
1

MP-FedCL: Multiprototype Federated Contrastive
Learning for Edge Intelligence

Yu Qiao, Md. Shirajum Munir, Member, IEEE, Apurba Adhikary, Huy Q. Le, Avi Deb Raha,
Chaoning Zhang, Member, IEEE, and Choong Seon Hong, Senior, IEEE

Abstract—Federated learning-assisted edge intelligence enables
privacy protection in modern intelligent services. However, not
independent and identically distributed (non-IID) distribution
among edge clients can impair the local model performance.
The existing single prototype-based strategy represents a class by
using the mean of the feature space. However, feature spaces are
usually not clustered, and a single prototype may not represent
a class well. Motivated by this, this paper proposes a multi-
prototype federated contrastive learning approach (MP-FedCL)
which demonstrates the effectiveness of using a multi-prototype
strategy over a single-prototype under non-IID settings, including
both label and feature skewness. Specifically, a multi-prototype
computation strategy based on k-means is first proposed to
capture different embedding representations for each class space,
using multiple prototypes (k centroids) to represent a class in the
embedding space. In each global round, the computed multiple
prototypes and their respective model parameters are sent to the
edge server for aggregation into a global prototype pool, which is
then sent back to all clients to guide their local training. Finally,
local training for each client minimizes their own supervised
learning tasks and learns from shared prototypes in the global
prototype pool through supervised contrastive learning, which
encourages them to learn knowledge related to their own class
from others and reduces the absorption of unrelated knowledge
in each global iteration. Experimental results on MNIST, Digit-
5, Office-10, and DomainNet show that our method outperforms
multiple baselines, with an average test accuracy improvement
of about 4.6% and 10.4% under feature and label non-IID
distributions, respectively.

Index Terms—Federated learning, edge intelligence, contrastive
learning, multi-prototype, global prototype pool, label and feature
non-IID, communication efficiency.

I. INTRODUCTION

INCREASINGLY, intelligence devices in distributed net-
works are showing explosive growth, which generates a

huge amount of raw data that needs to be processed [1].
Because of the challenges of limitation in network bandwidth
or the requirements for transmission delay, the traditional
cloud computing paradigm that uploads such big data to a

Yu Qiao and Chaoning Zhang are with the Department of Artificial Intelli-
gence, School of Computing, Kyung Hee University, Yongin-si 17104, Repub-
lic of Korea (email: qiaoyu@khu.ac.kr; chaoningzhang1990@gmail.com).

Md. Shirajum Munir is with the School of Cyber Security, Old Dominion
University, Suffolk, VA 23435, USA, and also with the Department of
Computer Science and Engineering, Kyung Hee University, Yongin-si 17104,
Republic of Korea (e-mail: munir@khu.ac.kr).

Apurba Adhikary, Huy Q. Le, Avi Deb Raha, and Choong Seon
Hong are with the Department of Computer Science and Engineering,
School of Computing, Kyung Hee University, Yongin-si 17104, Republic
of Korea (e-mail: apurba@khu.ac.kr; quanghuy69@khu.ac.kr; avi@khu.ac.kr;
cshong@khu.ac.kr).

cloud centre for data processing can no longer meet these
demands [2]. Thanks to the improvements in storage and
computing capabilities of edge intelligence devices, most
computing tasks can now be completed directly at the edge,
making the mobile edge computing (MEC) paradigm the next-
generation computing network [3]. Further, collecting data
from distributed devices poses risks and challenges due to
the sensitive nature of a large amount of data, as well as
regulations such as the general data protection regulation
(GDPR) [4] in Europe. Therefore, as edge devices’ storage
and computing power continue to grow, coupled with concerns
about privacy issues, it becomes more attractive to implement
edge intelligence in MEC systems in a distributed manner
[5]. To this end, federated learning (FL), as one application
of edge computing in distributed machine learning, is first
proposed by [6] to simultaneously achieve edge intelligence
and address privacy concerns. It trains a global model through
the cooperation between local clients and an edge server while
keeping the clients’ raw data within their respective local
environments. In general, the typical federated training process
consists of the following four steps [6]: (1) the server chooses
a certain network architecture such as convolutional neural
network (CNN) as the global model to be optimized and sends
it to local clients; (2) the clients update the received the model
parameters of the global model based on their local data; (3)
all clients send their updated model parameters back to the
edge server for aggregation; (4) the server averages all the
sent parameters as the new global model parameters for the
next global round, repeating these four steps until convergence.
In this fashion, FL’s ability to protect data confidentiality and
enable multiple parties to cooperatively train a model makes
it a highly promising technology for the future of network
intelligence [7].

Nonetheless, a main challenge in FL is that data distribution
among clients is usually not independent and identically dis-
tributed (non-IID), which can result in reduced effectiveness
of FL [8], [9]. To tackle the issue, existing research works
under non-IID scenarios can be mainly divided into two
categories in terms of optimization objectives, i.e., typical FL
[6], [10]–[12] and personalized FL [9], [13]–[16]. The former
objective is to develop a single shared global model that is
accurate and efficient, while also capable of adapting to the
unique characteristics of each client’s data. FedAvg [6] is the
first FL optimization algorithm to enable efficient training of
machine learning models on decentralized data. It achieves this
through collaborative training of a shared global model via
model parameter transmission among clients in each global

ar
X

iv
:2

30
4.

