scenario" and the instability and difficulty of
the training process. We must avoid these drawbacks in order
to maximize the benefits of GANs and use them to protect the
security and privacy of MEC.

d) Other DL-based Semi-supervised Approaches
DNN can fit various nonlinear functions appropriately,

so it has outstanding contributions in the fields of pattern
recognition, data analysis, and control. simultaneously, semi-
supervised learning can be well adapted to a small number of
labeled data together with a massive number of unlabeled data.
Semi-supervised learning combined with the DNN method
began to be widely concerned by researchers in order to
make good use of the advantage of these two approaches.
Although semi-supervised DL sounds like an effective solution
to deal with a large amount of unlabeled data in the MEC
environment, the detection accuracy is hard to exceed super-
vised DL. Therefore, only a small amount of work now uses
semi-supervised DL in terms of MEC security and privacy.
For example, authors in [127] proposed a semi-supervised
DL approach for intrusion detection in IoT networks, which
combines multi-scale residual temporal convolutional (MS-
Res) module to finetune the network capability and traffic
attention mechanism to help the model to concentrate on
important information in the learning process.

4) Reinforcement Learning (RL)
Researchers have extensively studied popular topics in com-

munication fields such as data caching and offloading in the
MEC environment. In recent years, a large number of papers
are using DRL algorithms to solve these problems [104],
[128]–[130]. Previous studies (e.g., Integer programming and
game-theory methods) only consider one-shot optimization
[131]. However, the process of caching or offloading tasks in
the MEC environment is a continuous process. Fortunately,
RL provides a promising approach to maximize long-term
rewards. At the same time, security and privacy issues have
become the bottleneck of mobile caching/offloading, as edge
server is always deployed close to users, making attackers also
easier to reach the vulnerable position of MEC. Therefore,
Xiao et al. [103] formally defined a repeated game between
MEC systems and attackers and build the RL-based security
solutions to defend against jamming and smart attacks in
mobile offloading/caching.

However, the RL agent sampling data from the environment
is a very inefficient process, and designing an appropriate re-

ward function for unknown environments is challenging. Even
if we successfully overcome the aforementioned difficulties,
the local optimal is still hard to escape [132].

B. The Other Artificial Intelligence Approaches

In addition to the previously introduced ML methods, some
other non-ML methods (in AI categories, but not in ML
categories) have also been applied in MEC security and
privacy-preserving.

1) Bayesian Networks in MEC Security and Privacy
Bayesian networks, also named belief networks, are a kind

of directed acyclic AI graph model, which are widely used
in classification tasks [133]. To intuitively reflect the rela-
tionship between various vulnerabilities, the attack graph in
the network can be modelled in IoT networks. Based on the
attack graph, some previous works [134], [135] proposed to
adopt Bayesian network model to find the correlation between
vulnerabilities and network status, thereby providing security
measurement for the network. However, the structure char-
acteristic brings Bayesian networks with high computational
complexity, which increases the burden of resource-limited
edge severs.

2) Evolutionary Algorithms in MEC Security and Privacy
Evolutionary algorithms are also an important subset of AI,

including genetic algorithm (GA), evolution strategy, neuro-
evolution and so on. In the MEC network, the dependency
graph that is used to characterize the dependencies between
objects can be employed to represent the relationship between
different malware. Based on this, Kim et al. [107] proposed
a malware detection model by GA, which turned the problem
into searching the largest sub-graph isomorphism problem in
the dependency graph. Meanwhile, the complexity of the pro-
posed model was greatly decreased by reducing the size of the
dependency graph. Nevertheless, the disadvantages of evolu-
tionary algorithms are also obvious. The manual programming
is complex which makes the evolutionary algorithms are not
suitable in the large dataset.

V. AI APPROACHES FOR LAYER BASED MEC SECURITY

In this section, we provide a hierarchical introduction to
technologies involving AI approaches for protecting the MEC
security. Further, we provide a layer-based security solutions
in Table II.

A. IoT Systems Security

1) Perception Layer Security
Some attackers try to manipulate the device authentication

or jam the radio frequency environment in the data collection
progress to launch DoS attacks. Lightweight cryptography is
widely used in IoT-enabled devices for authentication [144]–
[146]. However, time-varying features in the network limit
the performance of such traditional authentication algorithms
in large-scale IoT systems. To alleviate these burdens, some
researches based on AI methods have been proposed to address
these security threats, which are introduced in the following.
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TABLE II
SUMMARY OF AI-BASED WORKS AT EACH LAYER OF MEC FOR SECURITY.

Layers Works Attack methods AI-based methods Results Applications
or

scenarios
Supervised

learning
Unsupervised

learning
Semi-supervised

learning RL
Non-ML
methods

IoT
Systems

[136]
Spoofing attacks,

replay attacks Clustering
Authentication rate:

100% Authentication

[137] Spoofing attacks DNN
Authentication rate:

100%
Authentication,

PUF

[102] DoS attacks RL
Normalized accumulated

reward: 2.25 msec Anti-jamming

[15]
DoS attacks,

TCP/IP attacks NB PCA
Accuracy: 92.48%

Detection rate: 95.35% IDS

[74]
DDoS attacks,
MitM attacks LR Average accuracy: 74% IDS

[76] DDoS attacks DT GA None quantitative result IDS
[107] Malware GA Detection rate: 88.89% Malware detection

