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Abstract

In this paper, we investigate federated clustering (FedC) problem, that aims to accurately partition
unlabeled data samples distributed over massive clients into finite clusters under the orchestration of a
parameter server, meanwhile considering data privacy. Though it is an NP-hard optimization problem
involving real variables denoting cluster centroids and binary variables denoting the cluster membership of
each data sample, we judiciously reformulate the FedC problem into a non-convex optimization problem
with only one convex constraint, accordingly yielding a soft clustering solution. Then a novel FedC
algorithm using differential privacy (DP) technique, referred to as DP-FedC, is proposed in which partial
clients participation and multiple local model updating steps are also considered. Furthermore, various
attributes of the proposed DP-FedC are obtained through theoretical analyses of privacy protection and
convergence rate, especially for the case of non-identically and independently distributed (non-i.i.d.) data,
that ideally serve as the guidelines for the design of the proposed DP-FedC. Then some experimental
results on two real datasets are provided to demonstrate the efficacy of the proposed DP-FedC together
with its much superior performance over some state-of-the-art FedC algorithms, and the consistency with
all the presented analytical results.

Keywords−Federated clustering, differential privacy, privacy amplification, non-i.i.d. data.

I. INTRODUCTION

Federated learning (FL), as a novel distributed paradigm, enables massively distributed clients to

jointly find a desired model through machine learning (ML) under the orchestration of a parameter

server (PS) while refraining the clients’ sensitive data from being exposed [1], [2]. FL has received

tremendous attention in the past several years as it seriously takes numerous practical challenges into

account, including limited communication resources and data heterogeneity and client privacy protection

in the learning process [3]. Under these challenges, most FL algorithms follow a computation-aggregation
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Fig. 1: The framework of FL system in the presence of adversaries.

protocol by which the local update of model parameters and the PS aggregation are repeated in a round-

by-round fashion until convergence. Federated average (FedAvg) algorithm [4], [5] is a typical one,

which improves communication efficiency by adopting partial client participation (PCP) and multiple

local stochastic gradient descent (local SGD) updating steps. Nevertheless, the data heterogeneity (e.g.,

non-identically and independently distributed (non-i.i.d.) data) has been acknowledged to be the main

bottleneck to FL deployment. Numerous efforts have been devoted to the analysis of the adverse effects of

non-i.i.d. data on algorithm convergence [4], [6]. In parallel, FL still suffers from privacy leakage as the

clients’ sensitive information could be inferred by adversaries through the exchanged model parameters

between the clients and the PS [7]–[9]. As illustrated in Fig. 1, a vanilla FL system includes many clients

and one PS, where the uploaded parameters from local clients may be overheard by powerful adversaries.

The differential privacy (DP) technique has recently gained increasing popularity in enhancing privacy of

FL thanks to its algorithmic simplicity, support by rigorous mathematical theory, and negligible system

overheads [10], [11]. Despite the recent rapid progress of FL, substantial attention has been given to

supervised learning, whereas the problem of federated unsupervised learning, especially data clustering,

has not yet been investigated comprehensively in FL community [12]. Clustering in the FL setting, called

federated clustering (FedC), aims to partition data samples distributed over massive clients based on a

global similarity measure while keeping them on respective clients. As clustering is one of most suitable

missions for ML and has a great deal of applications, the FedC and its implementation is believed to
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be in impending need. On the other hand, recent years have witnessed an incessant springing up of

FedC applications, which again motivates research efforts in this direction. For example, in e-commerce

applications, FedC is widely used to group the online customers of multiple institutions with sensitive

features, such as personal details, purchase orders, and bank transaction records, to identify their specific

interests for precise service recommendation [13], [14]. Note that, FedC is quite different from clustered

federated learning approaches [15], [16], which, instead of data clustering, are concerned with clusters

of clients such that each cluster comes up with a local model to be uploaded to the PS in order to reduce

the communication cost of supervised FL systems [17]–[19].

In this paper, an effective FedC algorithm is proposed, that considers both non-i.i.d. data and DP-based

privacy protection. In FedC scenarios where data heterogeneity is prevalent, the global cluster information

may not be available for each client as all the data in hands may belong to just a few clusters, and

the correct cluster structure might become apparent only when the local datasets are combined [19].

Moreover, effectively transferring the centralized clustering algorithms into FedC, such as k-means,

is almost formidable due to the privacy concern. Directly applying them to FedC by following the

computation-aggregation protocol would result in serious performance degradation [12], [20]. In addition,

different from supervised FL, the process of FedC involves the iterative constrained optimization of both

cluster centroids and cluster assignments of all data samples, which again brings more difficulties to

algorithm design.

As for privacy protection, such coupling optimization necessitates a more careful and fine-grained

design and analysis of the DP-based FedC algorithms. In particular, it is widely known that DP protects

privacy at the cost of learning performance loss [21], and balancing the tradeoff between protection

level and convergence performance, so-called the privacy-utility tradeoff, is essential in practical FL

applications. To improve the privacy-utility tradeoff, privacy amplification [22], [23] has been pervasively

adopted in many DP-based FL (DP-FL) applications [5], [24]. The privacy amplification can reduce the

variance of noise added to locally uploaded models without sacrificing the privacy protection level, thereby

mitigating the adverse effects of DP [25]. In addition to the challenges posed by non-i.i.d. data and privacy

protection, the practical application of FedC algorithms in FL systems requires careful consideration of

communication cost and straggler effect [26]. These factors and concerns not only affect the algorithm

design, but also make the associated theoretical algorithm performance analysis much more involved.

However, the involvement of cluster centroids and data’s cluster-membership assignment in FedC further

complicates the design of DP, and it is still not clear how to achieve a good privacy-utility tradeoff in

FedC.
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A. Related works

Currently, many successful methods have been reported about traditional distributed clustering, however,

they are simply parallel implementations of the centralized clustering algorithms [27]–[29] or imple-

mentations through clustering representative data samples collected from distributed clients [30], [31].

Apparently, the critical challenges of FL, such as massive clients, limited communication resources and

data heterogeneity, were rarely considered, and the demand for privacy protection was also overlooked.

The recent works in [13], [32]–[34] have considered the FL scenarios and presented FedC algorithms,

while most of them were developed by combining the simple centralized k-means algorithm (and its

variants) with federated average (FedAvg) [4]. Specifically, in each communication round, the clients

employ k-means algorithms to obtain the local cluster centroids, which are then uploaded to the PS to

produce the global clusters. The works [13], [32] adopted the fuzzy k-means to perform local clustering,

while the global centroids are obtained from the received local centroids by k-means clustering. The

work [33] proposed a federated spectral clustering approach to train a generative model for each cluster,

such that each data sample can be classified to only one cluster using the generated models. Nevertheless,

the above-mentioned FedC algorithms did not consider the data heterogeneity issue, thus hardly yielding

satisfactory clustering performance as the clustering algorithm only works well in clustering datasets that

are evenly spread around the centroids but fails in clustering datasets of complex and heterogeneous

cluster structure [19], [31], [35].

To the best of our knowledge, only few works have specifically addressed federated clustering in the

context of non-i.i.d. data [15], [18], [36], [37]. However, these works also have their limitations. The

approach reported in [15] directly apply the conventional k-means to the FL framework, resulting in

suboptimal clustering performance, that will be discussed in Section II-B. The work [18] considered

one-shot FedC, where each client obtains a local model using k-means and then upload the trained

model only once for the aggregation by the PS. However, the one-shot FedC may not be very effective

when the FL problem under consideration is NP-hard or non-convex due to the low-quality of local

solutions. The work [37] proposed a federated clustering scheme by assuming that heterogeneous data

to be clustered come from a probabilistic model, that is, assign each data point to a cluster model

with the highest likelihood. More importantly, these works [15], [18], [37] lack a complete theoretical

analysis of the impact of non-i.i.d. data on convergence performance. The work in [36] formulates the

clustering problem as a constrained non-convex problem and theoretically analyze the impact of non-

i.i.d. data. However, none of above-mentioned works ever consider the crucial issue of privacy protection,

which we believe, is one of the most fundamental concerns in FL system. The work [5] is the first that
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adopted a secret sharing approach to protect privacy in the federated k-means algorithm. However, such a

strategy requires complicated encryption protocols and substantial extra communication and computation

cost [38], thus not applicable to large-scale FL models. As far as we are aware, none of the existing

works simultaneously consider data heterogeneity and privacy protection, hence motivating us to develop

advanced privacy-preserving federated clustering algorithms over non-i.i.d. data.

B. Contributions

Motivated by the aforementioned issues of existing FedC methods, we propose a differentially private

FedC algorithm, called DP-FedC, with the data heterogeneity and privacy protection taken into account.

