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Abstract—To support emerging applications ranging from
holographic communications to extended reality, next-generation
mobile wireless communication systems require ultra-fast and
energy-efficient baseband processors. Traditional complementary
metal-oxide-semiconductor (CMOS)-based baseband processors
face two challenges in transistor scaling and the von Neumann
bottleneck. To address these challenges, in-memory computing-
based baseband processors using resistive random-access memory
(RRAM) present an attractive solution. In this paper, we pro-
pose and demonstrate RRAM-implemented in-memory baseband
processing for the widely adopted multiple-input-multiple-output
orthogonal frequency division multiplexing (MIMO-OFDM) air
interface. Its key feature is to execute the key operations,
including discrete Fourier transform (DFT) and MIMO detection
using linear minimum mean square error (L-MMSE) and zero
forcing (ZF), in one-step. In addition, RRAM-based channel
estimation module is proposed and discussed. By prototyping
and simulations, we demonstrate the feasibility of RRAM-based
full-fledged communication system in hardware, and reveal it can
outperform state-of-the-art baseband processors with a gain of
91.2× in latency and 671× in energy efficiency by large-scale
simulations. Our results pave a potential pathway for RRAM-
based in-memory computing to be implemented in the era of the
sixth generation (6G) mobile communications.

Index Terms—In memory computing, baseband processing,
resistive switching memory, 6G communications, MIMO-OFDM.

I. INTRODUCTION

While the fifth generation (5G) mobile networks are being
deployed, the sixth generation (6G) is under development
all over the world to provide a new infrastructure for pro-
pelling the digital economy forward and realizing Society
5.0 [1]. The performance of 6G will be unprecedented as
reflected in a set of target key performance indicators (KPIs),
dictating a peak data rate to go beyond 100Gb/s, having a
minimum latency 0.1ms, and achieving an energy efficiency
of 10−12J/bit [2]–[6]. This coined the term ultra-fast-and-
energy-efficient (UFEE) communication and will enable a
wide range of emerging applications, for example, industrial
automation [7], [8], tactile internet [9]–[11], holographic com-
munications [12], [13], and digital twin [14], [15]. Hence, this
provides a strong motivation for 6G researchers to explore
the largely unoccupied Terahertz (THz) spectrum [2]–[6].
However, the required scaling up of baseband data rates to the
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hundreds of Gbps level will dramatically increase the power
consumption and complexity of baseband processing, making
it challenging to realize the 6G vision [16]–[18]. This is further
exacerbated by the increasingly sophisticated communica-
tion techniques required, including large-scale multiple-input
multiple-output (MIMO), high-dimensional orthogonal fre-
quency division multiplexing (OFDM), and interference man-
agement. From 2G to 5G era, baseband processing demands
have been satisfied largely by shrinking transistor size as gov-
erned by Moore’s law. Accordingly, the semiconductor indus-
try has evolved from planar bulk Metal-Oxide-Semiconductor
Field-Effect Transistors (MOSFETs) to the recent 3D FinFETs
and Gate All Around (GAA) architectures to improve transistor
performance and density in an integrated circuit (IC) chip [19].
However, this approach is facing increasing challenges as
transistor size approaches the atomic limit [20]. In view of the
Moore’s Law coming to an end, we propose the new paradigm
called in-memory baseband processing for the post-Moore era,
which adopts the emerging in-memory computing architecture
instead of relying on transistor densification, to pave the way
towards realizing the 6G UFEE connectivity.

Baseband processing and computing at large face two
bottlenecks: the von Neumann bottleneck and the power wall,
incurring large energy and footprint overheads. The former
is due to data shuttling between the physically separated
processing and storage units, resulting in significant latency
and high energy consumption (e.g., 100-time more than digital
logical circuits). In the latter, the increasing power density of
transistors as the transistor size shrinks has created a “power
wall” that limits practical processor frequency to ∼4 GHz
since 2006 [21], falling far short of the requirements for
THz communications. In the past decade, researchers have
started to improve computing latency and energy consumption
by employing an architecture that co-locates data processing
and storage, so called in-memory computing. Rather than
making incremental improvements to conventional systems
such as parallelism or memory bandwidth, in-memory com-
puting takes a different approach by performing calculations
where the data is located, thus fundamentally changing the
von Neumann architecture [22]. This method is similar to
the way the human brain processes information in the net-
works of neurons and synapses, where there is no separation
between computation and memory [23]. In contrast to tradi-
tional computing schemes, in-memory computing eliminates
latency and energy usage issues associated with the memory
wall. However, this new architecture requires computational
memory devices that can both store data and perform cal-

ar
X

iv
:2

30
8.

10
00

9v
1 

 [
ee

ss
.S

P]
  1

9 
A

ug
 2

02
3



2

Pilot + Payload

Payload

Pilot 

Estimated Channel

P/S
Demapper

MIMO 
Detector

Channel 
Estimation

DFT
RF

SYNC
S/PFrom 

Channel

RF
SYNC

P/S
IDFT

S/P
Mapper

Antennas

Channel

··· 0 1 0 1
··· 0 1 0 1

··· 1 1 1 1
··· 0 1 1 1

Transmitted 
Bit Streams

Reveived
Bit Streams

1 0 1 0 ···
1 0 1 0 ···

1 1 1 1 ···
1 1 1 0 ···

Figure 1. The architecture of RRAM-based transmitter: It consists of baseband processing modules [i.e., mapper and IDFT], RF modem, and an array of
transmit antennas. Each layer represents a piece of RRAM-based circuit. The architecture of RRAM-based receiver: It is comprised of an array of receive
antennas, RF front-end, and baseband processing modules [i.e., DFT, channel estimation, MIMO detection, and demapper].

culations simultaneously, usually by leveraging physical laws
like Ohm’s and Kirchhoff’s laws in electrical circuits [24].
Emerging non-volatile memories such as resistive random-
access memory (RRAM) is touted as one of the most potential
candidates for such computational memory devices [25]. It
has been reported that parallel execution of a larger number
(e.g., millions) of multiply-and-accumulate (MAC) operations
for matrix vector multiplications (MVM) can be accomplished
with extremely high energy-efficiency and low latency [26].
This makes in-memory computing a UFEE solution for MVM
intensive applications such as deep neural networks [27]–[42]
and linear algebra computation [43]–[46]. Such advantages
can naturally contribute to the trend of seamless integration
of communication and artificial intelligence (AI) for the
next-generation Internet-of-Things (IoTs). A new paradigm
for communications called in-memory baseband processing,
which adopts the emerging in-memory computing architecture
and novel signal processing approach, are potential key factors
to alleviate the challenges faced by researchers in realizing
UFEE connectivity in the era of 6G.

6G will feature scaling up of different physical-layer tech-
nologies, for example, massive MIMO using large-scale an-
tenna arrays [47] and OFDM comprising thousands of sub-
carriers [4]. The resultant baseband processing will involve
frequent large-scale matrix operations. This motivates us to
propose the new paradigm of in-memory baseband processing,
which relocates the conventional digital operations to the
analogue domain to achieve UFEE processing. In this paper,
we present the design of an in-memory baseband processor for
MIMO-OFDM which is a dominant air-interface technology
for 5G-and-beyond [2]–[5], [48]. The key novelty includes
modules, namely OFDM demodulation, MIMO detection, and
channel estimation, which are designed and implemented
using in-memory computing approach based on Ta/TaOx/Pt
RRAM chip. The OFDM module implements the discrete
Fourier transform (DFT) using two RRAM crossbar arrays.
Using such arrays to store DFT matrix enables one-step DFT
operation, cutting down the power/latency overheads in con-
ventional CMOS-based processor significantly. Furthermore,
the required channel matrix inversion for MIMO detection

is realized using a novel RRAM circuit featuring stability
and easy mode switching, enabling the one-step operation.
The performance of our design is evaluated using proof-
of-concept prototypes for separate modules and a complete
system by physical experiments, respectively, and simulations
for a large-scale communication system. We show that the
throughput and energy-efficiency can be boosted up to 91.2×
and 671× respectively as compared to state-of-the-art CMOS-
based baseband processors.

II. OVERVIEW OF RRAM-BASED BASEBAND PROCESSOR

In this paper, the baseband processor targets the MIMO-
OFDM air interface, where a pair of multi-antenna transmitter
and receiver communicate over a broadband channel. In broad-
band communications, frequency selective fading occurs when
the channel having a coherence bandwidth is smaller than that
of the signal causes its distortion. As a popular technology for
coping with such fading as well as inter-symbol interference,
OFDM is adopted to divide the whole bandwidth into Nc

orthogonal sub-channels. As a result, each sub-channel, say the
k-th sub-channel, is a narrowband channel with Nt transmit
and Nr receive antennas, modelled by a MIMO-channel matrix
H(k) ∈ CNr×Nt that is fixed within an OFDM symbol. The
input-output relation of a MIMO system over the k-th sub-
channel is given as

y(k) = H(k)x(k) + z(k), (1)

where x(k) ∈ CNt×1 consists of symbols at the k-th sub-
carrier, y(k) ∈ CNr×1 comprises the received symbols at
the k-th sub-carrier, and z(k) represents the additive white
Gaussian noise (AWGN) in propagation.