[101] Malware Q-learning
Improved detection

accuracy: 40% Malware detection

[103]
DoS/DDoS attacks,

spoofing attacks RL None quantitative result Edge caching

[122] Malware DBN Accuracy: 96.66%
Android malware

detection

[73] Malware SVM DBN Accuracy: 94.7%
Android malware

detection

MEC
System
Level

[138] Physical attacks CNN AE PR-AUC: 99.20% Anomaly detection

[97]
DoS attacks,

manipulate and misuse AE Accuracy: 95.4% IDS

[8]
DoS/DDoS attacks,

eavesdropping and hijacking DBN
Improved detection

accuracy: 6% IDS

[89]
DoS/DDoS attacks,
privilege escalation,

eavesdropping and hijacking
K-Means

Overall redundant alarm
compression rate: 97.2% IDS

[124]
DoS attacks,

TCP/IP attacks,
manipulate and misuse

ESFCM Accuracy: 86.53% IDS

[139]
DoS attacks,

manipulate and misuse RF K-Means
Accuracy: 96.03%

FPR: 1.18% IDS for SDN

[140]
DoS attacks,

manipulate and misuse DNN Accuracy: 75.75% IDS for SDN

[141]
DoS attacks,

manipulate and misuse,
TCP/IP attacks

RF
Precision: 96%
Recall: 53.2%

Accuracy: 97%
IDS for SDN

MEC
Host
Level

[18] Eavesdropping and hijacking MLP Accuracy: 96.256%
Hardware Trojan

Detection

[100] Manipulate and misuse GAN
Precision: 95%

Recall:20% PUF

[118]
DoS attacks,malware,

physical attacks,
eavesdropping and hijacking

LSTM Accuracy: 99.91% IDS

[142] Manipulate and misuse RL
Robustness accuracy:

80% Secure FL

[143]
DoS/DDoS attacks,

TCP/IP attacks ELM
Precision: 98%
Error rate: 1% IDS

[86]
DoS attacks,

manipulate and misuse CNN Accuracy: 95.8% Attacks recognition

[92]
DoS/DDoS attacks,

eavesdropping and hijacking DNN PCA
Accuracy: 99.9%

Detection rate: 100% Attacks recognition

[115] Malware RNN Accuracy: 93%
NFV malware

detection

a) IoT Devices Level
Physical layer authentication (PLA) ensures that the con-

nected device is not malicious. In PLA, physical layer fea-
tures such as received signal strength (RSS), channel im-
pulse response (CIR), and channel state information (CSI) are
adopted to detect spoof attacks [14], [71]. Aiming at the MEC
environment, Chen et al. [136] proposed a PLA framework
that combined clustering and traditional lightweight symmet-
ric cryptography. Based on the advantages of unsupervised
clustering approaches in the data without prior knowledge,
this framework extracted and clustered CSI features, and then
used the symmetric cryptography to achieve authentication
of IoT devices. The proposed model significantly improved
the authentication rate of the system with a low-complexity
structure, and effectively combated spoofing attacks, replay

attacks and small integer attacks.
However, the traditional ML-based methods require to be

trained with a mass of samples, which occupies plentiful
computationally resources and increases the time consumption.
In response to this, Liao et al. [137] employed the data aug-
mentation algorithm to accelerate the authentication process,
and combined with DNN to enhance the accuracy of PLA and
the model training efficiency. In the experiment, the author
illustrated the proposed model attained a lightweight authen-
tication with higher accuracy compared with the traditional
threshold-based PLA method.

b) Raw Data Collection Level
The raw data collected by sensors in MEC is usually

transmitted through the cognitive radio network (CRN). Some
attackers transmit false signals in the CRN to expend network
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bandwidth, which causes the received IoT devices to consume
a mass of public resources. Taking the advantage of RL
in game-based problems, [102] proposed an anti-jamming
model based on multi-agent RL. Multiple CRNs were allowed
to transmit signals on the same frequency band, so each
CRN was required to discriminate jamming signals and other
normal CRN signals. Q-learning was used to generate the
jamming-free sub-band frequency strategy, which was with
lower complexity and achieved better performance in anti-
jamming.

2) Network Layer Security
Numerous communication protocols in the network layer

can provide and manage the connectivity between sensors
and edge servers. However, the open communication protocol
makes it effortless for attackers to seek out the vulnerability
during communication.

a) Data Transmission Level
An effective solution to anomalies in data transmission is

to build an IDS to automatically detect various attacks during
communications. In a previous study [15], PCA was used to
reduce the dimension of the original data and represent it
as new data with the minimum attribute through the princi-
ple component load matrix, and the improved NB classifier
was utilized to classify network attacks. Another work [147]
applied the replacement missing value filter to the feature
extraction and utilized the RF classifier to classify attacks
with network traffic data. Whereas, the index of classification
accuracy alone is not enough to objectively evaluate the
performance of the IDS classifier. It needs to be combined
with indexes such as precision, recall rate, and false detection
rate to make a comprehensive measurement [15], [82], [147].

DoS attacks are the most common type of intrusion in the
network layer. In response to this, a previous research [74]
adopted LR-based classifiers to detect DDoS attacks and MitM
attacks. This work utilized smartphones as edge servers in
IoT networks for training. Using the power consumption ratio
information of attacking devices and non-attacking devices to
predict intrusion, the proposed model achieved a relatively
ideal accuracy rate. Another study [76] proposed an intelligent
anomaly detection architecture based on GA and the DT
classifier. The architecture detected illegal links based on the
IP packet header information.

b) Offloading and Caching Level
Ensuring the safety of the offloading and caching process is

an important task for maintaining the network layer security. A
previous research [103] extended RL to the MEC environment
to protect the security of edge caching. In response to attacks
in the mobile edge cache, mobile devices adopted RL to make
the optimal decision from a limited set of actions to protect
the offloading process from interference or perform device
authentication. This work proposed a security framework for
MEC offloading with RL-based methods, which has enlighten-
ing significance for protecting the security of edge offloading
and caching.