01
95

0v
2

 [
cs

.L
G

]
 1

1
O

ct
 2

02
3

2

round. FedLC [10] adopts a fine-grained calibration strategy
for clients’ cross-entropy loss to mitigate the bias caused by
label distribution skewness among clients in the global model.
However, training the global model directly with heteroge-
neous data from local clients can result in poor generalization
abilities to unseen data [17]. In contrast, the latter approach
focuses on optimizing local models individually for each client
rather than using a shared global model. This is typically
achieved by adding a regularization term to the local objective
of each client to guide their local training, which enables the
models to generalize well to new data. FedProx [9] proposes
to add a local regularization term in the local objective of each
client to correct the bias between local models and the global
model. PFedMe [13] proposes to add an additional term to
allow clients to update their local models in different directions
without deviating from a global reference point. FedPer [15]
proposes a strategy of adding a personalized layer to the base
layer and suggests updating only the base layer during the
federated training process. Afterwards, clients can update their
personalized layer based on their own local data. Additionally,
[18] explores a benchmark for non-IID settings, they divide
non-IID settings into five cases, such as label distribution skew,
feature distribution skew, quantity skew, etc. Further, as [18]
mentioned, some existing studies [9]–[11], [19] cover only one
non-IID case, which do not give sufficient evaluations to this
challenge. Therefore, to avoid the influence of biased global
models and to evaluate non-IID cases as comprehensively
as possible, we focus on personalized FL by optimizing the
local objective of each local client under the label and feature
distribution skewness.

Inspired by prototypical networks [22], which adopts a
single prototype to represent each class by calculating the
mean of the class’s embedding space. This prototype can serve
as an important information carrier to boost the performance of
various learning domains, and has been successfully applied
in meta-learning [23], multi-task learning [24], and transfer
learning [25]. There have been some existing works [19], [26]–
[28] introducing the concept of prototypes into FL. FedProto
[19] proposes to reduce communication overhead by only
exchanging prototypes between clients and the server, instead
of exchanging gradients or model parameters. FedPCL [27]
proposes to use multiple pre-trained models to extract the
features separately, and then they use a projection network
to fuse these extracted features in a personalized way while
keeping the shared representation compact for efficient com-
munication. These works adopt a single prototype to represent
each class and argue that directly averaging the representations
from heterogeneous data across clients can effectively capture
the embedding representations of each class.

However, in their approach, they represent each class with
a single prototype obtained by averaging over the same class
space for each client, which can be considered intuitively
incomplete and ambiguous [29]. For instance, consider the
class of dogs, which includes various breeds differing in size,
color, or appearance. Averaging all the dogs within the same
class may not adequately capture the diversity and distinctive
features present in different dog breeds. This limitation could
lead to a less expressive and less discriminative representa-

tion for each class, potentially impacting the overall model’s
performance in scenarios with intra-class variations. Here, we
consider a toy example as shown in Figure 1 to illustrate
this intuition. The figure showcases the embeddings in the
class space during local training (the upper two subfigures)
and federated training (the bottom two subfigures) under the
setting of data heterogeneity among clients. It becomes evident
from the visualization that there is considerable separation and
diversity across the embedding class space in both training
scenarios. In local training, each client refines the model
using its own data, leading to distinct representations of each
class. Similarly, in federated training, where multiple clients
collaboratively train the global model, the embedding space
still demonstrates significant variations and differentiation.
This observation highlights the non-trivial nature of using a
single prototype to sufficiently capture the entire embedding
space, whether during local or federated training.

Motivated by the above intuition, we introduce MP-FedCL,
a strategy that improves the classification performance of
FL in scenarios where there is skewness in the distribution
of labels and features. The proposed approach uses a con-
trastive learning scheme, which employs multiple prototypes
to represent each class, thereby learning a more differentiated
prototype representation in the embedding space for each
class. Here, we are inspired by some recent studies [29]–
[31], which use k-means to cluster features in their methods.
For instance, [30] employed k-means clustering to learn a
density representation within the embedding space. Moreover,
in recent studies by [29], [31], a method for calculating
multiple prototypes based on k-means clustering was pro-
posed and achieved good results in image classification tasks.
These findings highlight the effectiveness of using k-means
clustering to perform feature-based clustering. However, it
has not been validated in the FL setting, and our scheme
is the first new attempt to introduce the concept of multi-
prototype into FL. Specifically, our proposed strategy first
applies the k-means clustering algorithm to multiple prototypes
calculation, in which each client can calculate their own
multiple prototypes for each class. Note that considering the
ever-increasing computing capabilities of local clients [5],
[32], [33] and privacy issues caused by transferring raw data
features [34]–[36], we apply the k-means clustering on the
feature space on the local side. Due to the natural clustering
properties of k-means, the output (i.e. k centroids) of k-means
clustering algorithm can be viewed as the calculated multiple
prototypes for that class. These calculated prototypes from
various distributed clients are then sent to the edge server for
aggregation as a global prototype pool. The global prototype
pool is a combination of multiple prototypes from each client,
and it can be updated during training in each global round.
To regularize individual local training, we reformulate the
local objective of each client in a contrastive learning manner
by conducting any supervised learning task (e.g. a cross-
entropy loss) and a contrastive learning task. The goal of
the contrastive learning task is that prototypes in the global
prototype pool and local representations belonging to the
same class are pulled together while simultaneously pushing
apart those prototypes from different classes. Note that the k-

3

0
1
2
3
4
5
6
7
8
9

(a) Local training of client 1. (b) Local training of client 2.

