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Abstract—Characterizing the sensing and communication per-
formance tradeoff in integrated sensing and communication
(ISAC) systems is challenging in the applications of learning-
based human motion recognition. This is because of the large
experimental datasets and the black-box nature of deep neural
networks. This paper presents SDP3, a Simulation-Driven Per-
formance Predictor and oPtimizer, which consists of SDP3 data
simulator, SDP3 performance predictor and SDP3 performance
optimizer. Specifically, the SDP3 data simulator generates vivid
wireless sensing datasets in a virtual environment, the SDP3
performance predictor predicts the sensing performance based
on the function regression method, and the SDP3 performance
optimizer investigates the sensing and communication perfor-
mance tradeoff analytically. It is shown that the simulated sensing
dataset matches the experimental dataset very well in the motion
recognition accuracy. By leveraging SDP3, it is found that the
achievable region of recognition accuracy and communication
throughput consists of a communication saturation zone, a sens-
ing saturation zone, and a communication-sensing adversarial
zone, of which the desired balanced performance for ISAC
systems lies in the third one.

Index Terms—Integrated sensing and communication, resource
allocation.

I. INTRODUCTION

INTEGRATED sensing and communication (ISAC) is a

promising technology for the next generation cellular sys-

tem and wireless local area network (WLAN). It is expected

to considerably improve the spectral, energy and hardware

efficiencies of wireless systems [2]. Since wireless resource

is shared between sensing and communication functionalities

in ISAC systems, it is of significant interest to investigate their

tradeoff relation. However, the analysis of sensing performance

could be challenging.

Generally, most of the sensing tasks can be classified into

three categories, including detection, estimation and recog-

nition. The detection tasks aim to determine the state of a
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target, such as presence/absence. The detection probability is

a typical metric to quantify the detector performance. In [3],

an integrated communication and passive radar system was

considered, where a generalized likelihood ratio test (GLRT)

was proposed for target detection and the corresponding detec-

tion probability was approximated in a closed-form formula.

Accordingly, the detection probability was maximized subject

to a minimum communication rate constraint. Furthermore, the

above method was extended to an integrated multi-static radar

and communication system with the aim for power allocation

optimization in [4].

The estimation tasks acquire the useful parameters, i.e.,

the distance, velocity and angle, from the sensed targets. For

instance, a dual functional waveform was utilized to minimize

the estimation mean square error (MSE) of the target response

matrix while ensuring a worst communication performance in

[5]. When the closed-form expression of MSE is not attainable,

the Cramér-Rao bound (CRB) could be adopted for the sensing

performance evaluation, which represents the lower bound of

the variance of all the unbiased estimators. For example in [6],

the CRB was minimized subject to the signal-to-interference-

plus-noise ratio (SINR) constraint of communication receivers.

Furthermore, in [7], [8], the estimation rate, quantifying the

reduction of the uncertainties for the sensing parameters per

second, was proposed, then the tradeoff analysis between the

estimation rate and the communication rate was provided.

The above two sensing tasks are usually processed in

the physical layer, while the recognition tasks are usually

accomplished in the application layer aided by the machine

intelligence. They aim to acquire the semantic information of

the sensed targets, e.g., human motion recognition (HMR). For

example, in [11], the short time Fourier transform (STFT) was

adopted to generate spectrograms of the sensing data. Then

the support vector machine (SVM) was trained for motion

classification, whose accuracy was higher than 90%. By re-

placing the SVM with a convolutional deep neural network

(CNN), it was shown in [12] that a higher classification

accuracy could be achievable. In fact, deep neural network

has been adopted extensively in the application of activity

recognition [13], [14], hand gesture recognition [15], [16], and

gait recognition [17], [18] with radio wave. However, most

of the HMR tasks are based on deep neural network, where

the relation between sensing accuracy and sensing resource

(e.g., sensing time and transmission power) can hardly be

represented analytically. Moreover, the above works rely on

the motion datasets generated from time-consuming and labor-

intensive experiments. As a result, there are the following
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Fig. 1: The system diagram of the proposed SDP3 framework.

challenges in the sensing and communication tradeoff analysis

with the recognition tasks: 1) there is no analytical model of

recognition accuracy, which maps the sensing resource (e.g.,

sensing time, power and etc.) to the recognition accuracy; 2)

even for numerical performance evaluation, there is no low-

cost method to generate the motion sensing datasets for the

training of recognition models.

In this paper, we would like to shed some light on the

above open issues. In our preliminary work [1], a data-assisted

hybrid channel model was proposed to simulate the received

sensing signals. In this paper, we shall extend this work

and propose a complete simulation-driven analysis framework,

namely Simulation-Driven Performance Predictor and oPti-

mizer (SDP3), to quantify the tradeoff between recognition

accuracy and communication throughput, which consists of

the following three components as illustrated in Fig. 1.

1) The SDP3 data simulator mimicks experimental datasets

in a virtual environment consisting of human target,

communication receivers, and static objects (e.g., walls),

such that the experimental costs can be saved.

2) The SDP3 performance predictor trains a deep spectro-

gram network (DSN) with the above dataset for motion

recognition, tests the recognition accuracy, and approx-

imates the relation between recognition accuracy and

sensing duration with power function regression.

3) The SDP3 performance optimizer illustrates tradeoff per-

formance between recognition accuracy and communica-

tion throughput. It is shown that the derived accuracy-

throughput (A-T) region consists of a communication

saturation zone, a sensing saturation zone, and a sensing-

communication adversarial zone, where the last zone

achieves the best balance between sensing and commu-

nication.

The rest of the paper is organized as follows. The system

model considered in this paper is introduced in Section 2. The

SDP3 data simulator is presented in Section 3. The procedure

of the SDP3 performance predictor is described in Section 4.

The proposed SDP3 performance optimizer and the sensing

and communication tradeoff analysis are presented in Section

5. The simulation and experiment results are demonstrated in

Section 6. Finally, the conclusion is drawn in Section 7.

II. SYSTEM MODEL

An SDP3 framework to characterize the communication and

human motion sensing tradeoff is proposed in this paper. In

order to demonstrate the procedure of the framework, we con-

sider an time-division-multiple-access-based (TDMA-based)

ISAC system located in a conference room as an example,

where the conference room follows the same specification as

that in IEEE 802.11ay [35].