3) Application Layer Security
The application layer directly provides users with intelligent

services. However, the inherent vulnerabilities in the operating
system (OS) of smart device pose security threats to the

application. In a previous research [122], an Android malware
intelligent detection system named DroidDelver based on the
DBN model was introduced. In this work, API calls were
extracted from the smali code, and different API csalls were
categorized into blocks according to their functions. Based on
the generated API call blocks, DBN learned the relationship
between benign software and malware to detect malware in
the system with improved accuracy. Xu et al. [73] proposed a
hybrid analysis malware detection system of Android, which
extracted features through DBN and combined them with orig-
inal features to construct a vector set for classification. SVM
was utilized as a classifier, and the kernel matrix constructed
by the similarity between features was applied for classifying
the benign software and malicious applications.

B. MEC System Level Security

MEC system level provides UE and CFS Portal with avail-
able edge sever services. In this subsection, we summarize the
AI-based approaches in MEC system level in the following
two aspects:

1) End-edge Level
The collaboration working mode of mobile ends and edge

servers provides an efficient solution for intrusion detection in
UEs and access networks. In a previous work [138], the Deep
AE model was used for anomaly detection in the industrial
IoT network in an end-edge collaborative mode. This work
applied a CNN-variational AE model to extract features from
the time series state information of sensors and perform
anomaly detection. What’s more, the memory and computing
consumption deployed on the edge sever were reduced by
compressing the neural network size. In another research [97],
an IDS architecture based on the Deep AE was applied to
detect abnormal traffic from sensors to edge servers. In order
to improve the accuracy of classification, the model utilized
isolation forest to further classify the output of the Deep AE
model to find the points of classification errors. This optimized
detection architecture based has an enlightening effect on
reducing the false alarm rate.

The access network between the edge sever and the mobile
end is also with potential vulnerabilities to several attacks.
Based on previous works, Chen et al. [8] proposed a network
attack detection system based on DBN in MEC. The dynamic
features were extracted by exploiting the Android file package
in the edge server and used for the model training. The loss
function was established according to the difference between
inputs and the actual outputs, and the loss was reduced by
using the BP algorithm to fine-tune the parameters of the
neural network.

Moreover, a mass of high-dimensional and multi-source
alarm information is gathered in the edge server [89], which
is a huge challenge for the processing and storage capabilities
of the server. Li et al. [89] proposed an attack detection
method based on the end-edge framework. The alarm in-
formation of the edge equipment was de-redundant through
the K-Means method. The authors established attribute attack
graphs through the correlation between the alarm information
to comprehensively analyzed to the potential vulnerabilities
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of all edge nodes. A greedy decision-making algorithm was
utilized to solve the problem of the minimum dominance set
in the attribute attack graph to replace the generation of the
complex attack linkage strategy. Given these points, this work
provides ideas for the feature extraction of high-dimensional
and multi-source alarm information in the end-edge level and
the consideration of complex attack relevance.

2) SDN Level
The separation of data plane and control plane in SDN also

brings various security threats. In a previous study [139], an
IDS in SDN based on the combination of K-Means and an
improved RF classifier was proposed. The bat algorithm was
used for feature selection, where the position of bat was set as
the selected feature subset, the iteration of position movement
and target search were summarized as the feature selection
process, and the fitness function was adopted to evaluate the
feature selection process. After the selected features were
clustered by K-Means, the flows were classified by using the
RF algorithm based on the weighted voting mechanism. The
proposed model achieved satisfactory classification accuracy
due to the advanced feature selection method while reducing
the training cost. In [140], authors applied DNN to build an
abnormal flow detection system in SDN, which was deployed
in the control plane. It monitored the data of all OpenFlow
switches and utilized the global network status to detect
intrusions. The flow table was modified to propagate the
security policy to the switch when detecting intrusions. The
DNN model of this system was trained through information
such as protocol, duration, and flow bytes as features and
achieved improved classification accuracy.

Kirutika et al. [141] proposed an external monitor based
on the RF algorithm for possible attacks in the SDN control
plane. The number of incoming/outgoing data packets and lost
packets, duration and other network state information were
utilized as features to train the RF classifier. The external mon-
itor detected the malicious data and interrupted the controller
timely. Consequently, this work ensured the security of SDN
from the control plane to prevent the entire SDN system from
being corroded by attackers.

C. MEC Host Level Security

MEC host level is mainly responsible for managing various
functions of the host, as well as the collaboration with other
hosts and the cloud. We introduce the AI-related works in the
MEC host level from the above aspects in the following:

1) Edge-host Level
The edge host security directly affects the robustness of

the overall MEC architecture. Khalid et al. [18] proposed a
hardware Trojan detection framework in edge hosts by multi-
layer perceptrons (MLP). The single power-port current ac-
quisition block was designed in the time-division multiplexed
current sensor to reduce the cost of data acquisition. Through
the analysis of hardware Trojan benchmarks at the register
transfer level in the system-on-chip (SoC), four LEON3 pro-
cessors from other infrastructure providers were integrated to
provide the solution. The proposed model greatly improved
the detection accuracy of hardware Trojan compared with the

existing methods, and reduced the power consumption on per
unit area of the chip. In [100], a GAN-based self-adversarial
agent model was proposed to improve the hardware security
of edge hosts. The agent utilized vanilla GAN and conditional
GAN respectively to attack edge hosts, and the public PUF
was used to evaluate the quality of the attack by generating
realistic secret keys. The agent reconstructed its underlying
security primitives into the public PUF through feedback to
improve the security entropy of the system when the attack
quality exceeds the setting threshold.

