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Secure and Multi-Step Computation Offloading and
Resource Allocation in Ultra-Dense Multi-Task

NOMA-Enabled IoT Networks
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Abstract—Ultra-dense networks are widely regarded as a
promising solution to explosively growing applications of
Internet-of-Things (IoT) mobile devices (IMDs). However, compli-
cated and severe interferences need to be tackled properly in such
networks. To this end, both orthogonal multiple access (OMA)
and non-orthogonal multiple access (NOMA) are utilized at first.
Then, in order to attain a goal of green and secure computation
offloading, under the proportional allocation of computational
resources and the constraints of latency and security cost, joint
device association, channel selection, security service assignment,
power control and computation offloading are done for minimiz-
ing the overall energy consumed by all IMDs. It is noteworthy
that multi-step computation offloading is concentrated to balance
the network loads and utilize computing resources fully. Since
the finally formulated problem is in a nonlinear mixed-integer
form, it may be very difficult to find its closed-form solution. To
solve it, an improved whale optimization algorithm (IWOA) is
designed. As for this algorithm, the convergence, computational
complexity and parallel implementation are analyzed in detail.
Simulation results show that the designed algorithm may achieve
lower energy consumption than other existing algorithms under
the constraints of latency and security cost.

Index Terms—ultra-dense networks, secure computation of-
floading, user association, channel selection, power control, PSO,
WOA, IoT.

I. INTRODUCTION

W Ith the staggering development of the mobile Internet

of Things (IoT), a great many of new delay-sensitive

and computing-intensive applications emerge, such as smart

homes, virtual reality, augmented reality, autonomous driving,

etc. [1]–[3]. Although the computing power of IoT mobile

devices (IMDs) has achieved a qualitative leap, due to the

limited computing resources and battery capacity, they cannot

support these applications well [4]–[7]. To address such an
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issue, mobile edge computing (MEC) is widely regarded

as a promising option, which provides a large number of

computing resources for IMDs (users) at the edge of networks.

In MEC networks, any task of IMDs (users) can be partially

or completely offloaded to some neighboring edge servers

for computing. Evidently, through such an operation, the

workloads and energy consumption of users may be reduced

greatly.

In order to further shorten the distance between users and

computing centers, ultra-dense networks are widely advocated

and have attracted increasing attention, where base stations

(BSs) are equipped with MEC servers [8]. Through the de-

ployment of ultra-dense BSs, the service coverage can be

enhanced greatly, and the uplink transmission power of users

may be reduced significantly. However, such a deployment

often results in complicated and severe network interferences.

In addition, during the computation offloading, offloaded tasks

are vulnerable to malicious attacks. To attain the goal of secure

communications, some additional computation overheads yield

for secure preventive services, resulting in extra computation

latency and energy consumption.

It is evident that the design of secure and green offloading

mechanisms is an important topic in ultra-dense networks.

Specifically, under the limited network resources, the central

issue remains how to protect users’ data, mitigate network

interferences and reduce users’ energy consumption in such

networks.

A. Related Work

In wireless networks, although spectrum sharing is benefi-

cial to improving spectrum utilization, it will inevitably incur

severe interferences within and between regions. It means

that a reasonable resource management strategy needs to be

introduced, especially for ultra-dense networks. To this end,

some relevant efforts have been made as follows. In [9],

joint spectrum, power, computation offloading decisions and

resource allocation were optimized to minimize the energy

consumed by users in densely deployed small cell networks.

Such work considered distinct channels for macro BSs (MBS)

and small BSs (SBSs), but let users utilize the same channels at

some BS. In [10], offloading decisions, transmission duration

and computing rate were jointly optimized to minimize the

overall delay of tasks under both non-orthogonal multiple

access (NOMA) and orthogonal frequency division multi-

ple access (OFDMA). In [11], Li et al. jointly optimized

http://arxiv.org/abs/2303.06353v1
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uplink transmission power, offloading decisions and weight

coefficients of delay and energy consumption to minimize

energy consumption for ultra-dense networks with NOMA

and time division multiple access (TDMA). In [12], Lu et al.

jointly optimized task offloading, BS selection, channel and

computing resource allocation to minimize the total system

cost consisting of delay and energy consumption caused by

users and BSs for ultra-dense networks with OFDMA.

At the same time, multi-task offloading has attracted more

and more attention in recent years. Some related work has

been done as follows. In [13], joint task offloading deci-

sions and bandwidth allocation were considered to minimize

total system cost defined as the weighted sum of energy

consumption and task delay. In such work, each user has

multiple independent tasks. In [14], joint multi-task offloading

decisions, computing and spectral resource allocation were

optimized to minimize task latency while guaranteeing the

energy available to the users. Such an investigation was

made under the user-assisted MEC system. In [15], offloaded

workloads and local computing rates were jointly optimized to

minimize the weighted sum of energy consumed by NOMA

transmission and local execution of smart terminals for a

multi-task NOMA system. In [16], the amount of offloaded

data was optimized to minimize task delay for a multi-server

and multi-task scenario. In [17], the computation offloading

was performed to minimize the average energy-time cost of all

users for a MEC system with multiple dependent tasks. In [18],

joint resource allocation and partial computation offloading

were performed to minimize system energy consumption for

heterogeneous edge networks with multiple separable tasks. In

[19], joint multi-task offloading and resource allocation were

executed to minimize the weighted sum of delay and energy

consumption under task-overflowed situations.

It is easy to find that aforementioned one-step computation

offloading cannot utilize computing resources well, and com-

putation delay may increase with the number of tasks signifi-

cantly. To fully utilize these resources in networks, especially

in ultra-dense networks, multi-step computation offloading has

been regarded as a good option. So far, multi-step computation

offloading was rarely studied and is still an open topic. Some

existing efforts made towards it can be listed as follows. In

[20], joint user association, multi-step offloading decision,

power and computation resources were optimized to minimize

network-wide energy consumption for ultra-dense multi-task

networks under users’ latency constraints. In [21], joint device

association, multi-step computation offloading and resource

allocation were performed to minimize the network-wide

energy consumption for ultra-dense multi-task networks under

OFMDA and proportional computing resource allocation. In

[22], joint device association, channel allocation and multi-

part collaborative offloading were optimized to minimize the

average delay under the affordable cost of network operators.

Although computation offloading can reduce energy con-

sumed by mobile terminals and task delay greatly, offloaded

data is vulnerable to malicious attacks. In view of this, secure

computation offloading has attracted increasing attention.

Although computation offloading can reduce energy con-

sumed by mobile terminals and task delay greatly, offloaded

data is vulnerable to malicious attacks. In view of this, se-

cure computation offloading has attracted increasing attention.

There exists some related work listed as follows. In [23],

Han et al. jointly optimized computing and communicational

resources to maximize the secrecy energy efficiency of com-

putation offloading in a NOMA system. In [24], He et al.

jointly optimized offloading ratio and uplink transmission

power to energy-plus-payment cost, where some jamming

signals broadcasted by edge servers were used for impeding

eavesdropping. In [25], Wang et al. jointly optimized uplink

transmission power, offloading timeslots, task allocation and

local processing frequency to minimize system energy con-

sumption under physical layer security techniques. In [26],

Wu et al. jointly optimized task partition, power allocation,

codeword transmission rate and confidential data rate to mini-

mize the weighted sum of energy consumption under physical

layer security and NOMA techniques. In [27], Bai et al. jointly

optimized offloading and attacking decisions to maximize the

expected reward of the edge system, which involves both

the service delay and security risks. In [28], Liu et al.

jointly optimized task partition, uplink transmission power and

offloading rate to maximize the requirement satisfaction of all

users, which is quantized as a combination of delay, energy

consumption and security decisions.