(c) Federated training of client 1. (d) Federated training of client 2.

Fig. 1. A toy example: T-SNE [20] visualization of the embedding vectors of local clients. The sample distribution for each client follows the Dirichlet
distribution [21] with Dir(0.1). The upper two represent local training, which means no communication with other clients. The below two represent federated
training based on FedAvg.

means clustering algorithm is conducted on the local side, and
the prototype is a one-dimensional vector of low-dimensional
samples that are naturally small and privacy-preserving, which
does not incur excessive communication costs or raise privacy
concerns compared to the model parameters. To the best of
our knowledge, we are the first to present multi-prototype
learning in FL. The preliminary version of this work has
been published in [16] where we design a multi-prototype-
based federated training framework for model inference in the
last global iteration based on the typical federated training
process. The major differences between the current work and
[16] are the addition of the global prototype pool based on
a contrastive learning strategy, the modification of the global
iteration process, and the exploration of the feature distribution
skewness. Our main contributions to this paper are as follows:
• We introduce a k-means-based multi-prototype federated

contrastive learning (MP-FedCL) framework, designed
to capture both intra-class and inter-device information.
The former can be achieved through the multi-prototype
strategy, while the latter can be accomplished by the
global prototype pool for information exchange.

• We reformulate the loss function for each client to
perform both supervised learning and contrastive learning
tasks. This strategy can encourage each client to learn
their own supervised learning task, while also learning
from the global prototype pool.

• We demonstrate that our proposed strategy outperforms
several baselines on multiple benchmark datasets regard-
ing test accuracy and communication efficiency, with
improvements of about 4.6% and 10.4% under feature
and label skewness, respectively.

The remainder of this article is organized as follows. Related
work on federated learning and prototype learning is presented
in Section II. The system model and problem formulation

are provided in Section III. The strategy for multi-prototype
computation and aggregation, as well as the model inference,
are presented in Section IV. Experimental results are provided
in Section V. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

In this section, we first review the existing works to deal
with FL challenges in Section II-A, including the statisti-
cal and system heterogeneity, and communication efficiency.
Then, we briefly review some works that apply prototype
learning to FL in Section II-B, followed by a schematic
diagram of our proposed multi-prototype FL, which will be
explained in detail in the next section.

A. Federated Learning

One of the key challenges in FL is the distribution of
training data across multiple clients, which is usually statisti-
cally heterogeneous (also known as the non-IID issue). This
heterogeneity can limit the effectiveness and performance of
FL. Many existing works [37]–[42] are dedicated to improving
communication efficiency under the challenge of statistical
heterogeneity. Other works [43]–[47] are mainly from the per-
spective of system heterogeneity, dealing with communication
efficiency issues under the system heterogeneity.

To tackle the system heterogeneity, FedAT [43] introduces
an asynchronous layer in which clients are grouped according
to their system-specific capabilities to avoid the straggler
problem, thus reducing the total number of communication
rounds. Unlike typical federated training processes, which are
usually implemented with synchronous approaches and can
cause stragglers and heterogeneous latency, FedAsync [44]
combines asynchronous training with federated training to
tackle that issue. To solve the lag or dropout problems of
distributed edge devices during federated training, ASO-Fed

4

(a) Single prototype. (b) Multiple prototypes.

Fig. 2. A diagram illustrates two strategies for model inference: the single
prototype-based (left) and multi-prototype-based (right) approaches. In the
diagram, black solid circles represent prototypes, while white solid circles
represent query classes.

[45] presents an online federated learning strategy, in which
edge devices use continuous streaming local data for online
learning and an edge server aggregated model parameters from
clients in an asynchronous manner. Sageflow [46] proposes
a robust FL framework to cope with both stragglers and
adversaries problems. In this framework, clients are grouped
and weighted according to their staleness (i.e., arrival delay).
Then, entropy-based filtering and loss-weighted averaging are
applied within each group to defend against attacks from
malicious adversaries. Another asynchronous FL framework
in a wireless network environment is proposed in [47]. The
framework aims to adapt to environments with heterogeneous
edge devices, communication environments, and learning tasks
by considering possible delays in local training and uploading
local model parameters, as well as the freshness between re-
ceived models. However, most of these works do not consider
the statistical heterogeneity which is the major challenge in
FL.