2) Edge-edge Level
The secure collaboration mode between edge hosts is crucial

for MEC host level. In a research [118], LSTM was utilized
to detect cyber attacks in the sensors network through the
Fog-to-Things architecture. The entire architecture assigned
attack detection tasks to edge hosts, then cyber attacks in
the cover area were detected through the coordination of
parameter update, storage and control between each edge host.
In each edge host, the sequential Stochastic Gradient Descent
(SGD) algorithm was adopted to calculate local parameters
of the LSTM. And the coordination host was responsible
for aggregating local parameters from all edge hosts, then
updating and returning the global parameters back for updating
the local model.

Pan et al. [142] proposed a gradient aggregation agent
(GAA) model suitable for the MEC environment against
Byzantine attacks, using RL to protect the robustness of the
distributed learning framework. The proposed GAA model
learned the experience from the interaction among workers
and the auxiliary information in the master, and decided the
contribution weight of its generated parameters to the overall
parameters according to the credit of the worker. For different
aggressive environments, the robustness of the GAA model
proved its performance in MEC multi-edge collaborative level.

3) Edge-cloud Level
The edge-cloud collaboration mode solves the problem

of insufficient edge device resources. In [143], ELM was
employed to detect attacks in IoT networks. Features about
duration, IP, source and destination port numbers were con-
verted into random multi-dimensional space vectors. However,
plenty of features occupied the memory and the model training
process generated huge energy consumption in the edge sever.
To achieve an efficient detection architecture, edge devices
were used to randomly project raw data to generate private
data and upload the data to the cloud with sufficient resources
for model training.

Ran et al. [86] proposed a CNN-based edge-cloud collab-
orative attack recognition architecture. The initial datasets of
multiple edge hosts were set to the same. Then edge hosts
were responsible for the raw data preprocessing and feature
selection, and utilized the trained CNN locally for attack de-
tection. The edge host with the highest detection rate uploaded
its own data to the cloud in a fixed period of time, and the
cloud was in charge of updating the dataset and retraining the
CNN and sending the improved model to each edge host. This
edge-cloud collaborative learning mode improves the detection
accuracy and the robustness of the system. In addition, in order
to release the workload of the cloud, AI algorithms (such as
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PCA [92] and Deep AE [97]) can be deployed in edge hosts
to pre-learn data, and perform secondary learning through the
cloud to fully improve performance.

4) NFV level
NFV provides resource virtualization services for edge

hosts. Guizani et al. [115] proposed an anti-malware system
based on NFV, which used RNN to predict malicious software
so that NFV can deploy relevant resources in a timely manner
to resist attacks. The raw data collected by the sensor was
preprocessed and evaluated in terms of available functions, and
feature reduction and data cleaning were employed to filter
valuable features. Then the system applied the RNN-LSTM
model to learn the preprocessed data, and utilized NFV to
virtualize the patch distribution mechanism.

VI. AI APPROACHES FOR LAYER BASED MEC PRIVACY

Traditional IoT network privacy protection methods are
implemented through cryptography or steganography [155]–
[158], while advanced AI technology gives more possibilities
for privacy-preserving. In this section, we give a hierarchical
introduction to AI-based works related to the privacy in the
MEC environment. Related works are summarized in the same
hierarchical manner as Section V and listed in Table III.

A. IoT Systems Privacy

1) Perception Layer Privacy
In the raw data collected by sensors, the location privacy

is of great importance. Han et al. [90] proposed a location
privacy-preserving framework based on K-Means in the IoT
network. Fake source nodes were established to transmit
packets from real source node, so as to make the attacker
confused about the real location of the source node. And fake
sink nodes were utilized to conceal the real route through
generating fake packets and transmitting them in different
directions. In this work, the public and private keys were
applied in each node for authentication, and only the real
packet was able to be transmitted to the real sink node through
the specific route.

As the subject of the perception layer, the privacy protection
of the sensor is also of the essence. In a previous research
[148], a lightweight privacy-preserving framework of the mo-
bile sensor was proposed based on CNN. In order to reduce the
computing overhead, storage and communication costs on mo-
bile terminals, this work transferred data processing tasks from
the cloud to the edge server. The CNN model was publicly
available to each edge server for feature extraction. The sensor
randomly divided the collected image data into two parts for
encrypting, which can be restored by superimposing them
together. The two encrypted divided parts were respectively
used for feature extraction and learning of two edge servers,
and the interaction of the two edge servers was controlled by
a trusted third party.

2) Network Layer Privacy
In this subsection, we introduce the AI-enabled methods of

privacy preserving from the following aspects:

a) Offloading Level
ML-based inference tasks on mobile devices are often

offloaded to the nearby edge server instead of the cloud
sever, which greatly reduces the communication pressure and
computational burden. In [69], kNN was used to construct a
lightweight encrypted cloud database architecture with edge
offloading. In this work, data owners uploaded data to the
cloud server, data users sent query requests to the cloud,
and the cloud utilized kNN for classifying. Pailier encryption
system was employed to encrypt data and labels to provide
database security, query privacy, and data access mode hiding.
In another work, Tian et al. [87] proposed a lightweight
scheme to protect the privacy of the CNN-based inference
task in the offloading process. Multiple pairs of encryption
and decryption keys were generated and stored in the IoT
device in an offline form, and each pair corresponded to a CNN
inference task request. In the inference phase, the IoT device
offloaded the CNN training task to the nearby edge server
online, and the CNN model provided data integrity checks to
ensure the correctness of the data.

b) Caching Level
Edge caching provides additional resources for mobile de-

vices to relieve storage pressure. Yu et al. [149] proposed a
proactive content caching method based on Federated Learning
(FL), which performed training with no require of the cen-
tralized collection user data. The method used a centralized
server to aggregate parameters of distributed edge servers for
updating, and each edge server utilized Deep AE for local
training. In the absence of user data, the performance of this
model was still better than other methods, and it played a vital
role in protecting user privacy. In [91], a privacy-preserving
method based on K-Means was used in the caching process
of the next generation cellular network. Through FL system, a
distributed architecture was adopted to upload user data instead
of encrypted user data to the cloud server for training based
on the SGD method, so that avoiding data leakage caused by
directly uploading data.