The architectures of the RRAM-based transceiver are il-
lustrated in Fig. 1. Before baseband processing, the receiver
still needs sampling at the RF front-end. Compared with a
fast analogue-to-digital converter (ADC) design for traditional
digital baseband processing, the proposed baseband processor
features the direct processing of analogue-valued input signals
so that the ADC can be replaced with a simpler sample-and-
hold circuit. The baseband (information) processing starts at
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the mapper module in the transmitter that transforms bits into
symbols and ends at the demapper module in the receiver that
transforms the symbols back to bits. The digital modulation
is chosen as 16 quadrature amplitude modulation (16-QAM)
unless specified otherwise, which maps a 4-bit string to one
of the 16 points on the constellation diagram. The bit stream
is split into in-phase (denoted by I) and quadrature (denoted
by Q) streams, associated with 0-degree and 90-degree phase
shifts of the carrier wave, respectively. I and Q components
are Gray encoded, i.e., neighbour points only differ in a
single bit, to produce symbol points in the constellation.
The system performance is evaluated by two metrics: i) The
modulation error ratio (MER) measures the dispersion of the
constellation of the received symbols. To be specific, given
total M transmitted symbols, the definition of MER is

MER = 10 log10


M∑

m=1

(
I2m +Q2

m

)
M∑

m=1
[(I ′m − Im)2 + (Q′

m −Qm)2]

 dB,

(2)
where Im and Qm denote the in-phase and quadrature com-
ponents of the m-th transmitted symbol while I ′m and Q′

m

denote the in-phase and quadrature components of the received
symbol. ii) The bit error ratio (BER) is the number of bit
errors divided by the total number of transmitted bits. To be
specific, during the studied time interval, the BER is given by

BER =
# error bits

# total transmitted bits
× 100%. (3)

In this work, we focus on the baseband processing between the
mapper and demapper. The module in the transmitter performs
inverse DFT (IDFT). For the receiver, the three modules
are DFT module, channel estimator, and MIMO detector. To
reconcile signals and channels in the complex domain and
the fact that RRAM devices store and compute real numbers,
we propose to apply the mapping R : CK×L → C2K×2L

which transforms a complex matrix A ∈ CK×L into a real

matrix R(A) =

[
ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]
∈ R2K×2L. The complex

vector is translated as the input voltages (or currents) for
the RRAM array, with the mapping T : CK×1 → R2K×1

transforming a complex vector x ∈ CK×1 into a real vector

T (x) =

[
ℜ(x)
ℑ(x)

]
∈ R2K×1. Such transformations enables

the equivalent computation involving complex matrices and
vectors.

We use the Ta/TaOx/Pt-based RRAM arrays as the hard-
ware accelerators for its compatibility with traditional CMOS
process and reliable electrical characteristics. Details of the
RRAM array fabrication and integration are described in
Appendix A. The wire-bonded integrated RRAM chip that we
used to implement the baseband processor modules is shown in
Fig. 2(a), which contains three 64×64 RRAM crossbar arrays
and one of them is shown in Fig. 2(b). The 50nm × 50nm
Ta/TaOx/Pt RRAMs are integrated with back-end-of-the-line
(BEOL) processing on top of the control peripheral circuits
(see Fig. 2(c)). The peripheral control circuits are implemented
with a commercial 180nm technology integrated chip, among
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Figure 2. Integrated RRAM chip and measurements. (a) A photo of a
wire-bounded integrated RRAM chip, which contains three 64 × 64 1T1R
crossbar arrays, row MUXes, column MUXes, transimpedance amplifiers
(TIA), sample-and-hold, and ADC. (b) Optical image of a 64 × 64 RRAM
crossbar array. (c) The cross-section view of the integrated chip with CMOS
circuits at the bottom, inter-connection in the middle, and metal through-
hole on the surface used for RRAM and back-end process integration. (d)
Top view of four cross-point RRAM devices. (e) The TEM image of the
RRAM device. (f) Ohmic behaviour of RRAM devices. The linear I-V
relationship is illustrated at different conductance states under different read
voltages (-0.2∼0.2V). (g) The conductance modulation characteristic of the
RRAM device. A train of voltage pulses (pulse width 10ns) are applied
for the RRAM conductance modulation measurements. The magnitude of
voltages starts at 0.60V and grows to 0.70V smoothly for potentiation,
while it starts at -0.50V and drops to -0.65V gradually for depression. The
cycle-to-cycle variations are 4.41% during potentiation and 5.44% during
depression, respectively. The conductance ranges from 79.93µS to 230.99µS
in the behavioral measurement.

which the access transistors are highlighted in Fig. 2(d). Such
one-transistor-one-resistor (1T1R) array architecture avoids
the sneak current issue during RRAMs’ conductance pro-
gramming and allows each cell in the array to be accessed
independently [49]. The cross-sectional transmission electron
microscopy (TEM) image of the RRAM device is shown
in Fig. 2(e). As a non-volatile analogue device, our RRAM
device exhibits linear Ohmic behaviour (see Fig. 2(f)) to
ensure accurate in-memory computing. For matrix mapping,
the conductance programming of the fabricated RRAM de-
vice can be achieved by applying a train of positive pulses
(0.60∼0.70V/10ns) for potentiation, and continuous negative
pulses (-0.50∼-0.65V/10ns) for depression (see Fig. 2(g)).

III. ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING
MODULE

The RRAM-based DFT module is illustrated in Fig. 3(a),
where data are modulated onto non-interfering sub-carriers in
the frequency domain. The transformation between the time
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Figure 3. Orthogonal frequency-division multiplexing modules. (a) The
architecture of RRAM-based DFT module. The DFT matrix W is stored
in the RRAM array and the input signal y is translated as the voltages to
be applied to the array. The elements (and signals) in real and imaginary
domains are highlighted by different colours. The module performs the DFT
over signal y and the read drivers get the result F(y) = Wy. The design
of inverting amplifier is presented at the upper right corner. (b, c) In the
experiment, the real mapping of the DFT matrix is scaled and programmed
into two 64 × 64 RRAM arrays in our integrated RRAM chip: (b) conductance
matrix and (c) corresponding error matrix, each element of which refers to
the ratio (experimental conductance – target conductance)/target conductance
[note: the value is not in percentage form].

and frequency domains involves IDFT/DFT operations. For
the received block of symbols y, the DFT of which can be
represented as an Nc-length vector: F(y) = Wy, where F(·)
denotes the DFT operation and W is the DFT matrix. In the
circuit design, the real mapping of DFT matrix, R(W), is
scaled into the RRAM devices’ conductance range and stored
as the difference between two arrays. The received signal y
is translated to the input voltages T (y) for the array. The
module computes the DFT of y, and the current outputs are the
scaled real vector mapping T (F(y)). The detailed discussion
on the hardware implementation of this module is provided in
Appendix B. Compared with conventional approaches based
on fast Fourier transform (FFT) algorithms [50], the RRAM-
based design features the dramatic reduction of computational
complexity of from O(Nc logNc) for FFT to just a one-step
(i.e., O(1)) operation. This makes it possible to overcome the
bottleneck of high complexity of DFT in baseband processing
for the next-generation large-scale OFDM communications.

In this section, a single-antenna OFDM system with 32 sub-
carriers is demonstrated. The conductance mapping of the DFT
matrix to RRAM array is scaled to fit the RRAM devices’
conductance range, which are programmed into two arrays.
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Figure 4. Experimental performance of the DFT module in the demonstrated
OFDM system. At the receiver, the constellation diagram is recovered using
(a) digital processor, (b) the RRAM processor experimental results, (c) RRAM
processor results compensated by defective correction. (d, e) Communication
performance of digital processor, RRAM-implemented DFT and defection
corrected RRAM-DFT under different channel conditions.

The subtraction of the conductance matrices of these two
arrays, in the form of differential pairs, and the corresponding
error matrix are presented in Fig. 3(b) and Fig. 3(c). The
complete signal processing path in the prototypical RRAM-
based OFDM system is described as follows. For the trans-
mitter, a message in bits is firstly modulated into 16-QAM
symbols, and then transformed from the frequency domain
into the time domain by IDFT. After adding a cyclic prefix,
the OFDM symbols are transmitted over the channel towards
the receiver. At the receiver, after removing the cyclic prefix,
the RRAM-based DFT is performed to transform the received
signal back to the frequency domain, where the symbols
are then demodulated into bits to recover the message. The
performance of the receiver with RRAM-based DFT module
is experimentally characterized over the wireless channel of
receive signal-noise-ratio (SNR) being 20dB. As a benchmark,
the constellation diagram recovered by the digital processor
using a double-precision floating-point DFT matrix is shown
in Fig. 4(a). In this case, the distortion of demodulated symbols
is measured by MER 20dB at which no bit errors occur. For
our RRAM-implemented DFT prototype, the measured con-
stellation diagram is shown in Fig. 4(b) with MER dropping to
18dB while the BER growing to 0.00146. The communication
performance is affected by both the channel noise and RRAM
devices’ imperfections. Compared with the results from a
digital processor, the performance loss of our experimental
RRAM-implemented DFT module comes from the imperfec-
tions of RRAM devices in the array, including defections
and programming errors. To reveal the effect of the defective
devices, we compensate the defections by post-processing.
To be specific, we define the defection matrix Wdefection
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as the compensatory conductance matrix of stuck-on and
stuck-off RRAM devices. We then perform the multiplication
operation Wdefectiony in computer and add the result into the
experimental outcome to obtain the defection-corrected result:
x = WRRAMy + Wdefectiony. Leveraging this method, we
rectify the experimental constellation diagram from RRAM-
implemented DFT module as shown in Fig. 4(c), whose BER
is ameliorated by an order of magnitude. Moreover, we explore
the performance of our design with different transmission pow-
ers (i.e., different SNRs) as shown in Fig. 4(d) and Fig. 4(e).
We observe that the performance differences between digital
processor and our experimental RRAM-implemented DFT
module are insignificant for a noisy channel. However, the
differences can be noticeable for cleaner channels where the
imperfections of RRAM devices in the array deteriorate the
communication performance. The defective devices play a
destructive role in the baseband processing and tackling this
issue brings benefit to the enhancement of performance.