As illustrated in Fig. 2, the system consists of one ISAC-

enabled base station (BS), K communication receivers and one

human target to be sensed. Both the radar and communication

modulars are implemented at the BS, which are multiplexed

in time domain. In order to facilitate transmission and sensing

scheduling, the time is organized by slots, including the

sensing slots and communication slots. The slot duration is

Ts and the channel impulse response is assumed to be quasi-

static in each slot. The communication modular is enabled in

the communication slots for downlink data transmission, and

the radar modular is enabled in the sensing slots for the motion

recognition of the human target. The sensing and communi-

cation tradeoff is studied by adapting the number of sensing

and communication slots in every N slots, which are referred

to as a scheduling period. The numbers of communication

and sensing slots in a scheduling period are denoted as Nc

and Ns, respectively. Thus, Nc + Ns = N . Moreover, in

order to better capture the micro-Doppler effect, the sensing

slots are not successive. Instead, there are Nm communication

slots between two neighboring sensing slots. Large Ns could

lead to better resolution of micro-Doppler effect and capture

more motion details of human target, at the price of lower

communication throughput. The communication and sensing

models are elaborated below, respectively.
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Fig. 2: Illustration of the ISAC system model.

A. Communication Model

One receiver is selected in one communication slot for

downlink transmission. The transmission signal is modulated

via orthogonal frequency-division multiplexing (OFDM) with

M subcarriers. Let hk,j(t) be the channel impulse response

from the BS to the k-th communication receiver in the j-th

slot. 1 The channel gain of the m-th subcarrier from the BS

to the k-th receiver can be written as

Hk,j,m =

L−1∑

l=0

hk,j (t− lT ) e
−j2πml

M , 0 ≤ m ≤ M − 1, (1)

where T is the sampling period of OFDM transceiver [36].

Then, the received signal of the m-th subcarrier is given by

Yk,j,m = Hk,j,mXk,j,m + Zk,j,m, (2)

where Xk,j,m and Zk,j,m ∼ CN (0, σ2
z) are the transmitted

signal and the white Gaussian noise, respectively, and σ2
z is

the noise power. As a result, the throughput of the k-th receiver

in the j-th slot (if this receiver is selected) can be expressed

as

Rk,j =
Ts

To

M∑

m=1

log2 (1 + γk,j,m) , (3)

where To is the duration of one complete OFDM symbol

(including the cyclic prefix),

γk,j,m =
|Hk,j,m|2Pk,j,m

σ2
z

, (4)

and Pk,j,m is the power allocated to the m-th subcarrier. Notice

that the total power constraint
∑M

m=1 Pk,j,m ≤ P should be

satisfied in the power allocation.

1Although there is Doppler effect in the channel due to the motion of
sensing target, the phase shift raised by the Doppler effect is negligible in
one slot. Moreover, the propagation paths without Doppler shift is dominant
in the overall channel impulse response. Hence, it is assumed that the CSI is
quasi-static in one slot.

B. Sensing Model

In each sensing slot, the frequency-modulated continuous

wave (FMCW) is broadcasted for human motion detection,

followed by a guarding interval. Let s(t) denote the FMCW

and h0,j(t) be the channel impulse response between the radar

modular transmitter and receiver of the j-th slot (if the j-th slot

is sensing slot), the received signal at the radar modular is

rj(t) = h0,j(t) ∗ s(t) + nj(t), (5)

where nj(t) is the Gaussian noise with average power σ2
z , and

s(t) follows the power constraint 1
T

∫ T
2

−T
2

|s(t)|2dt = P .

Based on the received signals of the sensing slots

{rj(t)|j mod (Nm + 1) = 1, 1 ≤ j ≤ Ns(Nm + 1)}, the

human motion can be recognized via a neural network which

should have been trained in advance via a dataset collected in

the same environment. Note it is inefficient to collect dataset

of {rj(t)|j mod (Nm + 1) = 1, 1 ≤ j ≤ Ns(Nm + 1)} via

experiments for various environments, and it is also difficult

to investigate the recognition accuracy of neural network with

respect to Ns analytically. The study of communication and

sensing tradeoff is challenging. In order to address the above

issues, in the following Section 3, the SDP3 data simulator

based on a data-assisted hybrid channel (DAHC) model is

proposed to generate the datasets of received sensing signals

via simulation, which has been adopted as a part of the channel

model for WLAN (wireless local area network) sensing in

IEEE 802.11bf [37]. Based on it, a Deep Spectrogram Network

(DSN) for motion recognition is proposed, and the approxi-

mated expression of recognition accuracy versus the number of

sensing slots, denoted as A = Θ(Ns), is obtained in Section

4, which is referred to as the SDP3 performance predictor.

Finally, the tradeoff between the sensing and communication

performance is studied via SDP3 performance optimizer in

Section 5.



4

TABLE I: A Comparison of Existing and Proposed Channel Models

Type Literature Methodology
Application

Scenario

Spatial-Temporal

Consistency

Motion

Consistency

Micro

Doppler

Sensing

Uncertainty

S [28]
cluster random

commun. L1 % % %
process

D [29]
ray

both L2 ! ! %
tracing

[30]
primitive

sensing L2 ! ! %
based

Q–D

3GPP TR GBSM
commun. L2 % % %

38.901 [33] based

QuaDRiGa [34]
GBSM

commun. L2 % % %
based

IEEE 802.11 Q-D
commun. L2 % % %

ay [35] based

METIS [26]
GBSM, map

commun. L2 % % %
based hybrid

Proposed
primitive based

both L2 ! ! !
hybrid

GBSM means geometry-based stochastic channel model.

“S” means statistical, “D” means deterministic, “Q–D” means quasi-deterministic.

“L1” means large-scale spatial consistency, “L2” means large-scale and small-scale spatial consistency.

“X” means functionality supported, “%” means functionality not supported.

III. SDP3 DATA SIMULATOR

In this section, we first summarize the drawbacks of the

existing channel models in sensing dataset generation, then

propose a novel data-assisted hybrid channel (DAHC) model

for the puropose of efficient sensing dataset generation. More-

over, the human kinematic model for the motion simulation is

also introduced.