The main contributions of this work are summarized as follows:

1) A novel clustering problem is formulated to overcome the shortcomings of the conventional cen-

tralized k-means, then applied it to FedC scenarios. To handle the proposed FedC problem, a DP-

FedC algorithm under the computation-aggregation protocol is developed, that alternatively update

local cluster centroids and indicator matrices (indicating each sample and the cluster it belongs)

through allowing multiple local SGD steps and partial clients participation. Furthermore, the privacy

amplification strategy is employed to reduce the DP noise variance for better tradeoff between

learning performance (i.e., clustering accuracy) and privacy protection.

2) Two theoretical analyses for the proposed DP-FedC algorithm are presented. One is a privacy

analysis, showing that a tighter upper bound of the total privacy loss, i.e., (O(qϵ
√
pR), δ)-DP over

R consecutive communication rounds, where 0 < p, q ≤ 1 are defined in Remark 2. The other is a

convergence analysis, showing the convergence rate O(1/
√
R) under non-convex and non-i.i.d. data

setting.

3) Extensive experimental results are provided to demonstrate the effectiveness of the proposed DP-

FedC algorithm on real world datasets, including TCGA cancer gene data [39], and the MNIST

hand-writing digits data [40], and its much superior performance over state-of-the-art distributed

clustering and FedC algorithms.

Synopsis: Section II introduces some preliminaries of DP. Section III presents the problem formula-

tion. Section IV presents the proposed DP-FedC algorithm. Section V focuses on privacy analysis and

convergence analysis of the proposed algorithm. Experiment results are presented in Section VI, and

finally the conclusion is drawn in Section VII.

Notation: E[·] represents the expectation of random variables or events; Pr[·] represents the probability

function; Rm×n denotes the set of m by n real-valued matrices; The (i, j)-th entry of matrix A ∈ Rm×n

is denoted by A(i, j); A(i, :) and A(:, j) denote the i-th row and the j-th column of A, respectively;
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A ≥ 0 means A(i, j) ≥ 0, ∀i, j; [A]+ denotes the matrix by replacing all the negative elements in A

with zero. λmax(A) stands for the maximum eigenvalue of A; ∥ · ∥F , ∥ · ∥ and ∥ · ∥0 are the matrix

Frobenius norm, Euclidean norm (i.e., ℓ2-norm) and zero norm of vectors, respectively; ⟨x,y⟩ = x⊤y

represents the inner product operator, where the superscript ‘⊤’ denotes the vector transpose; For any

integer N , [N ] denotes the integer set {1, . . . , N}; 1 denotes the all-one vector; {Ci}ki=1 denotes the set

{C1, C2 . . . , Ck}; ⌊·⌋ denotes the floor function.

II. PRELIMINARIES

A. Differential privacy

In this work, we assume that any third party is untrustworthy, including the honest-but-curious server.

The core privacy protection mechanism of the proposed DP-FedC is the well-known DP based random

mechanism defined as follows:

Definition 1 (ϵ, δ)-DP [11]. Consider two neighboring datasets D and D′, which differ in only one

data sample. A randomized mechanism M is (ϵ, δ)-DP if for any two D, D′ and measurable subset

O ⊆ Range(M),

Pr[M(D) ∈ O] ≤ exp(ϵ) · Pr
[
M(D′) ∈ O

]
+ δ, (1)

holds true, ϵ > 0 represents the privacy protection level, and 0 < δ < 1 is the probability threshold to

break (ϵ, 0)-DP.

A smaller ϵ means that it is more difficult to distinguish between the two neighboring datasets D and D′,

thus resulting in stronger privacy protection. The required “noise variance” σ2 for achieving (ϵ, δ)-DP is

given by the following lemma.

Lemma 1 [11, Theorem 3.22] Suppose a query function g accesses the dataset D via randomized

mechanism M. Let ξ be a zero-mean Gaussian noise with variance σ2. Then g + ξ is (ϵ, δ)-DP if

σ2 =
2s2 ln(1.25/δ)

ϵ2
, (2)

where s is the ℓ2-norm sensitivity of the function g defined by

s ≜ max
D,D′

∥∥g(D)− g
(
D′)∥∥. (3)

In practical FL systems, it is crucial to monitor the total privacy loss over multiple communication

rounds of model parameters exchange with the PS, which can be computed from the individual privacy

loss stated in the following definition.
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Definition 2 (Privacy loss [11]). Suppose that a randomized mechanism M satisfies (ϵ, δ)-DP. Let D

and D′ be two neighboring datasets and o be a possible random vector of M(D) and M(D′). Then,

the privacy loss is defined by

PL(o) ≜ ln
( P

[
M(D) = o

]
P
[
M(D′) = o

]). (4)

Note that, the computation of total privacy loss is quite involved, though its upper bound can be estimated

using the moment accountant method [41], which so far yields the tightest bound on the total privacy

loss.

According to the privacy amplification theorem [23], it has been known that, running on a randomly

generated subset of a dataset, the DP mechanism can yield stronger privacy protection than running on

the entire dataset. This fact implies that the noise variance required for achieving a predefined DP level

can be reduced when partial data are randomly selected at each iteration. The privacy analysis to be

addressed in Section V-B relies on the following privacy amplification theorem.

Theorem 1 (Privacy Amplification Theorem [23]) Suppose that a mechanism M is (ϵ, δ)-DP over

a given dataset D with size n. Consider the subsampling mechanism that outputs a random sample

uniformly over all subsets Ds ⊆ D with size b. Then, when ϵ ≤ 1, executing M mechanism on the subset

Ds guarantees (ϵ′, δ′)-DP, where ϵ′ and δ′ are given by

ϵ′ = min(2qϵ, ϵ), δ′ = qδ, (5)

where q = b/n is the data sampling ratio.

Proof: See Appendix A.

According to Theorem 1, the privacy would be amplified when q ≤ 1/2. Note that, the privacy

amplification for local DP is pervasively adopted in existing FL literatures [10], [24] since only a small

portion of data being used in local SGD.

B. Centralized k-means clustering

Let X be a data matrix that contains n data samples and each sample has m features, i.e., X =

[x1, . . . ,xn] ∈ Rm×n. The clustering task is to assign the n data samples of X to a predefined number of

k clusters such that the samples within a cluster are closer to each other than to those belonging to any

other cluster in terms of a certain distance metric. Among hundreds of clustering algorithms, the most

classic and popular one is the k-means which aims to obtain k non-overlapping clusters {Ci}ki=1, i.e.,

Ci ∩ Ci′ = ∅, ∀i ̸= i′ ∈ [k],
⋃k

i=1 Ci = {xj}nj=1, by minimizing the average Euclidean distance between

each cluster centroid and all the data samples within the cluster.
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From the optimization perspective, the k-means algorithm can be viewed as an ad hoc algorithm, which

handles the following matrix factorization by alternative minimization (AM) [42]:

min
W∈Rm×k,H

∥X−WH∥2F (6a)

s.t. H ∈ {0, 1}k×n, ∥H(:, j)∥0 = 1,∀j, (6b)

where W ∈ Rm×k is a matrix consisting of the k centroids, and H ∈ Rk×n is an indicator matrix with

only one non-zero element (i.e., unity) in each column. Applying AM to problem (6) gives rise to the

following update rules of W and H at iteration t+ 1:

Ht+1 =argmin
H

∥X−WtH∥2F ,

s.t. H ∈ {0, 1}k×n, ∥H(:, j)∥0 = 1,∀j. (7)

Wt+1 =arg min
W∈Rm×k

∥X−WHt+1∥2F . (8)

Closed-form solutions to (7) and (8) are respectively given by

Ht+1(l, j) =


1 if l = argmin

u
∥X(:, j)−Wt(:, u)∥2,

0 otherwise,
(9)

and

Wt+1(:, l) =
1

|J t
l |

∑
u∈J t

l

X(:, u), (10)

where J t
l = {j|H(l; j) = 1}. Note that at iteration t+ 1, the l-th row of H is updated according to the

minimum distance from each data sample to the l-th centroid according to Wt, and then the l-th centroid

(i.e., the l-column of W) is updated as the average of the data belonging to cluster l according to the

l-th row of the updated indicator matrix.

III. PROBLEM FORMULATION

The centralized k-means may totally fail for the dataset with complex distribution and data heterogene-

ity, so it is not suitable for distributed environments, especially the FL setting. The reasons are twofold.

First, the non-convex k-means problem (6) is NP-hard due to involving binary variables, and hence

almost any algorithm (including k-means) is unable to work well. No wonder, it’s performance is quite

sensitive to the initial conditions, complex data distribution, and the obtained solution easily trapped in bad

local minima and so forth [43]. Moreover, the less data samples the worse its performance, thus further

downgrading its performance in FL scenarios, especially when the data are sensitive and under privacy

concern. Most existing FedC algorithms are based on k-means and operate in computation-aggregation
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fashion, but their performance may get seriously downgraded under FL scenarios, including massively

distributed clients and severe client heterogeneity [44].