IV. MULTIPLE-INPUT AND MULTIPLE-OUTPUT
DETECTION MODULE

The RRAM-based MIMO detection module is illustrated in
Fig. 5(a) and Fig. 5(b), which spatially multiplexes multiple
parallel data-streams. This scales up the system throughput
since different symbols are simultaneously transmitted over
different antennas. Exploiting the unique channel between
each pair of transmit and receive antennas allows each trans-
mitted symbol to be recovered through the module of MIMO
detection. In practice, two linear detectors are widely used,
namely linear minimum mean square error (L-MMSE) and
zero forcing (ZF) detectors. They reverse the signal distor-
tion by propagation through a MIMO channel by channel
equalization. To be specific, given the channel matrix H, the
L-MMSE detector minimizes the mean squared error in the
estimate of x among all linear detectors. The recovered signal
vector is given by x̂ =

(
HHH+ 1

SNRI
)−1

HHy, where y is
the received signal vector at the receiver. In hardware im-
plementation, the equivalent real-value channel matrix R(H)
is scaled and written into the RRAM arrays in the way as
illustrated in Fig. 5(a), and the received signal y is scaled
and translated to the input voltages T (y). The output voltages
are the real vector mapping T (x̂), and the detailed analysis
of this circuit is provided in Appendix C. To cope with
heterogeneous propagation environments with different SNRs,
the feedback conductance of operational amplifiers can be
represented using a RRAM device as shown in Fig. 5(b).
Our design also applies to ZF detection (see Appendix C)
which solves the least square problem and gives the recovered
signal vector as x̂ =

(
HHH

)−1
HHy. As shown in Fig. 5(b),

the transistor dictates whether L-MMSE or ZF is applied.
If the channel matrix is square, i.e., Nt = Nr = N , the
computational complexity of conventional matrix inversion is
O(N3). The complexity increases rapidly as the number of
transmit/receive antennas grows. On the contrary, the proposed
MIMO detection performs the computation in just a single
step (i.e., O(1)), presenting a promising solution for efficient
detection in the 6G massive MIMO communication.
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Figure 5. Multiple-input and multiple-output modules. (a) The architecture
of RRAM-based MIMO detection module. The channel matrix H is stored
in the four RRAM arrays as marked in the figure and the input signal y
is scaled and translated as the input currents. The elements (and signals)
in real and imaginary domains are highlighted by different colours. (b) The
transistor controls whether L-MMSE or ZF modules is adopted. When the
gate is grounded, the circuit performs ZF detection. Otherwise, L-MMSE
is selected. In addition, to adapt to environments with different SNRs, the
feedback conductance of the operational amplifiers is tuneable. (c, d) In the
experiment, the real mapped channel matrix is scaled and programmed into
RRAM arrays in our integrated RRAM chip: (c) conductance matrix and
(d) corresponding error matrix, each element of which refers to the ratio
(experimental conductance – target conductance)/target conductance.

We experimentally demonstrated the RRAM-based narrow-
band MIMO system with 4 transmit antennas and 4 receive
antennas. The real mapped channel matrix R(H) is scaled
and programmed into the RRAM arrays (see Fig. 5(c)). The
programming error is presented in Fig. 5(d) . The experimental
results of the constellation diagrams from L-MMSE detection
for a noisy channel of SNR being 20dB. To begin with,
the constellation diagram recovered by the digital processor
is shown in Fig. 6(a) as a benchmark. For our RRAM-
implemented MIMO detection module, the measured MER
drops 4dB compared to the digital counterpart, inducing more
bit errors (see Fig. 6(b)). The performance loss comes from
the programming noise of RRAM devices whose effects on the
circuit are twofold: i) the imprecision of the channel matrix
representation; ii) the imbalance of the left and right channel
matrices. To reduce the effect of the programming noise in
RRAM devices, we use two RRAM devices to represent one
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Figure 6. Experimental performance of the MIMO detection module in
the demonstrated MIMO system. At the receiver, the constellation diagram
is recovered using (a) digital processor, (b) RRAM-implemented MIMO
detection module, (c) RRAM MIMO detection module averaged from two
implementations. (d, e) Communication performance of digital processor,
RRAM-implemented MIMO detection, and averaged RRAM-pair implemen-
tation under different channel conditions.

real value which supresses the variance of random noise. By
this means, we find the dispersion of constellation points (see
Fig. 6(c)) becomes less severe and the BER reduces by an
order of magnitude. Furthermore, as shown in Fig. 6(d) and
Fig. 6(e), we study the performance differences between dig-
ital processor and our RRAM-implemented MIMO detection
module under different channel conditions. We observe subtle
differences between them in the low SNR regime while the
divergence becomes noticeable in the high SNR regime. The
performance loss of our RRAM-implemented MIMO detection
module can be relieved by representing channel matrix using
more RRAM devices to reduce the programming noise.

V. CHANNEL ESTIMATION MODULE

To acquire the channel state information (CSI) needed
for MIMO detection, the channel matrix is estimated at the
receiver using pilot signals that are sent by the transmitter
and known a priori to the receiver. Many data symbols can
be transmitted between two pilot signals separated by channel
coherent time, amortizing the overhead of channel training.
A larger ratio between data and pilot symbols improves the
system throughput at the cost of adaptive to time-varying
channels. The transmitted training matrix P ∈ CNt×Nt is
known by the receiver, while the actual received matrix is
S ∈ CNr×Nt . By choosing the pilot signal as a unitary
matrix [51], i.e., PPH = I, the channel matrix estimated
by maximum likelihood (ML) or least square (LS) is given
as Ĥ = SPH. In the RRAM-based channel estimation mod-
ule, the real mapped training matrix R(P) is stored in the
RRAM array. Each row vector of the real mapped received

matrix R(S) is translated to the supplied input voltages. The
computation can be completed by 2Nr read pulses while the
complexity is O(NrN

2
t ) for traditional processors.

When ready, the row vectors of the estimated channel matrix
are sequentially written into the RRAM array implementing
the MIMO detector. We evaluate the performance of different
writing process in terms of system latency. To this end, a
mathematical model is developed to facilitate latency analysis
for programming a 1T1R array as elaborated in Appendix E.
Consider the writing process using a train of pulses to program
an N ×N array in the row-by-row manner. It can be proved
that the expected writing latencies of write-without-verification
and write-with-verification schemes scale with the array size
in the way no faster than O(N

√
lnN) and O(N lnN), re-

spectively. This contributes to the most latency in our design.
For comparison, the computational complexity is O(N3) for
traditional digital processors.

VI. PERFORMANCE EVALUATION OF THE COMPLETE
SYSTEM

Recall that we consider the MIMO-OFDM air inter-
face where a transmitter/receiver integrates the RRAM-based
OFDM and MIMO modules. The modules are separately
validated in previous sections. Here, we report a system-level
demonstration of a MIMO-OFDM system with 32 sub-carriers
and 2 × 2 antennas for proof-of-concept. The RF chains are
physically implemented using software defined radio (SDR)
platform, which provides the realistic MIMO communication
links over-the-air. The digital logic on a workstation regulates
data generation, executes frame synchronization algorithms,
orchestrates the operation of the other two platforms, and
controls the system data flow. The system schematic is pre-
sented in Fig. 7. The workflow is described as follows. The
workstation randomly generates bit stream and maps bits
to symbols in 16-QAM constellation diagram. The symbols
are then transformed to time domain waveforms by OFDM
modulation, which are fed in the SDR transmitter to radiate
the wireless signals at carrier frequency into the air by the
two transmit antennas. The constellation diagram of symbols
in the data payload when they are emitted from the transmitter
is presented in Fig. 8(a). The dispersion of constellation
points results from the thermal noise in transmitter circuit
and the non-ideality of the RF components (e.g., nonlinear
power amplifier response). The RF signal is captured by
the two receive antennas at the SDR receiver, and down-
converted to baseband signal with the locally generated carrier
frequency. After that, the channel matrix is estimated using
pilot symbols and programmed into RRAM arrays as men-
tioned. The data payloads are then processed using RRAM-
implemented modules (i.e., DFT and MIMO detection), and
the recovered constellation diagram is presented in Fig. 8(c)
with MER being 12.83dB. For comparison, the constellation
points from a digital baseband processor are given in Fig. 8(b)
whose MER is 17.43dB. The performance loss of our RRAM-
implemented system mainly comes from the defective RRAM
devices and programming errors, which are compensatory as
discussed. Our demonstration proves the feasibility of system-
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Figure 8. Proof-of-concept in-memory baseband processing experimental
results: (a) Constellation diagram of transmitted symbols. (b, c) Constellation
diagrams of the symbols recovered at the receiver from (b) digital baseband
processing and (c) RRAM-implemented in-memory baseband processing.

(a) (b) (c) (d)

Figure 9. An illustration of the communication performance of transmitting
an image over a noisy channel. (a) The original image. (b, c) The recovered
images are from RRAM-based baseband processor where the RRAM arrays
at the MIMO detector are programmed by (b) write-without-verification and
(c) write-with-verification schemes. (d) Benchmark: software result.

level RRAM-based in-memory baseband processing in a real
wireless communication system.