A. Preliminaries

A wireless channel model for sensing performance eval-

uation should generate consistent channel impulse response

spatially and temporally so that the receiver can capture the

micro-Doppler effect via the received signals in a time interval.

In fact, the following two kinds of consistency in both spatial

and temporal domains have been proposed for communication

channel model design [26]: 1) large-scale spatial-temporal

consistency refers to consistent power fading, delay spreads

and angular spreads at two close locations and time instances;

2) small-scale spatial-temporal consistency refers to consis-

tent delays and angles of rays at two close locations and

time instances. Besides them, the channel model for wireless

sensing should be composed of the rays consistent with

the environment and the motions of sensing target. Finally,

random interference should also be included to model the

unpredictable motions except the sensing target.

As summarize in Table I, current channel models can be

categorized into statistical models, deterministic models, and

quasi-deterministic models. As an example of the statistical

model proposed in [28], the Non-line-of-sight (NLoS) rays

between the transmitter and the receiver were generated via

scattering clusters. The phases, amplitudes and delays of rays

were generated via independent distributions. Lack of the

spatial-temporal consistency in small scale, this model cannot

simulate the micro-Doppler effects due to the non-rigid human

motions.

On the other hand, the quasi-deterministic models could

maintain the spatial-temporal consistency in both large and

small scales, which are adopted in many existing industrial

standards for communication systems [26], [33]–[35]. In [26],

[33], [34], the large-scale channel parameters, including de-

lay spread, angular spreads, Ricean K-factor and shadow

fading, were computed via ray tracing and the small-scale

channel parameters, inculding time delays, cluster powers

and arrival/departure angles, were obtained using statistical

method, where the small-scale consistency is maintained via

the distribution correlation. For example, the delays and angles

of rays were generated based on uniform distributions in [33]

where the distribution parameters linearly depend on the cor-

relation distance. In [38], a method to calculate the correlation

distance according to the large-scale parameters was proposed.

In [35], a channel model consisting of both deterministic

and random rays was proposed, where the deterministic rays

were generated via ray tracing to maintain the small-scale

consistency. However, the modeling of human motions is not

considered in the above channel models. For example, the

human body was simply treated as a blocker of rays in [33]

and [35]. Thus, the micro-Doppler effect of human motion are

not characterized in the above models.

The deterministic channel models such as ray-tracing [29]

have potential to capture information of both environment and

human target. However, the computation complexity could

be huge if the ray tracing method is directly applied on

non-rigid human motions. On the other hand, primitive-based
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(a) Standing with 3.5GHz in scenario 1 (b) Pacing with 3.5GHz in scenario 1 (c) Walking with 3.5GHz in scenario 1
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(d) Standing with 60GHz in scenario 2 (e) Pacing with 60GHz in scenario 2 (f) Walking with 60GHz in scenario 2

Fig. 3: The experimental results of wireless sensing in scenario 1 and 2.

channel model [30] is a computationally efficient approxima-

tion method for ray tracing, where each dynamic object is

modeled as an extended target made of multiple point scatters

(primitives) distributed along its body (e.g., a human body

usually consists of 16 primitives). The received signal from

each primitive is computed using the electromagnetic field

method in [31, Sec. 5.8], where the radar cross section (RCS)

for simple shapes could be obtained from [32].

As a summary, the quasi-deterministic channel models are

able to simulate the rays’ propagation in the sensing envi-

ronment, and the primitive-based model is able to efficiently

simulate the rays from human target. The integration of

both models could be used for sensing dataset generation.

Furthermore, due to the complexity and uncertainty of the

real sensing scenario, it is necessary to keep randomness

in the channel impulse response, which is referred to as

the sensing uncertainty in this paper. Specifically, sensing

uncertainty could be raised at least by the following three

factors: 1) unpredictable reflections from the wall and random

scatters, 2) undesired movements of the non-target objects and

3) noise. Examples of spectrograms generated from the real

experiment are illustrated in Fig. 3. It can be observed that

there are significant blurs aroused by the sensing uncertainty.

To our best knowledge, the sensing uncertainty has not been

not explicitly considered in the existing channel models.

B. Channel Modeling

In order to keep the consistency with the sensing scenario

and model the sensing uncertainty, the autoregressive model

and quasi-deterministic model are integrated in the proposed

data-assisted hybrid channel (DAHC) model as illustrated in

Fig. 4. Specifically, the channel impulse response from the BS

to the k-th receiver (the 0-th receiver refers to the co-located

BS radar receiver) in the j-th time slot can be represented by

hk,j(t) = uk,j(t) + vk,j(t), (6)

where

• uk,j(t) is the target-related channel component consisting

of the rays reflecting from the human target.

• vk,j(t) is the target-unrelated channel component, con-

sisting of the rays via the LoS path and the other

reflection paths. For example, the reflection paths via

walls. Due to the self-interference cancellation at the BS

radar receiver, we neglect the LoS path in v0,j(t).

Similar to [30], the target related channel uk,j(t) is

modeled using the following primitive-based method:

uk,j(t) =
A√
4π

B∑

b=1

√
Gb,j

D2
b,j

exp

(
−j

2πfc
c

2Db,j

)

× exp (jϕb) δ

(
t− 2Db,j

c

)
. (7)

In the above equation, A is the constant related to wave length

λ and antenna gain Pt, which is λ2
√
Pt in the LoS case; B

is the number of primitives; Gb,j is the amplitude accounting

for radar cross section of the b-th primitive in the j-th time

slot; Db,j is the distance from the b-th primitive to the radar

in the j-th time slot, fc is the carrier frequency; c is the speed

of light; ϕb is the initial phase of the b-th ray, which follows

uniform distribution in [−π, π]. δ (a) is the indicator function,

whose value is 1 for a = 0 and 0 otherwise.