3) Application Layer Privacy
Blockchain is a well-known shared database in application

layer. Due to the data in blockchain cannot be tampered, it can
be applied for the privacy-preserving of user information. Zhao
et al. [150] proposed a CNN-based FL system combined with
blockchain to provide a user data privacy protection model for
home appliance manufacturers. Firstly, the user’s smart phone
collected data from home appliances, and conducted local-
level training of the model in a collaborative manner with the
edge server. Then users signed the trained model and uploaded
the model to the blockchain to protect it from tampering. In
addition, the manufacturer used the DP technology to calculate
an average model for the models collected from users and
preserve their privacy.

In addition, video streaming and analytics (VSM) is also a
popular application in IoT system. In order to protect the user
privacy contained in the required data in the VSA, Wu et al.
[151] proposed an enhanced privacy protection system. Using
the steganography of the GAN model at the front end, the
system was able to reverse the privacy-enhanced video without
changing the back end without auxiliary data. In addition, by
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TABLE III
SUMMARY OF AI-BASED WORK AT EACH LAYER OF MEC FOR PRIVACY

Layers Works Privacy issues Related AI methods Results Applications
or

scenarios
Supervised

learning
Unsupervised

learning
Semi-supervised

learning RL
Non-ML
methods

IoT
System

[90] Location privacy K-Means None quantitative result WSN privacy

[148] Data privacy CNN
Accuracy: 98.27%

Encryption runtime: 0.344 s
Decryption runtime: 0.056 s

Mobile sensing
privacy

[69] Data privacy kNN Encryption runtime: 0.13 s
Encrypted cloud

database

[87] Data privacy CNN
Error detection rate: 99%

Encryption runtime: 0.012 s
Decryption runtime: 0.025 s

Offloading privacy

[149]
Data privacy,

location privacy,
identity privacy

AE Caching efficiency: 15% Caching privacy

[91]
Data privacy,

location privacy K-Means
Runtime: 1209 ms

Communication overhead:
1085KB

Caching privacy

[150] Identity privacy CNN Accuracy: 97% Blockchain

[151] Data privacy GAN Accuracy: 96%
Video streams

privacy

MEC
System
Level

[152] Position privacy Skip-gram Identification rate: 83%
Anti-poisoning

attacks

[153] Data privacy DNN
Forward pass time: 0.6s

Backward pass time: 0.2s
Facial recognition

privacy

[78] Position privacy DTs, kNN
Position confidentiality

assurance: 90% LBS privacy

MEC
Host
Level

[154] Data privacy DNN
Accuracy: 94.23%

Compression ratio: 8.77% FL privacy

[77] Data privacy DTs None quantitative result Edge-cloud privacy
[93] Data privacy PCA None quantitative result Edge-cloud privacy

[70] Data privacy kNN None quantitative result
Querying encrypted

data

combining with system optimization technology, the system
fully reduced the network bandwidth and realized efficient
real-time processing on the hardware.

B. MEC System Level Privacy

Aiming at protecting edge servers from privacy damage
caused by malicious users’ poisoning attacks, Zhao et al.
[152] proposed a privacy-preserving model based on a feature
learning model named Skip-gram. In the edge server, the
social relationship between different users was extracted and
an inferred social graph was established. The model predicted
the location of the poisoning through the best map between
the social graph and the social graph. In other work, Mao
et al. [153] proposed a privacy-preserving model of DNN
facial recognition based on DP mechanism. In order to reduce
training costs, the DNN model was partitioned from the
convolutional layer, where the first part was deployed on the
user side and the second part was arranged on the edge server
side. The output of the user-side model was input to the edge
server, and the calculated loss information was fed back to the
user-side to update the gradient.

Moreover, in a previous research [78], a combined approach
based on DTs and kNN was used to identity the user’s
position, and the hidden Markov model was applied to estimate
the user’s destination and location tracking sequence. This
approach was implemented in the MEC environment to ensure
the timeliness and confidentiality of the delivery of LBS and
provide privacy-preserving LBS for roaming users. G-Means
clustering method was adopted to extract effective location
features from the redundant information of the device, and
DTs and kNN were merged to solve the position tracking

sequence ordering problem. Then the edge sever utilized
excessive locations to predict the location through hidden
Markov models.

C. MEC Host Level Privacy

In MEC host level, related privacy-preserving researches
focus on the realization of two collaborative levels, edge-edge
and edge-cloud.

1) Edge-edge Level
Lu et al. [154] proposed a joint learning mechanism based

on FL to provide privacy protection support for joint work sce-
narios of multiple edge servers. Edge servers were used to train
the ML-based model, and the parameter server was responsible
for collecting parameters of all edge servers and updating
global parameters. In this work, the parameter privacy of
the entire model was protected because the edge server only
communicated with the parameter server and had no authority
to obtain the information from other edge servers. Meanwhile,
in order to improve the training efficiency of the model, a
gradient sparsification method was adopted to compress the
interaction between edge servers and the parameter server so as
to reduce the communication consumption and obtain effective
compression space at a tiny cost of accuracy.

2) Edge-cloud Level
The edge-cloud hybrid architecture is an efficient privacy-

preserving framework. In a research [77], a privacy-preserving
mechanism in the edge-cloud environment based on DTs was
proposed. On account of the DP algorithm, the edge server
as the collector of the adversary dataset was required to not
distinguish the difference from the normal dataset. In this
mechanism, the cloud server was used to build a private
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random DTs model, and the edge server was responsible for
collecting data and adding it to the random DTs.