Inspired by the idea in [45], we replace the binary constraint (6b) with a norm-based equality constraint

and reformulate problem (6) as

min
W,H

∥X−WH∥2F +
µh

2
∥H∥2F +

µw

2
∥W∥2F (11a)

s.t. H ≥ 0, ∥H(:, j)∥21 = ∥H(:, j)∥22 , ∀j ∈ [n], (11b)

where µh > 0 and µw > 0 are two positive parameters. Problem (11) is a non-convex and non-smooth

problem and it can be regarded as a relaxation of the k-means problem (6) because H has been relaxed

as a real k × n matrix, with at most one non-zero entry (not equal to one) in each column, though the

equality constraint (11b) is still non-convex. Moreover, the two regularization terms (i.e., the 2nd and

the 3rd terms in (11a)) are used to control the resulting scaling/counter-scaling ambiguity [42].

Instead of directly solving problem (11), we consider the following problem by dropping the equality

constraint in (11b) and adding an associated penalty term in the objective function:

min
W,H

∥X−WH∥2F +
µh

2
∥H∥2F +

µw

2
∥W∥2F +

ρ

2

n∑
j=1

((
1⊤H(:, j)

)2
− ∥H(:, j)∥22

)
(12a)

s.t. H ≥ 0, (12b)

where ρ > 0 is a penalty parameter. The larger the value of ρ, the smaller the approximation error of

the equality constraint in (11b) and the more sparse the matrix H. It is remarkable that problem (12)

is much efficient to handle than problem (11) for two reasons. One is that (12b) is a simple convex

constraint; the other is that the assignment of each data sample to an unique cluster is not reliable for

problem (11) [46], [47]. Therefore, in contrast to the hard clustering performed by k-means, solving (12)

corresponds to seeking a soft clustering solution [48] instead.

A. Federated clustering model

To solve problem (12) under the FL network, we first assume that the data matrix is partitioned and

distributed over N clients. i.e., X = [X1,X2, . . . ,XN ]. Specifically, each client i owns non-overlapping

data Xi ∈ Rm×ni , where ni is the number of data samples in client i and
∑N

i=1 ni = n. Under the FL

scenario, N could be large, and the data X1,X2, . . . ,XN could be unbalanced and non-i.i.d. [49], [50].

We proceed by partitioning H in the same fashion as X, resulting in the form H = [H1,H2, . . . ,HN ].

Each column of H corresponds to a certain data sample in X, while W is treated as shared parameters

that will be uploaded to the PS for information exchange. The resulting framework for federated clustering
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Fig. 2: The proposed framework for federated clustering.

is illustrated in Fig. 2, where a central PS coordinates the N clients to accomplish the clustering task.

Then, one can reformulate problem (12) into the FL framework as follows.

min
W, Hi,
i=1,...,N

F (W,H) ≜
1

N

N∑
i=1

Fi(W,Hi) (13a)

s.t. Hi ≥ 0,∀i ∈ [N ], (13b)

where

Fi(W,Hi) ≜∥Xi −WHi∥2F +
ρ

2
(Tr(HiUH⊤

i )− ∥Hi∥2F ) +
µh

2
∥Hi∥2F +

µw

2
∥W∥2F (14)

is the local objective function of each client i, and U ≜ 11⊤.

In contrast to the vanilla FL problem which contains only one shared optimization variable, problem

(13) involves two variables: one is W which is the cluster centroid matrix W shared among clients, and

the other one is Hi which is local cluster indicator matrix for Xi owned by client i. This apparently

brings challenges in the algorithm development, especially in the presence of non-i.i.d. data. In parallel,

as W is shared, there certainly exist possibilities of leaking clients’ privacy in the FL process. Recent

work [51] showed that the honest-but-curious server could infer clients’ private data from the uploaded

information in the federated matrix factorization framework. Consequently, it is inevitable to develop an

effective and privacy-preserving FL algorithm for problem (13).
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IV. PROPOSED ALGORITHM FOR PROBLEM (13)

In this section, we develop a novel FedC algorithm to solve (13), which judiciously updates W and

Hi, i ∈ [N ], and adopts an amplified DP for rigorous privacy protection.

A. Update of W and Hi in FL

The key of algorithmic development to problem (13) is to specify how to perform the local update of

Hi and global update of W. Inspired by [26], we follow the same spirit of local SGD and PCP, where a

subset of clients are selected to locally update Hi and the associated local copies Wi’s of W, and then

upload these iterates to the PS for global aggregation in each round. In particular, for round t = 1, 2, . . .,

(a) Client sampling: We let the PS uniformly sample a small and fixed-size set St of K clients, i.e.,

St ⊆ [N ], |St| = K, and then broadcast the global Wt−1 to all clients.

(b) Local update: All clients are asked to obtain an approximate solution (Wt
i,H

t
i) to the following

local subproblem of (13).

(Wt
i,H

t
i) = arg min

W,Hi≥0
Fi(W,Hi). (15)

After that, each client i ∈ St uploads Wt
i to the PS.

(c) Global aggregation: After receiving Wt
i from all clients i ∈ St, the PS aggregates them to produce

the new global Wt, i.e.,

Wt =
1

K

∑
i∈St

Wt
i. (16)

In order to specify the local iterates (Wt
i,H

t
i), we propose to handle (15) by combining AM [52] and

local SGD. That is, Ht
i is produced by applying multiple gradient descent (GD) steps to (15) with Wi

fixed, and then Wt
i is updated similarly by fixing Hi. To be more specific, we first let all clients perform

Q1 ≥ 1 consecutive steps of projected GD with respect to Hi, i.e., for r = 1, . . . , Q1,

Ht,r
i =

[
Ht,r−1

i − 1

γti
∇Hi

Fi(W
t−1,Ht,r−1

i )
]+

, (17)

where γti > 0 is the learning rate. Then, they are asked to perform Qt
2 ≥ 1 consecutive steps of SGD

(no projection) with respect to W, i.e., for r = Q1 + 1, . . . , Qt,

Wt,r
i = Wt,r−1

i − 1

ηt
∇WFi(W

t,r−1
i ,Ht,Q1

i ;Bt,r
i ), (18)

where Qt = Q1 +Qt
2 and ηt > 0 is a step size, and ∇WFi(W

t,r−1
i ,Ht

i;B
t,r
i ) is the stochastic gradient

computed using mini-batch dataset Bt,r
i with size b (|Bt,r

i | = b). Lastly, (Wt
i,H

t
i) is obtained by setting

Ht
i = Ht,Q1

i and Wt
i = Wt,Qt

i .
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B. Privacy concern

Data privacy is one of primary concerns in FL systems. To enhance data privacy, we apply the DP

technique to the proposed algorithm. Specifically, in each round t, we add an artificially Gaussian noise

matrix ξti ∈ Rm×k to Wt
i , where all the mk entries of ξti are i.i.d. Gaussian random variables with zero

mean and variance σ2
i,t, thus yielding

W̃t
i = Wt

i + ξti , (19)

and then upload W̃t
i to the PS. Then, (16) becomes

Wt+1 =
1

K

∑
i∈St

W̃t
i. (20)

The details of the proposed algorithm are summarized in Algorithm 1. Note that, the diminishing Qt
2 =

⌊ Q̂t ⌋+1 (line 12) denotes the number of iterations in updating Wt,r
i (lines 13-15) by (18), where Q̂ is a

given constant and the mini-batch dataset Bt,r
i of size b used is further discussed in the following remark:

Remark 1 For lines 13-15 of Algorithm 1, Qt
2b data samples are obtained from the dataset Di at each

communication round (i.e., the data sampling ratio qi,t = Qt
2b/ni), and then divided into Qt

2 mini-batch

datasets Bt,r
i for each inner iteration r.

It is acknowledged that the DP noise matrix ξti will bring about adverse effects on algorithm conver-

gence and learning performance. However, the performance degradation of Algorithm 1 will get worse

from round to round due to W perturbed by the DP noise and the coupling of W and H, on one hand.

The accumulated DP noise effects will also get worse with t on the other hand. Therefore, Algorithm 1

is performance-sensitive to the DP noise in a complicated manner, such that obtaining a satisfactory

privacy-utility tradeoff through theoretical analysis becomes more intractable.

Nevertheless, the privacy amplification presented in Theorem 1, can be utilized to pursue the perfor-

mance analysis of Algorithm 1, in order to find the clue about the variance reduction of the DP noise

for guaranteeing (ϵ, δ)-DP privacy protection level at each round. The details are presented in the next

section.