On the other hand, it is not necessary to capture the mo-
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Fig. 4: The framework of the proposed DAHC model.

tions via the primitive-based approach in the target-unrelated

channel vk,j(t) as that in target-related channel. Hence, the

following autoregressive method is used to model the sensing

uncertainty statistically

vk,j(t) =

{
Υ1(t), if j = 1

ρvk,j−1(t− T0) + (1− ρ)Υj(t), if j > 1
,

(8)

where Υ1(t) is the target-unrelated channel impulse response

of the first slot, and ρ is a hyper-parameter controlling the

intensity of sensing uncertainty. A larger (or smaller) ρ leads

to a weaker (or stronger) sensing uncertainty. In this paper, we

adopt the quasi-deterministic channel model in [35] to generate

Υj(t), ∀j, thus,

Υ(t)j =

N∑

n=1

√
Hn

λ

4π(D0 + τclustern c)

×
[

M∑

m=1

an,mexp (jφn,m) δ(t− τ rayn,m)

]
. (9)

In the above expression, N is the number of scattering clusters,

Hn is the reflection factor for both first-order and second-

order reflections; λ is the wave length; τclustern is the n-th

cluster’s time delay (in seconds) obtained from ray-tracing;

τ rayn,m, an,m and φn,m are the time delay, amplitude and initial

phase of m-th ray via the n-th cluster, which are obtained

from Poisson distribution, Rayleigh distribution and uniform

distribution respectively.

C. Data-Assisted Model Calibration

In order to fit the hyper-parameter ρ of the DAHC to the

real uncertainty level in a particular sensing scenario, it is

necessary to make a measurement in the target environment.

Denote the received signal in the real scenario and DAHC

model simulation as {rj(t)|j mod (Nm + 1) = 1, 1 ≤ j ≤
Ns(Nm + 1)} and {r̂j(t)|j mod (Nm + 1) = 1, 1 ≤ j ≤

Ns(Nm+1)}, respectively. The adaptation of hyper-parameter

to real uncertainty level is elaborated below.

The spectrograms of both measured and simulated signals

are first obtained according to Section IV. The Doppler

frequency strength versus time and frequency of both spectro-

grams are quantized into F levels. The probability mass func-

tion (PMF) of Doppler frequency strength for both spectro-

grams can then be obtained, denoted as Ψ and Ξ respectively.

Finally, the proper hyper-parameter ρ is the one minimizing

the Kullback-Leibler (KL) divergence as follows.

min
ρ

F∑

f=1

Ψ(zf)

[
log

(
Ψ(zf)

Ξ(zf |ρ)

)]
,

s.t. 0 ≤ ρ ≤ 1, (10)

where zf denotes the signal strength of the f-th level. The

above problem can be solved by one-dimensional search. In

practice, ρ varies in different scenarios and we can store the

values of ρ for typical scenarios in a look-up table.

D. Human Kinematic Modeling

The human target is represented by 16 primitives in the

proposed DAHC model. In order to model the motion of the

16 primitives, a global human model, namely the Thalmann

model [40], is adopted. In the Thalmann model, the human

body is represented as a series of 16 segments, which corre-

sponds to the primitives of the proposed channel model. Based

on the biomechanical experimental data, the motions of all the

segments, including the their positions and orientations of all

time slots, are obtained for different categories human motions.

However, this global human model averages out the person-

ification in the same category of motion, losing the diveristy

in motion’s dataset generation. In the future work, the motion

capture methods from the the areas of Graphics [41] could be

exploited to simulate the primitives’ motion with personifica-

tion.
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IV. SDP3 PERFORMANCE PREDICTOR

The SDP3 performance predictor is trained to predict the

sensing performance versus the sensing resource. Specifically,

with the motion sensing dataset generated by the SDP3 data

simulator, a deep spectrogram network (DSN) is trained for

motion recognition, then the approximate expression of the

motion detection accuracy versus the number of sensing slots

Ns is derived.

A. Deep Spectrogram Network

Let C and C = {1, . . . , C} be the number of human motion

categories and the set of human motion categories respectively,

the input of DSN is the signals {rj(t)|j mod (Nm + 1) =
1, 1 ≤ j ≤ Ns(Nm+1)} and the output is the index of human

motion category ĉ ∈ C. In DSN, the spectrogram of input

signals is first generated via data cleaning and transformation,

followed by model training (in the training phase) or inference

(in the inference phase), as shown in Fig. 2.

Data Cleaning. In this step, the received signal rj(t) within

the sweep duration t ∈ [0, Tsw] is sampled with a frequency

fs. Let xj = [rj(
1
fs
) rj(

2
fs
) . . . rj(Tsw)]

T ∈ CL be the

vector of samples in the j-th slot, where L = Tswfs, and

X = [x1 x2 · · · xNs
] ∈ CL×Ns be the aggregation of sample

vectors of all sensing slots. The matrix X is a superposed

signal consisting of the desired signals reflected from the target

and undesired signals reflected from walls (or other objects).

To extract the desired information, we first dechirp the sampled

signal X as follows

X̃ =
([
s̃⊙ x∗

1 s̃⊙ x∗
2 · · · s̃ ⊙ x∗

Ns

])∗
, (11)

where s̃ = [s( 1
fs
) s( 2

fs
) . . . s(Tsw)]

T , x∗
1 denotes the conjugate

of x1, and ⊙ denotes the Hadamard product. Then the singular

value decomposition (SVD) is applied to X̃, yielding X̃ =∑D
i=1 aiuiv

H
i , where D is the rank of X̃, ai is the i-th largest

singular value, ui and vi are the i-th left-singular vector and

right-singular vector respectively. Removing the first d − 1
components, which represent the undesired signal paths, the

denoised signal matrix is

Y =

D∑

i=d

aiuiv
H
i . (12)

Data Transformation. In this step, the Short Time Fourier

transform (STFT) [19] is applied on Y. We first define the

sliding window function as

wβ [n] =

I0

(
β

√
1−

(
n−(Nw−1)/2
((Nw−1)/2)

)2)