To address the statistical heterogeneity, FedNova [37] sug-
gests that different clients can perform a different number of
local steps when updating their shared global model with their
local private data. SCAFFOLD [38] introduces two control
variables which contain the updated direction information of
the global model and local models to overcome the gradi-
ent difference and effectively alleviate client drift problems.
CMFL [39] designs a feedback mechanism that can reflect
the updated trend of the global model. Each client in the
system checks whether it is consistent with the update trend
of the global model before uploading its model updates to the
edge server, otherwise, it does not upload. This strategy of
uploading only information related to model improvement to
the server greatly reduces communication overhead. FedMMD
[40] employs a two-stream model to extract a more generalized
representation by minimizing the maximum mean difference
(MMD) loss, which is a measure of the distance between
two data distributions. This approach can accelerate the con-
vergence rate and reduce communication rounds. AFD [41]
proposes a dynamical sub-model parameters selection method,
in which clients can update their models using a sub-model
rather than the whole global model parameters. This sub-model
selection strategy is performed by maintaining an independent
activation score map for each client. At each round, the server

Client 1 Client 𝑁𝑁

…

Server

①

①

② ②

③
③

④

① global model sent to clients
② local model training
③ send back to the server
④ model averaging

Fig. 3. An overview of federated training framework. In the beginning of
each global round, the server first sends the global model to clients (step.1).
Each local client then performs local training based on its own training data
(step. 2). Next, after the local training is finished, each client send the updated
model parameters to the server for aggregation (step. 3). Finally, the model
parameters are averaged at the server (step. 4).

sends a different sub-model for selected clients, and then
clients update their respective score maps according to their
own local loss function. A similar approach is also considered
in Fed-Dropout [42], which adopts a lossy compression way
for server-to-client communication while allowing clients to
update their models using sub-models of the global model,
further reducing communication overhead. However, most of
these works do not consider the scenario where clients in FL
are under heterogeneous feature distribution.

B. Prototype Learning

Prototype learning is first proposed by prototype networks
[22] in few-shot learning. Its design idea is to use a single
prototype to represent one class, where the single prototype
is calculated by averaging the embedding vectors within the
same class space. Prototype learning has received significant
progress in various tasks such as image classification [48],
video processing [49], and natural language processing [50]
areas. In image classification tasks [48], a class is represented
as a single prototype by computing the mean of the feature
vectors of that class. In video processing [49], prototypes
are obtained by calculating the average feature over different
timestamps. In natural language processing tasks [50], tak-
ing the average of word embeddings can yield a prototype
representation for a sentence. Further, both few-shot learning
and FL are based on the scenario of training with a small
amount of data: the clients do not have enough data to train
their own models. Recently, there have been various successful
works using prototypes for federated optimization in computer
vision tasks. In FedProto [19], the authors propose to reduce
communication overhead by only exchanging prototypes be-
tween clients and the server instead of exchanging gradients
or model parameters. However, their work does not validate
in a more general heterogeneous environment setting such
as Dirichlet distribution [21]. An optimized prototype-based
FL is proposed in [51] by using margins of prototypical
representations learned from distributed heterogeneous data
to calculate the deviations of clients and applying these

5

deviations through an attention mechanism to boost model
performance. FedProc [26] introduces that global prototypes in
the server can be used as a guideline to correct clients’ training
in local updates, and they use a contrastive loss to pull each
class to be close to the corresponding global prototypes while
pushing away from other global prototypes. FedPCL [27]
proposes a strategy based on contrastive learning that uses
single prototype exchange instead of gradient communication
for efficient communication. MOON [52] is designed based on
model-level contrastive learning by comparing the representa-
tions between the global model and local models. However,
most of them focus on each client’s individual learning process
while disregarding the collaborative contributions from other
clients. Moreover, most of the above-mentioned works adopt
to represent the same class using a single prototype, which
may fail to capture discriminative embedding representations
by naively taking the mean of the feature space [53], [54].

Therefore, different from the single prototype learning
paradigm used in these works, we propose to use multiple
prototypes to represent each class and adopt multi-prototype-
based contrastive learning to capture intra-class differences
and inter-class similarities. Here, we briefly describe the core
part of the model inference process in the single-prototype-
based approach and our proposed multi-prototype-based ap-
proach, as shown in Figure 2. Taking the multi-prototype
strategy, as illustrated in the right subfigure of Figure 2, as
an example, the model inference stage involves two main
processes: distance calculation and decision-making. When a
query class is introduced to the network during inference, these
two processes are executed to determine the most appropriate
prototype for the query class. Firstly, the network calculates
distances between the new query class and the multiple
prototypes associated with each existing class in the class
space. These prototypes represent the diverse representations
learned from different clients during the FL process. Secondly,
the classification decision for the new query class is made
based on the shortest distance to any of the prototypes of
that specific class. The network assigns the new query class
to the class whose prototype exhibits the closest similarity in
the embedding space. Note that the multi-prototype concept
used in the model inference strategy is also used in our
contrastive learning-based model training process. However,
the training process differs from the multi-prototype-based
model inference process. During the contrastive learning-based
model training, the objective is to optimize the query to be
as close as possible to multiple prototypes belonging to the
same class space while simultaneously ensuring that it remains
far away from all other prototypes belonging to class spaces
different from its own. The contrastive learning technique
aims to enhance the discriminative power of the model by
encouraging similar representations for data points belonging
to the same class and pushing apart those from different
classes. This way, the model learns to create well-separated
and informative embeddings for each class, which in turn
is expected to benefit the subsequent inference process. The
details of the multi-prototype calculation and multi-prototype-
based model training and inference will be illustrated in the
following sections. Table I presents a summary of the notations

TABLE I
SUMMARY OF NOTATIONS.