V. THEORETICAL ANALYSIS

A. Assumptions

We need the following assumptions to analyze the privacy guarantee and convergence performance of

the proposed algorithm.
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Algorithm 1 DP-FedC algorithm

1: Input: initial values of W0
1 = · · · = W0

N = W0, initial values of {H0
i }Ni=1, S0 = {1, . . . , N}, R

and Q̂.

2: for round t = 1 to R do

3: Server side:

4: Compute Wt by (20).

5: Uniformly sample a set of clients St ⊆ [N ], and broadcast Wt to all clients.

6: Client side:

7: for client i ∈ [N ] in parallel do

8: Set Ht,0
i = Ht−1

i and Wt,0
i = Wt.

9: for r = 1 to Q1 do

10: Update Ht,r
i by (17), and set Wt,r

i = Wt,r−1
i .

11: end for

12: Compute Qt
2 = ⌊ Q̂t ⌋+ 1.

13: for r = Q1 + 1 to Qt = Q1 +Qt
2 do

14: Update Wt,r
i by (18), and set Ht,r

i = Ht,r−1
i .

15: end for

16: end for

17: Set Wt
i = Wt,Qt

i and Ht
i = Ht,Qt

i .

18: for client i ∈ St in parallel do

19: Compute W̃t
i by (19).

20: Upload W̃t
i to the PS for next round of aggregation.

21: end for

22: end for

Assumption 1 Each local cost function Fi is continuously differentiable in both W and Hi. That is,

∇Hi
Fi(W

t, ·) is Lipschitz continuous with constant Lt
Hi

, and ∇WFi(·,Ht
i) is Lipschitz continuous with

constant Lt
Wi

, i.e., for any X,Y,

∥∇Hi
Fi(W

t,X)−∇Hi
Fi(W

t,Y)∥F ≤ Lt
Hi

∥X−Y∥F , (21a)

∥∇WFi(X,Ht
i)−∇WFi(Y,Ht

i)∥F ≤ Lt
Wi

∥X−Y∥F . (21b)
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According to Assumption 1 and [36], ∇WF (·,Ht) is Lipschitz continuous with a constant Lt
W =

(
∑N

i=1(L
t
Wi

)2/N)1/2, together with upper and lower bounds for Lt
Hi

and Lt
Wi

, i.e.,

LW ≥ Lt
Wi

≥ LW > 0, LH ≥ Lt
Hi

≥ LH > 0, ∀i, t. (22)

Assumption 2 All the local cost functions Fi and their gradients are bounded, i.e., for any i ∈ [N ] and

t,

∥∇WFi(W,Hi;Bi)∥2F ≤ G2, ∀W,Hi ≥ 0, (23)

Fi(W,Hi) ≥ F > −∞,∀W,Hi ≥ 0, (24)

where G is a constant, and Bi ⊆ Di denotes the mini-batch dataset.

Assumption 3 For any mini-batch dataset Bt
i with size b that are randomly sampled from dataset Di,

the following equations hold,

E[∇WFi(W
t
i,H

t
i;Bt

i)] = ∇WFi(W
t
i,H

t
i), (25)

E[∥∇WFi(W
t
i,H

t
i)−∇WFi(W

t
i,H

t
i;Bt

i)∥2F ] ≤
ϕ2

b
, (26)

for any i ∈ [N ] and t, where ϕ is a constant.

Assumption 4 (ζ-non-i.i.d. data) All the local cost functions Fi (cf. (14)) are ζ-non-i.i.d., namely, the

following condition holds,

∥∇WFi(W,Hi)−∇WF (W,H)∥2F ≤ ζ2,∀W,H ≥ 0, (27)

where ζ ≥ 0 is a constant.

By following similar spirits to those in [36], [53], an upper bound ζ is enforced on all the gradients of

Fi and F due to the heterogeneity of local data distributions among clients. This bound actually reflects

the data’s non-i.i.d. degree, which has been extensively utilized in the FL community, particularly for

handling non-convex FL problems.

B. Privacy analysis

1) Privacy guarantee: The ℓ2-norm sensitivity [11] of Wt
i is stated in following Lemma.

Lemma 2 For any t ∈ [R] and i ∈ [N ], the ℓ2-norm sensitivity of uploaded local model Wt
i is given by

sti =
2GQt

2

ηt
. (28)

Proof: See the Appendix B.
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According to Lemma 1 and Lemma 2, we further come up with the following theorem, which can

serve as a guideline for determining the variance of DP noise necessary to fulfill the associated DP-based

FL.

Theorem 2 For any client i ∈ [N ], suppose that ϵ ≤ 1, δ ≤ 1, and the data sampling ratio qi,t = Qt
2b/ni

(cf. Remark 1). Each entry of ξti generated follows the Gaussian distribution with zero mean and variance

σ2
i,t, where

σ2
i,t =

32G2(Qt
2)

2q2i,t ln(1.25qi,t/δ)

(ηt)2ϵ2
. (29)

Then each communication round of the proposed algorithm guarantees (ϵ, δ)-DP.

Proof: In each communication round of the proposed algorithm, each client i performs Qt
2 steps of SGD

w.r.t. W by (18), where the mini-batch dataset with size b used is randomly sampled without replacement

from local dataset Di. According to Lemma 1 and Theorem 1, the Gaussian noise with variance

σ2
i,t =

2s2i,t ln(1.25/δ)

ϵ2
(30)

can achieve at least (2qi,tϵ, qi,tδ)-DP for client i, where qi,t = Qt
2b/ni is data sampling ratio for client i.

Then, by plugging s2i,t given by (28) into (30), we obtain

σ2
i,t =

4G2(Qt
2)

2 ln(1.25/δ)

(ηt)2ϵ2
,∀i ∈ [N ]. (31)

By (31), one can achieve an (ϵ, δ)-DP for Wt
i , by replacing ϵ and δ in (31) with ϵ/2qi,t and δ/qi,t,

respectively, thereby leading to (29). ■

2) Total privacy loss: As done in [3], we also use the moments accountant method to estimate the

total privacy loss when the algorithm runs R communication rounds.

Theorem 3 Suppose that the client i is uniformly sampled by the PS with a probability pi and the data

sampling ratio qi,t = Qt
2b/ni (cf. Remark 1), where Qt

2 = ⌊ Q̂t ⌋+1. Then, with noise variance σ2
i,t (stated

in Theorem 2) used for the generation of the DP noise under (ϵ, δ)-DP at each communication round,

an achievable total privacy loss ϵ̄i for client i after R communication rounds is given by

ϵ̄i = c0q
2
i,tϵ

√
piR

1− qi,t
,∀i ∈ [N ], (32)

where c0 is a constant.

Proof: The proof basically follows that of Theorem 1 reported in [3]. However, we further consider

privacy amplification. Thus, the desired result (32) can be obtained by replacing the ϵ with 2qi,tϵ in the

corresponding ϵ̄i in Theorem 1 of [3]. ■
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Theorem 3 shows that the achievable lower bound of total privacy loss ϵ̄i for the proposed DP-FedC

is tighter than that of the latest reported in [3], [41] when p and q are appropriately chosen.

Remark 2 When clients are uniformly sampled with a probability pi, by (32) in Theorem 3, one can

infer that Algorithm 1 guarantees (O(qϵ
√
pR), δ)-DP under R communication rounds, where p and q

are given by

q = max
i,t

q2i,t√
1− qi,t

,∀i ∈ [N ], t ∈ [R], (33)

p = max
i

pi, ∀i ∈ [N ], (34)

where qi,t = Qt
2b/ni.

C. Convergence analysis

To find some convergence conditions, let us define the following sequence

W
t,r

=


1
K

∑
i∈St

Wt,r
i , when r ∈ [Qt − 1],

1
K

∑
i∈St

(
Wt,Qt

i + ξti
)
,when r = Qt,

(35)

which is actually the instantaneous weighted average of local models. Motivated by [36], let

GH(W
t,r
,Ht,r) ≜

N∑
i=1

(γt
i )

2
∥∥Ht,r

i −
[
Ht,r

i − 1

γt
i

∇Hi
Fi(W

t,r
,Ht,r

i )
]+∥∥2

F
, ∀r ∈ [Q1], (36)

GW (W
t,r
,Ht,r) ≜ ∥∇WF (W

t,r
,Ht,r)

)
∥2F , ∀r ∈ [Qt] \ [Q1]. (37)

If GH(W
t,r
,Ht,r) = 0 and GW (W

t,r
,Ht,r) = 0, then (W

t,r
,Ht,r) is a stationary-point solution of

problem (13). The main theoretical result for the DP-FedC is the following theorem.

