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Abstract—Digital Twins play a crucial role in bridging the
physical and virtual worlds. Given the dynamic and evolving
characteristics of the physical world, a huge volume of data
transmission and exchange is necessary to attain synchronized
updates in the virtual world. In this paper, we propose a
semantic communication framework based on You Only Look
Once (YOLO) to construct a virtual apple orchard with the
aim of mitigating the costs associated with data transmission.
Specifically, we first employ the YOLOv7-X object detector to
extract semantic information from captured images of edge de-
vices, thereby reducing the volume of transmitted data and saving
transmission costs. Afterwards, we quantify the importance of
each semantic information by the confidence generated through
the object detector. Based on this, we propose two resource
allocation schemes, i.e., the confidence-based scheme and the
artificial intelligence-generated scheme, aimed at enhancing the
transmission quality of important semantic information. The
proposed diffusion model generates an optimal allocation scheme
that outperforms both the average allocation scheme and the
confidence-based allocation scheme. Moreover, to obtain semantic
information more effectively, we enhance the detection capability
of the YOLOv7-X object detector by introducing new Efficient
Layer Aggregation Network-HorNet (ELAN-H) and SimAM
attention modules, while reducing the model parameters and
computational complexity, making it easier to run on edge devices
with limited performance. The numerical results indicate that
our proposed semantic communication framework and resource
allocation schemes significantly reduce transmission costs while
enhancing the transmission quality of important information in
communication services.

Index Terms—Semantic communication, resource allocation,
object detection, digital twins.
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I. INTRODUCTION

In recent years, the advances in technologies such as Aug-
mented/Extended/Virtual Reality (AR/XR/VR), blockchain,
Sixth-Generation (6G) network, artificial intelligence (AI) and
edge computing have led to an increasing demand for virtual
reality and digital worlds. The metaverse, as a virtual reality
concept, is considered an integration of multiple virtual worlds
that can provide people with a more immersive and realistic
digital space [1], [2], allowing them to engage in various
activities such as virtual conferences, remote collaboration,
online learning, digital exhibitions, etc. The emergence of
these virtual reality activities has not only alleviated social
isolation and transportation restrictions, but also saved time
and costs, gradually becoming essential tools for people’s
lives and work. Moreover, the popularity of these activities in
various social domains has also accelerated the development
of digital economy and digital transformation [3], [4].

In agriculture, novel paradigms such as digital farms, smart
agriculture, and agricultural metaverse, which are combined
with metaverse technology, are emerging and flourishing [4],
[5]. In terms of agricultural production, users, such as farmers,
can establish virtual farms in a virtual environment, sim-
ulate the complete growth process of crops and livestock,
and obtain real-time growth data to achieve intelligent and
refined agriculture. For instance, the XR Lab of Alibaba
DAMO Academy presented a case study of an autonomous
agricultural picking robot. The proposed approach entails the
development of a high-precision Three-Dimensional (3-D)
model of the entire orchard via 3-D modeling techniques
of both the orchard and fruit trees. Subsequently, a motion
planning scheme can be established in the virtual environment,
which can facilitate the robot’s autonomous picking process
in the real world. This innovative approach can potentially
minimize the costs associated with orchard management [6].
Furthermore, virtual agriculture can be combined with other
fields such as agricultural leisure and agricultural education.
For example, the Faculty of Agriculture has developed an
agricultural metaverse teaching system for an egg chicken farm
at the National University of Laos. Through VR technology,
the faculty members provide agricultural education to learners,
including knowledge related to technology, farm location, and
other relevant aspects. The system has been reported to have
yielded positive results [7].

Digital Twins (DTs), namely digital replications of physical
objects, have emerged as a pivotal technology for creating
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virtual environments [8], [9]. In agriculture, the physical
realm is characterized by its intricate and constantly-changing
nature, necessitating DTs synchronizing with the physical
world to ensure their accuracy in virtual operations. This
process requires that edge devices persistently gather the
most recent data from the physical world, enabling real-time
DTs updates. The acquisition and transmission of the data
from the physical world often rely on various advanced edge
devices and wireless communication technologies [10], [11].
Various fixed or mobile devices (e.g., sensors and cameras)
are deployed to collect status data of physical objects, which,
in real-time, update and interact with the virtual world through
wireless communication. However, continuous data transmis-
sion poses stringent requirements on wireless communication
systems, especially when dealing with extensive data such
as high-definition images, which can be both expensive and
challenging when the physical world is vast.

Fortunately, semantic communication has been introduced
as a novel avenue for tackling the aforementioned chal-
lenge [12], [13]. In contrast to conventional communication
technologies, semantic communication systems regard trans-
mission effective if the meaning of the received information
maintains the original meaning of the transmitted informa-
tion [14]. For example, in the context of image transmission, a
semantic-based communication system can reduce the amount
of data that needs to be transmitted by only transmitting the
semantic information behind the image, while achieving the
same effect [15].

In this paper, we present a case study focusing on the
development of a virtual apple orchard using a real apple
dataset. In the virtual orchard, users, i.e., fruit growers, can
easily access various information such as the quantity and
location of fruit on each apple tree, as well as growth status
and view real images of individual apples. The virtual orchard
can help users manage their orchard more efficiently. In this
case, the implementation of DTs requires edge devices, such as
Unmanned Aerial Vehicle (UAV) to capture the status informa-
tion of fruit trees by taking photographs, and then transmitting
the collected data to users via wireless communication tech-
nology. To reduce costs and enhance communication quality
during this process, we propose a semantic communication and
resource allocation framework based on You Only Look Once
(YOLO). Our main contributions are summarized as follows:

• Unlike traditional communication methods that neces-
sitate transmitting all acquired images, we propose
a YOLO-based semantic communication framework.
Specifically, the proposed framework discards irrele-
vant interference information after image data acquisi-
tion, retaining only the critical semantic information for
transmission. This significantly reduces the data volume
needed for transmission and lowers resource costs while
achieving the same outcome.