I0 (β)
, 0 ≤ n ≤ Nw − 1,

where I0 is the zeroth-order modified Bessel function of the

first kind and Nw is the length of sliding window. Let y =
1TY, the STFT of y at time k and the frequency f with the

sliding window function w can be expressed as

z [k, f ] =

+∞∑

k′=−∞

y
[
k

′
]
wβ

[
k

′ − k
]
exp(−j2πk

′

f/N),

k ∈
{
0, . . . ,

⌊
Ns −Nw

Nw −Noverlap

⌋}
∗ (Nw −Noverlap) ,

TABLE II: Candidate Parameteric Learning Curve Models

Name Experssion Tuning Parameters

vapor
exp(α+ β/Ns) α, β

pressure

pow3 γ − αN−β
s α, β, γ

log power α/(1 + (Ns/e
β)γ) α, β, γ

exp4 γ − e−αNǫ
s
+β α, β, γ, ǫ

log log
log(αlog(Ns) + β) α, β

linear

ilog2 β − α/log(Ns) α, β

pow4 γ − (αNs + β)ǫ α, β, γ, ǫ

f ∈
{
−Nfft

2
+ 1, . . . ,

Nfft

2

}
, (13)

where Noverlap and Nfft specify the number of overlap

samples between adjoining STFT windows and the number of

frequency points respectively. Then the spectrogram of sensing

signal {xj|j mod (Nm + 1) = 1, 1 ≤ j ≤ N} could be

illustrated via z [k, f ].
Model Training and Inference. To classify the motions,

the ResNet-32 [20] is adopted as the backbone for the feature

extraction. It consists of one input layer, five identical residual

blocks and one output layer as illustrated in Fig. 2. The input

layer consists of a convolution layer and a pooling layer, and

the output layer consists of a global average pooling layer

and a fully-connected layer with softmax as the activation

function. Each residual block consists of six layers: a batch

normalization layer, a ReLu activation layer, a convolution

layer, a batch normalization layer, a ReLu activation layer,

and a convolution layer. The input of the ResNet is the

spectrogram, and the output is the index of the estimated

human motion category ĉ.

B. Motion Recognition Accuracy Model

It is difficult to directly derive the analytical relationship

between the motion recognition accuracy and the number

of sensing slots, which is denoted as A = Θ(Ns). This

is because there is no analytical expression to quantify the

learning performance of ResNet–32.

To address the above challenge, a promising solution is

the performance regression approach proposed in [21]–[24].

Specifically, it is observed that the recognition accuracy A =
Θ(Ns) is a nonlinear function of Ns satisfying the following

properties:

(i) Θ(Ns) is a monotonically increasing function of Ns;

(ii) As Ns increases, the magnitude of the partial derivative

|∂Θ/∂Ns| would gradually decrease and become zero

when Ns is sufficiently large, meaning that increasing

the number of sensing time slots will not help wireless

sensing performance at large Ns.

Hence the candidate parametric learning curve models to

approximate the Θ(Ns) are shown in Table II (as proposed

in [23]), where α, β, γ, ǫ are tuning parameters.



8

In order to determine the tuning parameters, we first gen-

erate the dataset of sensing signals {rj(t)|j mod (Nm +1) =
1, 1 ≤ j ≤ Ns(Nm + 1)} for Q different numbers of sensing

slots, denoted as {N (i)
s | 1 ≤ i ≤ Q}. After the training

and inferencing with DSN, the corresponding recognition

accuracies are denoted as {A(i)| 1 ≤ i ≤ Q}. Then the

parameters α, β, γ, ǫ can be calculated via the following least

squares fitting,

min
α,β,γ,ǫ

1

Q

Q∑

i=1

∣∣∣Θ(N (i)
s )−A(i)

∣∣∣
2

. (14)

The above problem can be solved by brute-force search, or

gradient descent method.

V. SDP3 PERFORMANCE OPTIMIZER AND TRADEOFF

ANALYSIS

The SDP3 performance optimizer, which investigates the

accuracy-throughput (A-T) region of the ISAC system, is pre-

sented in this section. Denote Nc,k as the number of time slots

assigned for the k-th receiver, the throughput of k-th receiver

in the whole scheduling period Rk can be approximated as

Rk ≈ Nc,kTs

To

M∑

m=1

log2 (1 + γk,m) , (15)

where γk,m = E [γk,j,m] =
E[|Hk,m|2Pk,j,m]

σ2
z

. In (15), we use

γk,m to approximate the instantaneous SNR. This is because

the Doppler effect raised by human motion does not dominate

the channel gain. Hence the worst communication throughput

among all receivers is

R = min
k=1,··· ,K

Nc,kTs

To

M∑

m=1

log2 (1 + γk,m) . (16)

In order to characterize the A-T region, we first define the

following weighted summation of recognition accuracy A and

worst communication throughput R.

f(wA, wR) = wAA+ wRR, (17)

where wA and wR are the weights. Given a pair of weight

(wA, wR), the optimal A∗ and R∗ maximizing the objective

f(wA, wR) could be obtained via the following optimization

problem.

P : (A∗, R∗) = argmax
A,R,Ns,Nc

f(wA, wR),

s.t. constraint in (16)

M∑

m=1

Pk,m ≤ P, ∀k

Ns +

K∑

k=1

Nc,k = N. (18)

Hence, the achievable A-T region can be characterized by

{(A,R) = argmax f(wA, wR)|wA > 0, wR > 0}. Moreover,

the closed-form relationship between the recognition accuracy

and communication throughput on the Pareto boundary is

elaborated in the following theorem.

THEOREM 1. Denote Θ−1 as the inverse function of Θ, let

(A*, R*) be a point on the Pareto boundary, then

TsΘ
−1(A∗) +




K∑

k=1

To

N∑
m=1

γk,m≥γk,0

log2

(
γk,m

γk,0

)



R∗ = NTs.

(19)

Proof. Please refer to Appendix A.

VI. SIMULATION AND EXPERIMENT

In this section, we verify the proposed SDP3 framework

via both simulation and experiment. Specifically, a conference

room with size (3m, 4.5m, 3m) (i.e., length, width, height)

is considered, where the lower left conner of the room is the

origin of the coordinates and the radar is located as (1.5, 1, 1).
The sensing target is either an adult or a child at the location

(3, 4.2, 0) initially. The motions to be classified include the

child/adult standing, child walking, child pacing, adult walking

and adult pacing. In order to keep the consistency between

the simulation and experiment, the experiment is conducted

in the rooms with similar configuration. In both simulation

and experiment, two carrier frequencies fc = 3.5GHz and

60GHz are considered. The total transmit power is P = 1W
for both sensing and communication and the bandwidth is B =
10MHz. A directional antenna with gain Pt = 25 dB is used

for sensing, which is directed to the sensing target. An omni-

directional antenna is used for communication. The datasets

of received sensing signals are generated via both experiment

and simulation.