Theorem 4 Let R be the total number of communication rounds and T = RQ1 +
∑R

t=1Q
t
2 be the

total number of gradient evaluations per client. Moreover, let Qt
2 = ⌊ Q̂t ⌋ + 1, γti = α1L

t
H/2 and

ηt = α2L
t
W , where α1 > 1 and α2 ≥ Qt

2

(
3(1 + L

2
W /L2

W )
)1/2. Then, under Assumptions 1-4, the

sequence {(Wt,r
,Ht,r)} yielded by Algorithm 1 satisfies

1

T

[ R∑
t=1

Q1∑
r=1

E[GH(W
t,r−1

,Ht,r−1)] +

R∑
t=1

Qt∑
r=Q1+1

E[GW (W
t,r−1

,Ht,r−1)]
]

≤2(α2
1L

2

H + 1)

T

(
α2LW

(
F (W

1,0
,H1,0)− F

)
+

16mkG2 ln(1.25/δ)
∑R

t=1(Q
t
2)

3

α2ϵ2
+

LWϕ2
∑R

t=1 Q
t
2

2α2KbLW

+ ζ2
(∑R

t=1 Q
t
2

K
+

4N
∑R

t=1 C
t
1

α2
2K

2

))
, (38)
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where

Ct
1 = Qt

2(Q
t
2 − 1)(2Qt

2 − 1). (39)

Proof: See Appendix C. ■

Theorem 4 provides an upper bound of the average total local SGDs over R communication rounds;

the smaller its value, the higher convergence rate and the smaller of the cost function in (13) achieved

by Algorithm 1. Based on Theorem 4, we have the following remarks.

Remark 3 (Convergence rate analysis) Since Qt
2 = ⌊ Q̂t ⌋+1, we have

∑R
t=1C

t
1,
∑R

t=1Q
t
2 and

∑R
t=1(Q

t
2)

3

all in O(R). According to (38), by setting Q1 = O(
√
R), the proposed algorithm converges at a rate

of O(1/
√
R). Furthermore, substituting T = RQ1 +

∑R
t=1Q

t
2 into the bound on the right-hand side of

(38), one can infer that the bound decreases with Q1 rather than Q2 due to Qt
2 → 1 as t increases,

implying faster convergence rate for larger Q1 on one hand, and the required DP noise variance σ2
i,t

given by (29) is insensitive to Qt
2 on the other hand.

Remark 4 (Impact of DP) The larger value of ϵ (or ϵ̄), the smaller the upper bound in (38), implying

that the better learning performance (convergence rate and the loss function F ) and the weaker required

privacy protection level, namely a privacy-utility tradeoff.

Remark 5 (Impact of non-i.i.d. data and PCP) The smaller the value of ζ or the larger the value of K,

the smaller the upper bound in (38), implying the smaller degree of non-i.i.d. data or the more clients

in PCP, and the better learning performance (faster convergence rate and smaller loss function F ).

Remark 6 (Complexity comparison with existing federated clustering methods) Suppose that all clients

participate the model training (N clients), the complexity of federated k-means (FKM) for each lo-

cal iteration at the client side is O
(
mnkN +mnN(logN)2

)
, and the complexity at the PS side is

O (mnk) [5]. It can be verified that the per-iteration complexity for the proposed DP-FedC algorithm is

O
(
(mN + n)k2 +mnk)

)
at the client side, and a complexity order of O(mkN) at the PS side (shown

in Appendix E). As a result, the complexity of the proposed DP-FedC algorithm is smaller than that of

FKM since k < N ≪ n is true in general. However, the DP-FedC and the FZKM [13] have comparable

complexity at both client side and the PS side, simply because they have similar computing procedure,

in spite of no complexity analysis reported in [13].

VI. EXPERIMENT RESULTS

In this section, in terms of the cost function (i.e., the objective value) in (13) and clustering accuracy,

some experimental results are presented to evaluate the performance of the proposed DP-FedC algorithm
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(Algorithm 1) including comparison with some state-of-the-art FedC algorithms. The experiment is

performed using two real datasets and each obtained result is the average over 5 independent runs with

the same randomly generated initial feasible points for all the algorithms under test.

A. Experiment setup

Datasets: The two real data sets used in the experiment are TCGA [39] and MNIST datasets. Specif-

ically, TCGA dataset was obtained from the Cancer Genome Atlas database which contains the gene

expression data of 5,314 cancer samples belonging to 20 cancer types. Each data sample in TCGA

dataset is a real column vector containing the top-ranked 5000 features selected through Pearson’s Chi-

Squares Test [36]. The MNIST database contains 60,000 training images of 10 handwritten digits and

10,000 test ones. We randomly select 10,000 images from the 60,000 training images as the dataset in our

experiment, where each data sample is a real column vector containing 784 features. These two datasets

are representative, i.e., one (the other) with large (small) data size but small (large) feature size, also

implying challenging unsupervised clustering for both datasets in our experiment.

In the experiment, we distribute the samples of each dataset to N = 100 clients in the following two

ways:

(i) IID case: We follow the data partition method in [30] to obtain balanced and i.i.d. distributed data

for the two datasets. To be specific, the i.i.d. distributed data are generated by randomly assigning

the data samples to all clients.

(ii) non-IID case: For the TCGA dataset, we apply the k-means algorithm to cluster the dataset into

100 clusters, and the data samples belonging to the same cluster is assigned to one client. For the

MNIST dataset, we follow the partition method in [26] to obtain distributed data such that each

client’s dataset only contains two digits, thus yielding a highly unbalanced and non-i.i.d. dataset.

Parameter setting: In problem (13), if not mentioned specifically, we set the parameters as follows:

k = 10 for MNIST and k = 20 for TCGA, µw = 0, ρ = 10−7 × ∥X∥2
F

N and µh = 10−10 × ∥X∥2
F

N . As for

the parameters in Algorithm 1, the step size γti =
1
2L

t
Hi

where Lt
Hi

is estimated as λmax((W
t,0
i )⊤Wt,0

i ).

Analogously, the step size ηt = 5Lt
W where Lt

W is estimated as λmax(H
t,Q1(Ht,Q1)⊤). In all experiments,

we assume all clients have the same privacy protection level (i.e., ϵi = ϵ, for all i) and the same total

privacy loss budget (i.e., ϵ̄i = ϵ̄ for all i). Then, given the total privacy loss ϵ̄, the privacy protection level

ϵ at each communication round is obtained by Theorem 3 for R = 100 and δ = 10−4. The mini-batch

dataset size b is set to 50. Other parameters are empirically chosen to our best. All the algorithms under

test run until R = 100 is reached. Then the clustering accuracy is calculated as the ratio of the number
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Fig. 3: Objective value and clustering accuracy versus communication rounds of the proposed DP-FedC

algorithm for IID case and non-IID case, where (a)-(d), and (e)-(f), are obtained using MNIST dataset

and TCGA dataset, respectively, for the cases of without DP, and ϵ̄ ∈ {2, 20}.

of correct classifications (no. of columns of all the estimated Hi, i ∈ [N ], i.e., their maximum column

entries falling in the correct cluster) to the total number of data (i.e., n).

B. Impact of DP

Figure 3 depicts the objective value for simplicity (i.e., the value of F (W,H) in (13)) and the clustering

accuracy versus communication round with different values of ϵ̄ for both IID case and non-IID case,

where K = 30, Q1 = 10, and Qt
2 = ⌊10t ⌋+ 1. Some observations from Figs. 3(a)-(d), are as follows:

(i) The larger the value of ϵ̄ where the results without DP conceptually corresponds to ϵ̄ → ∞, the

smaller the objective value and the higher the clustering accuracy and convergence rate for both IID

case case and non-IID case;

(ii) The objective value is smaller and the clustering accuracy is higher for the IID case than for non-

IID case, and the performance gap between the two cases seems more appreciable in clustering

accuracy.

The above two observations also apply to Figs. 3(e)-(h). Moreover, the impact of non-i.i.d. data is more

serious on the TCGA dataset. These results are consistent with Remark 4 and Remark 5, so a proper

choice of ϵ̄ value is needed to achieve a good privacy-utility tradeoff.
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Fig. 4: Objective value and clustering accuracy versus communication rounds of the proposed DP-FedC

algorithm for IID case and non-IID case, where (a)-(d), and (e)-(f), are obtained using MNIST dataset

and TCGA dataset, respectively, for ϵ̄ = 20 and K ∈ {10, 30, 100}.

C. Impact of the number of participated clients (K)

Figure 4 depicts the convergence performance of DP-FedC versus communication rounds under dif-

ferent values of K with ϵ̄ = 20, Q1 = 10, and Qt
2 = ⌊10t ⌋+ 1. It can be seen from Figs. 4(a), 4(b), 4(e)

and 4(f), that the objective value is smaller together with faster convergence rate either for larger K or

for the IID case. This is also true for the clustering accuracy, though the convergence rate on TCGA

for the IID case is only slightly better than for the non-IID case. These results are also consistent with

Remark 5.