• We employ the YOLOv7-X object detector to extract
semantic information from images and enhance its per-
formance on a real-world apple dataset. Considering the
limitations of existing object detectors in detecting small
objects such as small apples, and the constraints of
processing power and memory in edge devices, larger

models necessitate increased computational resources and
memory for operation, which may result in performance
degradation or inoperability. Consequently, we improve
the YOLOv7-X algorithm by introducing the Efficient
Layer Aggregation Network-HorNet (ELAN-H) and the
SimAM attention modules. These modifications elevate
the detector’s performance and reduce the parameters and
computational requirements, facilitating deployment on
edge devices with greater ease.

• In the pursuit of enhancing transmission quality during
the wireless transmission of a huge volume of images, we
propose a resource allocation scheme based on the sig-
nificance of semantic information. The scheme allocates
transmission power following the relative importance of
the semantic information, with the aim of enhancing
the overall communication quality of image transmission
systems by minimizing important information loss and
improving the reliability of transmitted information. This
approach ensures that critical information is transmitted
with high quality to users, even in challenging wireless
communication environments.

• Furthermore, we utilize the AI-generated resource al-
location scheme algorithm as an alternative allocation
scheme, which facilitates more efficient processing power
distribution. Specifically, by using the denoising tech-
nique, the AI-generated algorithm generates a design for
the allocation scheme and subsequently adds exploration
noise to execute it, thereby gaining experience in explo-
ration. The numerical results clearly demonstrate that this
method achieves the highest score in terms of semantic
information transmission quality.

The remainder of this paper is organized as follows: In
Section II, we initially summarize the related work about
DTs, semantic communication and apple detection. Section III
introduces the overall system design, semantic communication
approach, and the metric used for evaluating the system’s
communication quality. In Section IV, the YOLOv7-X object
detector and its enhancement methods are described in detail,
followed by an explanation of two distinct resource allocation
methods for data transmission. Subsequently, we analyze the
numerical results in Section V. Lastly, Section VI concludes
the paper.

II. RELATED WORK

In this section, we briefly introduce three related techniques,
i.e., DTs, semantic communication and apple detection.

A. Digital Twins

The physical system and physical world in agriculture are
complex and dynamic environments that include basic infor-
mation and characteristics of physical objects. DTs require
continuous updating from the physical to the virtual space
as the state of physical objects changes over time [16], [17].
Li et al. [18] proposed a deep learning-based single-view
leaf reconstruction method for a plant growth DT system,
improving leaf reconstruction’s accuracy and speed. Angin
et al. [19] introduced a DT framework for agriculture called
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AgriLoRa, which detects plant diseases and weeds using com-
puter vision algorithms after uploading data from UAV images
and field sensor data to cloud servers. Awais et al. [20] used
the multispectral UAV and DTs model to achieve intelligent
irrigation in the field. However, these works have focused
only on the use of collected data and have not considered the
impact of data transmission. DTs require a significant amount
of computing power to render 3-D objects, which is achieved
through collecting large amounts of data from perception
networks and ultra-low latency communication to maintain a
seamless user experience [1]. When physical objects are large
enough, the massive data streams can burden communication
systems and cause excessive latency, or even transmission
failure. Therefore, in this paper, we use a semantic-aware
communication method to reduce the amount of data that
needs to be transmitted.

B. Semantic Communication

In classical communication theory, the semantic content and
meaning of the message are largely considered irrelevant to
communication. However, in the age of rapidly increasing data
volume, the limitations of classical communication theory have
begun to be revealed [21]. Semantic communication consti-
tutes an innovative paradigm wherein message transmission
is not confined solely to the message content, but rather
entails direct extraction of pertinent semantic information,
thereby eliminating redundant data and mitigating associated
costs. Xie et al. [22] proposed a text transfer framework
called DeepSC based on the Transformer [23], which can
recover the meaning of sentences through semantic informa-
tion, thus minimizing semantic errors during transmission.
Zhou et al. [24] proposed a cognitive semantic communication
framework that utilizes knowledge graphs, which has good
data compression rates and communication reliability. In ad-
dition to text-based semantic communication, some literature
also proposes semantic communication methods applied to
images. [25] obtained semantic information through semantic
segmentation at the transmitter and used GAN networks to
reconstruct the image at the receiver, greatly saving bandwidth
resources, but the reconstructed image is slightly different
from reality. Zhang et al. [26] proposed a neural network-
based image transfer semantic communication system, where
the transmitter can extract and transmit the required semantic
information in a dynamic environment through a receiver-
leading training process without knowing the task. Kang et
al. [27] proposed a task-oriented semantic communication
framework, where users can match the semantic information
of images by querying text, and also consider the resource
allocation problem when there are multiple users. Although
the above literature reduce communication overhead through
semantic communication, they have not considered the varying
importance of semantic information itself, which may result in
the loss of significant semantic information in the competition
for channel resources. Therefore, we assign different levels
of importance to the semantic information extracted from
images to ensure the transmission quality of critical semantic
information by rationally allocating transmission power.

C. Object Detection

In the communication framework proposed in this paper,
the UAV needs to extract the semantic information of the
acquired images, i.e., to achieve the separation of apples and
backgrounds, and the core of achieving this is the object
detection technique.