It is evident that the above-mentioned work concentrated on

physical-layer assisted secure offloading mechanisms. When

many attackers cooperate with each other, such mechanisms

cannot guarantee the task security well. In view of this, some

secure offloading schemes based on cryptographic algorithms

have attracted increasing attention. In [29], Elgendy et al.

jointly optimized security decisions, resource allocation and

computation offloading to minimize the energy consumption

and delay of the entire system. In addition, they also jointly

optimized security decisions, offloading policy, task compres-

sion and resource allocation to minimize the weighted sum of

energy consumption for a multi-task MEC system [30]. After

that, according to the execution time, energy consumption,

CPU and memory usage, the computation offloading was

dynamically performed in [31], where a new security layer

was added to protect the transferred data in the cloud. In [32],

Zahed et al. jointly optimized security service assignment,

cooperative task offloading and caching to minimize the total

system cost quantized as a combination of security breach cost

and energy consumption.

Among the above-mentioned efforts, few concentrate on the

design of secure multi-task multi-step computing offloading

mechanisms, especially for ultra-dense networks. In addition,

most of them utilize the frequency spectrum of ultra-dense

networks in a pure OFDMA or full-frequency reusing manner.

However, since such manners may result in low spectrum

efficiency or severe network interferences, they may be un-

reasonable and impractical for such networks.

B. Contributions and Organization

Unlike most efforts, in ultra-dense multi-task IoT networks,

we first consider the BS clustering, OFDMA and NOMA

to mitigate network interferences and improve frequency
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spectrum utilization. After that, we try to develop a secure

and green computation offloading scheme to minimize the

energy consumed by IMDs under constraints of latency and

secure costs, which jointly optimizes the device association,

channel selection, task partition, security service assignment,

uplink transmission power and computing resource allocation.

Specifically, the main work and contributions of this paper can

be summarized as follows:

1) Joint BS Clustering, OFDMA and NOMA Used for Ultra-

Dense IoT Networks: To mitigate the complicated and

severe interferences, and improve frequency spectrum

utilization, we consider the following operations for ultra-

dense IoT networks. At first, SBSs are first divided into

several clusters using K-means according to their physical

positions. Secondly, the whole system frequency band is

cut into two parts used by MBS and SBS separately.

Thirdly, we let each cluster own some orthogonal sub-

channels (frequency bands), but different clusters have

distinct subchannels. At last, we consider that IMDs

served by SBSs in the same cluster perform uplink

transmission in a NOMA manner, but ones served by

MBSs utilize frequency bands equally. As far as we know,

such joint BS Clustering, OFDMA and NOMA should be

a new investigation for ultra-dense IoT networks.

2) Secure Multi-Step Multi-Task Computation Offloading

in Ultra-Dense IoT Networks: In ultra-dense multi-task

IoT networks, we consider secure one-step and two-step

computation offloading. In a one-step manner, a part

of any task of an IMD is offloaded to the associated

MBS. In a two-step manner, a part of any task of an

IMD is first offloaded to the associated SBS, and then

a part of the partial task received by the SBS is further

offloaded to a nearby MBS. To attain the goal of secure

green communications, any offloaded part needs to be

encrypted, and receivers decrypt received parts. To the

best of our knowledge, such secure multi-step multi-task

computation offloading should be a new topic in ultra-

dense IoT networks.

3) Problem Formulation of Secure Multi-Step Multi-Task

Computation Offloading in Ultra-Dense IoT Networks:

To achieve the goal of green and secure computation

offloading in ultra-dense multi-task IoT Networks, under

joint BS clustering, OFDMA and NOMA, proportional

allocation of computational resources, and the constraints

of latency and security costs, we jointly optimize device

association, channel selection, security service assign-

ment, power control and computation computing re-

sources to minimize the total energy consumed by all

IMDs. Evidently, it should be a new formulation.

4) Design Algorithm to Solve the Formulated Problem:

Considering that the formulated problem is in a nonlin-

ear mixed-integer form, we design an improved whale

optimization algorithm (IWOA). Specifically, we first

improve conventional WOA by changing parameters,

settings and rules in three phases consisting of searching

for prey, shrinking encirclement and bubble-net attacking.

In addition, we replace the current best agent with the
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Fig. 1. Ultra-dense multi-task IoT networks with secure multi-step offloading.

historically best agent, and search for prey in the nearby

area of the historically best agent.

5) Analyses of Convergence, Computation Complexity and

Simulation: As for the designed algorithm in this paper,

we provide some detailed analyses of the convergence

and computation complexity. At last, we investigate its

effectiveness by introducing other existing algorithms for

comparison in the simulation.

The rest of this article is organized as follows. The second

section introduces the system model, including the network

model, communication model, computing model, security

model, and multi-task model; the third section gives the

optimization problem formulation of minimizing the energy

consumption of the whole network under the constraints of

IMDs delay and the total cost of security vulnerabilities; Sec-

tion IV develops the IWOA-IPSO algorithm to solve the stated

problem; Section V provides a detailed algorithm analysis,

including three parts: convergence, computational complexity,

and parallel implementation; Section VI presents the simula-

tion results and analysis; Section VII presents conclusions and

directions for further research in the future.

II. SYSTEM MODEL

In this section, network, communication, security and com-

putation models are given in detail.

A. Network Model

In this paper, we concentrate on ultra-dense multi-task IoT

networks with secure multi-step offloading, which is illustrated

in Fig.1. In such networks, the number of SBSs is greater than

or equal to the one of IMDs; each BS is equipped with a MEC

server; all SBSs are connected to nearby MBS via wired links;

each IMD has K independent delay-sensitive and computing-

intensive tasks to execute within a security breach cost and a

specific deadline. Without loss of generality, we consider that

there exists an MBS and S̄ SBSs in Fig.1, where S̄ SBSs are

indexed from 1 to S̄ in the set S̄ “
 

1, 2, ¨ ¨ ¨ , S̄
(

; the index

of MBS is 0; S “ S̄ Y t0u represents the set of all BSs; U

IMDs are indexed from 1 to U in the set U “ t1, 2, ¨ ¨ ¨ , Uu;
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the tasks of each IMDs are indexed from 1 to K in the set

K “ t1, 2, ¨ ¨ ¨ ,Ku.
In Fig.1, when an IMD is associated with some SBS, a

part of any task of this IMD is offloaded to such BS after

encrypting. This BS first decrypts it and then transmits its part

to nearby MBS after encrypting. Significantly, the associated

SBS executes the remaining part, and MBS calculates the

received part after decrypting. When an IMD is associated

with some MBS, a part of any task of this IMD is offloaded to

such BS after encrypting. This BS executes it after decrypting.