D. Comparison with existing distributed clustering methods

We here compare the proposed DP-FedC algorithm with four benchmark algorithms in terms of

clustering performance. These algorithms include federated k-means (FKM) [5], federated fuzzy k-means

(FZKM) [13], distributed k-means++ (DK++) [27], distributed k-median (DKM) [30]. The first two are

state-of-the-art federated clustering algorithms while the latter two are traditional distributed clustering

methods. As mentioned previously, they were basically developed by extending the k-means algorithm and

its variants. We add the artificial noise to DP noise that guarantees the (ϵ, δ)-DP at each communication

round in the implementation of the above four existing algorithms in our experiment. Then we apply the
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TABLE I: Performance comparison of five algorithms in terms of clustering accuracy (%).

Method

Dataset TCGA

(without DP)

MNIST

(without DP)

TCGA

(ϵ̄ = 20)

MNIST

(ϵ̄ = 20)

DK++ [27] 65.4 42.6 50.1 26.8

DKM [30] 38.7 43.3 31.0 26.1

FKM [5] 70.2 43.2 58.4 31.8

FZKM [13] 72.8 47.1 66.9 36.4

DP-FedC 76.7 50.5 72.2 43.1

proposed algorithm to process the given dataset with parameters K = 30, Q1 = 10, Qt
2 = 5, ϵ̄ = 20

under the i.i.d. data case. However, the parameters used for the other four algorithms are taken from the

associated references together with K = 30, ϵ̄ = 20.

The obtained experimental results (for the clustering accuracy) are listed in Table I. It can be seen

from this table that the clustering accuracy performances of all the algorithms under test for the case

of without DP noise are better than with DP noise used. The performance gap between the two cases

for our DP-FedC algorithm is much smaller than for the other algorithms, implying that the proposed

algorithm is more robust again DP noise thanks to the privacy amplification strategy applied.

VII. CONCLUSION

We have presented a novel FedC algorithm called DP-FedC (Algorithm 1), which is based on the

traditional clustering algorithm k-means and operates according to the computation-aggregation protocol.

Specifically, the proposed DP-FedC employs DP-based privacy protection, along with the policies of

PCP and multiple local SGD updating steps implemented in the algorithm design. Various characteristics

and insights of Algorithm 1 were discovered through theoretical analyses, including the impact of system

parameters on privacy amplification, convergence rate, and the impact of data heterogeneity (e.g., non-i.i.d.

data) on learning performance. These analytical results can serve as valuable guidelines for practical FL

algorithm design, especially when considering the preferred tradeoff between learning performance and

the required level of privacy protection. Finally, we provided experimental results on two real datasets to

demonstrate the efficacy of the proposed method, along with its superior performance over state-of-the-art

FedC algorithms, and its consistency with all the presented analytical results.

APPENDIX A

PROOF OF THEOREM 1

The proof mainly follows the work [23] by considering both data sampling with replacement case and

that without replacement case.
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Suppose that data subsampling mechanism yields (ϵ′, δ′)-DP, when ϵ ≤ 1 and data are uniformly

sampled with replacement, data subsampling mechanism guarantees (ln(1 + q(exp(ϵ)− 1), qδ)-DP [23],

then, we have δ′ = qδ and

ϵ′ = ln(1 + q(exp(ϵ)− 1))
(a)

≤ q(exp(ϵ)− 1)
(b)

≤ 2qϵ, (A.1)

where (a) and (b) hold because ln(1 + x) ≤ x and exp(x)− 1 ≤ 2x when 0 < x ≤ 1 [54].

When data are uniformly sampled without replacement, we still have δ′ = qδ and ϵ′ becomes [23],

ϵ′ = ln
(
1 + (1− (1− 1

n
))b(exp(ϵ)− 1)

)
(a)

≤ ln
(
1 + q(exp(ϵ)− 1)

) (b)

≤ 2qϵ, (A.2)

where (b) follows because of (A.1), and (a) holds since

(1− (1− 1

n
))b ≤ b

n
= q. (A.3)

By combining (A.2) and (A.3), we obtain ϵ′ ≤ 2qϵ for data sampling without replacement.

Then, when q ≥ 1/2 (i.e., 2qϵ > ϵ), there is no privacy amplification. In this case, we have

ϵ′ = ϵ. (A.4)

Therefore, by combining (A.1), (A.2) and (A.4), we have ϵ′ = min(2qϵ, ϵ). Thus, we complete the proof.

■

APPENDIX B

PROOF OF LEMMA 2

Assume Di and D′
i are the neighboring datasets that differ in only one data sample. Without loss of

generality, let ui be the unique different element between Di and D′
i, i.e., D′

i ∪ {ui} = Di ∪ {ui}. For

clarity of the following proof, let us make the following notational correspondences: Wt,r
i ↔ Wt,r

Di
,

Ht,r
i ↔ Ht,r

Di
, and Bt,r

i ↔ Bt,r
Di

. Then, for any r ∈ [Qt] \ [Q1], the ℓ2-sensitivity [11] of Wt
i is calculated

by

sti = max
Di,D′

i

∥∥Wt
Di

−Wt
D′

i

∥∥
= max

Di,D′
i

∥∥∥ Qt∑
r=Q1+1

Wt,r−1
Di

−
∇WFi(W

t,r−1
Di

,Ht,r−1
Di

;Bt,r
Di

)

ηt
−

Qt∑
r=Q1+1

(
Wt,r−1

D′
i

−
∇WFi(W

t,r−1
D′

i
,Ht,r−1

D′
i

;Bt,r
D′

i
)

ηt
)∥∥∥

= max
Di,D′

i

∥∥∥(Wt,Q1

Di
−

∇WFi(W
t,Q1

Di
,Ht,Q1

Di
;Bt,Q1+1

Di
)

ηt
− · · · −

∇WFi(W
t,Qt−1
Di

,Ht,Qt−1
Di

;Bt,Qt

Di
)

ηt

)

−
(
Wt,Q1

D′
i

−
∇WFi(W

t,Q1

D′
i

,Ht,Q1

D′
i
;Bt,Q1+1

D′
i

)

ηt
− · · · −

∇WFi(W
t,Qt−1
D′

i
,Ht,Qt−1

D′
i

;Bt,Qt

D′
i
)

ηt

)∥∥∥
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(a)

≤ 2GQt
2

ηt
, (B.1)

where (a) holds because of Assumption 2, and Wt,Q1

Di
= Wt,Q1

D′
i

always holds. ■

APPENDIX C

PROOF OF THEOREM 4

According to (35) and (18), we have

W
t,r

=W
t,r−1 − 1

Kηt

∑
i∈St

∇WFi(W
t,r−1
i ,Ht,r−1

i ;Bt,r
i ). (C.1)

(Objective Descent w.r.t. H) According to [55, Lemma 3.2] and setting γti = α1L
t
H/2 ≤ α1LH/2 where

α1 > 1, we have

Fi(W
t,r
,Ht,r

i )− Fi(W
t,r−1

,Ht,r−1
i ) ≤ −α1 − 1

2
LH∥Ht,r−1

i −Ht,r
i ∥2F ,∀r ∈ [Q1]. (C.2)

Taking expectation over two sides of (C.2) and then summing up from r = 1 to Q1 yields

E
[
Fi(W

t,Q1
,Ht,Q1

i )
]
− E

[
Fi(W

t,0
,Ht,0

i )
]
≤ −α1 − 1

2
LH

Q1∑
r=1

E
[
∥Ht,r−1

i −Ht,r
i ∥2F

]
,∀r ∈ [Q1]. (C.3)

By taking the summation over two sides of (C.3) from i = 1 to N , the objective function F descends

with local updates of H is given by

E[F (W
t,Q1

,Ht,Q1)]− E[F (W
t,0
,Ht,0)] ≤ −α1 − 1

2
LH

Q1∑
r=1

N∑
i=1

E
[
∥Ht,r−1

i −Ht,r
i ∥2F

]
,∀r ∈ [Q1]. (C.4)

(Objective Descent w.r.t. W) Since Ht,r
i = Ht,r−1

i (cf. line 14 in Algorithm 1) and ∇WF (·,Ht,Q)

is Lipschitz continuous under Assumption 1. Then, by the descent lemma [55, Lemma 3.1], when r ∈

[Qt − 1] \ [Q1], we have

E
[
F (W

t,r
,Ht,r)

]
≤E

[
F (W

t,r−1
,Ht,r−1)

]
+

Lt
W

2
E
[
∥Wt,r −W

t,r−1∥2F
]

+ E
[
⟨∇WF (W

t,r−1
,Ht,r−1),W

t,r −W
t,r−1⟩

]
. (C.5)

When r = Qt, by Algorithm 1, (C.5) becomes,

E
[
F (W

t,Qt

,Ht,Qt

)
]
≤E

[
F (W

t,Qt−1
,Ht,Qt−1)