Apple Detection: In recent years, deep learning-based
object detection techniques have achieved remarkable success.
In contrast to traditional algorithms that rely on appearance
features such as shape and color [28], [29], deep learning-
based techniques demonstrate strong adaptability to different
scenarios and achieve higher accuracy. Chen et al. [30] utilized
the DenseNet network structure to optimize the YOLOv4
model, proposing a Des-YOLOv4 algorithm for detecting
apples. However, the performance of the algorithm signifi-
cantly deteriorates under low-light conditions. Yan et al. [31]
proposed an improved YOLOv5 [32] algorithm for real-time
apple recognition by incorporating Squeeze-and-Excitation
(SE) modules and modifying the fusion mode of feature
maps. Despite the improved performance, the algorithm’s
effectiveness in detecting small apples is suboptimal. Sun et
al. [33] proposed a novel Balanced Feature Pyramid Network
(BFP Net) that enhances the accuracy of small apple detection.
Nevertheless, the BFP Net has a slower detection speed. The
above work indicates that it is difficult to balance the detection
speed and accuracy of the model, and detecting small apples
in complex environments remains a challenge. Therefore, we
select the YOLOv7-X object detector for this study due to its
outstanding detection speed and accuracy [34]. However, its
performance on dataset with a considerable number of small
apples is slightly limited. Thus, we employed it as the baseline
model for improving detection performance.

Data Augmentation: In addition to modifying the model
structure to improve detection capability, data augmentation is
another straightforward and effective approach. Data augmen-
tation allows generating additional equally effective data based
on limited data without altering the essential information of the
images. This significantly enhances the diversity of the training
data, thereby enhancing the model with stronger generalization
capabilities. Changing the color and shape of images is the
fundamental and common approach in data augmentation. In
this study, we use fundamental data augmentation methods
such as randomly altering the hue, saturation, and brightness of
images, as well as performing random scaling and translation.
In addition to these basic data augmentation methods, some
studies have proposed more efficient approaches, such as Mo-
saic [35] and Mixup [36]. Mosaic involves randomly cropping
and scaling four images, then combining them into a single
image for training data. Mixup randomly selects two samples
from the training data and constructs new training samples
and labels through linear interpolation. In this work, we use a
combination of Mosaic, Mixup and fundamental methods.

In summary, we propose a YOLO-based semantic com-
munication and resource allocation framework to address the
above problems in this paper. First, we select the advanced
YOLOv7-X object detector as the core of the entire system
and optimize its performance on real dataset. Following that,
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Fig. 1. An illustration of the YOLO-based semantic communication system model.

the UAV extracts semantic information from collected images
using the optimized YOLOv7-X object detector. Then, the
UAV allocates transmission power based on the importance of
semantic information before transmitting, ultimately achieving
high-quality transmission of critical information.

III. SYSTEM MODEL

In this section, we present the proposed data transmission
framework and the semantic-based communication approach,
followed by an explanation of the metric methodology for
assessing image semantic information transmission quality.

A. Design of semantic communication and resource allocation
framework

In data collection in DTs, a UAV takes images along a
specified trajectory and transmit the data to users. However, in
wireless communication environments with fading channels,
the cost of transmitting all data to users at high quality is
prohibitive. To address this issue, we propose a semantic
communication framework based on YOLO, as shown in Fig.
1. We first simulate the images captured by the UAV using real
apple dataset. After the collection task is completed, the UAV
uses the trained YOLOv7-X object detector to extract semantic
information behind the image that people need and transmit
them. At the same time, we quantify the importance of each
semantic information based on the confidence generated by the
object detector and allocate transmission power accordingly to
ensure the transmission quality of important information. The
problem of optimal power allocation schemes is introduced
in Section IV. It is worth noting that the YOLOv7-X object
detector is a flexible module that can be applied to semantic
communication systems in various scenarios by training on
different datasets. For instance, use pretrained models to
extract semantic information from images containing other
single or multiple different classes of objects.

B. Semantic Communication Solution

In conventional communication paradigms, edge devices
transmit the entirety of the acquired image data to facili-
tate continuous data synchronization for DTs, resulting in
voluminous data traffic. This imposes substantial burdens on
both edge devices and the communication infrastructure. To
illustrate, in smart agriculture, users deploy UAVs for image
capture [37]. However, oftentimes, only a portion of the

captured content is relevant to users, e.g., ripening fruits.
Utilizing such an inefficient communication approach for
transmitting all images leads to the excessive consumption
of communication resources and energy for UAVs, thereby
exacerbating resource wastage.

The development of semantic communication provides a
solution to the aforementioned problems. Upon completing
the designated data acquisition task, the UAV transmits only
the pertinent semantic features extracted from the captured
images, rather than the entire dataset. The transmission of
these semantic features requires minimal channel resources
and facilitates efficient data storage for users. In the vir-
tual orchard, users, e.g., fruit growers, are primarily more
concerned about the status of the fruits. As a result, we
discard irrelevant background and interference factors before
transmitting the images, ensuring that users only receive the
semantic information they are interested in, which helps reduce
transmission cost.

C. Semantic Communication Quality Analysis

To evaluate the quality of semantic communication, we pro-
pose a Metric for Image Semantic Transmission (MIST) in this
work, which involves combining the importance weights of
each semantic information with their respective transmission
quality to obtain the final evaluation result. Considering that
a UAV needs to send an image to the user after capturing it,
semantic information is first extracted by the object detector.
Specifically, a total of U apple objects are detected, with
i denoting the ith object and ci denoting its corresponding
confidence. The relationship between the importance score Wi

and the confidence ci of the object i can be represented as
Wi = ci

σ, where σ is a variable that adjusts the importances
among different semantic information. The final semantic
transmission quality score can be represented as follows:

E(A,Wi, Q(pi)) = A

U∑
i=1

(Wi ×Q(pi)), (1)

where A represents the accuracy of semantic information
extraction, i.e., the performance evaluation metric Average
Precision at 0.5 Intersection over Union (AP@0.5) of the
object detector, and Q(pi) represents the Structure Similarity
Index Measure (SSIM) [38] value of object i before and after
transmission, which is a function that is positively correlated
with the transmission power pi according to [27]. Therefore,
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considering the definition of the communication system in this
paper, our goal is to maximize the MIST while satisfying
the transmission power constraint, which can be expressed as
follows:

max
A,Wi,pi

U∑
i=1

E(A,Wi, Q(pi))), (2)

U∑
i=1

pi ≤ P, (2a)

ci ∈[cmin, 1], (2b)

where the constraint in (2a) is the total transmitted power,
and cmin in (2b) is the confidence threshold, the objects with
confidence below this value are not detected by the detector.
In this study, we set the variable σ = 1 and the confidence
threshold cmin = 0.25 by default. The proposed MIST
considers not only the transmission quality of each semantic
information but also their respective significance, which can
provide a more comprehensive and accurate assessment of the
performance of these methods.