In another work, Osia et al. [93] proposed an edge-cloud
hybrid privacy-preserving framework that used edge server
resources to reduce the cloud processing latency and improve
the processing performance. The framework consisted of two
modules. The privacy edge module was responsible for extract-
ing features from the original image data, and the cloud server
module was in charge of inferring and feeding back to users.
In the privacy edge module, a Siamese privacy framework
was adopted, and the PCA model was employed to reduce
the dimension of the data to extract features and ensure the
accuracy of feature extraction through fine-tuning. In the cloud
server, the CNN model was utilized to perform inference based
on the extracted low-dimensional features, and the use of low-
dimensional features instead of the raw user data to transfer
to the cloud also ensured the secure user data privacy.

VII. LESSONS LEARNED, FUTURE WORKS AND
CHALLENGES

In this section, according to the security and privacy con-
cerns and related AI-based solution, we summarize specific
research problems and propose promising future directions to
give our insights to future researchers.

A. AI Methods for MEC Security

The integration of various complex heterogeneous technolo-
gies in MEC makes it face multitudinous threats. Additionally,
although powerful AI methods can provide efficient classifiers
and feature extraction tools for MEC security protection, the
deployment of these methods in the MEC environment is
also extremely challenging. In this subsection, we summarize
the existing research issues and future directions in using AI
methods to solve various security threats in MEC.

1) IoT Systems Security
The heavily deployed IoT networks provide MEC with a

wide range of interconnection and low-latency applications,
while also brings the following challenges: (1) attackers can
steal sensitive information from IoT devices in collecting raw
data through side channel attacks, or directly perform physical
attacks to disrupt the normal operation of IoT devices, and the
extensively applied gateway devices also increase the risk of
TCP/IP attacks; (2) for the reason that the application layer
of IoT directly provides users with related services, it is also
indispensable to perform effective malware detection in IoT
networks.

a) A General IDS Architecture for Enhancing Trust
Based Approaches in Ad-hoc Networks

Research Problems: Existing IDS for the security of wired
networks could be used in wireless contexts. However, the
intrinsic characteristics of MANET may limit their applica-
tion, such as the absence of centralised infrastructure, limited
bandwidth, and mobility of the nodes, etc.

Future Directions: Considering the intrinsic characteristics
of MANET, a general IDS architecture should have the fol-
lowing properties in the future: 1) A self-defence mechanism
is of immense importance for defending repeated false alarms

by sending a flood of irrelevant packets to the IDS host; 2)
It should require little system resources to execute and not
hinder system performance by adding overhead; 3) It should
run continuously and keep up transparent to the system and the
users; 4) The IDS should abide by standard to be cooperative
and open, such as the standard alert format Intrusion Detec-
tion Message Exchange Format (IDMEF) and a protocol for
transporting such alerts Intrusion Detection Exchange Protocol
(IDXP) [159].

b) Efficient Malware Detection Tools in IoT Networks
Research Problems: The malware detection tools can effec-

tively prevent threatening objects in the IoT network from de-
stroying software-level security. However, various widely pop-
ular applications in the practical IoT environment accelerate
the evolution of malware, which greatly limits the performance
of traditional detection methods, and cannot guarantee the false
alarm rate for benign system files.

Future Directions: Future researches on malware detection
should mainly focus on combining traditional malware detec-
tion tools with powerful AI models. The key to detection lies in
heuristic features such as file properties, code fragments, and
file hashes that distinguish benign from malware. Therefore,
some DL-based Natural Language Processing (NLP) models
can be used to extract and process various feature information
in OpCode, and construct malware detection as a binary
classification problem. In addition, in order to adapt to the
continuous emergence of system files and malware in the
IoT network, the dependency graph can be used to express
the relationship between software, and solve the state-of-the-
art Graph Neural Network (GNN) model to extract features
and graph reduction operations to reduce the amount of
computation.

c) MEC-IoT Security Protocols with Machine Learning
Research Problems: The Intelligent Transportation System

(ITS) is a typical application of MEC-IoT systems, which
consists of advanced sensors and control systems. ITS relies
on the interconnectivity of various devices to process real-
time data flow and transmit it to assure secure and efficient
digital services. Such data flow is plaintext that is prone
to eavesdropping and hijacking. Unmanned Aerial Vehicles
(UAV) are another example in which the aim is to conserve
battery life while offloading computational or storage informa-
tion to MEC servers for processing. As a result, using strong
cryptographic primitives or lengthy security processes would
be impossible [160]. The recent works either consider security
protocols or machine learning technologies to secure the MEC-
IoT systems. However, an elaborately designed method by
aligning security protocols with machine learning can be more
effective in protecting the security of MEC-IoT systems.

Future Directions: Although the ML-based IDS can cope
well with abnormal data traffic, the required massive data
collection in the interconnective IoT systems raises privacy
concerns during both the training and prediction stages. One
promising solution is secretly sharing the data with light-
weighted cryptography protocols and evaluating the data with
three-party computation. However, there are several research
challenges to be solved in the future. First, the three-party
computation is only suitable for computation over a Z2𝑘
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ring. But both the training data and intermediate parameters
of machine learning are decimal values that are unable to
handle modular arithmetic. Second, secret sharing is costly and
quickly becomes a major performance bottleneck in resource-
constrained MEC-IoT systems.