Evidently, SBSs concentrate on secure two-step offloading, but

MBSs adopt secure one-step offloading.
To mitigate cross-tier interferences, the system frequency

band is cut into two parts used by MBS and SBS separately,

where the widths of them are η̟ and p1 ´ ηq̟ respectively;

̟ is the width of the system frequency band; 0 ď η ď 1

is the band division factor. To further improve the spectrum

efficiency, SBSs are divided into W clusters using K-means

according to their physical positions, where each cluster

has N orthogonal subchannels (frequency bands) used by

SBSs in this cluster, and IMDs associated with these SBSs

can utilize the same subchannel through a NOMA manner;

N subchannels are indexed from 1 to N in the set N ;

N “ roundpp1 ´ ηq̟{pωMqq, round( ) is a rounding function,

and ω is the bandwidth of a subchannel. Significantly, IMDs

associated with some MBS utilize frequency band η̟ equally.

B. Communication Model

Under the aforementioned resource utilization manner, there

just exist intra-cluster interferences exist for any task of IMDs.

In view of this, the uplink data rate of IMD i associated with

SBS s P S̄ on subchannel n can be given by
$

’

’

’

&

’

’

’

%

Ri,s,n “ ωlog
2

´

1 `
pi~i,s

ř

uPQi,s,n
pu~u,s ` σ2

¯

,

Qi,s,n “ ti P Uu z ti “ uu :

~u,s ď ~i,s; au “ ai “ n; bu, bi P Ws,

(1)

where ai and bi are the channel and SBS indices selected by

IMD i respectively; ~i,s is channel gain between IMD i and

BS s; pi is the transmission power of IMD i; σ2 is the noise

power; Ws denotes the cluster that SBS s belongs to.
Since IMDs associated with an MBS utilize frequency bands

equally, and these bands are different from the ones used

by SBSs, there are no intra-tier and cross-tier interferences.

Considering that IMDs often transmit tasks one by one on

some channel, we can assume that each MBS has N virtual

subchannels, which correspond to only one channel in reality.

That is to say, any IMD can use one of them to transmit a task

at some time slot, which means that such an IMD utilizes a

real channel to do it. Based on this, the uplink data rate of

IMD i associated with MBS 0 on subchannel n can be given

by

Ri,0,n “ η̟
`

ÿ

uPU
xu,0

˘´1

log2
`

1 ` pi~i,0{σ2
˘

, (2)

where
ř

uPU xu,0 is the number of IMDs associated with MBS

0; xi,s denotes the association index of IMD i at BS s; xi,s “ 1

if IMD i is associated with the BS s; otherwise, xi,s “ 0.

C. Security Model

In the reality, offloaded tasks often have different security

requirements. However, they may be vulnerable to malicious

attacks, eavesdropping, and spoofing. To tackle such an is-

sue, data encryption and decryption are widely regarded as

promising solutions, which utilize different cryptographic al-

gorithms. As revealed in [32], as the strength and robustness of

security protection algorithms increase, the energy and latency

overhead increase significantly. In addition, these preventive

measures prevent security breaches completely. Therefore,

quantifying security risks is an important topic in the design

of secure offloading strategies.
To guarantee secure offloading, offloaded tasks are en-

crypted and decrypted using different cryptographic algorithms

in this paper. When an IMD is associated with some SBS, a

part of any task of this IMD is offloaded to such BS after

encrypting. This BS first decrypts it and then transmits its part

to nearby MBS after encrypting. Significantly, the associated

SBS executes the remaining part, and MBS calculates the

received part after decrypting. When an IMD is associated

with some MBS, a part of any task of this IMD is offloaded to

such BS after encrypting. This BS executes it after decrypting.
As we know, distinct cryptographic algorithms correspond

to distinguishable security levels. We assume that security

protection levels are indexed from v1 to vL in the set V “
tv1, v2, ¨ ¨ ¨ , vl, ¨ ¨ ¨ , vLu, and vl “ l represents protection level

(robustness) of the cryptographic algorithm l. In addition, the

computation capacities of cryptographic algorithm l are θ̄l
(in CPU cycles/bit) and θ̂l (in CPU cycles/bit) for encrypt-

ing and decrypting one bit, and the corresponding energy

consumptions are assumed to be the same, i.e., θ̃l (in mJ

/bit). Significantly, θ̄ “ tθ̄l,@l P Lu, θ̂ “ tθ̂l,@l P Lu and

θ̃ “ tθ̃l,@l P Lu.
When task k of IMD i adopts cryptographic algorithm l to

offload its parts securely, its failure probability [33] can be

given by

p̄i,k,l “

"

1 ´ e´νi,kpρi,k´vlq, if vl ă ρi,k,

0, otherwise,
(3)

where νi,k is the security risk coefficient of task k of IMD

i; ρi,k is the expected security level of task k of IMD i. As

revealed in (3), cryptographic algorithm l successfully protects

task m of IMD i if its security level is greater or equal to the

expected one. Otherwise, algorithm l fails in protecting such

a task.
The security breach cost [33] of task k of IMD i can be

given by

ϕi,k “
ÿ

sPS

ÿ

lPL
λkxi,syi,k,lp̄i,k,l, (4)

where λk is the finance loss (in $) of task k if it fails; yi,k,l is

the security decision index of the task k of IMD i, yi,k,l “ 1

if cryptographic algorithm l is selected for tackling task k of

IMD i, 0 otherwise. Then, overall security breach cost of IMD

i can be given by

ψi “
ÿ

kPK
ϕi,k “

ÿ

sPS

ÿ

kPK

ÿ

lPL
λkxi,syi,k,lp̄i,k,l, (5)

where µi,k is the cost incurred by failure security protection

of task k of IMD i.
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D. Computational Model

Task k of IMD i is denoted as Di,k fi pdi,k, ci,k, τ
max

i , ρi,kq,

where di,k represents the data size of task k of IMD i; ci,k is

the number of CPU cycles used to calculate one bit of task k

of IMD i; τmax

i is the deadline of IMD i.
1) Local computation: When IMD i is associated with BS

s, the size of locally processed data of task k of IMD i is

di,k ´ d̄i,s,k, where d̄i,s,k is the data size of task k offloaded

from IMD i to BS s. In addition, the local executing time

τLOC
i,s,k used for processing the task k of IMD i associated

with BS s can be given by

τLOC
i,s,k

“

`

di,k ´ d̄i,s,k
˘

ci,k

fUE
i

`
ÿ

lPL

yi,k,lθ̄ld̄i,s,k

fUE
i

, (6)

where fUE
i is the computing capability (capacity) of IMD i;

the two items on the right side of (6) are the computing time

and encrypting time respectively.
2) Offloading to SBS: When IMD i is associated with

SBS s, the following steps need to be executed for any task

k. At first, the part d̄i,s,k of di,k is offloaded from IMD i

to SBS s after encrypting. Secondly, SBS s decrypts d̄i,s,k,

and then executes d̄i,s,k ´ d̂i,s,k. Thirdly, the part d̂i,s,k of

d̄i,s,k is offloaded from SBS s to nearby MBS after encrypting.