Specifically, the experiments are conducted in two scenarios

and the human motion datasets are also generated shown in

Fig. 5: (1) there is only one person in the room, who is the

sensing target; (2) there are two persons in the room, wherein

one of them is the sensing target and the other one raises

sensing interference. The Scenario 1 is sensed on both 3.5GHz

and 60GHz band, and the Scenario 2 is sensed on 60GHz

band only. In fact, the Scenario 2 is common in practice. It

refers to the situation with stronger sensing uncertainty. In

the simulation dataset, we generate the samples of received

sensing signal via both SDP3 data simulator and ray-tracing

model, such that their performances can be compared. In

both approaches, the adult and child have B = 16 primitives

respectively. In the SDP3 data simulator, the IEEE 802.11ax/ay

channels [35], [39] are adopted to generate the component

vk,j(t) in (6). In both simulation and experiment datasets, 200

samples are generated for each motion.

A. KL Divergence

In this part, the calibration of hyper-parameter ρ for the

motion of adult walking, as elaborated in Section III, is

first demonstrated, which verifies the existence of sensing

uncertainty.

Specifically, the KL divergence between the experimental

and SDP3-simulated data samples versus the hyper-parameter

ρ is shown in Fig. 6(a-c) for different carrier frequencies
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Fig. 5: The human motion datasets obtained by sensing an adult target in a conference room, where the carrier frequencies

are 3.5GHz (upper side) and 60GHz (lower side) respectively. The scenarios with carrier frequencies 3.5GHz and 60GHz

are referred to as the scenario 1 and 2 respectively. The height of the adult is 1.75m. The following three motions are tested:

standing, pacing and walking. The FMCW is with 10MHz bandwidth and 100µs sweep time.

and scenarios. It can be seen that the KL divergence is

sensitive to the value of ρ of the proposed DAHC model,

and the optimal values minimizing the KL divergence are

ρ∗ = 0.997, 0.997 and 0.996 for Scenario 1 on 3.5GHz

band, Scenario 1 on 60GHz band and Scenario 2 on 60GHz

band respectively. Note that the KL divergence measures

the distance between two distributions, the minimum KL

divergence means the best match between the experiment and

the SDP3 data simulator. Note that the samples in Fig. 6(b)

and (c) are obtained with the same carrier frequency but

different scenarios. This demonstrates the interference from

non-target person: it leads to smaller value of calibrated hyper-

parameter ρ, thus stronger level of sensing uncertainty. In

all the three figures Fig. 6(a-c), it can be observed that the

KL divergence between the experiment and the ray-tracing

model is constant and significantly larger than the calibrated

DAHC model. This demonstrates that it is necessary to include

the sensing uncertainty in the channel model to capture the

potential interference from non-target motions.

In order to further justify the superior performance of

the proposed DAHC model in sensing data generation, the

grayscale distribution of spectrogram is compared in Fig. 6(d-

f). Specifically, the spectrograms from experiment, ray-tracing

model and DAHC model are generated for different carrier

frequencies and scenarios. Then, the PMF of grayscale levels

is calculated for each spectrogram. It can be observed that the

grayscale PMFs from the experiment and proposed DHAC

model match very well, and ray-tracing model fails to match

the real experiment. This coincides with the comparison of KL

divergence in Fig. 6(a-c).

B. Recognition Accuracy

In this part, we continue to show that the sensing dataset

generated via SDP3 data simulator with the DAHC model

could achieve the recognition accuracy close to the experiment

dataset. The hyper-parameter ρ calibrated in the above part is

adopted. The simulation dataset via ray-tracing model is also

investigated as a comparison.

Particularly, 600 samples of sensing signals are picked up

from experiment, proposed SDP3 data simulator, ray-tracing-

based simulator respectively. Their spectrograms are used to

train the DSN in Section IV-A respectively. The training of

DSN is implemented via Momentum optimizer with a learning

rate of 0.06 and a mini-batch size of 300. The recognition
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Fig. 6: The calibration results of DAHC model for walking in scenario 1 and 2.
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Fig. 7: Comparison of recognition accuracy among the datasets generated by real experiments, DAHC channel model and

ray-tracing model with different carrier frequency.

accuracies of the trained DSNs are tested by other samples

of the datasets. As a result, the recognition accuracy versus

training epoch is illustrated in Fig. 7. It is observed that

compared with the ray-tracing-based simulator, the curve of

the SDP3 data simulator is closer to that of experiment. For

example, it is shown that the accuracy gap are 2% versus

5.33% at 3.5GHz and 4% versus 6.7% at 60GHz respectively.

This demonstrates that the DAHC model can simulate the

motion recognition performance in real experiment better than

the ray-tracing model. Hence, the dataset generated by the

SDP3 data simulator could be used for the analysis of sensing-

communication performance tradeoff. Thus, the significant

effort of extensive real scenario experiment can be saved.

C. Verification of SDP3 Performance Predictor

The performance of the SDP3 performance predictor, as

proposed in Section IV-B, is demonstrated in this part, where

the motion recognition accuracy versus the number of sensing

slots Ns is approximated analytically. We adopt the samples

of received sensing signals generated by SDP3 data simu-

lator. Both 3.5GHz and 60GHz bands are considered and

five different motions, including child/adult standing, child
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Fig. 8: The motion recognition performance of DSN and approximation result.

walking, child pacing, adult walking and adult pacing, are

classified. The samples in the dataset are generated with

Ns = 1000. The received signals of the first 200, 300,

400, 500, 600, 1000 sensing time slots are used for DSN

training and accuracy testing, respectively, yielding the motion

recognition accuracies for different values of Ns. Specifically,

the training procedure is implemented via Adam optimizer

with a learning rate of 0.01 and a mini-batch size of 500. The

convergence of the training loss for all the values of Ns is

shown in Fig. 8(a). Then the trained models are tested by 500
new samples respectively, and the corresponding recognition

accuracies can be obtained as shown in Fig. 8(b). It can be

observed that larger Ns leads to better recognition accuracy.