Notation Description
Di Heterogeneous dataset of client i
xi Feature space of client i
yi Corresponding label in the feature space of client i
Di Size of dataset Di

ω Shared model parameters of global model
F(·) Shared global model
[C] Label space set
C Number of label space

pj(·) Probability of sample being classified as the j-th class
1(·) Indicator function
fi(·) Empirical risk of client i with one-hot encoded labels
Li(·) Local loss of client i
[N] Set of clients
N Number of clients
L(·) Global loss across all clients
η Learning rate

∇Li(•) Loss gradient of client i
LS Supervised learning loss
LR Regularization term
c A local representation of one client
Uj Aggregated global prototype set belonging to j-th class
ui One instance in global prototype set Uj

U Aggregated global prototype pool from all clients
fe(·) Feature extraction layers
fc(·) Decision-making layers
vi,j Embedding space of client i belong to class j
ui,j Output of clustering(vi,j)
|ui,j | Number of ui,j for class j of i-th client
K Number of clusters
Uj Averaged value of global prototype set Uj

Ni Number of instance belonging to Uj
• Inner (dot) product
τ Temperature hyperparameter

P (y) Set of labels distinct from y
|P (y)| Size of P (y)

p p ∈ P (y)
Ap Size of labels distinct from p
ŷ Predicted label

∥ • ∥ ℓ2-norm of a vector
E Number of local epoch
B Batch size
T Number of global communication rounds

E(·) Expectation
ζ ζ-Lipschitz
L1 L1-smooth
δ δ-local dissimilar
G Stochastic gradient of each client i is bounded by G
L2 L2-Lipschitz continuous

used in this manuscript.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the key elements behind
FL, including the system model in Section III-A and the local
training optimization algorithm for local training in Section
III-B. Then, our optimization problem is formulated in Section
III-C.

A. Federated Learning Model

The essence of the federated learning strategy is to train a
model through the collaboration of distributed clients based on
their local data, which serves the purpose of protecting data
privacy. The overview of the FL framework is shown in Figure
3. The training process can be summarized as follows:

6

Client i

ℒ𝑆𝑆

Feature
extractor

MLP

Decision-
making

Client j

…

cc

c

ccc…

…

…

ℒ𝑅𝑅

�𝑦𝑦 𝑦𝑦

ℒ𝑆𝑆�𝑦𝑦 𝑦𝑦

𝑣𝑣𝑖𝑖,𝑗𝑗

𝑣𝑣𝑖𝑖,𝑗𝑗
ℒ𝑅𝑅

𝒟𝒟𝑖𝑖

𝒟𝒟𝑗𝑗

Model InferenceModel Training
…

query

prototype
Encoder

Eq. 6

Eq.7

Eq. 8

FC

Fig. 4. An overview of the proposed multi-prototype based FL framework (here illustrated with K = 2 prototypes). In each global round, clients not only
transmit their model parameters but also the calculated multiple prototypes by k-means to the server for aggregation. The aggregated prototypes set (the
aggregated prototypes set is also called the global prototype pool) is then sent back to each client along with updated model parameters for the next global
iteration. Finally, the clients update their local models by minimizing the loss of typical supervised learning loss Ls and the distance between the global
prototype pool and local representations LR in a contrastive way, repeating the above process until convergence.

The typical process of federated learning is based on the
setting where each client i has a heterogeneous and privacy-
sensitive dataset, denoted by Di = (xi, yi), of size Di, where
xi and yi represent the feature space and corresponding label
of the i-th client, respectively. The goal is to coordinate the
collaboration between clients and the edge server to train a
shared model F(ω;xi) for each client. The empirical risk (e.g.,
cross-entropy loss) of the client i with one-hot encoded labels
can be defined as follows [26]:

fi(ω) = −
C∑

j=1

1y=j log pj(F(ω;xi); yi), (1)

where 1(·) is the indicator function, ω is the shared model
parameters of global model, C is the number of classes
belonging to label space [C] = {1, .., C}, and pj(F(ω;xi); yi)
denotes the probability of data sample (xi, yi) being classified
as the j-th class. In addition, the local training of each client
is to minimize the local loss Li as follows:

Li(ω) =
1

Di

∑
i∈Di

fi(ω). (2)

The global objective is to minimize the loss function across
heterogeneous clients as follows:

argmin
ω

L(ω) =
∑
i∈[N]

Di∑
i∈[N] Di

Li(ω), (3)

where [N] denotes the set of distributed clients with [N] =
{1, ..., N}.

B. SGD Optimization

As the first FL optimization algorithm, FedAvg requires
multiple global iterations during the training process. Most
subsequent works [10]–[15] follow this training framework,
including our work. In each global iteration process, each
selected client participates in training and performs local
stochastic gradient descent (SGD) to optimize its local ob-
jective:

ωt+1 = ωt − η∇Li(ωt), (4)

where η is the learning rate, ∇Li(•) is the loss gradient of
client i, and ωt is the updated result of the global model in
the previous round.