2) Mobile Core Network Security
The mobile core network is the provider of the main

functions of MEC. Although the in-depth modules of the MEC
system (e.g., MEO) are difficult to be invaded by attackers,
manipulated and misused attacks can inject fake data into the
authentication module to disrupt the normal operation of the
edge server. Moreover, threats in SDN are also hot research
topics in the mobile core network.

a) Ensuring Reliable End-Edge Connections in Access
Network

Research Problems: As mentioned above, the end-edge
reliable connection constitutes the first barrier to the access
network security. In addition to the rational use of service
request authentication provided by modules such as OSS and
MEO at the MEC system level, AI-based IDS should also be
combined to protect the connection from being disrupted.

Future Directions: In the future, researchers can focus on
choosing optimal AI models and features for detecting attacks
between ends and edges. In order to obtain the sensitive
information uploaded by mobile ends to the edge server,
attackers usually inject malicious data packets into the end-
edge connection. Therefore, IDS at the end-edge level should
focus on the analysis of network traffic, analyze network
dynamic information from the captured data packets, and take
countermeasures when abnormalities are detected. In order to
perform efficient feature extraction on large-scale data streams,
DL models (such as DNN and DBN) can be used as favourable
tools for building IDS in the future.

b) Detecting and Mitigating DDoS Attack on SDN Con-
trol Plane

Research Problems: SDN offers unparalleled programming
which enables network administrators to dynamically cus-
tomize and control their networks within the MEC environ-
ment. One of the security concerns is DDoS attacks which
drain the network capacity of SDN control plane by sending
heavy traffic.

Future Directions: Although the advantage of the SDN
control plane is that it can get the global view of the entire
network, the control plane is insufficiently scalable to support
high-frequency flow requests. A promising solution is to
leverage the scalability and easy customization of virtualized
software functions and adopt appropriate ML technologies and
rule-based schemes to safeguard the centralized SDN control
plane.

3) Mobile Host Level Security
When considering MEC security, the multi-faceted threats

cannot be ignored: (1) VMs composed of various hetero-
geneous technologies may suffer from infected VM images,
compromising VM migration, VM hopping, VM escape, and
VM DoS attacks; (2) there are specific threats in NFV MANO
when adopting the NFV technology to encapsulate the MEC
function into VMs; (3) the hypervisor responsible for manag-
ing VMs may have traditional TCP/IP attacks, eavesdropping

and hijacking attacks, and incur VM hopping, VM escape, and
VM DoS.

a) Coping with Inherent Threats in VMs
Research Problems: The various inherent threats in VMs

are open challenges, which bring risks to taking advantages
of VM to virtualize edge network resources. Consequently,
coping with inherent threats in VMs is getting more attention
from researchers.

Future Directions: In order to deal with infected VM
images, future researchers can enhance the security of VM
images by combining traditional encryption algorithms and
the firewall technology. For compromising VM migration,
future research should also focus on the encryption of the
plaintext transmitted during the migration process, and it
is also meaningful for intrusion detection in the migration
channel. For VM hopping, future countermeasures may be to
deploy effective authentication algorithms in MMU to prevent
malicious intrusion. And for VM escape, a valuable research
direction is to enhance the security of the VMM and maintain
the management authority of the VM by integrating additional
monitors. In addition, for the above threats as well as VM DoS,
an effective potential solution is to monitor through the AI-
based IDS. For example, some commonly used lightweight AI
classifiers such as kNN, RFs, and NB can be adapted to the
IDS for VMs.

b) MEC Secure Resource Management by NFV
Research Problems: The key function of NFV is to provide

flexible resource management services for the network. In
order to safely use NFV to manage MEC resources, the threats
in the VM must first be resolved, which has been explained
in detail above. And it is also a promising research problem
to solve the threats of NFV.

Future Directions: In the future, we can regard for imple-
menting NFV in MEC by adopting DRL that has been proven
to perform well in the wireless resource allocation game. The
security of the NFV interface should be enhanced to counter
the threats from the NFV MANO. In addition, an adaptive and
powerful hypervisor can be established, and IDS based on ML
approaches (e.g., DNN, K-Means, DBN, etc.) with powerful
feature extraction ability can be embedded in it to detect VM
threats and possible TCP/IP attacks as well as eavesdropping
and hijacking attacks in the future.

c) Developing Intelligent IDS by NFV
Research Problems: Generally, AI-based IDS consumes a

lot of computing resources and occupies a certain amount
of storage space, which makes the deployment in resource-
constrained edge devices challenging. Therefore, adopting
NFV to provide flexible resource management for intelligent
IDS is a meaningful research topic.

Future Directions: Future researchers can consider using the
flexible resource management framework brought by NFV to
assist in the realization of delay-sensitive and computationally
intensive attack detection and defense tasks. In order to im-
prove the emergency response speed of IDS, future research di-
rections can adopt the NFV technology to deploy the required
resources in time to counter attacks. For different types of
attacks, the corresponding defense methods (e.g., configuring
system patches and performing reasonable security domain
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partition) can be virtualized, and the bound virtualization
function can be directly deployed to the abnormal area when
a certain type of attack is detected by the intelligent IDS.

4) Mobile Users Security
The security of mobile users’ devices is also a challenging

subject. The possible threats on the UE side include malware
and hijacking, DoS/DDoS attacks, and TCP/IP attacks, which
bring a new research perspective to the security protection of
MEC.

a) Ensuring UE Hardware-Level Security
Research Problems: Ensuring the mobile users security

from the hardware level of devices will also become an
enlightenment for the future work. PUF technology embedded
in mobile devices is attracting attentions. It can provide
identity authentication for devices through electronic circuits.
Unfortunately, advanced non-intrusive attacks [75] have been
able to clone the PUF in MEC, which greatly threaten network
security.

Future Directions: It is a prospective research direction to
utilize ML method with great performance in classification
to recognize the cloned PUF. In addition, deploying PUF
on the chip also faces the dilemma of a trade-off between
performance and energy consumption. Future researchers can
devote themselves to applying ML methods to generate the
optimal PUF configuration for different application scenarios.