Fourthly, MBS executes d̂i,s,k after decrypting. Consequently,

the remote time τBS
i,s,k used for processing the task k of IMD

i associated with SBS s can be given by

τBS
i,s,k “

ÿ

nPN

zi,nd̄i,s,k

Ri,s,n

`

`

d̄i,s,k ´ d̂i,s,k
˘

ci,k

f̄i,s,k
`
d̂i,s,k

R0

`
d̂i,s,kci,k

f̄i,0,k
`
ÿ

lPL

yi,k,lθ̂ld̄i,s,k

f̄i,s,k

`
ÿ

lPL

yi,k,lθ̄ld̂i,s,k

f̄i,s,k
`
ÿ

lPL

yi,k,lθ̂ld̂i,s,k

f̄i,0,k
,

(7)

where zi,n denotes the association decision of IMD i on

subchannel n; zi,n “ 1 if IMD i selects subchannel n, zi,n “ 0

otherwise. R0 is the wired backhaul rate between SBS and

MBS; f̄i,s,k is the computing capability allocated to task k

of IMD i by SBS s; on the right side of (7), the first four

items are the time used for uploading d̄i,s,k from IMD i to

SBS s, the one used for computing d̄i,s,k ´ d̂i,s,k at SBS s,

the one used for uploading d̂i,s,k from SBS s to nearby MBS,

and the one used for computing d̂i,s,k at MBS, respectively.

The last three items are the time used for decrypting d̄i,s,k at

SBS s, the one used for encrypting d̂i,s,k , and the one used

for decrypting d̂i,s,k, respectively.
According to the ratio of CPU cycles used for tackling task

k of IMD i to total utilized cycles at associated BS s, the

computing capability of BS s is allocated to the computing

and secure operations of such a task. Specifically, when IMD

i is associated with SBS s, the computing capability f̄i,s,k
assigned to k of IMD i by SBS s can be given by

f̄i,s,k “
fBS
s

`

Γi,s,k `
ř

lPL yi,k,lΓ̄i,s,k,l

˘

ř

uPU

ř

jPK xu,s
`

Γu,s,j `
ř

lPL yu,j,lΓ̄u,s,j,l

˘ , (8)

#

Γi,s,k “
`

d̄i,s,k ´ d̂i,s,k
˘

ci,k,

Γ̄i,s,k,l “ θ̂ld̄i,s,k ` θ̄ld̂i,s,k,
(9)

where fBS
s represents total computing capability of SBS s;

Γi,s,k is the CPU cycles used for processing d̄i,s,k ´ d̂i,s,k;

Γ̄i,s,k,l is the CPU cycles used for decrypting d̄i,s,k and

encrypting d̂i,s,k.

Since IMDs associated with SBSs can further offload partial

tasks to nearby MBSs for processing, and ones associated with

MBSs can directly upload tasks to these BSs for execution, the

data processed at any MBS should include the following two

parts. Consequently, the CPU cycles used for computing and

decrypting the data offloaded from SBSs to this MBS selected

by IMDs, which is given by
ř

uPU

ř

sPS̄ xu,s
ř

jPK Υu,s,j ,

where Υu,s,j “ d̂u,s,jcu,j `
ř

lPL yu,j,lθ̂ld̂u,s,j . In addition,

the CPU cycles used for computing and decrypting the data

offloaded from IMDs to MBS selected by them, which is

given by
ř

uPU xu,0
ř

jPK Ῡu,0,j , where Ῡu,0,j “ d̄u,0,jcu,j `
ř

lPL yu,j,lθ̂ld̄u,0,j . Under the proportional computing alloca-

tion mentioned previously, when IMD i is associated with

MBS 0, the computing capability f̄i,0,k assigned to k of IMD

i by MBS 0 can be given by

f̄i,0,k “
fBS
0 p

ř

sPS̄ xi,sΥu,s,j ` xi,0Ῡu,0,jq
ř

uPU

ř

jPK

`
ř

sPS̄ xu,sΥu,s,j ` xu,0Ῡu,0,j

˘ . (10)

3) Offloading to MBS: When IMD i is associated with

MBS 0, the following steps need to be executed for any task

k. At first, the part d̄i,s,k of di,k is offloaded from IMD i to

MBS 0 after encrypting. Secondly, MBS 0 decrypts d̄i,s,k, and

then executes it. Consequently, the remote time τBS
i,0,k used for

processing the task k of IMD i associated with MBS 0 can

be given by

τBS
i,0,k “

ÿ

nPN

zi,nd̄i,0,k

Ri,0,n

`
d̄i,0,kci,k

f̄i,0,k
`

ÿ

lPL

yi,k,ld̄i,0,kθ̂l

f̄i,0,k
, (11)

where the items on the right side of (11) represent the time

used for uploading d̄i,s,k from IMD i to MBS 0, the one used

for computing d̄i,s,k at MBS 0, and the one used for decrypting

d̄i,s,k at MBS 0, respectively.

We assume that all computation tasks of each IMD are

executed sequentially to satisfy practical implementations.

However, local execution and computation offloading can be

performed for any task in a parallel manner. Therefore, the

total time τi used for completing all task of IMD i can be

given by

τi “
ÿ

kPK
max

`

ÿ

sPS
xi,sτ

LOC
i,s,k

,
ÿ

sPS
xi,sτ

BS
i,s,k

˘

, (12)

Then, the total energy consumed by all IMDs can be given

by

ǫ “
ÿ

iPU

ÿ

kPK

ÿ

sPS
ςxi,s

`

di,k ´ d̄i,s,k
˘

ci,kf
2

i

`
ÿ

iPU

ÿ

kPK

ÿ

sPS

ÿ

lPL
xi,syi,k,lθ̃ld̄i,s,k

`
ÿ

iPU

ÿ

kPK

ÿ

sPS

ÿ

nPN
xi,szi,npid̄i,s,k{Ri,s,n,

(13)

where ς is the energy coefficient of chip architecture; the three

items on the right side of (13) are total computing, encrypting

and uploading energy consumptions of IMDs, respectively.
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III. PROBLEM FORMULATION AND SOLUTION

A. Problem Formulation

To achieve the goal of green and secure computation of-

floading in ultra-dense multi-task IoT Networks, we try to

minimize the total energy consumption of all IMDs under joint

BS clustering, OFDMA and NOMA, proportional allocation

of computational resources, and the constraints of latency

and security costs, jointly optimizing the device association,

channel selection, security service assignment, power control

and computation computing resources. Mathematically, it can

be formulated as

min
X,Y,Z,p,D̄,D̂

ǫ
`

X,Y,Z,p, D̄, D̂
˘

s.t. C1 : τi ď τmax

i ,@i P U ,

C2 : ψi ď ψmax

i ,@i P U ,

C3 :
ÿ

sPS
xi,s “ 1,@i P U ,

C4 :
ÿ

lPL
yi,k,l “ 1,@i P U ,@k P K,

C5 :
ÿ

iPU
zi,n “ 1,@n P N ,

C6 : ϑ ď pi ď pmax

i ,@i P U ,

C7 : xi,s P t0, 1u ,@i P U , s P S,

C8 : yi,k,l P t0, 1u ,@i P U ,@k P K, l P L,

C9 : zi,n P t0, 1u ,@i P U ,@n P N ,

C10 : θ ď d̂i,s,k ď d̄i,s,k ď di,k,@i P U , s P S, k P K,

(14)

where X “ txi,s,@i P U ,@s P Su, Y “ tyi,k,l,@i P U ,@k P
K,@l P Lu, Z “ tzi,n,@i P U ,@n P N u, p “ tpi,@i P Uu,