C. Problem Formulation

The system model is shown in Figure 4, and the illustration
of the transmission of model parameters between clients and
the edge server is omitted for simplicity. In each global
iteration, the server needs to not only receive model parameters
from clients and perform model parameters averaging, but also
receive prototype knowledge from clients and aggregate them
(the strategy for prototype aggregation will be explained in

7

Section IV-B). Finally, the aggregated model parameters and
global prototype pool are returned to local clients participating
in the training, while the next iteration begins until conver-
gence. In summary, during the model training phase, clients
i and j with heterogeneous datasets Di and Dj , respectively,
need to simultaneously transmit their own model parameters
and their own prototypes based on the features extracted from
the feature extraction layers (a.k.a the encoder) to be used in
the next global round. Note that the prototypes are the output
after clustering, rather than directly averaging the output of the
feature extractor layers. The MLP includes the fully connected
(FC) layers and a decision-making layer (a.k.a the classifier).
In order to extract better features, the former can be an ordi-
nary convolutional layer or a pre-trained network, and the latter
is used to map the output of the former from one latent space to
another for further representation learning. Each client aims to
minimize the typical supervised learning loss LS , while also
minimizing the distance between their local representations
and the global prototype pool for samples belonging to the
same class space, and maximizing the distance for samples
not belonging to the same class space. This can be denoted as
LR. During the model inference stage, the clients can use their
individual updated local representations to compare with the
updated global prototype pool for model inference. We have
marked these entities in the system model and given the basic
prototype calculation process.

Specifically, motivated by prototype learning in FL and the
observation in their works [53], [54], the goal of this paper
is first to learn multi-prototype representations for each class
space through the federated training process, and then perform
the final model inference based on these prototypes. Formally,

argmin
j
∥c− ui∥, ui ∈ Uj , j ∈ [C], (5)

where c is a local representation of one client, Uj is defined
to aggregate the multiple prototypes for each client belonging
to j-th class, and ui denotes one instance in corresponding
aggregated global prototype set Uj . Finally, the prediction
can be made by measuring the distance between one local
representation c and each aggregated prototypes set Uj and
then choosing the j-th label with the smallest distance as the
final prediction.

IV. MULTI-PROTOTYPE FEDERATED LEARNING

In this section, we design an MP-FedCL algorithm to im-
prove the performance of federated training. In Section IV-A,
we give the method for calculating multiple prototypes, which
is used to compute multiple prototypes in the embedding space
for each class based on k-means clustering, thus obtaining a
relatively full representation for each class. Then, a strategy for
multiple prototypes aggregation is proposed in Section IV-B to
collect all class-related knowledge shared by all clients. The
objective function of the proposed algorithm is presented in
Section IV-C. During the model inference stage, predictions
are made based on the distance from the prototypes rather than
through a classifier in Section IV-D.

TABLE II
COMPARISON BETWEEN MODEL PARAMETERS AND CORRESPONDING

MULTI-PROTOTYPE ON VARIOUS DATASETS.

/ Model Parameters Multi-Prototype Ratio
MNIST 798,474 5,120 ≈ 0.006
Digit-5 133,898 10,240 ≈ 0.076

Office-10 133,898 10,240 ≈ 0.076
DomainNet 133,898 7,680 ≈ 0.057

A. Multi-Prototype Calculation
The feature extraction layer and the decision-making layer

in the MLP are usually two core parts of the deep learning
model. The former is mainly used to extract feature infor-
mation from the input space, and the latter makes the final
prediction decision based on the learned feature information.
For any client i, we denote its feature extraction layers and the
MLP as fe(ωe;xi) and fc(ωc;xi), then the embedding space
of its j-th class instance can be calculated as:

vi,j = {fe(ωe;xi) | xi ∈ Di,j}, (6)

where Di,j is a set of Di that belongs to the j-th class, and
vi,j is the embedding space of j-th class.

In order to calculate multiple prototypes for each class,
we iteratively cluster vi,j into k clusters based on k-means
algorithm, which is an effective unsupervised algorithm for
clustering and has been proven to converge to at least a local
optimum after a small number of iterations [55]. Based on
the standard iteration of k-means, similarly we also randomly
select the k centroids in the first iteration. We then calculate
the centroid to which each sample in Di,j should belong to,
and repeat this process until the centroid does not change or
changes only slightly. The multiple prototypes used in our
method are defined as centroids obtained through k-means
clustering. Specifically, we apply k-means clustering to the
embeddings of each class, and each resulting centroid is
considered a prototype for that class in the embedding space.
Thus, multiple prototypes of class j can be defined as follows:

uk
i,j = Clustering(vi,j), k ∈ {1, ...,K}, (7)

where K is the number of clusters, the output of Clustering(·)
for the i-th client of the j-th class is denoted as ui,j where
ui,j = {uk

i,j | k ∈ {1, ...,K}}. Note that because our
clustering algorithm is executed on the client side, we need
to communicate prototypes with the server, but compared to
the complete model parameters, the additional communication
cost of prototype communication is very small [19], [56],
[57]. The model parameters and the corresponding multi-
prototypes, and their ratios are shown in the table II. The Ratio
in the Table II is defined as the proportion of multi-prototype
to corresponding model parameters, and its result indicates
that multi-prototype communication accounts for only a small
fraction (less than 0.1) of model parameters. Note that the
model architecture and the selection of K for multi-prototype
are discussed in detail in Section V.