Hence, the curving fitting elaborated in Section IV can

be proceeded. The optimized tuning parameters of all the

curve models are list in Table III, and their comparison with

the simulated accuracies is illustrated in Fig. 8(c). It can

be observed that the models of pow3, log power and exp4

match the simulated accuracy very well. This is because they

possess higher curvature compared with other models. With

the best-fitting model pow3, the tuning parameters α, β and

γ are obtained by minimizing the MSE as in (14), yielding

(α, β, γ) = (61906, 2.4297, 0.9499). Thus, the relation be-

tween the recognition accuracy and number of sensing slots is

approximated as

A = 0.9499− 61906×N−2.4297
s , (20)

D. Sensing-Communication Tradeoff

Finally, the SDP3 performance optimizer is utilized to

illustrate the tradeoff between sensing and communication

performance. The result with one sensing target and K=3

communication receivers is shown in Fig. 9, where the car-

rier frequency is 3.5GHz. Two distributions of receivers are

considered: the communication receivers are at the loca-

tions (1.5,3,1), (2.5,1,1) and (0.5,1,1) for the case 1, and at

(1.5,2.8,1), (2.3,1,1) and (0.7,1,1) for the case 2.

It can be observed that the accuracy-throughput (A-T)

region of case 1 is a subset of that of case 2. This is because

of the better communication channel in case 2. Both of two

regions consist of three zones: 1) sensing saturation zone

(bottom); 2) communication saturation zone (left); and 3)

TABLE III: Parametric Learning Curve Models Fitting Results

Name Parameters MSE

vapor
α = 0.0117, β = −44.5180 0.0017

pressure

pow3
α = 6.1906e4, β = 2.4297

γ = 0.9499
3.383e-4

log power
α = 0.9460, β = 4.7438

γ = −2.9235
3.7018e-4

exp4
α = 2.9129, β = 6.9568

γ = 0.2082, ǫ = 0.9576
5.4693e-4

log log
α = 0.2347, β = 1.0423 0.0038

linear

ilog2 α = 3.5228, β = 1.4863 0.003

pow4
α = 98.4911, β = −9.5892e3

γ = 1.2176, ǫ = 0.1117
0.0065
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Fig. 9: The A-T region for case 1 and 2 when K = 3, P = 1
Watt, To = 50µs, Ts = 250µs and N = 4000.

sensing-communication adversarial zone (upper right). In the

sensing saturation zone, reducing the communication perfor-

mance can hardly improve the sensing performance, but a
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slight decrease of the sensing performance can significantly

improve the communication throughput. This is because ex-

cessive wireless resources have been allocated to sensing task.

The situation is the opposite in the communication saturation

zone. Therefore, for a practical ISAC system, it is not desirable

to enter the sensing or communication saturation zone. On

the other hand, both sensing and communication performance

varies sensitively with respect to each other in the sensing-

communication adversarial zone. This is because the wireless

resource allocation between the two functionalities is balanced.

The proposed accuracy-throughput region analysis facilitates

the search of the best Pareto point with heterogeneous quality-

of-service requirements.

VII. CONCLUSION

This paper proposes an SDP3 framework for the study of

sensing-communication tradeoff with the particular application

of human motion recognition. Specifically, the SDP3 data

simulator with a data-driven hybrid channel model is proposed

to generate the received sensing signals in a virtual environ-

ment. The SDP3 performance predictor is then introduced to

approximate the motion recognition accuracy via analytical

expression with the simulated dataset of sensing signals. Fi-

nally, the recognition accuracy and communication throughput

tradeoff is characterized by the SDP3 performance optimizer.

It is demonstrated that the dataset generated by the SDP3 data

simulator matches the experiment dataset in KL divergence,

grayscale PMF and motion recognition accuracy. Hence, the

sensing-communication tradeoff can be investigated without

extensive experiments. It is also shown that the sensing

and communication performance is balanced in the sensing-

communication adversarial zone of the A-T region, where both

performance varies sensitively with respect to each other.

APPENDIX A

PROOF OF THEOREM 1

Appling the water-filling policy to the power constraints, the

optimal worst communication throughput among all receivers

is

R = min
k=1,··· ,K

Nc,kTs

To

N∑

m=1

γk,m≥γk,0

log2

(
γk,m
γk,0

)
, (21)

where
M∑

m=1

(
1

γk,0
− 1

γk,m

)
= 1, (22)

Then the P1 could be

P1 : max
A,R,Ns,Nc

(A,R),

s.t. (21)

A = Θ(C), Ns +

K∑

k=1

Nc,k = N. (23)

Given a fixed Ns = N∗
s , the optimal t is derived using KKT

optimality conditions. Specifically, the Lagrangian of problem

P is given by

L = −R∗ +

K∑

k=1

ηk


R∗ −

N∗
c,kTs

To

N∑

m=1

γk,m≥γk,0

log2

(
γk,m
γk,0

)



+ ̺

(
N∗

s +

K∑

k=1

N∗
c,k −N

)
, (24)

where {ηk ≥ 0, ̺} are Lagrangian multipliers. By letting

∂L/∂R∗ = 0 and ∂L/∂N∗
c,k = 0, we have

K∑

k=1

ηk = 1, −ηkTs

To

N∑

m=1

γk,m≥γk,0

log2

(
γk,m
γk,0

)
+ ̺ = 0.

(25)

Now we will prove that ηk 6= 0 for any k by contradiction.

In particular, assume that ηj = 0 for some j. Putting ηj = 0
into the second equation of (25) yields ̺ = 0. Putting ̺ = 0
into the second equation of (25) with k 6= j yields ηk = 0
for any k 6= j. Lastly, based on ηj = 0 and ηk = 0 for k 6= j,

we have
∑K

k=1 ηk = 0. This contradicts to
∑K

k=1 ηk = 1 of

the first equation of (25). Therefore, ηk 6= 0 for any k. Using

the above result and the complementary slackness condition

ηk


R∗ −

N∗
c,kTs

To

N∑

m=1

γk,m≥γk,0

log2

(
γk,m
γk,0

)

 = 0, (26)

the following equality is obtained

N∗
c,1

N∑

m=1

γ1,m≥γ1,0

log2

(
γ1,m
γ1,0

)
= · · ·

= N∗
c,K

N∑

m=1

γK,m≥γK,0

log2

(
γK,m

γK,0

)
. (27)

Combining the above result with the constraint

N∗
s +

K∑
k=1

N∗
c,k = N yields

N∗
c,k =

N −N∗
s(

K∑
k=1

1
N
∑

m=1

γk,m≥γk,0

log
2

(

γk,m
γk,0

)

)
N∑

m=1

γk,m≥γk,0

log2

(
γk,m

γk,0

) .