D̄ “
 

d̄i,s,k,@i P U ,@s P S,@k P K
(

, D̂ “
 

d̂i,s,k,@i P
U ,@s P S,@k P K

(

; ϑ takes a small enough value to avoid

zero division, e.g., 10-20; C1 indicates that the task execution

time of IMD i cannot exceed its deadline τmax

i ; C2 means that

total security breach cost of IMD i cannot exceed its maximum

acceptable cost ψmax

i ; C3 and C7 indicate that an IMD can

just be associated with only one BS; C4 and C8 indicate that

the task k of IMD i can just select only one cryptographic

algorithm; C5 and C9 indicate that an IMD can just select

only one subchannel; C6 gives the lower bound (ϑ) and upper

bound (pmax

i ) of the transmission power of IMD i; C10 means

that the offloaded parts d̄i,s,k and d̂i,s,k are greater than or

equal to ϑ, but less than or equal to the data size di,k of task

k of IMD i. Meanwhile, d̂i,s,k must be less than or equal to

d̄i,s,k.

B. Algorithm Design

As revealed in [34], WOA is a gradient-free method and

can relax the computations of gradients. In addition, it is

insensitive to the initial feasible solutions, which may affect

the convergence and performance of other traditional methods

greatly. Moreover, WOA has been equipped with adaptive

mechanisms that balance its explorative and exploitative be-

haviors appropriately, which can increase the probability of

avoiding locally optimal solutions. At last, since WOA is

flexible and easy to be implemented, it is applicable to

common optimization problems rather than particular ones.

So far, WOA has been regarded as a promising solution

(b) Specific location structures of whales 
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Fig. 2. Encoding structures of whales.

to the optimization problem in wireless and communication

networks. In view of this, we develop IWOA to solve the

formulated problem (14) by improving WOA in [34], which

consists of encircling prey, bubble-net attacking (exploitation

phase) and prey search (exploration phase). To utilize IWOA

to solve (14), we need to encode whales, define their fitness

function, and initialize their values. Then, the procedures of

encircling prey, bubble-net attacking and search for prey are

given in detail.

1) Encode whale

The optimization parameters X, Y, Z, p, D̄, D̂ of prob-

lem (14) are encoded as Bm, Om, Em, Qm, Gm, Hm

respectively, where Bm “ tbm,i, i P Uu, and bm,i is the BS

index selected by IMD i in the individual (whale) m; Om “
 

om,i, i P Ū
(

, Ū “ t1, 2, ¨ ¨ ¨ ,K,K ` 1, ¨ ¨ ¨ , 2K, ¨ ¨ ¨ , UKu,

and om,i is the index of cryptographic algorithm selected by

virtual IMD i in the individual m; Em “ tem,i, i P Uu, and

em,i is the channel index selected by IMD i in the individual

m; Qm “ tqm,i, i P Uu, and qm,i is the transmission power

of IMD i in the individual m; Gm “
 

gm,i, i P Ū
(

, and

gm,i is the amount of data offloaded from IMD i to its

associated SBS in the individual m; Hm “
 

hm,i, i P Ū
(

,

and hm,i is the amount of data offloaded from IMD i or

its associated SBS to nearby MBS in the individual m.

Significantly, M “ t1, 2, ¨ ¨ ¨ ,Mu represents the population

consisting of M individuals (whales).

The coding and structure of individuals are shown in Fig.2.

2) Fitness function

To assess the fitness of individuals (whales), fitness func-
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tions need to be designed properly. Seen from (14), we can

easily observe that constraints C1 and C2 are in nonlinear,

mixed-integer and coupling forms, and hard to be met in

whales’ actions. In view of this, they are introduced into the

fitness function as penalty terms, which can be explicitly used

to prevent individuals from falling into the infeasible region. In

this way, the established population can always find a feasible

optimal solution.

To minimize the energy consumed by all IMDs under the

constraints C1 and C2, the fitness function of individual m

can be defined as

F pBm,Om,Em,Qm,Gm,Hmq

“ ´ǫpBm,Om,Em,Qm,Gm,Hmq

´
ÿ

iPU
αimax p0, τi ´ τmax

i q

´
ÿ

iPU
βimax p0, ψi ´ ψmax

i q,

(15)

where αi and βi are the penalty factors of IMD i.

3) Population initialization

In order to meet the constraints C3-C10, initial population

can be generated use the following rules. Specifically, any

individual m can be initialized into
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

b0m,i “ randipSq,@i P U ,

o0m,i “ randipLq,@i P Ū ,

e0m,i “ randipN q,@i P Ū ,

q0m,i “ rand ppmax

i q ,@i P U ,

g0m,i “ rand pdu,kq ,@i P Ū ,

h0m,i “ rand
`

g0m,i

˘

,@i P Ū ,

ru, ks “ ind2subprUKs, iq,@i P Ū ,

(16)

where ru, ks “ ind2subprUKs, iq returns the row subscript m

and column subscript k of U ˆK matrix corresponding to the

linear index i; randipZq outputs an element from the set Z

randomly, and randpγq generates a random number between 0

and γ.

4) Encircle prey

Humpback whales can recognize the locations of prey and

then encircle them completely. Therefore, all whales are agents

that search for prey. In conventional WOA [34], the current

best agent is assumed to be the target prey, and all whales

update their positions towards it during iteration. To ensure

global convergence of WOA, we replace the current best

agent with the historically best agent. The former refers to

the individual (whale) that owns the highest fitness function

value among all individuals in the current iteration, but the

latter refers to the one that has the highest fitness function

value among all individuals in the previous and current iter-

ations. Mathematically, the behavior of encircling prey m̄ of

individual (whale) m can be formulated as

bm,i “ round pκ1bm̄,i ´ κ2 |κ3bm̄,i ´ bm,i|q ,@i P U , (17)

om,i “ round pκ1om̄,i ´ κ2 |κ3om̄,i ´ om,i|q ,@i P Ū , (18)

em,i “ round pκ1em̄,i ´ κ2 |κ3em̄,i ´ em,i|q ,@i P U , (19)

qm,i “ κ1qm̄,i ´ κ2 |κ3qm̄,i ´ qm,i| ,@i P U , (20)

gm,i “ κ1gm̄,i ´ κ2 |κ3gm̄,i ´ gm,i| ,@i P Ū , (21)

hm,i “ κ1hm̄,i ´ κ2 |κ3hm̄,i ´ hm,i| ,@i P Ū , (22)

where roundpγq represents a rounding operation on γ; |γ| is

the absolute value of γ; m̄ is the index of historically best

agent (individual);
$

’

&

’

%

κ1 “ sin ptπ{2T ` πq ` 1,

κ2 “ 2 p2r1 ´ 1q p1 ´ sin ptπ{2T qq ,

κ3 “ 2r2,

(23)

r1 and r2 are random numbers between 0 and 1; t is iteration

index; T is the number of iterations.