B. Multi-Prototype Aggregation
The goal of multi-prototype learning is to reduce the dis-

tance of embedding space between local prototypes and the

8

corresponding prototypes from the global prototype pool. After
receiving the clustering results as computed in Eq. 7, the
server groups these prototypes (also denotes k centroids) by
class as a global prototype pool. This pool is denoted as U =
{U1,U2,...,UC}, where each group contains prototypes from
the same class but from different clients. Formally,

Uj = {uk
i,j | i ∈ [N]}, k ∈ {1, ...,K}, (8)

where Uj denotes the set of clients that own multiple proto-
types of class j. Through this aggregation mechanism, the
prototypes are grouped according to their respective class
labels. The resulting global pool summarizes all class-related
knowledge shared by all clients, allowing us to effectively
utilize information from various clients while maintaining
class-wise separation.

After the aggregation process, the server sends back the
global prototype pool to local clients, which is used to guide
their local training in the next global round. However, some
clients’ classes may be missing [26], [58], [59] or underrepre-
sented (i.e., classes with very few samples) [60]–[62]. In such
cases, the global prototype pool can be utilized to fill in the
missing classes and ensure that prototypes for all classes have
the same number of prototypes for the learning process. Here,
inspired by the single prototype padding approach used in
various tasks [27], [63], [64], we introduce a multi-prototype-
based padding procedure to achieve a balanced representation
of all class prototypes per client. By introducing this prototype
padding process, each client is guaranteed to have a consistent
and balanced set of prototypes for all classes, regardless of
their respective data distribution. Specifically, for the averaging
process, the prototypes from different clients are matched
based on their respective class labels, which means that
prototypes belonging to the same class but originating from
different clients are grouped together. Next, we perform the
averaging of prototypes by summing up all the prototypes
belonging to a particular group and then dividing the sum
by the total number of prototypes in that group. Formally,

U j =
1

Ni

Ni∑
i=1

ui, ui ∈ Uj , (9)

where U j represents the averaged value belonging to global
prototype set Uj , Ni denotes the number of instance belonging
to Uj .

Subsequently, we implement the prototype padding proce-
dure to ensure that each client has a consistent and balanced
set of K prototypes for every class, which can be formulated
as follows:

∀k ∈ {1, ...,K}, uk
i,j =

{
U j , if |ui,j | < K

uk
i,j , if |ui,j | = K

, (10)

where |ui,j | is the number of ui,j for class j of i-th client.
We traverse all K possible prototypes uk

i,j for class j of the
i-th client. For each k, we check the number of prototypes
|ui,j | currently available for class j of the i-th client. If |ui,j |
is less than K, we apply prototype padding by replacing uk

i,j

with the averaged prototype U j . This ensures that each client
has K prototypes for each class, even in cases where some

prototypes might be missing or underrepresented. On the other
hand, if |ui,j | equals K, it indicates that the client already
has the required number of prototypes for class j, and no
padding is needed. In this case, we keep the k-th prototype
uk
i,j unchanged.

C. Objective Function

As shown in Figure 4, our proposed network architecture
consists of two loss functions. The first one, LS , is the loss
of typical supervised learning tasks, which can be computed
using Eq. 3. The second one, LR, is our proposed supervised
contrastive loss term. After receiving the global prototype pool
from the server, the objective of local clients, LR, is to align
their local representations with the corresponding prototype
in the global prototype pool, while simultaneously pushing
away dissimilar prototypes from themselves. As such, each
client can benefit from other clients. We define the supervised
contrastive loss [65] as:

LR =
∑
i∈Di

−1

KN

N∑
i=1

K∑
k=1

1

|P (y)|
∑

p∈P (y)

log
exp(vi • uk

p/τ)∑
a∈[C] exp(vi • uk

a/τ)
,

(11)
where the • symbol denotes the inner (dot) product, τ is a
scalar temperature hyperparameter (the smaller the tempera-
ture coefficient, the more focused it is on difficult samples.),
vi represents the local embedding of client i, P (y) is the set
of labels distinct from y and the size of P (y) is |P (y)|, and k
denotes one element in a certain global prototype set and the
size of one set is K.

Therefore, the global objective for the network can be
formulated as:

L(ωi | Di) = LS(F(ωi;xi); yi) + LR. (12)

A more detailed model training pseudocode for MP-FedCL
is shown in Algorithm 1. The inputs of this algorithm are
heterogeneous datasets and some training parameters. After
the network is initialized, the federated training process is
performed from line 3 to line 20. The multiple prototypes
calculation and aggregation are dealt with in lines 19 and 7,
respectively. In each global round, the local representations for
each client are calculated in line 13. The supervised learning
task for them is computed in line 14, and the regularization
term is calculated in line 15. After the stochastic gradient
descent in the local clients has been performed in line 16,
each client then sends their own updated model parameters
and calculated multiple prototypes in line 20 back to the
server for model parameters aggregation in line 9 and multiple
prototypes aggregation in line 7, repeating the above iteration
process for T rounds until convergence.

D. Model Inference

Based on the findings of the survey in [66], it is revealed
that the lower test accuracy of models in FL environments
can be attributed primarily to the later layers of the model.
Specifically, the classifier’s predictions have the greatest im-
pact on the model’s accuracy. As a result of this finding, we
propose an innovative approach that utilizes the output before
the decision-making layer in the model for making predictions

9

Algorithm 1 MP-FedCL for federated training
Input:

Dataset Di(xi, yi) of each client, learning rate η,
Number of local clients N , number of local epoch E,
Number of global communication rounds T ,
Number of clusters k.