IV. YOLO-BASED SEMANTIC COMMUNICATION SYSTEM
DESIGN

The YOLOv7-X object detector is a critical component
of the overall communication system. It aids UAVs in ex-
tracting semantic information from images and subsequently
quantifying the semantic information’s importance to facilitate
optimal transmission power allocation. In this section, we
provide a detailed exposition of the YOLOv7-X, along with
the improvements made to it. Subsequently, we discuss two
distinct resource allocation schemes in data transmission.

A. Overview of YOLOv7-X

The YOLOv7 model is a highly advanced and efficient end-
to-end object detector. It employs a state-of-the-art methodol-
ogy for detecting objects in an image, with exceptional accu-
racy and real-time performance. YOLOv7 has seven different
models of varying sizes, including YOLOv7-tiny, YOLOv7,
YOLOv7-X, and YOLOv7-W6, among others, which are
suitable for different application environments. Considering
both model complexity and detection performance, we se-
lect YOLOv7-X as the base model for improvement. The
YOLOv7-X model can be divided into three parts: Input,
Backbone, and Head. Specifically, the Input resizes the input
image to the required training size. The Backbone component
includes multiple CBS convolutions, Max Pooling Convolution
(MPConv), Efficient Layer Aggregation Network in YOLOv7-
X (ELAN-X) modules and an SPPCSPC module. The CBS
convolution consists of a convolutional layer, a Batch Nor-
malization layer (BN), and a Sigmoid Linear Unit (SiLU)
activation function. ELAN-X extends the ELAN module by
increasing its depth and width, and enhances the learning
capability of the network by guiding the computation blocks
to learn more diverse features of different feature groups. The
MPConv module adds a Maxpool layer on top of CBS and

strengthens the feature extraction ability by merging features
from the top and bottom branches. The SPPCSPC module is
similar to the Spatial Pyramid Pooling-Fast (SPPF) used by
YOLOv5 [32], which increases a network’s receptive field. The
Head component employs the same Path Aggregation Feature
Pyramid Network (PAFPN) [39] architecture as YOLOv5 to
efficiently fuse features from multiple levels. Finally, the fused
and enhanced feature map is fed to three detection heads
to generate predictions for confidence, object category, and
anchor boxes.

B. Model Enhancement Methods

ELAN-H: The ELAN-X module in YOLOv7-X is an
efficient network structure that enables the network to learn
more features and have stronger robustness by controlling the
shortest and longest gradient paths. The structure of ELAN-
X is shown in Fig. 4. The shortest branch passes through
only one CBS convolution to change the number of channels,
while the longest branch extracts features through seven CBS
convolutions. The feature maps extracted by each branch are
concatenated through the Concatenation (Concat) operation
as the final result of feature-enhanced fusion. ELAN-X is
repeatedly used in the Neck to improve the model’s learn-
ing capability. However, too many branches and convolution
operations also increase model complexity and parameter size,
leading to increased processing time and consumption of
computing resources. Therefore, we reduce the depth and
width of this module without breaking its original architecture,
changing the number of CBS in the longest branch to three
and correspondingly decreasing the number of output feature
maps to four. In addition, to compensate for the decrease in
detection performance caused by simplifying this module, we
replace one CBS convolution in the long branch with Hornet
Block [40] to enhance the module’s ability to learn important
features. Finally, this module, named ELAN-H, has a structure
shown in Fig. 2(a).

Here, the Hornet block is a design based on Recursive Gated
Convolution (gnConv). The output of the gated convolution
y = gConv(x) can be represented as follows:[

p0
HW×C ,qHW×C

0

]
= ϕin(x) ∈ RHW×2C , (3)

p1 = f(q0)⊙p0 ∈ RHW×C , y = ϕout(p1) ∈ RHW×C , (4)

where x ∈ RHW×C represents the input features which are
linearly projected to obtain p0 and q0. Then, q0 is subjected
to depth-wise convolution and multiplied with p0 to obtain
p1. Lastly, p1 is projected linearly again to yield the output
y.

High-order spatial interaction requires the implementation
of gated convolutions with recursive designs. Initially, a
higher-order linear projection is applied to x resulting in p0

and qk(k = 0, 1, ..., n − 1). Subsequently, recursive gated
convolutions are executed to generate pk+1. The output of
y = gnConv(x) can be mathematically expressed as follows:[

p0
HW×C0 ,qHW×C0

0 , ...,q
HW×Cn−1

n−1

]
= ϕin(x) ∈ RHW×(C0+

∑
0≤k≤n−1 Ck),

(5)
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(a) ELAN-H model structure, which
stacks feature maps from different levels
by Concatenation (Concat) operation as
the final output.

(b) Overview of the basic building block
in HorNet with Recursive Gated Convolution
(gnConv).

Fig. 2. ELAN-H model structure with HorNet.

pk+1 = fk(qk)⊙ gk(pk)/α, k = 0, 1, ..., n− 1, (6)

gk =

{
Identity, k= 0,
Linear(Ck−1, Ck), 1 ≤ k ≤ n− 1.

, (7)

Ck =
C

2n−k−1
, 0 ≤ k ≤ n− 1, (8)

where {gk} are utilized to match the dimension in various or-
ders and {fk} are depth-wise convolution layers. As depicted
in Fig. 2(b), the HorNet block employs a block-wise design
inspired by Transformer [23] and replace the self-attention
sub-layer with gnConv that have high-order spatial modeling
capability. We replace all ELAN-X modules in the Neck with
ELAN-H modules, which can better fuse and enhance the
image features extracted by the Backbone, leading to improved
detection performance while reducing model complexity.