Inspired by the efforts in [35], [36], adaptive nonlinear

weights κ1 and κ2 are introduced for updating the positions

of individuals (whales) in (17)-(22). In addition, these weights

are also used for bubble-net attacks and searching for prey. It

is easy to find that such weights can balance exploitation and

exploration well.

5) Bubble-net attacking

Bubble-net attacking of humpback whales involves shrink-

ing encircling and spiral movement simultaneously, which are

performed in equal probability. By performing these actions,

the new position of any agent will be located between its

current position and the position of the historically best

agent. It means that a local optimum of problem (14) can be

found using bubble-net attacking. To mimic the helix-shaped

movement of whales, the spiral equation between the positions

of prey m̄ of any individual (whale) m can be given by

bm,i “ round pκ1bm̄,i ` κ4 |κ3bm̄,i ´ bm,i|q ,@i P U , (24)

om,i “ round pκ1om̄,i ` κ4 |κ3om̄,i ´ om,i|q ,@i P Ū , (25)

em,i “ round pκ1em̄,i ` κ4 |κ3em̄,i ´ em,i|q ,@i P U , (26)

qm,i “ κ1qm̄,i ` κ4 |κ3qm̄,i ´ qm,i| ,@i P U , (27)

gm,i “ κ1gm̄,i ` κ4 |κ3gm̄,i ´ gm,i| ,@i P Ū , (28)

hm,i “ κ1hm̄,i ` κ4 |κ3hm̄,i ´ hm,i| ,@i P Ū , (29)

where κ4 is used for adaptively adjusting the spiral amplitude

and avoiding falling into local optimum [37], and it can be

given by
#

κ4 “ exp pa3 ` 5 cos pπ p1 ´ t{T qqq cos p2a3πq ,

a3 “ p´2 ´ t{T q ˚ r3 ` 1,
(30)

where r3 is a random number between 0 and 1.

Besides spiral movement, any whale also needs to perform

shrinking encircling action during the bubble-net attacking

phase, which can be formulated as (17)-(22).

6) Search for prey

In the prey search of conventional WOA, whales are forced

to move toward a random whale. Through such an operation,

the search space of this algorithm can be extended. However,

its global search capability may greatly rely on the selection

of the random whale, and it may be easy to fail into local

optimum. To tackle this issue, Cauchy’s inverse cumulative

distribution function may be used for the mutation operations

of whales since its long tail [37]. Inspired by this point,

Cauchy’s inverse cumulative distribution is used for formu-

lating the prey search of whales. Mathematically, the behavior
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of prey search of any individual (whale) m can be formulated

as

bm,i “ round pbm,i ` κ2 tan pπ pr1 ´ 0.5qqq ,@i P U , (31)

om,i “ round pom,i ` κ2 tan pπ pr1 ´ 0.5qqq ,@i P Ū , (32)

em,i “ round pem,i ` κ2 tan pπ pr1 ´ 0.5qqq ,@i P U , (33)

qm,i “ qm,i ` κ2 tan pπ pr1 ´ 0.5qq ,@i P U , (34)

gm,i “ gm,i ` κ2 tan pπ pr1 ´ 0.5qq ,@i P Ū , (35)

hm,i “ hm,i ` κ2 tan pπ pr1 ´ 0.5qq ,@i P Ū , (36)

It is noteworthy that weight κ2 is used for adaptively adjusting

the magnitude of mutation.

6) Search for prey in the nearby area of historically best

agent

In order to improve the convergence rate, avoid premature

convergence and thus achieve a better solution, we further

force whales (individuals) to search for prey in the nearby area

of the historically best agent once more. Mathematically, in the

nearby area of the historically best agent m̄, new positions of

any individual (whale) m can be generated by

b̄m,i “ round pbm̄,i p1 ` 0.5r4qq ,@i P U , (37)

ōm,i “ round pom̄,i p1 ` 0.5r4qq ,@i P Ū , (38)

ēm,i “ round pem̄,i p1 ` 0.5r4qq ,@i P U , (39)

q̄m,i “ qm̄,i p1 ` 0.5r4q ,@i P U , (40)

ḡm,i “ gm̄,i p1 ` 0.5r4q ,@i P Ū , (41)

h̄m,i “ hm̄,i p1 ` 0.5r4q ,@i P Ū , (42)

where r4 is a random number between 0 and 1.

As for the newly generated positions using (37)-(42), we

decide whether or not to save them in a greedy approach

[37]. Specifically, the original positions of whales should be

replaced with them when F pBm,Om,Em,Qm,Gm,Hmq ď
F pB̄m, Ōm, Ēm, Q̄m, Ḡm, H̄mq, where B̄m “

 

b̄m,i, i P U
(

,

Ōm “
 

ōm,i, i P Ū
(

, Ēm “ tēm,i, i P Uu, Q̄m “
tq̄m,i, i P Uu, Ḡm “

 

ḡm,i, i P Ū
(

and H̄m “
 

h̄m,i, i P Ū
(

.

Otherwise, the original positions of whales should not be

changed.

Until now, the whole procedure used for IWOA can be

summarized as Algorithm 1.

IV. ALGORITHM ANALYSIS

In this section, the convergence, computational complexity,

and parallel implementation of IWOA will be analyzed in

detail.

Algorithm 1: Improved WOA (IWOA)

1: Input: Number T of iterations.
2: Output: B, O, E, Q, G and H at t-th iteration.
3: Initialization:

4: Initialize iteration index: t “ 1.
5: Initialize the population consisting of M agents using (16).
6: Calculate the fitness values of all agents using (15).
7: Find the historically best agent among all agents.
8: While t ă“ T do

9: Update κ1, κ2, κ3 and κ4 using (23) and (30).
10: Generate the probability r5 randomly.
11: If r5 ă 0.5 holds, then
12: If |κ2| ě 1 holds, then
13: All agents search prey using (31)-(36).
14: Else
15: All agents encircle prey using (17)-(22).
16: EndIf

17: Else

18: All agents perform bubble-net attacks using (24)-(29).
19: EndIf

20: Calculate fitness value χm “ F pBm,Om,Em,Qm,Gm,Hmq
21: of any agent m using (15).
22: Find the current best agent, and replace historically best agent
23: with it if its fitness value is higher than historically best agent.
24: Any agent searches for prey in the nearby area of historically best
25: agent, and generates new position tB̄m, Ōm, Ēm, Q̄m, Ḡm,

26: H̄mu using (37)-(42).
27: Calculate fitness value χ̄m “ F pB̄m, Ōm, Ēm, Q̄m, Ḡm, H̄mq
28: of any agent m using (15).
29: If χ̄m ą χm holds, then
30: tBm,Om,Em,Qm,Gm,Hmu is replaced with tB̄m, Ōm, Ēm,

31: Q̄m, Ḡm, H̄mu
32: EndIf

33: Update the iteration index: t “ t` 1.
34: EndWhile

A. Convergence Analysis

The convergence of IWOA can be established as follows.

Theorem 1: IWOA converges to global optimum solution after

a large number of iterations.