]
+

Lt
W

2
E
[
∥Wt,Qt

−W
t,Qt−1

+ ξt∥2F
]

︸ ︷︷ ︸
≜(S.1)

+ E
[
⟨∇WF (W

t,Qt−1
,Ht,Qt−1),W

t,Qt

−W
t,Qt−1⟩

]
, (C.6)
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where ξt = 1
K

∑K
i=i ξ

t
i . The (S.1) can be further bounded by,

(S.1) =
Lt
W

2
E
[
∥Wt,Qt

−W
t,Qt−1

+ ξt∥2F
]

=
Lt
W

2
E
[
∥Wt,Qt−1 −W

t,Qt

∥2F ] +
Lt
W

2
E
[
∥ξt∥2F

]
(a)

≤ Lt
W

2
E
[
∥Wt,Qt−1 −W

t,Qt

∥2F
]
+

16mkG2 ln(1.25/δ)(Qt
2)

2

α2ηtϵ2
, (C.7)

where (a) holds from ηt = α2L
t
W and

E
[
∥ξt∥2F

] (a)
=

mk

K

K∑
i=1

32G2(Qt
2)

2q2i,t ln(1.25qi,t/δ)

(ηt)2ϵ2

(b)

≤ 32mkG2(Qt
2)

2 ln(1.25/δ)

(ηt)2ϵ2
. (C.8)

In (C.8), (a) follows from (29). (b) holds because of qi,t ≤ 1. By (C.5), (C.6) and (C.7), for r ∈ [Qt]\[Q1],

we have,

E
[
F (W

t,r
,Ht,r)

]
≤ E

[
F (W

t,r−1
,Ht,r−1)

]
+

Lt
W

2
E
[
∥Wt,r −W

t,r−1∥2F
]︸ ︷︷ ︸

≜(S.2)

+ E
[
⟨∇WF (W

t,r−1
,Ht,r−1),W

t,r −W
t,r−1⟩

]︸ ︷︷ ︸
≜(S.3)

+
16mkG2(Qt

2)
2 ln(1.25/δ)

α2ηtϵ2
. (C.9)

The terms (S.2) and (S.3) can be bounded by the following Lemma 3 (proved in Appendix D-A) and

Lemma 4 (proved in Appendix D-B), respectively.

Lemma 3 For any t and r ∈ [Qt − 1] \ [Q1], we have

E
[
∥Wt,r −W

t,r−1∥2F
]
≤ ϕ2

Kb(ηt)2
+

1

(ηt)2
E
[∥∥ 1

K

∑
i∈St

∇WFi(W
t,r−1
i ,Ht,r−1

i )
∥∥2]. (C.10)

Lemma 4 For any t and r ∈ [Qt − 1] \ [Q1], we have

E
[
⟨∇WF (W

t,r−1
,Ht,r−1),W

t,r −W
t,r−1⟩

]
=− 1

2ηt
E
[∥∥∇WF (W

t,r−1
,Ht,r−1)

∥∥2
F
+

∥∥ 1

K

∑
i∈St

∇WFi(W
t,r−1
i ,Ht,r−1

i )
∥∥2
F

]

+
ζ2

Kηt
+

1

Kηt

N∑
i=1

(Lt
Wi

)2E
[
∥Wt,r−1 −Wt,r−1

i ∥2F
]
. (C.11)

Thus, substituting (C.10) and (C.11) into (C.9) gives rise to

E
[
F (W

t,r
,Ht,r)

]
− E

[
F (W

t,r−1
,Ht,r−1)

]
≤− 1

2ηt
E
[∥∥∇WF (W

t,r−1
,Ht,r−1)

∥∥2
F

]
+

Lt
Wϕ2

2Kb(ηt)2
+

ζ2

Kηt

+ (
Lt
W

2(ηt)2
− 1

2ηt
)E

[∥∥ 1

K

∑
i∈St

∇WFi(W
t,r−1
i ,Ht,r−1

i )
∥∥2]



25

+
1

Kηt

N∑
i=1

(Lt
Wi

)2E
[
∥Wt,r−1 −Wt,r−1

i ∥2F
]
+

16mkG2(Qt
2)

2 ln(1.25/δ)

α2ηtϵ2

(a)

≤ − 1

2ηt
E
[∥∥∇WF (W

t,r−1
,Ht,r−1)

∥∥2
F

]
+

LWϕ2

2Kb(ηt)2
+

ζ2

Kηt

+
1

Kηt

N∑
i=1

(Lt
Wi

)2E
[
∥Wt,r−1 −Wt,r−1

i ∥2F
]
+

16mkG2(Qt
2)

2 ln(1.25/δ)

α2ηtϵ2
, (C.12)

where (a) follows due to ηt = α2L
t
W ≥ Lt

W and Lt
Wi

≤ LW . Then, rearranging the two sides of (C.12)

yields

E
[∥∥∇WF (W

t,r−1
,Ht,r−1)

∥∥2
F

]
≤2ηt

(
E
[
F (W

t,r−1
,Ht,r−1)

]
− E

[
F (W

t,r
,Ht,r)

])
+

2

K

N∑
i=1

(Lt
Wi

)2E
[
∥Wt,r−1 −Wt,r−1

i ∥2F
]
+

LWϕ2

Kbηt
+

32mkG2(Qt
2)

2 ln(1.25/δ)

α2ϵ2
+

2ζ2

K
. (C.13)

Summing (C.13) up from r = Q1 + 1 to Qt yields

Qt∑
r=Q1+1

E
[∥∥∇WF (W

t,r−1
,Ht,r−1)

∥∥2
F

]

≤2ηt
(
E
[
F (W

t,Q1
,Ht,Q1)

]
− E

[
F (W

t,Qt

,Ht,Qt

)
])

+
2

K

Qt∑
r=Q1+1

N∑
i=1

(Lt
Wi

)2E
[
∥Wt,r−1 −Wt,r−1

i ∥2F
]

︸ ︷︷ ︸
≜(S.4)

+
32mkG2(Qt

2)
3 ln(1.25/δ)

α2ϵ2
+

2ζ2Qt
2

K
+

Qt
2LWϕ2

Kbηt
. (C.14)

The term (S.4) can be bounded with the following lemma, which is proved in Appendix D-C.

Lemma 5 Let α2 ≥ Qt
2

√
3(1 + L

2
W /L2

W ). For any t and r ∈ [Qt] \ [Q1], it holds that

Qt∑
r=Q1+1

N∑
i=1

(Lt
Wi

)2E[∥Wt,r−1 −Wt,r−1
i ∥2F ] ≤

4Nζ2Ct
1

Kα2
2

, (C.15)

where Ct
1 ≜ Qt

2(Q
t
2 − 1)(2Qt

2 − 1).

By applying Lemma 5 and plugging (C.15) into (C.14), we have

Qt∑
r=Q1+1

E
[∥∥∇WF (W

t,r−1
,Ht,r−1)

∥∥2
F

]
≤2ηt

(
E
[
F (W

t,Q1
,Ht,Q1)]− E[F (W

t,Qt

,Ht,Qt

)
])

+
32mkG2(Qt

2)
3 ln(1.25/δ)

α2ϵ2
+

2ζ2Qt
2

K
+

Qt
2LWϕ2

Kbηt
+

8Nζ2Ct
1

K2α2
2

. (C.16)
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Combining (C.4) and (C.16) yields

Q1∑
r=1

N∑
i=1

E
[
∥Ht,r−1

i −Ht,r
i ∥2F

]
+

Qt∑
r=Q1+1

E
[∥∥∇WF (W

t,r−1
,Ht,r−1)

∥∥2
F

]
(a)

≤2ηt
(
E
[
F (W

t,0
,Ht,0)]− E[F (W

t,Qt

,Ht,Qt

)
])

+
32mkG2(Qt

2)
3 ln(1.25/δ)

α2ϵ2
+

2ζ2Qt
2

K
+

Qt
2LWϕ2

Kbηt
+

8Nζ2Ct
1

K2α2
2

, (C.17)

where (a) holds because of ηt ≥ 1/((α1 − 1)LH).