In the following, we perform the simulations of a large-
scale RRAM-accelerated communication system correspond-
ing to the standard of 5G new radio (NR) (see Table I).
The simulation of RRAM array programming is based on the

RRAM model calibrated using the experimentally acquired
device properties such as the Ohmic behaviour (see Fig. 2(f))
and the evolution of the conductance with voltage pulses (see
Fig. 2(g)). Both the cycle-to-cycle variations and read noise
during RRAM programming are included in our simulations.
Since the transmitter is much simpler than the receiver, we fo-
cus on the RRAM-based receiver in the remainder of this sec-
tion. To visually demonstrate the performance of our designed
in-memory baseband processor, we consider the specific task
of uncoded transmission of an image as shown in Fig. 9(a).
The image recovered at the receiver are presented in Fig. 9(b)
and Fig. 9(c) where RRAM devices are programmed using
writing without and with verification schemes, respectively. As
a benchmark for comparison, the image resulting from a digital
baseband processor is shown in Fig. 9(d). One can observe
that the performance of the write-without-verification scheme
is poor while the other scheme with verification performs
similarly as the ideal processor. To quantify the performance,
we present the relation between MER (and BER) and SNR
for both schemes as shown in Fig. 10(a) (and Fig. 10(b)).
The simulation results are aligned with the earlier observation
and show that write-with-verification scheme outperforms the
other in terms of communication performance. From the
perspective of latency and energy efficiency, the performance
is compared in Fig. 10(c) and Fig. 10(d). As shown in
Table II, the throughput and energy-efficiency of the pro-
posed RRAM-based in-memory baseband processing exceed
those of any reported CMOS-based digital processors [52]–
[56]. For example, under the specifications in Table I, the
throughput and energy efficiency can achieve up to 160.8Gb/s
and 4637Gb/J, exceeding state-of-the-art digital counterparts
in the literature by more than 329× and 671×, respectively.
Moreover, by reasonable conversion, our design is estimated
to supports a throughput 91.2× higher than one of the state-
of-the-art commercial modems, i.e., Qualcomm Snapdragon
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Table I
PARAMETERS FOR LARGE-SCALE MIMO-OFDM SYSTEM SIMULATION

Parameter # sub-carriers # Tx antennas # Rx antennas # Pilot symbols # Symbols/frame
Notation Nc Nt Nr Nt M

Value 1024 4 4 4 14×160

Table II
COMPARISON WITH CMOS-BASED DIGITAL PROCESSORS

Processor Technology Latency
(ms)

Energy
(mJ)

Communication
Throughput (Gb/s)

Energy
Efficiency (Gb/J)

Qualcomm
Snapdragon X65 [52] 4 nm <10 N/A <5 N/A

TMS320C6678
8-core digital signal processor [53] 20 nm 589.9 6548 0.0621 0.0056

Domain adaptive processor
16×DAP in literature [54] 12 nm 74.95 6547 0.4888 0.0056

Combined digital baseband modules:
FFT in [55] and MIMO detector in [56] 65 nm 50.17 5.3024 0.7303 6.9091

Proposed RRAM-based
Baseband Processor - 0.2278 0.0079 160.8 4637

Table III
PARAMETERS OF MEMRISTORS’ BEHAVIORAL MODELS FOR THE SIMULATIONS

Memristor Device Mechanism Pulse
width

State
number

Cycle-to-cycle
vatiation Gmax/Gmin

Operation
voltages

Ta/TaOx/Pt
our RRAM Filament 10 ns 256 4.41% (P)

5.44% (D) 230.99/79.93 µS 0.65/-0.575 V

TiN/HZO/SiO2/Si
FeFET [57] FeFET 75 ns 32 0.5% 1.79/0.04 µS 3.65/-2.95 V

Ag/PZT/Nb:SrTiO3

FTJ [58] FTJ 10 ns 256 2.06% 80/1 µS 1.675/-3.5 V
630 ps 150 3.65% 27.5/1 µS 4/-5 V

X65. Underpinning the improvements is the ultra-fast one-
step baseband processing after channel estimation such that
the baseband latency mostly comes from programming the
RRAM arrays of MIMO detection module at the beginning
of the frame. In contrast, for CMOS-based digital processors,
data symbols are processed by executing the DFT (or FFT) and
MIMO-detection algorithms using digital logic circuits, both
suffering from high complexity as discussed. Next, there exists
a tradeoff between communication performance and latency,
i.e., higher performance requires better programming accuracy
and thus longer latency. On the one hand, the write-without-
verification scheme shows lower latency but poor communi-
cation performance in terms of BER and MER, a result of the
intrinsic stochasticity of RRAM. On the other hand, RRAM
with more states can achieve higher precision but possibly
more pulses are needed to reach the target conductance value.

VII. DISCUSSION

This work demonstrates the feasibility of UFEE MIMO-
OFDM baseband processing by leveraging the emerging in-
memory computing technology based on RRAM arrays. The
processing latency and energy are mostly contributed by the
programming of the RRAM arrays for MIMO detection due to
periodic channel estimation, while the following processing of
data symbols can be completed in one-step. These advantages
promise a feasible approach for realizing UFEE baseband
processing. It shall be also emphasized that the proposed
in-memory baseband processing not only works on RRAM
but can be readily applied to other emerging in-memory

computing technologies including phase change, ferroelectric
and magnetoresistive memories, as detailed in Table III which
lists the device features of our experimental RRAM devices
and other types of memristor. There are some observations
from the simulation results in Fig. 11. First, we compared
two different schemes for updating memristor arrays: writing
with and without verification, elucidating the importance of
verification and low cycle-to-cycle variation in ensuring the ac-
curacy of the operations. To ensure satisfactory communication
performance, write-with-verification is suggested for updating
the memristor arrays even if the cycle-to-cycle variation is
relatively small (e.g., ∼0.5%) as shown in the simulation
result of programming ferroelectric FET (FeFET) [57] without
verification. Second, memristor can be further improved using
ultra-narrow pulse width along with relatively large number of
states to achieve ultra-fast conductance updates without com-
promising the communication performance. For example, the
simulation results in Fig. 11 show that the UFEE requirements
can be met using ferroelectric tunnel junction (FTJ) which is
reported for high precision attainable using sub-nanosecond
pulses [58]. Leveraging the behavioural model of such mem-
ristors, the latency of our in-memory baseband processing
system can be reduced to the scale of several microseconds
and the energy consumption to the scale of several micro-Jules,
which meets the UFEE requirements of 6G communications.
Furthermore, in-memory baseband processing is more effec-
tive for applications with less stringent precision requirements.
For example, if the transmitted messages, such as images,
are inputs to the downstream neural networks for inference,
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Figure 10. Performance evaluation of in memory MIMO-OFDM baseband
processing using experimental RRAMs. The simulations target a large-scale
MIMO-OFDM system of 1024 sub-carriers, 4 transmit antennas and 4 receive
antennas unless specified otherwise. The behavioural model of RRAM devices
comes from the experimental testing of our fabricated RRAM devices. The
simulation curves are averaged over 200 trials to eliminate the randomness
of channel and RRAM devices. (a, b) Under different channel conditions, the
resultant (a) MER and (b) BER from the three schemes. (c, d) For writing with
and without verification schemes, the (c) latency and (d) energy are evaluated
in terms of different MIMO sizes.

the models’ robustness against programming noise can ensure
high classification accuracy. Overall, developing the proposed
in-memory baseband processing into a versatile technology
is believed to provide a feasible approach for realizing the
6G vision on supporting future services and applications with
extremely low latency and high energy-efficiency.

APPENDIX

A. RRAM Device Fabrication and Integration
The integrated chip platform is comprised of three 64 ×

64 Ta/TaOx/Pt RRAM crossbar arrays, together with digital
control and analogue sensing circuits to realize in-memory
computing. The driving and sensing analogue circuits are
taped out with TSMC’s 180nm technology node. After the
integration of the RRAM devices with the CMOS circuits, the
chip is wire-bonded in a package. The RRAM devices have
a lateral dimension of 50nm × 50nm, fabricated in house
with back-end-of-line (BEOL) processes. The layers of the
RRAM materials stack (Ta/TaOx/Pt) are deposited with room
temperature sputtering, and the electrodes are patterned with
electron-beam lithography. The deposited TaOx, serving as the
switching layer, has a thickness of ∼2nm.

B. DFT/IDFT Circuit
Consider the circuit with DFT matrix W ∈ CNc×Nc . The

real mapping of the DFT matrix R(W) ∈ R2Nc×2Nc is scaled
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Figure 11. Performance evaluation of in memory MIMO-OFDM baseband
processing using memristors in the literature. For the three memristor be-
havioural models, the (a) latency and (b) energy are evaluated in terms of
different MIMO sizes. Under different channel conditions, the resultant (c)
MER (in dB) and (d) BER are shown.

into the RRAM devices’ conductance range by a scaling factor
α, giving the conductance matrix G = αR(W) ∈ R2Nc×2Nc .
The real conductance matrix G is implemented by the differ-
ence between a pair of conductance arrays, G+ −G−, with
the utilization of inverting amplifier to invert the voltages. The
received signal y ∈ CNc×1 is translated to the input voltages
with the real vector mapping, such that v = T (y) ∈ R2Nc×1.
Leveraging Ohm’s law (i.e., current = conductance × voltage),
the multiplications {G+

klvl} and {G−
klvl} are achieved. Then,

Kirchhoff’s current law sums these contributions along each
row line and the read circuit integrates all the signals, giving
the current at the k-th column ik =

∑L
l=1(G

+
kl − G−

kl)vl.
Therefore, the output currents at the read circuit give the
result: i = (G+ − G−)v, which gives the DFT result
αT (x) = αR(W)T (y). Since DFT matrix is unitary, i.e.,
W−1 = WH, IDFT module circuit is the same as that of
DFT when we replace R(W) with R(W)T.