SimAM [41]: The attention module can assign different
weights to different channels or regions in space, thereby
helping the model to focus on extracting more important
information. Existing attention mechanisms typically generate
corresponding 1-D or 2-D weights in the channel or spatial
dimension, as shown in Fig. 3(a) and Fig. 3(b), such as
BAM [42] , which parallelly connects two kinds of attention,
and CBAM [43], which serially connects them. However,

they treat each neuron in every channel or spatial position
equally during the generation process. This limitation restricts
their ability to learn more discriminative cues, while in the
human brain, these two types of attention often occur simul-
taneously [41]. As shown in Fig.3(c), SimAM is a unified

(a) Channel-wise attention.

(b) Spatial-wise attention.

(c) Full 3-D weights for attention.

Fig. 3. Comparisons of different attention steps.

weight attention module that can derive 3-D attention weights
for feature maps without requiring additional parameters. In
visual neuroscience, the most informative neurons typically
exhibit discharge patterns that differ from those of surrounding
neurons, and active neurons tend to inhibit surrounding neu-
rons [44]. Drawing inspiration from this, the SimAM module
designs an energy function to measure the linear separability
between neurons, thereby identifying important neurons. The
energy function is defined as follows:

et(wt, bt, y, xi) =
1

M − 1

M−1∑
i=1

(−1− (wtxi + bt))
2

+ (1− (wtt+ bt))
2 + λw2

t ,

(9)

where t denotes the target neuron and xi denotes other neurons
in a single channel of the input feature x ∈ RHW×C , i is index
over spatial dimension and M is the number of neurons. wt

and bt are weight and bias the transform. Subsequently, by
computing the closed-form solutions of variables wt and bt,
and substituting them into (9). The minimum energy can be
obtained as follows:

e∗t =
4(σ̂2 + λ)

(t− µ̂)
2
+ 2µ̂2 + 2λ

. (10)

The above formula indicates that a smaller energy value cor-
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Fig. 4. The network architecture of YOLOv7-HS contains general modules: Input, Backbone, and Head, and basic components: CBS, Max Pooling Convolution
(MPConv), UPSampling (UP), SPPCSPC, SimAM, and two Efficient Layer Aggregation Networks (ELAN) with different structures, namely ELAN-X and
ELAN-H.

responds to a greater linear separability between neuron t and
other neurons, which signifies higher importance. Following
the definition of attention mechanisms, the SimAM module
can be expressed as follows:

X̃ = sigmoid(
1

E
)⊙X, (11)

where, E is a classification function for all energy functions e∗t
in both channel and spatial dimensions. The sigmoid function
ensures that the larger values in E are constrained, thereby not
affecting the relative importance of each neuron. We integrate
SimAM modules into the Neck section of the YOLOv7-
X model, which helps the model to better focus on targets
without introducing additional parameters.

YOLOv7-HS: The improved architecture of the YOLOv7-
X model is depicted in Fig. 4. We enhance the YOLOv7-
X object detector using the above methods to make it more
suitable for the Minneapple dataset, and named it YOLOv7-
HS.

C. Resource Allocation in Semantic Communication

After the UAV obtains the semantic information of images,
a straightforward approach is to transmit it equally to users.
However, due to the limited bandwidth resources in wireless
transmission, semantic information is susceptible to signal
attenuation during transmission, consequently affecting com-
munication quality. Simultaneously, as nearly every original
image is cropped into numerous apple images, and considering
the highly complex orchard environment and the inherent
limitations of the detection model, the importance of each
cropped image (e.g., apple completeness, cropping accuracy)
varies. The average allocation method (named Avg-SemCom)
faces intense competition for scarce wireless channel resources
among multiple images, resulting in the discarding of crucial
images. Therefore, we propose a Confidence-based Seman-
tic Communication (Conf-SemCom) method, which allocates

transmission power by quantifying the importance of semantic
information to ensure the transmission quality of important
data.

The correlation between an object detector’s confidence and
the object it identifies is significant. Generally, the confidence
of a detected object is positively correlated with the amount of
semantic features it contains. As illustrated in Fig. 5, apples
f , g, and h exhibit relatively complete and rich characteristic
information of apples, making them easily detectable with a
high confidence. While apples a and c are heavily obscured
by leaves, resulting in low confidence scores for all of them.
The semantic information of these low-confidence objects,
after being cropped, is far less important than the other
objects, and they should not occupy too much power during
wireless transmission. In summary, the Conf-SemCom method
can ensure that more important information is successfully
transmitted to users.

Specifically, we prioritize sorting based on the confidence
ci of each object i and allocate more transmission power with
a higher priority weight wi. The definition of wi is as follows:

wi = ci
η, (12)

we use the variable η to adjust the relative difference in
power allocation between different semantic information. The
proposed Conf-SemCom is summarized in Algorithm 1 with
the corresponding pseudo code.

D. Diffusion-Based Resource Allocation

Diffusion model: The diffusion model has emerged as a
new state-of-the-art deep generative model [45]. The funda-
mental concept of the diffusion model entails systematically
perturbing the distribution of data during the forward diffusion
process by introducing Gaussian noise. Subsequently, the data
distribution is recovered through the reverse diffusion process,
which can be viewed as a denoising procedure. Specifically,
within the forward diffusion process, by iteratively adding
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Fig. 5. The results of apple detection comprise anchor boxes and correspond-
ing confidence values for each object, apples a to f are sorted in ascending
order of confidence scores. Furthermore, the cropped images are resized to
the same height for ease of viewing.