(28)

According to (21)

A∗ = Θ(N∗
s ), (29)

R∗ =
(N −N∗

s )Ts

K∑
k=1

To


 N∑

m=1

γk,m≥γk,0

log2

(
γk,m

γk,0

)



−1 . (30)

Rearranging equations (29)–(30), the proof is completed.



13

REFERENCES

[1] G. Li, S. Wang, J. Li, R. Wang, X. Peng, and T. X. Han, ”Wireless sens-
ing with deep spectrogram network and primitive based autoregressive
hybrid channel model,” in Proc. SPAWC, Lucca, Italy, Sep. 2021, pp.
481–485.

[2] F. Liu et al., “Integrated sensing and communications: Toward dual-
functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas

Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.

[3] B. K. Chalise, M. G. Amin, and B. Himed, “Performance tradeoff in a
unified passive radar and communications system,” IEEE Signal Process.

Lett., vol. 24, no. 9, pp. 1275–1279, Sep. 2017.

[4] B. K. Chalise and B. Himed, “Performance tradeoff in a unified multi-
static passive radar and communication system,” in Proc. (RadarConf),
Oklahoma City, OK, USA, Apr. 2018, pp. 653–658.

[5] X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, and Y. C. Eldar, “Joint
transmit beamforming for multiuser MIMO communications and MIMO
radar,” IEEE Trans. Signal Process., vol. 68, pp. 3929–3944, 2020.

[6] F. Liu, Y. -F. Liu, A. Li, C. Masouros, and Y. C. Eldar, “Cramér-Rao
bound optimization for joint radar-communication beamforming,” IEEE

Trans. Signal Process., vol. 70, pp. 240–253, Dec. 2021.

[7] D. W. Bliss, “Cooperative radar and communications signaling: The
estimation and information theory odd couple,” in Proc. (RadarConf),
Cincinnati, OH, USA, May 2014, pp. 50–55.

[8] A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds
on performance of radar and communications co-existence,” IEEE Trans.

Signal Process., vol. 64, no. 2, pp. 464–474, Jan. 2016.

[9] A. Aguileta, R. Brena, O. Mayora, E. Molino-Minero-Re, and L. Trejo,
“Multi-sensor fusion for activity recognition: A survey,” Sensors, vol.
19, no. 17, Sep. 2019.

[10] M. G. Amin, Y. D. Zhang, F. Ahmad, and K. C. D. Ho, “Radar signal
processing for elderly fall detection: The future for in-home monitoring,”
IEEE Signal Process. Mag., vol. 33, no. 2, pp. 71–80, Mar. 2016.

[11] Y. Kim and H. Ling, “Human activity classification based on micro
doppler signatures using a support vector machine,” IEEE Trans. Geosci.

Remote Sens., vol. 47, no. 5, pp. 1328–1337, May. 2009.

[12] Y. Kim and T. Moon, “Human detection and activity classification based
on Micro-Doppler signatures using deep convolutional neural networks,”
IEEE Geoscience and Remote Sensing Letters., vol. 13, no. 1, pp. 8-12,
Jan. 2016.

[13] F. Wang, W. Gong, and J. Liu, “On spatial diversity in WiFi-based human
activity recognition: A deep learning-based approach,” IEEE Internet

Things J., vol. 6, no. 2, pp. 2035-2047, Apr. 2019.

[14] Dazhuo Wang, Jianfei Yang, Wei Cui, Lihua Xie, and Sumei Sun,
“Multimodal CSI-based human activity recognition using GANs,” IEEE

Internet Things J., vol. 8, no. 24, pp. 17345-17355, Dec. 2021.

[15] K. Niu, F. Zhang, X. Wang, Q. Lv, H. Luo, and D. Zhang, “Under-
standing WiFi signal frequency features for position-independent gesture
sensing,” IEEE Trans. Mobile Comput., early access, Mar. 2021. DOI:
10.1109/TMC.2021.3063135.

[16] Y. Zhang et al., “Widar3.0: Zero-effort cross-domain gesture recognition
with Wi-Fi,” IEEE Trans. Pattern Anal. Mach. Intell., early access, Aug.
2021. DOI: 10.1109/TPAMI.2021.3105387.

[17] C. Lin, J. Hu, Y. Sun, F. Ma, L. Wang, and G. Wu, “WiAU: An accurate
device-free authentication system with resnet,” in Proc. 15th Annu. IEEE

Int. Conf. Sens. Commun. Netw., Hong Kong, China, 2018, pp. 1–9.

[18] L. Zhang, C. Wang, and D. Zhang, “Wi-pigr: Path independent gait
recognition with commodity wi-fi,” IEEE Trans. Mobile Comput., vol.
21, no. 9, pp. 3414-3427, Sep. 2022.

[19] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing.
USA: Prentice Hall Press, 1989.

[20] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, Las Vegas, Nevada, 2016, pp. 770–778.

[21] S. Wang, Y.-C. Wu, M. Xia, R. Wang, and H. V. Poor, “Machine
intelligence at the edge with learning centric power allocation,” IEEE

Trans. Wireless Commun., vol. 19, no. 11, pp. 7293–7308, Jul. 2020.

[22] L. Zhou et al., “Learning centric wireless resource allocation for edge
computing: Algorithm and experiment,” IEEE Trans. Veh. Technol., vol.
70, no, 1, pp. 1035–1040, Jan. 2021.

[23] T. Domhan, J. T. Springenberg, F. Hutter, “Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation
of learning curves,” in Proc. IJCAI, Buenos Aires, Argentina, Jul. 2015,
pp. 3460–3468.

[24] M. Johnson, P. Anderson, M. Dras, and M. Steedman, “Predicting
classification error on large datasets from smaller pilot data,” in Proc.

ACL, Melbourne, Australia, Jul. 2018, pp. 450–455.

[25] C.-X. Wang, J. Bian, J. Sun, W. Zhang, and M. Zhang, “A survey of
5G channel measurements and models,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 4, pp. 3142–3168, 4th Quart., 2018.

[26] V. Nurmela et al., METIS Channel Models, document ICT-317669/D1.4,
METIS, New York, NY, USA, Jul. 2015.
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