C. L-MMSE/ZF MIMO Detector Circuit

Consider the L-MMSE detection circuit with channel matrix
H ∈ CNr×Nt . The real mapped channel matrix R(H) ∈
R2Nr×2Nt is scaled into the RRAM devices’ conductance
range by a scaling factor α, giving the conductance matrix
G = G+−G− = αR(H) ∈ R2Nr×2Nt which is implemented
as the difference between two RRAM arrays. The real vector
mapping of the received signal T (y) ∈ R2Nr×1 is translated
to input currents. To make the voltages in the circuit within
a reasonable range, the input currents are also scaled as
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i = αT (y) ∈ R2Nr×1. The two arrays at the left-hand
side constitute the conductance matrix −G = G− − G+

with voltages v supplied at the bottom of the nether array.
The Kirchhoff’s current law sums the output currents from
the left RRAM array pair, −Gv, and the input currents, i,
such that the input currents at the operational amplifiers are
i′ = −Gv + i. Hence, the output voltages that supplied to
the right RRAM array pair are v′ = − i′

g1
= Gv−i

g1
, where

g1 is the feedback conductance of the TIAs. Then, the right
RRAM array pair, whose conductance matrix is represented
by GT = (G+ − G−)T, performs the MVM computation
and outputs the current vector i′′ = GTv′ = GTGv−i

g1
.

The currents are applied to the other set of TIAs, so that
i′′ = −g2v, where g2 is the feedback conductance of the
TIAs in this set. Accordingly, one can observe the relation:
GTGv−i

g1
= −g2v, which gives the output voltages v =(

GTG+ g1g2I
)−1

GTi. By setting the SNR as α2(g1g2)
−1,

the designed L-MMSE circuit outputs the desired vec-
tor: T (x̂) =

(
R(H)TR(H) + 1

SNRI2Nt×2Nt

)−1 R(H)TT (y).
When the feedbacks of the TIAs in the second set are
open, i.e., g2 = 0, the output voltages of the circuit are
v = (GTG)−1GTi. This computes the ZF and gives the
desired vector T (x̂) =

(
R(H)TR(H)

)−1 R(H)TT (y).

D. Implementing Complex Matrices and Vectors

Both the channel entries and signals are in the complex
domain while employing differential pairs of RRAM devices
can only represent real numbers. To address this issue, we
propose to apply the equivalent matrices and vectors of real
entries instead. Inspired by the matrix representation of com-

plex numbers, i.e., the mapping a+ bj →
(
a −b
b a

)
is a ring

isomorphism from the field of complex numbers to the ring
of these matrices, we extend the method to complex matrices
and define the mappings as follows.

Definition 1. (Real Matrix Mapping). Define the mapping R :
CK×L → R2K×2L, which transforms a complex matrix A =
ℜ(A)+ jℑ(A) ∈ CK×L into a real matrix R(A) ∈ R2K×2L:

R(A) =

[
ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]
. (4)

The defined mapping preserves the basic operations of
matrices (see Lemma 1), making it a feasible method for in-
memory baseband processing implementation.

Lemma 1. (Properties of Equivalent Real Matrices). Some
basic properties of the mapping R defined in Definition 1
are described as follows. For any matrices A,B ∈ CK×L,
C ∈ CL×N ,

R(A) +R(B) = R(A+B), (5)
R(A)R(C) = R(AC), (6)

R(AH) = R(A)T. (7)

The proof involves straightforward calculations of matrices
and thus omitted for brevity. It can be inferred from the
equation (6) that R(A−1) = R(A)−1 if A is invertible. Given
the mapping, the complex matrices can be written into the

RRAM arrays without specific changes or auxiliary circuits.
On the other hand, the proposed method can be applied to
complex vectors as well, where one complex vector x ∈ CK×1

is mapped to a real matrix R(x) ∈ R2K×2. Then the matrix-
vector multiplication (MVM) can be achieved following equa-
tion (6). However, it takes two steps to complete the operation
since R(x) is a matrix with two columns. To further improve
the computational efficiency, we propose to implement the
complex vector, which is usually the input voltages/currents
for RRAM array, using the following transformation.

Definition 2. (Real Vector Mapping). Define the mapping T :
CK×1 → R2K×1, which transforms a complex vector x ∈
CK×L into a real vector T (x) ∈ R2K×1:

T (x) =

(
ℜ(x)
ℑ(x)

)
. (8)

The proposed mappings in Definition 1 and 2 make it
possible to realize one-shot MVM computation as shown
below.

Lemma 2. (One-Shot MVM Operation Between Equivalent
Real Matrix and Vector). For any matrix A ∈ CK×L stored
in RRAM array and vector x ∈ CL×1 translated as supply
voltages, one-shot MVM is realized by the relation:

T (Ax) = R(A)T (x). (9)

It is proved by checking the following two relations:

ℜ(Ax) = ℜ(A)ℜ(x)−ℑ(A)ℑ(x)

and
ℑ(Ax) = ℑ(A)ℜ(x) + ℜ(A)ℑ(x).

Based on Lemmas 1 and 2, the following two useful equations
can be obtained:

T
(
(AHA)−1AHx

)
=
(
R(A)TR(A)

)−1 R(A)TT (x).
(10)

(AHA+ λI)−1AHx =
(
R(A)TR(A) + λI

)−1 R(A)TT (x).
(11)

where λ is a constant. The above equations correspond to
MIMO detection implementation.

E. Latency Analysis

We aim at quantifying the latency of writing a MIMO
channel matrix into a RRAM array in the row-by-row manner.
In particular, the channel is assumed as Rayleigh fading while
the RRAM array is comprised of 1T1R cells. Two writing
schemes are analyzed: write-without-verification and write-
with-verification.

1) Communication model: The input-output relation of a
MIMO system with channel matrix H ∈ CNr×Nt is described
as

y = Hx+ z, (12)

where x ∈ CNt×1 and y ∈ CNr×1 denote the transmit and
receive symbols, respectively. z ∼ CN (0, σ2

nINr
) represents

the AWGN in propagation. We consider i.i.d. Rayleigh fading
model, where the entries of the channel matrix H follow i.i.d.
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zero-mean complex Gaussian distribution. For any (i, j)-th
element in matrix H, we have Hij ∼ CN (0, 2σ2

h) where
ℜ(Hij) ∼ N (0, σ2

h) and ℑ(Hij) ∼ N (0, σ2
h).

The elements of channel matrix {Hij} vary in the whole
real domain. We need to scale them into the feasible con-
ductance range for RRAM devices. For each RRAM device,
the maximum and minimum values of working conductance
are denoted by Gmax and Gmin, respectively. For conve-
nience, we assume Gmin = 0 such that a differential pair
of RRAM devices can represent a real number in the interval
[−Gmax, Gmax]. In order to scale the channel matrix into this
range, we apply the three-sigma rule:

Pr(−3σh ≤ ℜ(Hij) ≤ 3σh) = 99.73%, (13)
Pr(−3σh ≤ ℑ(Hij) ≤ 3σh) = 99.73%. (14)

Through this rule, we can guarantee the feasibility of repre-
senting channel matrix by a RRAM array with high proba-
bility. Accordingly, the variance of the channel elements as
mentioned becomes σh = Gmax/3.

2) Model of RRAM device: To begin with, we focus on the
RRAM device whose behavioral model is shown in Fig. 2(f)
and Fig. 2(g). Consider the conductance update process using
a train of write pulses. The pulse width is denoted as ∆tw
which is a minuscule value. Cycle-to-cycle variation σc refers
to the variation in conductance change at every write pulse. It
is expressed as the percentage of the entire conductance range
in the existing literature [59]–[62]. In other words, the standard
variance of the per-cycle write noise, N (0, σ2

c ), is presented
by σc = γGmax where γ ∈ (0, 1) denotes the percentage.
Then, we can characterize the per-pulse conductance change
as follows:

∆G =
Gmax −Gmin

Np
+

σc√
∆tw

∆W, (15)

where ∆G = G(t +∆tw) −G(t) is the conductance change
by applying one write pulse over G(t), Np is pulse number
corresponding to programming conductance from Gmin to
Gmax, and ∆W = W (t + ∆tw) − W (t) with W (t) being
a Winner process: ∆W ∼ N (0,∆tw). From (15), we know
the following knowledge of the RRAM device’s state after one
pulse:

E[G(t+∆tw)|G(t)] = G(t) +
Gmax −Gmin

Np ×∆tw
∆tw, (16)

Var[G(t+∆tw)|G(t)] =

(
σc√
∆tw

)2

∆tw. (17)

By introducing the slope parameter µ ≜ Gmax−Gmin

Np×∆tw
and the

diverting variance σ ≜ σc√
∆tw

, the evolution of conductance
state G(t) is characterized by the stochastic differential equa-
tion (SDE) given the initial state G0 (i.e., the conductance at
the time t = 0):

dG(t) = µdt+ σdW (t), G(0) = G0. (18)

The solution of (18) gives an Itô process:

G(t) = G0 + µt+ σ

∫ t

0

dW (s). (19)

3) Performance of RRAM device: Let p(g, t|G0) represent
the conditional probability density of G(t) given initial state
G(0) = G0. For the SDE specified in (18), the probability
density of the solution satisfies the forward Kolmogorov
equation (also known as Fokker-Planck equation) with the
initial condition as follows:

∂p(t, g)

∂t
= −µ

∂p(t, g)

∂g
+

σ2

2

∂2p(t, g)

∂g2
,

p(0, g) = δ(g −G0),

(20)

where δ(·) is Dirac function. By solving the partial differential
equation in (20), we obtain the following lemma.

Lemma 3. (Probability Density). The probability density for
the conductance evolution G(t) is

p(t, g|G0) =
1√

2πσ2t
exp

(
− (g − µt−G0)

2

2σ2t

)
, (21)

which gives the Gaussian distribution (G(t)|G0) ∼ N (G0 +
µt, σ2).

The process {G(t), t ≥ 0} is time homogeneous with
independent increments. Without loss of generality, we assume
the target conductance Ḡ is larger than the initial state, i.e.,
the increment of conductance is positive: ∆G ≜ Ḡ−G0 ≥ 0.
The writing time is denoted as T , which aims at increasing
the conductance by the amplitude of ∆G.