B. AI Methods for MEC Privacy

As mentioned in Section III, the open MEC ecological en-
vironment has introduced multi-party infrastructure providers,
which makes MEC services face the following privacy issues:
(1) tasks offloading makes user’s sensitive information may
be stolen or tampered in the communication link during the
offloading process; (2) the LBS brings a great test to MEC’s
privacy-preserving; (3) users’ highly sensitive PII arouses
subscribers’ concerns about MEC.

1) Preserving Data Collection Privacy
Research Problems: In IoT networks, raw data collected by

a large number of sensors urgently require to be uploaded
to edge nodes for processing to offer corresponding services.
However, the existing communication technologies in sensor
networks (e.g., Bluetooth, WiFi, NFC, etc.) cannot provide
users with completely trusted communication links. Therefore,
protecting the privacy of sensitive information contained in the
raw data is a meaningful research problem.

Future Directions: In the future, an appropriate research
direction is to use the DP technology between sensors and
edge nodes to add random disturbances to the raw data for
encryption without affecting the task effect. The end-to-end
encryption technology HE can also provide researchers with
a solution to protect the privacy of the raw data, which has
a lower computational complexity. In addition, it is also an
effective privacy-preserving solution to divide the raw data
into multiple parts at the sensor, and upload encrypted parts to
multiple edge nodes for further processing. It is worth noting
that this solution requires a trusted third party to coordinate
the collaboration between different edge nodes, and it requires
careful design by future researchers.

2) Ensuring LBS Privacy
Research Problems: LBS is a basic service of IoT, and

the location information is also required for multiple services.
As mentioned in Section III, the user’s location involves key
personal information, and the current smart devices make it
easy to leak location privacy. More importantly, the leakage
of location privacy in some application scenarios that rely
on location information (such as VANET) will cause un-
predictable consequences. Therefore, the LBS that provides
privacy guarantees in the MEC is imminent.

Future Directions: Future research directions can focus on
using encryption technologies such as DP and HE to encrypt
user location information in UE. In addition, because the
routing information of the network also contains location
privacy, attackers can trace the source according to the routing
information. Therefore, future researchers can devote them-
selves to developing methods to encrypt routing information,
such as adding fake nodes and injecting fake source data to
ad-hoc networks to confuse attackers about the real route.

3) Privacy-Preserving Approaches for Edge Offloading and
Caching

Research Problems: Edge offloading and caching are key
functions of the MEC architecture, which enables mobile
users to obtain nearby resources to handle delay-sensitive
and computationally intensive tasks. A large amount of data
containing sensitive information is offloaded or cached on the
edge server, which brings numerous privacy issues.

Future Directions: Future researchers can devote themselves
to the research of edge encryption databases, and store user
information that is offloaded or cached to edge servers with
guaranteed privacy. And some ML models (such as kNN,
CNN, SVM, etc.) can be selected as the classifier of the
encrypted database to classify according to the popularity
of the content. The encrypted data and labels will provide
reliable query and access services for edge offloading and
caching. In addition, privacy-preserving research for some
classic edge offloading and caching applications (for example,
video streaming [161]) is also a promising research direction.

C. Enhanced Approaches in MEC Security and Privacy

In addition to utilizing AI approaches to solve the security
and privacy issues in MEC, how to enhance the performance
of AI-based methods are also with great promise.

1) Integrating AI and Third-party Technology
Research Problems: Lightweight edge servers have less

abundant computing power and storage than cloud servers
with centralized resources. Therefore, it is also an important
challenge to deploy computationally intensive AI models
at the edge reasonably, which determines the practicality
of the research model. Especially for the DL model, the
training of the neural network requires a large amount of
computing resources, and this is overloaded for a single edge
server. Therefore, the DL model deployment scheme based on
partition training [162], [163] and neural network hardware
acceleration technology [113], [114] has become a trend.

Future Directions: The pivotal challenge of adopting parti-
tion training is how to adaptively divide the neural network
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into multiple partitions for training on multiple edge servers.
And for the neural network hardware acceleration technology,
the main methods include matrix decomposition, pruning,
layer reduction, etc., which are mainly based on the idea of
scale compression. The main challenge is to select an appro-
priate scale compression method for the model, and combine it
with partition training to reduce model complexity and storage
space while assuring the accuracy. The deployment of neural
networks at the hardware level is also an attractive topic.
Researches [164], [165] of using memristors to realize DNN
will provide basic support for improving the performance of
the neural networks on MEC severs.

VIII. CONCLUSION

MEC is becoming the main computation paradigm with
its lightweight and efficient architecture. In order to duly
extract valuable information from a mass of raw data and
make relevant decisions, AI is deployed in MEC to provide
intelligent data-related services. As the security and privacy
issues attract more attention, AI-based technologies play a
crucial role in protecting the security and privacy in the MEC
environment.

This survey introduces the MEC architecture from a holistic
perspective, and separates the layers from the MEC enabled
IoT System and edge sever system levels. For the functions of
each layer, related security, and privacy threats are explained
in detail. After that, the methods related to MEC security and
privacy are summarized from the perspective of AI, the ML-
based methods are classified and mainly explained, and the
inherent challenges in ML are also discussed. In addition,
the non-ML AI approaches for MEC security and privacy are
also summarized. Then, the related MEC security and privacy-
preserving AI-based works are systematically discussed in
each layer. At last, this survey summarizes the ideas and
challenges of existing works from the three aspects of AI-
based methods, MEC framework, and security and privacy
challenges in AI, and envisages future research directions. This
survey aims to provide researchers with an overview of MEC
security and privacy-preserving from the perspective of AI,
and to encourage the development of related researches.
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