Algorithm 1 Resource allocation in Conf-SemCom
Input: Captured image X on a UAV
Output: Users receive semantic information x of the image
X

1: procedure UAV-SEND(x)
2: YOLOv7-HS detects apple images x1,x2,. . . ,xi,. . . ,xU

and their confidence c1,c2,. . . ,ci,. . . ,cU
3: Calculate the priority weight wi of xi by confidence

ci according to (12)
4: for i = 1 to U do
5: Allocate transmission power to xi according to

their priority weight wi using PA [27]
6: end for
7: The UAV sends semantic information x to users
8: end procedure

Gaussian noise T times to any initial sample x0, we can obtain
x1,x2, ...,xT . As T approaches infinity, the original features
of sample x0 completely vanish and become pure Gaussian
noise. This process can be represented as follows:

q (x1, ...,xT | x0) =

T∏
t=1

q (xt | xt−1) , (13)

q (xt | xt−1) := N
(
xt;
√

1− βtxt−1, βtI
)
, (14)

where, βt is a parameter that controls the progress of noise.
From (14), it can be inferred that given the sample xt−1,
the sample xt at time t follows a Gaussian distribution
with a mean of

√
1− βtxt−1 and a variance of βtI. The

parameters under this condition only depend on the xt−1 at
the previous time step. Therefore, the diffusion process is a
Markov process.

When βt is sufficiently small, the reverse diffusion process
q (xt−1 | xt,x0) is the posterior probability distribution of the
forward diffusion process q (xt | xt−1). In order to achieve
incremental sampling from Gaussian noise xT to obtain real

samples, it is necessary for the generative model pθ (x0:T ) to
learn sufficiently good parameters θ from the training samples.
This process can be represented as follows:

pθ (x0:T ) = p (xT )

T∏
t=1

pθ (xt−1 | xt) , (15)

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) , (16)

where, p (xT )=N (xT ; 0, I). Finally, the reverse diffu-
sion process can be achieved by utilizing a well-trained
pθ (xt−1 | xt) to approximate q (xt−1 | xt,x0).

AI-Generated Power Allocation Scheme: Motivated by
diffusion model-based AI-generated contract [46], we propose
an AI-generated power allocation scheme. In Deep Rein-
forcement Learning (DRL), the intelligent agent learns the
optimal policy through interaction with the environment to
maximize cumulative rewards. As shown in Fig. 6, the AI-
generated algorithm is capable of addressing the challenges
posed by high-dimensional state spaces and complex action
spaces. Compared to the aforementioned two methods, i.e.,
Avg-SemCom and Conf-SemCom, this method exhibits supe-
rior performance in generating resource allocation schemes.
Specifically, we represent the environment using the vector
e, which encompasses various factors such as the wireless
channel model, the transmission power P , and the number
of objects U involved in the semantic communication. In this
given environment, our objective is to maximize the expected
cumulative reward across a series of time steps, aiming to
determine the transmission power weights wi for each object.

We first construct a generative model πθ (w | e) that can
map the environmental state e. The reverse process of the
conditional diffusion model can be represented as follows:

πθ (w | e) = pθ
(
w0:N | e

)
= N

(
wN ; 0, I

) N∏
i=1

pθ
(
wj−1 | wj, e

)
,

(17)

where, pθ
(
wj−1 | wj, e

)
can be modeled as a Gaussian

distribution N
(
wj−1 ;µθ

(
wj , e, j

)
,Σθ

(
wj , e, j

))
. Accord-

ing to Denoising Diffusion Probabilistic Models (DDPM)
[47], the covariance matrix Σθ

(
wj , e, j

)
of this Gaussian

distribution is βjI, and the mean µθ

(
wj , e, j

)
can be rep-

resented as 1√
αj

(
wj − βj√

1−ᾱj
εθ
(
wj , e, j

))
. Initially, we

sample wN ∼ N (0, I), and then from the reverse diffusion
chain parameterized by θ as:

wj−1|wj =
1
√
αj

(
wj − βj√

1− ᾱj

εθ
(
wj , e, j

))
+
√

βjε.

(18)
From (18), as can be seen that the result is only related to wj

and the added noise ε. Therefore, the training of the denoising
process πθ can be achieved by training εθ. Subsequently, we
use the quality network Qv to train the εθ, which represents the
expected cumulative reward that an agent takes an allocation
scheme in the current state and executes accordingly. The
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Fig. 6. The design principles of diffusion model. The diffusion model performs multi-step denoising on noise and generates an optimal allocation scheme.

objective function that needs to be optimized becomes:

π = argmin
πθ

L(θ) = −Ew0∼πθ

[
Qv

(
e,w0

)]
. (19)

Utilizing the double Q-learning method [48], the network Qv

is learned by minimizing the Bellman operator. Consequently,
we construct two networks, specifically Qv1 and Qv2 , along
with corresponding target networks Qv

′
1
, Qv

′
2
, and πθ′ . The

optimization of v1 and v2 is achieved by minimizing the
objective

Ew0
t+1∼πθ′


∥∥∥∥∥∥
(
r (e,wt) + γ min

i=1,2
Qv′

i

(
e,w0

t+1

))
−Qvi (e,wt)

∥∥∥∥∥∥
2
 .

(20)
In DRL, we set the training parameters: batch size Nb,
discount factor γ, diffusion step N , soft target update pa-
rameter τ , and exploration noise ϵ. The loss function can be
represented as

L=
1

Nb

∑
j

(
rj + γQ

′

v′

(
ej ,w

′o

t

)
−Qv (ej ,wj)

)2
. (21)

Then, we can obtain the optimal allocation scheme based on
the wireless communication environment. The detail of the
AI-generated scheme is shown in Algorithm 2.

V. NUMERICAL RESULTS

This section primarily presents the experimental settings,
materials, and results in this study. Initially, we evaluate the
effectiveness of the improvements made to the object detector
YOLOv7-X and compare its performance with other state-of-
the-art models. Subsequently, we assess the performance of
the proposed YOLO-based semantic communication system,
verify the cost savings of semantic communication, and ex-
amine the impact of two proposed power allocation schemes
on the transmission quality for critical information.