• Write-without-verification scheme
Given target conductance Ḡ and the increment ∆G, the
write latency of the RRAM device is determined by

T =
∆G

µ
. (22)

Meanwhile, the achieved conductance state G(T ) is in-
accurate, giving that

G(T ) ∼ N
(
Ḡ,

σ2∆G

µ

)
. (23)

• Write-with-verification scheme
To achieve the target conductance Ḡ, the read pulse is
applied after each write pulse to monitor the evolution of
conductance state G(t). We model it as the first passage
time, which refers to the first time when the conductance
state G(t) achieves the target value Ḡ,

T ≜ inf{t ≥ 0 : G(t) = Ḡ}. (24)

By adding an absorbing boundary p(t, Ḡ) = 0 to the
partial differential equation (together with the initial
condition) in (20), we obtain the probability density of the
first passage time as the solution of the boundary value
problem.
Lemma 4. (First Passage Time Probability Density). The
probability density of the first passage time with the target
increment conductance ∆G is given by

p(T |∆G) =
∆G√
2πσ2T 3

exp

(
− (∆G− µT )2

2σ2T

)
, (25)

which gives the inverse Gaussian distribution (T |∆G) ∼
IG
(
∆G/µ, (∆G/σ)2

)
.
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4) Latency of RRAM array programming: We consider the
latency of writing the real mapped channel matrix R(Ĥ) onto
the 1T1R array in the row-by-row manner. For simplicity, we
assume the array has been fully reset, i.e., all the RRAM
devices are initialized with Gij(0) = 0, ∀(i, j). In this
setting, G+

ij will be updated if Hij ≥ 0, or G−
ij will be

updated otherwise. The conductance change of one device,
e.g., ∆Gij for the (i, j)-th device, follows the i.i.d. half-normal
distribution over indices ∀(i, j), giving that

∆Gij ∼
∣∣N (

0, G2
max/9

)∣∣ , i = 1, · · · , Nt, j = 1, · · · , Nr.
(26)

The matrix R(H) has 2Nr rows and it consists of two identical
processes each with updating Nr rows. Thus, the expected
latency of writing this matrix is

Twrite = 2× E

[
Nr∑
i=1

T row
i

]
= 2Nr × E[T row

i ], (27)

where the expectation is taken over channel entries. One-row
latency, say the i-th row, is determined by the RRAM device
consuming the largest write time, that is

T row
i = max

1≤j≤2Nt

Tij , (28)

where latencies {Tij} refer to writing ℜ(Hij′) and ℑ(Hij′),
j′ = 1, · · · , Nt into the i-th row of RRAM array. Hence,
latencies {Tij}2Nt

j=1 are 2Nt i.i.d. random variables.

• Write-without-verification scheme
Recall that the write time of one RRAM device us-
ing write-without-verification scheme is determined by
T = ∆G/µ. Thus, for the i-th row, the write time of the
RRAM device at the j-th column follows the half-normal
distribution, that is

Tij ∼
∣∣∣∣N (

0,
G2

max

9µ2

)∣∣∣∣ , j = 1, · · · , 2Nr. (29)

where |N (·, ·)| denotes the half-normal distribution.
Theorem 1. (Expected Latency of Write-Without-
Verification). Consider writing the scaled real mapped
channel matrix into an 1T1R array row-by-row using
write-without-verification scheme. The expected write
latency is upper bounded by

Twrite ≤
2
√
2Gmax

3µ
Nr

(√
lnNt +

1√
π lnNt

)
. (30)

Proof: Since T row
i = max1≤j≤2Nt

Tij , the probability of
T row
i satisfies

Pr
(
T row
i > t

)
= 1− Pr

(
max

1≤j≤2Nt

Tij ≤ t

)
= 1−

(
1− Pr(Tij > t)

)2Nt
. (31)

Applying Bernoulli’s inequality, we know that

(1− Pr(Tij > t))
2Nt ≥ 1− 2Nt Pr(Tij > t). (32)

Thus, for the non-negative random variable T row
i , its

expectation is expressed as

E[T row
i ] =

∫ ∞

0

(
1−

(
1− Pr(Tij > t)

)2Nt
)
dt

≤ ε+

∫ ∞

ε

(
1−

(
1− Pr(Tij > t)

)2Nt
)
dt

≤ ε+ 2Nt

∫ ∞

ε

Pr(Tij > t)dt, (33)

where the inequality holds for any positive constant ε >
0. To obtain the probability Pr(Tij > t), we introduce
the cumulative distribution function (CDF) of Tij , i.e.,
FTij

(t) = erf
(

3µt√
2Gmax

)
. To ease the notation, we denote

the parameter σ̄ ≜ Gmax

3µ . Then the probability is given
by

Pr(Tij > t) = 1− FTij
(t) = 2Q(t/σ̄), (34)

where Q(·) is the Q-function. Leveraging the inequality
Q(x) ≥ 1

x
√
2π

(
1− 1

x2

)
e−x2/2 for x > 0, we have

E[T row
i ] ≤ ε+ 4Nt

∫ ∞

ε

Q

(
t

σ̄

)
dt

= ε+ 2

√
2

π
Ntσ̄ exp

(
− ε2

2σ̄2

)
− 4NtεQ

( ε
σ̄

)
≤ ε+ 2

√
2

π
Nt

σ̄3

ε2
exp

(
− ε2

2σ̄2

)
. (35)

Substituting ε = σ̄
√
2 lnNt into the inequality for Nt >

1, we obtain

E[T row
i ] ≤ σ̄

√
2 lnNt + σ̄

√
2

π

1

lnNt

=

√
2Gmax

3µ

(√
lnNt +

1√
π lnNt

)
. (36)

Finally, according to (27), the expected latency of updat-
ing the whole RRAM array is upper bounded by

Twrite ≤
2
√
2Gmax

3µ
Nr

(√
lnNt +

1√
π lnNt

)
. (37)

This completes the proof. □

• Write-with-verification scheme
Recall that the latency of writing one RRAM device,
say the (i, j)-th device, in this scheme is determined by
the first passage time with the compound distribution as
follows:

Tij |∆Gij ∼ IG
(
∆Gij/µ, (∆Gij)

2/σ2
)
,

∆Gij ∼
∣∣N (

0, G2
max/9

)∣∣ . (38)

where IG(·, ·) and |N (·, ·)| denote the inverse Gaussian
distribution and half-normal distribution, respectively.
Theorem 2. (Expected Latency of Write-With-
Verification). Consider writing the scaled real mapped
channel matrix into an 1T1R array row-by-row using
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write-with-verification scheme. The expected write
latency is upper bounded by

Twrite ≤ 2Nr ×min

{
2
√
2Gmax

3µ

√
ln(4Nt),

2σ2

µ2
ln(4Nt) +

G2
max

9σ2

}
.

(39)

Proof: Recall that T row
i = max1≤j≤2Nt

Tij with i.i.d.
{Tij}2Nt

j=1. Applying Jensen’s inequality,

exp(εE[T row
i ]) ≤ E[exp(εT row

i )]

= E
[

max
1≤j≤2Nt

exp(εTij)

]
≤

2Nt∑
j=1

E [exp(εTij)]

= 2NtE [exp(εTij)] , (40)

where the expectation follows the rule of compound
distribution, that is

E [exp(εTij)] = E∆Gij

[
E [exp(εTij)|∆Gij ]

]
. (41)

Given ∆Gij , the latency Tij follows an inverse Gaussian
distribution, Tij ∼ IG

(
∆Gij

µ ,
(∆Gij)

2

σ2

)
, whose moment-

generating function (MGF) is

E [exp(εTij)|∆Gij ] = exp

{
µ∆Gij

σ2

(
1−

√
1− 2σ2ε

µ2

)}
.

(42)
To ease the notation, we define

x(ε) ≜
µ

σ2

(
1−

√
1− 2σ2ε

µ2

)
, (43)

which is an increasing function for ε ∈ (0, µ2

2σ2 ]. Fur-
thermore, we denote the standard variance of ∆Gij as
σ̃ whose value is σ̃ = Gmax

3 . Then, leveraging the MGF
of the half-normal distribution, ∆Gij ∼ |N (0, σ̃2)|, we
have

E[exp(x(ε)∆Gij)] = exp

(
σ̃2x(ε)2

2

)(
1 + erf

(
σ̃x(ε)√

2

))
.

(44)

From the relation exp(εE[T row
i ]) ≤ 2NtE[exp(εTij)] =

2NtE[exp(x(ε)∆Gij)], we have

E[T row
i ] ≤1

ε
ln (2Nt) +

σ̃2x(ε)2

2ε

+
1

ε
ln

(
1 + erf

(
σ̃x(ε)√

2

))
. (45)

It is not hard to prove the following facts: x(ε) ≤ 2
µε and

erf(·) ≤ 1, and thus we have

E[T row
i ] ≤ 1

ε
ln (4Nt) +

2σ̃2

µ2
ε, (46)

which holds for any ε ∈ (0, µ2

2σ2 ]. This indicates the
expected one-row latency E[T row

i ] is upper bounded by
the minimum of the right-hand side of inequality (46).