(Derivation of the Main Result) We next derive the convergence in terms of the optimal gap functions

in (36) and (37). From (C.17) and γti = α1L
t
H/2 and ηt = α2L

t
W , we have

Q1∑
r=1

E[GH(W
t,r−1

,Ht,r−1)] =

Q1∑
r=1

N∑
i=1

(γt
i )

2E[∥Ht,r−1
i −Ht,r

i ∥2F ]

(a)

≤2α2
1L

2

H

(
α2LWE[F (W

t,0
,Ht,0)]− E[F (W

t,Qt

,Ht,Qt

)]

+
16mkG2(Qt

2)
3 ln(1.25/δ)

α2ϵ2
+

ζ2Qt
2

K
+

Qt
2LWϕ2

2KbLWα2
+

4Nζ2Ct
1

K2α2
2

)
, (C.18)

where (a) follows because γti ≤ α1LH/2 and α2LW ≤ ηt ≤ α2LW . Then, summing (C.18) up from

t = 1 to R yields
R∑

t=1

Q1∑
r=1

E
[
GH(W

t,r−1
,Ht,r−1)

]
≤2α2

1L
2

H

(
α2LW

(
F (W

1,0
,H1,0)− F

)
+

16mkG2 ln(1.25/δ)
∑R

t=1(Q
t
2)

3

α2ϵ2
+

ζ2
∑R

t=1 Q
t
2

K

+
LWϕ2

∑R
t=1 Q

t
2

2KbLWα2
+

4Nζ2
∑R

t=1 C
t
1

K2α2
2

)
. (C.19)

Similarly, from (C.17), we have
R∑

t=1

Qt∑
r=Q1+1

E
[∥∥∇WF (W

t,r−1
,Ht,r−1)

∥∥2
F

]

=

R∑
t=1

Qt∑
r=Q1+1

E
[
GW (W

t,r−1
,Ht,r−1)]

]
≤2α2LW

(
F (W

1,0
,H1,0)− F

)
+

32mkG2 ln(1.25/δ)
∑R

t=1(Q
t
2)

3

α2ϵ2
+

2ζ2
∑R

t=1 Q
t
2

K

+
LWϕ2

∑R
t=1 Q

t
2

KbLWα2
+

8Nζ2
∑R

t=1 C
t
1

K2α2
2

. (C.20)

By combining (C.19) and (C.20), and then dividing two sides of summation result by T = RQ1+
∑R

t=1Q
t
2

yields
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1

T

[ R∑
t=1

Q1∑
r=1

E
[
GH(W

t,r−1
,Ht,r−1)

]
+

R∑
t=1

Qt∑
r=Q1+1

E
[
GW (W

t,r−1
,Ht,r−1)

]]

≤2(α2
1L

2

H + 1)

T

(
α2LW

(
F (W

1,0
,H1,0)− F

)
+

16mkG2 ln(1.25/δ)
∑R

t=1(Q
t
2)

3

α2ϵ2
+

ζ2
∑R

t=1 Q
t
2

K

+
LWϕ2

∑R
t=1 Q

t
2

2KbLWα2
+

4Nζ2
∑R

t=1 C
t
1

K2α2
2

)
. (C.21)

This completes the proof. ■

APPENDIX D

PROOFS OF KEY LEMMAS FOR THEOREM 4

A. Proof of Lemma 3

According to (C.1), we have

E
[
∥Wt,r −W

t,r−1∥2F
]

=
1

(ηt)2
E
[∥∥ 1

K

∑
i∈St

∇WFi(W
t,r−1
i ,Ht,r−1

i ;Bt,r
i )

∥∥2]
(a)
=

1

(ηt)2
E
[∥∥ 1

K

∑
i∈St

(
∇WFi(W

t,r−1
i ,Ht,r−1

i ;Bt,r
i )−∇WFi(W

t,r−1
i ,Ht,r−1

i )
)∥∥2]

+
1

(ηt)2
E
[∥∥ 1

K

∑
i∈St

∇WFi(W
t,r−1
i ,Ht,r−1

i )
∥∥2]

(b)
=

1

(ηt)2K2
E
[ ∑
i∈St

∥∥∇WFi(W
t,r−1
i ,Ht,r−1

i ;Bt,r
i )−∇WFi(W

t,r−1
i ,Ht,r−1

i )
∥∥2]

+
1

(ηt)2
E
[∥∥ 1

K

∑
i∈St

∇WFi(W
t,r−1
i ,Ht,r−1

i )
∥∥2]

(c)

≤ 1

(ηt)2
E
[∥∥ 1

K

∑
i∈St

∇WFi(W
t,r−1
i ,Ht,r−1

i )
∥∥2]+ ϕ2

Kb(ηt)2
, (D.1)

where (a) follows because E[∥Z∥2] = E[∥Z−E[Z]∥2]+∥E[Z]∥2; (b) follows because ∇WFi(W
t,r−1
i ,Ht,r−1

i ;Bt,r
i )−

∇WFi(W
t,r−1
i ,Ht,r−1

i ) is independent across the clients; (c) holds due to Assumption 3. ■

B. Proof of Lemma 4

E
[
⟨∇WF (W

t,r−1
,Ht,r−1),W

t,r −W
t,r−1⟩

]
(a)
= − 1

ηt
E
[〈
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1
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∑
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i ;Bt,r
i )

〉]
(b)
= − 1

ηt
E
[〈
∇WF (W
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,Ht,r−1),

1

K

∑
i∈St

∇WFi(W
t,r−1
i ,Ht,r−1

i )
〉]

(c)
= − 1

2ηt
E
[∥∥∇WF (W

t,r−1
,Ht,r−1)

∥∥2
F

]
− 1

2ηt
E
[∥∥ 1

K
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∇WFi(W
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i )
∥∥2
F

]
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+
1

2ηt
E
[∥∥∇WF (W

t,r−1
,Ht,r−1)− 1

K

∑
i∈St

∇WFi(W
t,r−1
i ,Ht,r−1

i )
∥∥2
F

]
, (D.2)

where (a) holds due to (18); (b) follows from Assumption 3; (c) follows from the basic identity

⟨Z1,Z2⟩ = 1
2(∥Z1∥2 + ∥Z2∥2 − ∥Z1 − Z2∥2).

The last term in (D.2) can be further bounded by

E
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(a)
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K
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2

K
E
[ ∑
i∈St
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(Lt
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)2E
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i ∥2F
]
, (D.3)

where the first term in the RHS of (a) comes from Assumption 4, and the second term in the RHS of

(D.8) follows because of Assumption 1. Then, Plugging (D.3) into (D.2) yields
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Thus, we complete the proof. ■

C. Proof of Lemma 5

According to the definition of Wt,r−1, for ∀r ∈ [Qt] \ [Q1], we have

W
t,r−1

=
1

K

∑
i∈St

Wt,r−1
i

(a)
=

1
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i )
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∑
i∈St
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i ;Bt,j
i ), (D.5)
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where (a) is obtained by applying (18), that is

Wt,r−1
i = Wt − 1

ηt

r−1∑
j=Q1

∇WFi(W
t,j−1
i ,Ht,j−1

i ;Bt,j
i ). (D.6)

As a result, by (D.5) and (D.6), we have
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where (b) holds since ∇WFi(W
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where (d) follows from Assumption 4. Then, substituting (D.8) into (D.7) gives rise to
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where (e) follows since (Lt
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where Ct
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2(Q
t
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2 − 1), (g) follows since α2
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APPENDIX E

PER-ITERATION COMPLEXITY OF ALGORITHM 1

According to (17) and (18), let us revisit Ht,r
i and Wt,r

i as follows

Ht,r
i =

[
Ht,r−1

i − 1

γti
∇Hi

Fi(W
t−1,Ht,r−1

i )
]+

, (E.1)
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Wt,r
i = Wt,r−1

i − 1

ηt
∇WFi(W

t,r−1
i ,Ht,Qi

i ;Bt,r
i ). (E.2)

For simplicity, we omit the outer iteration number t and inner iteration number r. By the definition of

Fi(W,Hi) in (14), ∇Hi
Fi(Wi,Hi) and ∇WFi(Wi,Hi;Bi) can be computed as

∇Hi
Fi(Wi,Hi) =2WT

i WiHi − 2WT
i Xi + 2ρ11THi + (µh − ρ)Hi, (E.3)

∇WFi(Wi,Hi;Bi) =2WiHiH
T
i − 2XiH

T
i + µwWi. (E.4)

Thus, the complexity order of computing Ht,r
i (mainly due to (E.3)) at each client i can be estimated as

(mk2 + k2ni + kni) + (mkni + nik) + nik
2 + 2nik =⇒ O((m+ ni)k

2 +mnik), (E.5)

and that of computing Wt,r
i (mainly due to (E.4)) as

(mkb+mkb+mk) + (mkb+mk) +mk =⇒ O(mkb). (E.6)

Because the complexity of Wt,r
i is much smaller than that of Ht,r

i (due to b = |Bi| < ni ≪ n =
∑N

i ni),

the total complexity order of updating Ht,r
i and Wt,r

i can be approximated by that of updating Ht,r
i . As

a result, provided that all the N clients (the worst case) join the learning process, one can obtain the

total complexity order as O
(
(mN + n)k2 +mnk

)
at the client side. Moreover, the complexity order at

the PS side is simply O(mkN).
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