A. Environment Setup

The experimental platform is built on a generic Ubuntu
20.04 system with 2 Intel(R) Xeon(R) Silver 4110 CPUs
and GeForce RTX 3090 GPU. The parameters of the object
detection model training process used are shown in TABLE I.
The MinneApple dataset [49] is the apple image dataset used
in this experiment. It is a publicly available dataset utilized
for apple detection and segmentation, containing images of
multiple apple varieties at different stages of growth, with
a large number of densely packed small apples. The Min-
neApple dataset contains a total of 670 labeled images and
331 unlabeled images. Fig. 7 shows example images from the
MinneApple dataset.

TABLE I
OBJECT DETECTION MODELS TRAINING PARAMETERS

Parameter Value Parameter Value
Learning Rate 0.01 Epochs 300

Batch Size 16 Momentum 0.937
Image Size 640×640 Weight Decay 0.0005

Fig. 7. A partial overview of MinneApple dataset.

We use the Fisher-Snedecor F channel model [27] in
wireless semantic communication to analyze the performance
of our model. The small-scale fading between the UAV and
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Algorithm 2 Diffusion Model-based AI-Generated Scheme.
Training:
1: Initial:
2: Initialize replay buffer R and the weights of models,

i.e., θ, θ
′
, v, v

′

3: for Episode = 1 to Max episode do
4: Initialize a random process N
5: for Step = 1 to Max step do
6: Observe the existing environment et
7: According to (18), set wN

t as Gaussian noise and
generate allocate scheme w0

t by denoising wN
t using εθ

8: Combine w0
t with the exploration noise ϵ

9: Execute scheme w0
t and observe reward score

according to (1)
10: Save the record (et, w0

t , τt) in R
11: Randomly sample Nb records (ej , wj , τj) from R

as a minibatch
12: Minimize the loss to update Qv according to (21)
13: Update εθ by taking gradient descent step on
14: ∇θεθ ≈ 1

Nb

∑
j ∇w0Qv

(
e,w0

)
|e=ej∇θεθ|ej

15: θ′ ← τθ + (1− τ)θ′

16: v′ ← τv + (1− τ)v′

17: end for
18: end for
19: return εθ

Inference:
1: Input e
2: According to (18), denoise Gaussian noise using εθ to

generate the optimal allocation scheme w0

3: return The optimal resource allocate scheme w0

users is represented by the Fisher-Snedecor F fading distri-
bution, while small-scale variations follow the Nakagami−m
distribution and shadowing follows the inverse Nakagami−m
distribution [27]. We set the fading parameter mf = 6, the
shadowing parameter ms = 6 and the transmit power P =
3000 W by default. In addition, the parameters of the resource
allocation scheme generated by the AI-generated algorithm
during the training process are shown in TABLE II.

TABLE II
DIFFUSION MODEL-BASED AI-GENERATED ALGORITHM

TRAINING PARAMETERS

Parameter Value
Diffusion Step N 50

Batch Size Nb 512
Discount Factor γ 0.95

Soft Target Update Parameter τ 0.005
Exploration Noise ϵ 0.05

The Learning Rate of Network εθ 10−5

The Learning Rate of Network Qv 10−4

B. Results and Analysis

Results of ablation experiment. To evaluate the effective-
ness of the ELAN-H and SimAM attention modules, we utilize

the amount of parameters and computational complexity, i.e.,
Floating Point Operations (FLOPs), as well as AP@0.5 and
AP@0.5:0.95 as indicators to measure the performance of the
models. Where AP@0.5 and AP@0.5:0.95 are commonly-
used evaluation standards in object detection, with higher
values indicating better model performance. From the results
in Table III, the utilization of the ELAN-H module leads
to 1.3% and 1.7% increases in AP@0.5 and AP@0.5:0.95,
respectively, while reducing the amount of parameters by 24%
and FLOPs by 19%. The incorporation of the SimAM attention
module enhances the value of AP@0.5 by 0.8%, with no
changes to the amount of parameters and FLOPs.

Comparison with other state-of-the-art object detec-
tors. We conduct a performance comparison of our enhanced
YOLOv7-X model with other advanced object detection mod-
els. In addition to the comparison items presented in Table
III, we also compare the detection speed. As shown in Table
IV, our proposed model achieves the best performance in
terms of AP@0.5 compared to other models. Although the
performance difference between our proposed model and other
advanced YOLO series models is not significant, our model
greatly reduces the amount of parameters and FLOPs while
achieving the fastest detection speed. However, Faster R-CNN,
RetinaNet, and FCOS models, although having smaller param-
eter size, perform poorly on the MinneApple dataset, which
contains many small objects, and their detection performance
fails to meet the requirements of our proposed scenarios.

The effects of reducing communication overhead. We
use 331 unannotated test images from the MinneApple dataset
as the images to be sent by the UAV. Fig. 8 illustrates
a comparison between the data size of images transmitted
through conventional communication methods and the data
size resulting from semantic communication after the imple-
mentation of semantic feature extraction. The aggregate size
of the original images amounts to 595.2MB. However, follow-
ing semantic feature extraction, the volume of data required
for transmission by edge devices is considerably reduced to
55.4MB, encompassing 54.8MB of image format data and
0.6MB of text format data. This reduction corresponds to a
91% decrease in communication costs, thereby substantially
minimizing power consumption during transmission.

Fig. 8. Comparison of transferred bytes for each image in the two commu-
nication methods.

The effect of η on Conf-SemCom. Given that the textual
data required for transmission by the UAV is considerably
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TABLE III
RESULTS OF ABLATION EXPERIMENT.