1). If ln(4Nt) ≤ µ2

2σ2

(
σ̃
σ

)2
, the minimum value of the

right-hand side of (46) is

1

ε
ln (4Nt) +

2σ̃2

µ2
ε ≥ 2

√
1

ε
ln (4Nt) ·

2σ̃2

µ2
ε

=
2
√
2Gmax

3µ

√
ln(4Nt), (47)

and thus, we have

E[T row
i ] ≤ 2

√
2Gmax

3µ

√
ln(4Nt). (48)

2). If ln(4Nt) > µ2

2σ2

(
σ̃
σ

)2
, the minimum value of the

right-hand side of inequality (46) is achieved at ϵ = µ2

2σ2 ,
so that

1

ε
ln (4Nt) +

2σ̃2

µ2
ε ≥ 2σ2

µ2
ln(4Nt) +

(
σ̃

σ

)2

=
2σ2

µ2
ln(4Nt) +

G2
max

9σ2
, (49)

and thus, we have

E[T row
i ] ≤ 2σ2

µ2
ln(4Nt) +

G2
max

9σ2
. (50)

By combining the results in the two cases, we have

E[T row
i ] ≤{
2
√
2Gmax

3µ

√
ln(4Nt), ln(4Nt) ≤ µ2

2σ2

(
Gmax

3σ

)2
,

2σ2

µ2 ln(4Nt) +
G2

max

9σ2 , ln(4Nt) >
µ2

2σ2

(
Gmax

3σ

)2
,

(51)
which can be easily verified that it is equivalent to

E [T row
i ] ≤ min

{
2
√
2Gmax

3µ

√
ln(4Nt),

2σ2

µ2
ln(4Nt) +

G2
max

9σ2

}
.

(52)

Finally, according to (27), the expected latency of updat-
ing the whole RRAM array is upper bounded by

Twrite ≤ 2Nr ×min

{
2
√
2Gmax

3µ

√
ln(4Nt),

2σ2

µ2
ln(4Nt) +

G2
max

9σ2

}
.

(53)

This completes the proof. □

F. Comparison with Digital CMOS Counterpart

In this note, we provide the comparisons with the state-of-
the-art (SOTA) digital CMOS counterparts, which is important
to highlight the advantages of our RRAM-based baseband
processor in terms of latency (or throughput) and energy
efficiency. The calculations are based on the parameters in
the Table IV unless specified otherwise.
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Table IV
PARAMETERS FOR COMPARISON WITH CMOS-BASED DIGITAL PROCESSORS

Parameter DFT Size # Slots/Frame Symbols/Slot Modulation Number of Antennas

Value 1024
2048* 160 14 16-QAM 4×4

2×2+4×4*

*2048 and 2 × 2 + 4 × 4 are only used for comparison with Qualcomm Snapdragon X65.

1) Comparison with SOTA commercial modem: SOTA
commercial modems are fabricated using the latest technology
node, targeting the 5G signal processing. Take the popular
Qualcomm Snapdragon X65 modem as an example. It is
fabricated using the TSMC 4nm process according to the
public data [52]. The maximum download speed can achieve
up to 10 Gb/s over mmWave and sub-6 carrier aggregation.
Note that the modulation used in this product is 256-QAM
(8 bits/symbol) while we used 16-QAM (4 bits/symbol) in
this work for the demonstration of our RRAM-based design.
Therefore, the top speed is reduced by half as we match
the QAM order of the two processors for a fair comparison,
resulting in a peak throughput of 5 Gb/s as benchmark. In
addition, the throughput of X65 modem is the combination
of two separate bands and specifications, i.e., mmWave (2
× 2 MIMO) and sub-6 GHz (4 × 4 MIMO). For the same
communication overhead, the baseband processing latency of
our design with the same parameters (2048-point DFT, 2 × 2
MIMO + 4 × 4 MIMO) is only 0.2409 ms by re-simulation.
It means our design can support a communication throughput
as large as 455.8 Gb/s, which is 91.2× higher than that of the
SOTA (i.e., Snapdragon X65 modem). However, it is hard to
scale the throughput to fit the other group of settings specified
in Table 1 which are used for other baselines, so that we
just summarize it as < 5 Gb/s in Table II, making it appear
different from the values in other designs. On the other hand,
the energy efficiency comparison is not feasible since the X65
modem is an integrated system-on-chip (SoC) that contains
RFIC, control processor, digital baseband processor, and other
units. Unfortunately, there is no detailed energy efficiency data
related to baseband processing in this modem available in the
public domain.

2) Comparison with multi-core digital signal processor
(DSP) reported in literature: Next, we compare the proposed
design with the reported powerful multi-core DSP in the lit-
erature, namely TMS320C6678 from Texas Instruments [53].
The performance achieves up to 128 GOPS while the aver-
age power consumption for the optimized digital processing
function is 11.1 Watts. For fair comparison, we just take the
power of this 8-core DSP into consideration while neglect
the power of the development board TMDSEVM6678LE. The
baseband processing workload is estimated by the algorithmic
computation complexity, giving the value of 75.5 GOPs. Ac-
cordingly, the latency and energy consumption are calculated
as 589.9 ms and 6.548 J, respectively. Meanwhile, ignoring the
power of peripheral circuits, our RRAM-based design shows
the latency and energy consumption being 0.2278 ms and
0.0079 mJ, and thus the equivalent computational throughput
and energy efficiency are calculated as 331.4 TOPS and 9557
TOPS/Watt which outperforms this DSP by 103 and 105 times,

respectively.
3) Comparison with digital baseband processor reported

in literature: Moreover, we compare the proposed design
with the reported digital baseband processor in the literature.
Since the design of traditional digital baseband processor is
considered a matured area, there are few recent publications on
the complete baseband system design. As a compromise, we
provide the following two comparisons: a) one with the SOTA
domain adaptive processor (DAP) for wireless communica-
tion; b) the other with “virtually assembled” digital baseband
processor by combining the SOTA designs of isolated digital
baseband modules (i.e., DFT, MIMO detection, etc.) collected
from the recent literatures.

a) Comparison with SOTA digital adaptive processor
(DAP): The accelerator presented in the reference [54]
has been fabricated by a 12nm technology node and spe-
cialized for wireless communication workloads. Its peak
performance reaches 264 GOPS at power consumption
of 272 GOPS/Watt. One can observe it has a notice-
able performance gain compared with commercial DSPs
[53]. However, the algorithms for computing FFT and
MMSE in this design are different from the discussions
in Supplementary Note 9, so it is not reasonable to
directly compare the computational performance. Hence,
we evaluate the performance of the baseline in terms of
communication throughput and energy efficiency in the
way as follows. The measurement results of this DAP
show the throughput and energy efficiency are 4.41G
samples/s and 53.96 nJ/FFT for 256-point FFT. For a
fair comparison, we consider the joint utilization of 16
DAPs to complete the 1024-point DFT by decompos-
ing this large-scale DFT into 16 small-scale 256-point
FFTs. Accordingly, the latency is saved at the cost of
more area and energy consumption. On the other hand,
the results from the measurements on MMSE MIMO
detection reveal the throughput and energy efficiency
being 1.95M matrices/s and 178.5 nJ/matrix, respectively.
Moreover, there are additional reprogram times in OFDM
demodulation (0.5µs) and MIMO detection (0.2µs). Ac-
cordingly, the latency of the assembled 16 DAPs is
14×160×4/(4.41×109)+(14×160−4)×(1024/(1.95×
106 × 16) + (0.5 + 0.2) × 10−6) = 0.0750s, and the
energy consumption is 14 × 160 × 4 × 53.96 × 10−9 ×
16+(14×160−4)×1024×178.5×10−9×16 = 6.547J.
In comparison, our RRAM-based design is 329.2× faster
and > 105 more energy efficient than this baseline (i.e.,
16-DAPs).

b) Comparison with the combination of isolated digital
baseband modules: For the DFT module, we use the high-
throughput FFT processor proposed in [55]. The pro-
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Figure 12. An illustration of noisy test images. In this example, the test
images are uncoded transmitted over a noisy channel (SNR = 15dB) and
recovered by RRAM-based baseband processing.

cessor is fabricated using 65nm CMOS technology and
is designed to support 5G high-speed requirements. The
clock frequency is 250MHz. The processing latency and
energy consumption for one 1024-point FFT operation
are estimated using the given values of 1080-point FFT
(688 clock cycles) and 1200-point FFT (2.07 FFTs/µJ),
respectively.
For the L-MMSE MIMO detection module, consider the
design presented in [56] which was fabricated using
the 65nm CMOS technology. The clock frequency is
625MHz. The digital MIMO detector is based on the
lower-upper (LU) decomposition which is a two-step
algorithm. To estimate the computational workload of
solving the related linear equations, the classical Gaussian
elimination algorithm is adopted, whose complexity is
contributed by two parts: the forward elimination and the
backward substitution. Using the terminology, we count
the forward substitution step once for channel matrix
on all Nc sub-carriers and backward substitution up to
(M−N) times for all received data symbols on each sub-
carrier. As for the energy consumption, a measurement
value of 19.2pJ/b is presented in the literature, which is
equivalent to 19.2×8=153.6pJ per MIMO detection.
For the combined baseband processing system, the sum
processing latency of the two modules with respective
250MHz and 625MHz clocks for DFT and MIMO mod-
ules is given by: 688×14×160/(250×106)+1024×(24+
12× (14×160−4))/(625×106) = 0.0502s. In contrast,
the latency of our design completing the operations under
the same parameters is only 0.2321ms, approximately
220.4× faster than the digital CMOS counterpart.
On the other hand, the energy consumption of the digital
CMOS design is estimated as follows: (14×160/2.07)×
10−6 + 153.6× 12× (14× 160− 4)× 1024× 10−12 =
0.0053J, which is approximately 670.9× more than our
proposed design. It is worth mentioning that the process-
ing latency of the considered digital processor does not
meet the stringent requirement of 5G. Traditionally, in
order to reduce the processing time to below 10 ms,
multiple MIMO detection units should be employed to
enable parallel processing, with the sacrifices in chip area
and energy consumption.

The discussions on comparison with CMOS-based digital
processors are summarized in the Table II.
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Figure 13. The history of training process. (a) Training loss versus epoch.
(b) Training accuracy versus epoch.