Proof: In Algorithm 1 (IWOA), all whales perform the

encircling prey, bubble-net attacking (exploitation phase) and

prey search (exploration phase) in Steps 9-19. When the iter-

ation index t gradually approaches T , κ2 is closer and closer

to zero. Evidently, when t “ T , all whales don’t search for

prey using (31)-(36), they encircle prey and perform bubble-

net attacks in equal probability. In other words, IWOA only

contains two operations consisting of shrinking encirclement

and spiral update at this time. Such operations are performed

by whales in equal probability. Even if a common whale falls

into a local optimum solution during the spiral update, it may

jump out of such a solution when the shrinking operation is

done.

It is noteworthy that the historically best agent

(whale/individual) always remains in the population of

IWOA. In addition, all agents led by this agent perform the

operations of shrinking encirclement and spiral update. It

means that these two operations force all agents to move

toward the historically best agent. Evidently, when the number

of iterations of IWOA tends to infinity, it can finally converge

to the global optimum solution.

In Steps 20-32 of IWOA, all agents are forced to search

for prey in the nearby area of the historically best agent. Such

an operation can refine the solutions found by agents, and
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improve the historically best agent. It is evident that Steps

20-32 of IWOA can speed up the global convergence of this

algorithm.
In general, IWOA converges to a global optimum solution

after a large number of iterations. ❑

B. Complexity Analysis

The computational complexity of IWOA is analyzed as

follows.

Proposition 1: The computational complexity of IWOA is

O
`

maxtTMUK, TMNU2
˘

after T iterations in the worst

scenario that all IMDs share each channel.
In Steps 6-7, the computational complexity is mainly de-

pendent on the calculation of the fitness values of all agents.

These fitness values are tightly related to energy consumption,

delay and security breach cost of all IMDs. In fact, it is

easy to find that the computational complexities of energy

consumption and delay mainly come from the calculations of

data rates and computing capabilities. To calculate the data

rates and computing capabilities, we first convert B̄m and

Ēm into a “ tai,@i P Uu and b “ tbi,@i P Uu for any

individual m, respectively. In addition, Ōm is converted into

the indices of cryptographic algorithms for any individual m.

Through these conversions, the calculations of data rates and

computing capabilities can be greatly reduced since we just

need to consider the utilized BSs, channels and cryptographic

algorithms for any IMD.
In (1),

ř

uPQi,s,n
pu~u,s can be calculated before

calculating Ri,s,n. Similarly,
ř

uPU xu,0 can be calculated

before calculating Ri,0,n. Consequently, under the

given ai and bi, the calculation of Ri,s,n may have a

complexity of O
`

NU2
˘

in the worst scenario that all

IMDs share each channel, and the one of Ri,0,n may

have a complexity of O pNUq. In (8),
ř

lPL yi,k,lΓ̄i,s,k,l

and
ř

uPU

ř

jPK xu,s
`

Γu,s,j `
ř

lPL yu,j,lΓ̄u,s,j,l

˘

can be calculated before calculating f̄i,s,k
for SBS s. In (10),

ř

sPS̄ xi,sΥu,s,j and
ř

uPU

ř

jPK

`
ř

sPS̄ xu,sΥu,s,j ` xu,0Ῡu,0,j

˘

can be

calculated before calculating f̄i,0,k for MBS 0. Consequently,

under the given ai and bi, the computational complexity of

f̄i,s,k is O pUSKq for any BS s.
Based on the above-mentioned analyses, under the given a,

b and indices of cryptographic algorithms, the computational

complexity of delay is O
`

maxtUK,NU2
˘

for all IMDs in

the worst scenario, and the one of total energy consumption ǫ

is still O
`

maxtUK,NU2
˘

in the worst scenario. In addition,

it is easy to find that the computational complexity of security

breach cost is O pUKq for all IMDs under the given indices

of cryptographic algorithms. In general, Steps 6-7 have a

computational complexity of O
`

maxtMUK,MNU2
˘

in the

worst scenario.
Evidently, the computational complexity of Steps 9-19 is

O pMUKq. The one of Steps 20-33 mainly comes from

the calculation of fitness values of all agents, which is

O
`

maxtMUK,MNU2
˘

in the worst scenario. After T it-

erations, the one of IWOA is O
`

maxtTMUK, TMNU2
˘

in

the worst scenario. ❑

TABLE I
SIMULATION PARAMETERS

Parameter Value

System bandwidth ̟ 20 MHz

Noise power σ2 10´11 mW

IMD power pmax

i 23 dBm

Deadline τmax

i 5„10 s

Data size di,k 200„500 KB

Size M of population 32

Number W of clusters 5

Number K of tasks 3

Finance loss λk 1„5 K$

Number of SBSs at each macrocell 30

Number L of cryptographic algorithms 6

Maximal security breach cost ψmax

i 5„10 K$

Security risk coefficient νi,k 1„3

Expected security level ρi,k {5, 6}

Wired backhauling rate r0 1 Gbps

Computation capacity fBS
s 20 GHz

Computation capacity fUE
i 1 GHz

ci,k used for computing one bit of di,k 50„100 cycles/bit

Pathloss between MBS 0 and IMD i 128.1 ` 37.6 log10 pℓi,0q

Pathloss between SBS s and IMD i 140.7 ` 36.7 log10 pℓi,sq

Log-normal shadowing fading Standard deviation of 8 dB

C. Parallel implementation

As revealed in the previous section, the computational

complexity of IWOA mainly comes from the calculations of

the fitness values of all agents. Such calculations will lead

to relatively high computational complexity if the number

of agents is too large. In order to reduce computational

complexity and improve the efficiency of designed algorithm,

all agents should calculate their fitness values in a parallel

manner, which has been widely advocated in reality. Certainly,

any one of three operations consists of encircling prey, bubble-

net attacking and prey search can be also performed by all

agents in parallel.

V. NUMERICAL RESULTS

Without loss of generality, IMDs and ultra-dense SBSs are

randomly deployed into a macrocell, where the number of

SBSs is greater than or equal to the number of IMDs. At the

same time, we consider θ̄ “ r100, 200, 250, 300, 350, 1050s
cycles/bit, θ̂ “ r90, 280, 350, 300, 400, 1700s cycles/bit and

θ̃ “ r2.5296, 5.0425, 6.837, 7.8528, 8.7073, 26.3643s ˆ 10´7

J/bit [38]. Moreover, other important parameters are summa-

rized in TABLE I, where ℓi,s is the distance (in km) between

BS s and IMD i.

To highlight the effectiveness of IWOA, the following

algorithms are introduced for comparison.

Computation at Mobile Terminals (CMT): All IMDs com-

plete their computation tasks by themselves in allowable

maximum computing capacity.

Computation at MEC Servers (CMS): All computation tasks

are offloaded from IMDs to BSs with the best channel gains.

In addition, cryptographic algorithms with minimum security

breach costs are always selected for these tasks. According

to the ratio of CPU cycles used for tackling them, the
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Fig. 3. Impacts of the number of IMDs at each macrocell on total task delay.

computation capacities of any BS are allocated to its served

tasks proportionally.

Whale Optimization Algorithm (WOA): To solve the problem

(14), WOA in [34] is introduced.