Model Parameters FLOPs AP@0.5 AP@0.5:0.95
YOLOv7-X 70.7M 188.0G 87.8% 43.7%

YOLOv7-X+ELAN-H 53.5M 152.6G 89.1% 45.4%
YOLOv7-X+ELAN-H+SimAM 53.5M 152.6G 89.8% 45.4%

TABLE IV
COMPARISON OF STATE-OF-THE-ART OBJECT DETECTORS.

Model Parameters FLOPs AP@0.5 AP@0.5:0.95 FPS
Faster R-CNN [50] 41.7M 59.4G 74.1% 33.1% 34

RetinaNet [51] 56.9M 74.4G 62.4% 24.8% 32
FCOS [52] 51.2M 66.3G 66.6% 27.8% 25

Scaled-YOLOv4-p5 [53] 70.2M 165.1G 88.3% 45.9% 22
YOLOX-X [39] 104.5M 312.0G 88.4% 47.0% 27

YOLOv5-X 86.2M 203.8G 87.5% 44.7% 32
YOLOR-CSP-X [54]] 96.4M 225.5G 81.3% 42.0% 22

PPYOLOE-X [55] 95.3M 204.9G 88.6% 45.4% 19
Ours 53.5M 152.6G 89.8% 45.4% 34

smaller than image data, we focus solely on the impact of
wireless transmission environments on the semantic informa-
tion transfer of image formats. Taking Fig. 5 as an example, the
UAV first detects that the image contains 30 objects and then
allocates power for transmission according to the confidence
of each object. We first show the effectiveness of the proposed
Conf-SemCom method. Additionally, to investigate the impact
of variable η on the transmission performance, we increase
η from 0.25 to 1.5 and the transmission distance from 10m
to 30m. Each experiment is repeated 100 times, and the
average results are shown. The curves of transmission quality
values (i.e., MIST scores) is shown in Fig. 9. It can be
observed that due to allocating more resources to important
information, Conf-SmeCom outperforms the Avg-SemCom
method in most cases, with its effectiveness becoming more
evident as the transmission distance increases. Furthermore,
the optimal value of variable η varies across different trans-
mission distances. At transmission distances of 10m, 20m, and
30m, the highest MIST scores are achieved when η equals
0.5, 0.75, and 1, respectively. This indicates that appropriately
increasing the value of variable η as the transmission distance
increases, while keeping the total power P unchanged, allows
for a better enhancement of overall communication quality
by increasing the transmission power pi for more significant
objects i.

The effects of power allocation. We investigate the impact
of two power allocation methods, i.e., Avg-SemCom and Conf-
SemCom, on the transmission quality of images with different
levels of confidence, over different transmission distances (i.e.,
10m, 20m, and 30m). As shown in Fig. 10, the horizontal
axis represents the 30 detected images, sorted in ascending
order of confidence levels, and the vertical axis represents the
Bit Error Rate (BER) values derived from the channel model
according to the allocated power. It is evident that, as the
distance increases, the image transmission quality declines for
both communication methods. However, Conf-SemCom opts

(a) Transmission Distance D = 10m.

(b) Transmission Distance D = 20m.

(c) Transmission Distance D = 30m.

Fig. 9. The curves of transmission quality scores with different weight
adjustment variables η and transmission distance D.
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to allocate more power to semantically important information,
resulting in reduced error rates for crucial semantic informa-
tion even under poor channel conditions.

Fig. 10. Bit error rate of images at different transmission distances under two
transmission methods.

To facilitate a comprehensive comparison between the two
power allocation methods, Fig. 11 illustrates the transmission
performance of select images at various communication dis-
tances. We use SSIM to evaluate the transmission quality of
each object. From the Fig. 11, the transmitted image quality
for both methods degrades significantly as the transmission
distance increases. Moreover, due to the uniformed distribution
of transmission power, the SSIM values transmitted by Avg-
SemCom for each image exhibit a relatively uniform and
irregular pattern, resulting in certain critical images possessing
inferior transmission quality compared to original images. For
instance, apples a and c are heavily occluded and contain very
little usable information. The significance of semantic features
for these images is less than that for other images. However,
their transmission quality surpasses that of other images, which
is unreasonable. In contrast, Conf-SemCom allocates increased
power to salient images, enabling the high-quality transmission
of these images even in poor channel conditions.

The effects of AI-Generated scheme. We compare the
diffusion model-based AI-generated scheme with two other
transmission power allocation methods for transmitting se-
mantic information at the transmission distance D = 20 m
and the transmission power P = 4 kW. As illustrated in
Fig. 12, the diffusion model-based AI-generated algorithm
exhibits rapid training speed during the optimization of power
allocation schemes, surpassing the confidence-based allocation
scheme at approximately 500 iterations. The superiority of the
AI-generated approach primarily stems from the exploration
conducted through diffusion method, which enhances the
flexibility of strategies and prevents the model from getting
trapped in suboptimal solutions. Furthermore, it is evident
that the Avg-SemCom method significantly underperforms in
terms of the MIST score compared to the other two schemes,
indicating the necessity of considering the importance of
semantic information during the communication process.

VI. CONCLUSION

In this paper, we have proposed a YOLO-based semantic
communication framework for developing a virtual apple

orchard case, focusing on optimizing semantic information
transmission and resource allocation for images collected by
edge devices. Initially, we have enhanced the performance
of the object detector YOLOv7-X on a real apple dataset
and have employed the optimized object detector to extract
semantic information from images captured by edge devices,
aiming to reduce transmission costs. Furthermore, to ensure
the high-quality transmission of essential semantic informa-
tion, we have allocated resource based on the significance
of their semantic content. Specifically, we have allocated the
transmission power of semantic information based on the
confidence generated by the object detection algorithm and the
scheme generated by the diffusion model-based AI-generated
algorithm, respectively. Numerical results have demonstrated
that the proposed framework and strategy have considerably
reduced communication costs and have markedly improved the
transmission quality of important information during commu-
nication.
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