G. Neural Network Application

In this note, we demonstrate that in-memory baseband
processing is more effective for applications with less stringent
precision requirements. For example, if the transmitted mes-
sages, such as images, are inputs to the downstream neural
networks for inference, the models’ robustness against pro-
gramming noise can ensure high classification accuracy. The
simulation is divided into two steps: 1) image transmission; 2)
neural network inference. The two procedures are simulated
in C++ and Python (TensorFlow), respectively.

1) Noisy Images: Consider the scenario that images are
transmitted from sender to destination over a noisy wireless
channel. The receiver is equipped with the proposed RRAM-
based baseband processor. The images then are fed into a neu-
ral network for classification. Due to channel and circuit noise,
bit errors occur in the received images. In the simulation, we
transmit the test dataset (10,000 images) of MNIST database
over noisy channels (characterized by SNRs) using MIMO-
ODFM air interface. Then the receiver decodes the images
through RRAM-based baseband processing. The parameters
follow the standard of 5G NR as well as the behavioral model
of our fabricated RRAM device. The examples of resultant
noisy test images are shown in Fig. 12.

2) Neural Network: The neural network is located at the
receiver side to perform classification tasks. The architecture is
described as follows: The classifier model is implemented by
a 5-layer convolutional neural network (CNN) that consists of
two 3×3 convolutional layer, each followed with a 2×2 max
pooling, two fully connected layers (the first with 512 units,
the second with 64) with ReLU activation, and a final softmax
output layer. The CNN classifier is trained using noiseless
training dataset (60,000 images) of MNIST database. The
objective of training is to minimize the loss function, which
is chosen as cross entropy, using the Adam optimizer. The
training process in terms of loss and accuracy is illustrated in
Fig. 2. After training, the training and testing accuracy achieve
up to 99.73% and 98.74%, respectively.

3) Inference Task: After transmission and baseband pro-
cessing, the noisy images (i.e., test dataset) are fed into the
trained CNN classifier for inference. We perform simulation
under noisy channels with different SNRs. The inference
performance is compared to the accuracy from noiseless test
dataset, and the performance losses are calculated. The results
are listed in Table V.
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Table V
PERFORMANCE OF RRAM-BASED BASEBAND PROCESSING FOR INFERENCE TASK

Channel Condition
SNR (dB)

Digital Baseband Processsing
Inference Accuracy (%)

RRAM-based Baseband Processing
Inference Accuracy (%) Performance Loss (%)

30 98.69 98.58 0.11
25 98.48 98.34 0.14
20 97.91 97.48 0.43
15 94.11 93.82 0.29
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Figure 14. Conductance tuning process of a differential RRAM pair using
write-without-verification scheme. (a) The trace of conductance changes of
the RRAM device representing the positive value in the differential pair,
denoted as G Plus. (b) The trace of conductance changes of the RRAM device
representing the negative value in the differential pair, denoted as G Minus.
(c) The voltages of write pulses applied to G Plus or G Minus. Each write
pulse causes a corresponding conductance change of G Plus or G Minus.
(d, e) The latency and energy induced by applying the corresponding write
pulses.

H. Simulations of Conductance Programming

In this note, we discuss the modeling of RRAM’s writing
process in our simulations. The simulation codes are developed
in C++, complied in Clang++-13, and run on Linux system.
The simulation is based on the measurement of conductance
programming characteristic of our fabricated RRAM device.
We considered two schemes: 1) “write-without-verification”,
which pre-determines the number and magnitude of write
pulses without monitoring the conductance change during the
programming process; 2) “write-with-verification”, which used
a read pulse after each write pulse to ensure the conductance of
the RRAM device can be set to high accuracy. For comparison
and clarification, we summarize the two writing schemes as
follows:

• Write-without-verification scheme: The number of pulses
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Figure 15. Conductance tuning process of a differential RRAM pair using
write-with-verification scheme. (a) The trace of conductance changes of the
RRAM device representing the positive value in the differential pair, denoted
as G Plus. (b) The trace of conductance changes of the RRAM device
representing the negative value in the differential pair, denoted as G Minus.
(c) The voltages of write pulses applied to G Plus or G Minus. Each write
pulse causes a corresponding conductance change of G Plus or G Minus.
(d, e) The latency and energy induced by applying the corresponding write
pulses.

and the voltage direction are determined based on the
fabricated RRAM behavioral model shown as the curve
presented in Fig. 2(g). Then the write pulses are applied
to the RRAM device regardless of its intermediate states,
i.e., no read operation is applied after each write pulse.

• Write-with-verification scheme: A read pulse is applied
after each write pulse to get the RRAM device’s conduc-
tance. In this way, the state of RRAM is monitored in
real-time during the writing process. Based on the read-
out conductance value, the controller determines whether
the target is met, or additional positive (or negative) pulse
should be applied.

We emphasize that the simulation is more authentic than the
model in theoretical analysis which is simplified to obtain
the theoretical scaling law. The simulation results come from
the more accurate modeling of RRAM’s behaviour and com-
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plicated programming algorithm. To be specific, the pulses
supplied are discrete and thus the conductance change may
exceed the threshold. Then the negative pulses will be applied
to fine tune the conductance of RRAM. The process may
involve multiple stages of positive pulses and negative pulses
before convergence to the target value. Moreover, the read
noise is included in our simulations (∼1µS), which also affects
the precision of conductance programming and thus deteriorate
the performance. We present Fig. 14 and Fig. 15 to illustrate
the evolution of conductance values, supplied voltage pulses,
latency, and energy consumption during updating a RRAM
differential pair from initial state to conductance targets. For
convenience, we name the RRAM device representing the
positive value in the differential pair as G Plus, and the other
one as G Minus. The conductance programming follows the
exact procedures described as follows:

• Step 1: Initialization. A negative pulse with high voltage
(-1.5V) is applied to both G Plus and G Minus, such that
the two RRAM devices are fully reset to the minimum
conductance state.

• Step 2: Tuning. The write pulses are applied to either G
Plus or G Minus, depending on the conductance target.
If the target is positive, only G Plus is tuned while G
Minus remains unchanged during the writing process,
vice versa. For write-without-verification scheme, the pre-
determined number of pulses are supplied to the RRAM
device. For write-with-verification scheme, the iterations
between write pulse (0.65V/-0.575V) and read pulse
(0.15V) proceed until the conductance of the RRAM
device is close enough to the target value within a
tolerable error range.

Our simulations are validated by the congruence between the
conductance tuning trace depicted in Fig. 14 and Fig. 15, and
the corresponding real measurement in the experiments.

I. Mapper and Demapper Modules

In this note, we present the designs for mapper and demap-
per modules. The mapper module is a binary to Gray code
converter, which converts binary code to Gray code at the
beginning of baseband processing at the transmitter side. On
the contrary, the demapper module is a Gray to binary code
converter, which converts Gray code back to binary code at
the end of baseband processing at the receiver side.

1) Gray Code: The Gray code, also known as reflected
binary code, is defined as an ordering of the binary numeral
system such that the two adjacent values only differ in one bit.
Table VI shows the relation between decimal numbers, binary
and Gray codes.

2) Mapper Module: As for binary to Gray code conversion,
several observations can be made from Table VI as follows: 1)
The first bit of Gray code is equal to the most significant bit
of binary code; 2) The second bit of Gray code is the XOR of
the first and second bits of the binary code; 3) The third bit of
Gray code is the XOR of second and third bits of the binary
code; 4) The fourth bit of Gray code is the XOR of third and
fourth bits of the binary code. Based on these observations,
the logical circuit for binary to Gray code converter (i.e.,

Table VI
THE CONVERSION BETWEEN BINARY CODE TO GRAY CODE AND DECIMAL

TO GRAY CODE

Decimal Numbers Binary Code Gray Code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101

10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000
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Figure 16. An illustration of the implementations of mapper and demapper.
(a) At the transmitter, the logical circuit maps binary bits to Gray codes. After
that, they are transformed to analogue values using DAC. (b) At the receiver,
the outputs from ADC are Gray coded. The logical circuit maps Gray code
back to binary bits. (c) At the transmitter, the codebook as shown in the matrix
form is stored in RRAM array. The binary bits are translated as input voltages
for the RRAM array. The magnitudes of outputs give the Gray codes. (d) At
the receiver, the matrix as shown is stored in three RRAM arrays with the
connection between them. The Gray codes are translated as input voltages for
them, and the outputs give the binary bits.

mapper) is presented in Fig. 16(a). To implement the mapper
with RRAM array(s), we transform the operations of binary to
Gray code converter into matrix-vector multiplication(s). An
illustration of the principle of RRAM-based mapper module
is shown in Fig. 16(c). The circuit architecture is presented in
Fig. 17(a).

3) Demapper Module: As for Gray to binary code con-
version, several observations can be made from Table VI as
follows: 1) The most significant bit of binary code is equal to
the first bit of Gray code; 2) If the second bit of Gray code is
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Figure 17. The circuit design of RRAM-based mapper and demapper. (a) The architecture of RRAM-based mapper module. (b) The architecture of RRAM-
based demapper module.

0, the second bit of binary code is the same as the previous
bit. If the second Gray bit is 1, the second binary bit is the
opposite of the previous bit; 3) The operations in 2) continues
for the remaining bits. Based on these observations, the logical
circuit for Gray to binary code converter (i.e., demapper) is
presented in Fig. 16(b). To implement the demapper with
RRAM array(s), we transform the operations of Gray to
binary code converter into matrix-vector multiplication(s). An
illustration of the principle of RRAM-based demapper module
is shown in Fig. 16(d). The circuit architecture is presented in
Fig. 17(b).
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