In the simulation, we mainly investigate the impacts of the

number of IMDs at each macrocell, and the frequency spec-

trum partitioning factor on the offloading performance. Due

to the consideration of the historically best agent, Cauchy’s

inverse cumulative distribution function used for the search

of prey, and the search of prey in the nearby area of the

historically best agent in IWOA, IWOA may achieve lower

total local energy consumption than WOA in general, and

the former may also achieve higher fitness (function) value

than the latter, which will be illustrated in the subsequent

simulation. In addition, CMS may achieve the lowest total

local energy consumption among all algorithms since it has not

locally executed tasks, but CMT may achieve the highest one

among all algorithms since it lets all tasks of IMDs be executed

locally in allowable maximum computing capacity. As we

know, in order to achieve lower local energy consumption,

lower local and/or remote computation capacities may be

used, resulting in higher task delay. Consequently, among all

algorithms, CMS may achieve the highest total delay, CMT

may have the lowest one, and IWOA may have a higher

one than WOA. Under some large enough penalty factors,

the latency and cost constraints of IMDs may be guaranteed

strictly in WOA and IWOA. Since the support ratios of cost

constraints of all algorithms are always 1, such a performance

metric will not be illustrated in the following simulation, where

the cost support ratio refers to the ratio of IMDs whose costs

are less than or equal to the total security breach costs of them

to all IMDs.

Fig.3 shows the impacts of the number of IMDs at each

macrocell on total task delay. As illustrated in Fig.3, the total

task delay of all algorithms may increase with the number of

IMDs at each macrocell. Such a performance trend can be

easily inferred according to the definition of total task delay

in (12).

Fig.4 shows the impacts of the number of IMDs at each
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Fig. 4. Impacts of the number of IMDs at each macrocell on total local
energy consumption.
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Fig. 5. Impacts of the number of IMDs at each macrocell on time support
ratio.

macrocell on total local energy consumption. As illustrated

in Fig.3, the total local energy consumption of all algorithms

may increase with the number of IMDs at each macrocell.

Such a performance trend can be easily inferred according to

the definition of total local energy consumption in (13).

Fig.5 shows the impacts of the number of IMDs at each

macrocell on the time support ratio, where the mentioned

ratio refers to the ratio of IMDs whose task delay is less

than or equal to the deadlines of them to all IMDs. As

illustrated in Fig.5, WOA, IWOA and CMT almost certainly

meet the latency constraints of all IMDs. Under some large

enough penalty factors, the latency constraints of all IMDs in

WOA and IWOA are forced to be met. Since CMT has no

uplink transmission delay and encrypting delay, and it always

completes the computation tasks of all IMDs in the allowable

maximum computing capacity, the latency constraints of all

IMDs in it can be guaranteed strictly. Unlike other algorithms,

the time support ratio of CMS may decrease with the number

of IMDs at each macrocell. According to the rules of CMS, we

can easily know that tasks of IMDs may be always offloaded to
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Fig. 7. Impacts of frequency spectrum partitioning factor on total task delay.

BSs with the best channel gains. When the number of IMDs

at each macrocell increases, loads of these BSs are getting

heavier, resulting in the latency constraints of more and more

IMDs can not be guaranteed.

Fig.6 shows the impacts of the number of IMDs at each

macrocell on the fitness (function) value. As illustrated in

Fig.6, the fitness values of WOA and IWOA may decrease with

the number of IMDs at each macrocell. Such a performance

trend can be easily inferred according to the definition of

fitness value in (15).

Fig.7 shows the impacts of frequency spectrum partitioning

factor η on total task delay. As illustrated in Fig.7, besides

CMT, the total task delay of other algorithms may increase

with η. Since CMT doesn’t utilize the uplink frequency

spectrum, the total task delay of CMT should not change

with η. It is easy to find that the number of NOMA channels

decreases with η. Consequently, co-channel interferences may

become severer and severer, resulting in increasing task delay

in WOA, IWOA and CMS. Significantly, in the simulation,

we find that the number of IMDs associated with SBSs in
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Fig. 8. Impacts of frequency spectrum partitioning factor on total local energy
consumption.
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Fig. 9. Impacts of frequency spectrum partitioning factor on time support
ratio.

CMS is distinctly greater than the one in WOA and IWOA. It

means that the total task delay of CMS may increase with η

constantly. However, the total task delay of WOA and IWOA

may initially increase with η but then doesn’t change with it.

Fig.8 shows the impacts of the frequency spectrum partition-

ing factor η on total local energy consumption. As illustrated

in Fig.8, the total local energy consumption of CMT doesn’t

change with η since it has no relation to such a factor. The total

local energy consumption of WOA and IWOA may decrease

with η since the spectrum resources of MBSs selected by most

IMDs increase. However, the total local energy consumption

of CMS may increase with η since the spectrum resources

of SBSs selected by a lot of IMDs decrease and IMDs

served by these SBSs receive severer and severer co-channel

interferences. Significantly, the opposite performance trend

between CMS and whale optimization algorithms may be

tightly dependent on the association results of IMDs.

Fig.9 shows the impacts of the frequency spectrum par-

titioning factor on the time support ratio. As illustrated in
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Fig.9, WOA, IWOA and CMT almost certainly meet the

latency constraints of all IMDs. As revealed in Fig.5, the

latency constraints of all IMDs in WOA, IWOA and CMT

can be guaranteed strictly. Unlike other algorithms, the time

support ratio of CMS may initially increase with η but then

decrease with it. In CMS, most IMDs are associated with

MBSs according to the best gain association. An increased η

results in increased uplink data rates of IMDs associated with

MBSs, resulting in an increased time support ratio. However,

an increased η also results in decreased uplink data rates

of IMDs associated with SBSs because of fewer spectrum

resources and severer co-channel interferences. It may result

in a decreased time support ratio.

Fig.10 shows the impacts of the frequency spectrum parti-

tioning factor on the fitness (function) value. As illustrated in

Fig.10, the fitness values of WOA and IWOA may increase

with η. Seen from Fig.8, the total local energy consumption of

WOA and IWOA decreases with η. According to the definition

of fitness value in (15), we can easily know that decreased

total local energy consumption may result in increased fitness

value.

Fig.11 shows the convergence of WOA and IWOA. As

illustrated in Fig.11, IWOA has a higher convergence rate than

WOA. In addition, the former can achieve higher fitness value

than the latter. Evidently, by considering the historically best

agent, Cauchy’s inverse cumulative distribution function used

for the search of prey, and the search of prey in the nearby

area of the historically best agent, IWOA may achieve better

performance than WOA.

VI. CONCLUSION

As for ultra-dense multi-task IoT networks, both OMA and

NOMA are first used to mitigate network interferences and

improve spectrum utilization. Then, under the proportional

allocation of computational resources and the constraints of

latency and security cost, we jointly optimize device associ-

ation, channel selection, security service assignment, power

control and multi-step computation offloading to minimize

the total energy consumption of all IMDs. Considering that

the finally formulated problem is in a nonlinear mixed-integer

form and hard to tackle, we design IWOA to solve it. After

that, the convergence, computational complexity and parallel

implementation are analyzed in detail. Simulation results show

that IWOA may achieve lower energy consumption than

other existing algorithms under the constraints of latency and

security cost. Future work can include further improvement

of IWOA, and the application of data compression and other

intelligent algorithms.
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