Edge server executes:
1: Initialize ω0

2: Initialize global prototype set U for all classes
3: for t = 1, 2, ..., T do
4: for i = 0, 1,..., N in parallel do
5: Send global model ωt and global prototype set U to

client i
6: ωt

i , u
k
i,j ← LocalUpdate(ωt

i ,U)
7: U← {{uk

i,j | i ∈ [N], j ∈ [C]}, k ∈ {1, ...,K}}
8: end for
9: ωt+1 ←

∑N
i=1

|Di|
|D| ω

t
i

10: end for
LocalUpdate(ωt

i , U):
11: for each local epoch do
12: for each batch (xi; yi) of Di do
13: vi,j ← fei(ω

t
ei ;xi)

14: LS ← CrossEntropyLoss(F(ωi;xi); yi)).
15: Calculate LR according to Eq. 11
16: ωt

i ← ωt
i − η∇(LS + LR)

17: end for
18: end for
19: uk

i,j ← Clustering(vi,j)
20: return ωt

i , u
k
i,j

Algorithm 2 MP-FedCL for model inference
Input: Test dataset of each client
1: for each sample i in testing dataset do
2: for each class j in U do
3: for each instance k in class j do
4: Compute the ℓ2 distance between fe(ωe;xi)

and each instance in Uj

5: end for
6: Choose the smallest distance as a candidate-predicted

label for class j according to Eq. 13
7: end for
8: Collect all candidate-predicted labels
9: Make final predictions based on the smallest candidate

prediction label
10: end for

instead of relying solely on the classifier. This new approach
can be expressed mathematically as a reformulation of Eq. 5:

ŷ = argmin
j
∥fe(ωe;x)− ui∥, ui ∈ Uj (13)

where ŷ is the predicted label, fe(ωe;x) is the output of
feature extraction layers (this symbol is originally denoted
as c in Eq. 5, i.e, the output of feature extraction layers is
represented as the local representation), and ∥ • ∥ denotes the
ℓ2-norm of a vector. The prediction can be made by measuring

the ℓ2 distance between the local representation fe(ωe;x)
and the aggregated prototypes set Uj of j-th class. A more
detailed model inference pseudocode for MP-FedCL is shown
in Algorithm 2. For each client, each sample in its test dataset
first calculates the distance to each instance of an aggregated
global prototype set in line 4 and then chooses the smallest
distance as a candidate-predicted label in line 6. Later, all
the candidate-predicted labels are collected in line 8. Finally,
the prediction can be made based on the smallest candidate-
predicted label in line 9. We also provide a convergence
analysis of MP-FedCL in Appendix -A.

E. Complexity Analysis

Since Algorithm 1 in MP-FedCL involves many similar
global iterations, we analyze the time complexity of only
one such iteration for simplicity. In Algorithm 1, each global
iteration mainly consists of the following steps: communica-
tion round, local model training, and k-means clustering. The
algorithm executes a total of T global communication rounds.
In each round, the global model ωt and the global prototype
set U are sent to each of the N clients in parallel. Therefore,
the time complexity for each round can be considered as O(1).
For the local model training process, each client performs
local updates for a fixed number of local epochs E. For
the convenience of analysis, let us consider a FC neural
network where each layer has the same number of parameters,
denoted as M . Without loss of generality, we assume that the
data samples of each client are the same D, given that the
batch size is expressed as B, the total number of iterations
required to complete one local iteration is D/B. In addition,
since the computation in each layer can be viewed as a
matrix-vector multiplication (note that the matrix calculation
mainly involves weight parameters, we ignore bias parameters
calculation for simplicity), the time complexity for forward
propagation of the FC network in local model training can
be expressed as O(E · D/B · Llayer · M2), where Llayer

represents the number of layers in the FC network. Overall,
the time complexity for forward propagation can be simplified
as O(DM2); here, certain variables E, B, and Llayer can
be considered as constants since E, B, and Llayer ≪ M
hold typically. Therefore, the time complexity for local model
training is O(DM2 +DM3), where the time complexity for
back propagation isO(DM3). After local model training, each
client performs k-means clustering to update its embedding
space vi,j for each class. The time complexity for k-means
algorithm is typically O(E ·I ·K ·D ·C ·M), where E denotes
the number of local epochs, I is the number of iterations, K
is the number of clusters, D is the number of data points, C
is the number of classes, and M is the dimensionality of the
output before the decision-making layer (here, the output is
M because it is assumed that parameters of each layer are
M). Similarly, certain variables like E, I , K, and C can be
considered as constants since E, I , K, C ≪ M , then the
time complexity for the proposed multi-prototype calculation
can be simplified to O(DM). Compared with local model
training, the time complexity for multi-prototype calculation
is relatively low. For Algorithm 2, after the embedding space

10

TABLE III
MODEL ARCHITECTURE FOR MNIST.

Layer Activation Value

Encoder FC1 Relu (28*28, 512)
FC2 Relu (512, 512)

MLP FC1 Relu (512, 256)
FC2 Relu (256, 10)

is calculated, for a certain test sample, the time complexity for
model inference is O(K · C). We assume the number of test
samples for each client is D′, then the total time complexity
for model inference is linear as O(D′) since K and C can be
considered as constants.

V. EXPERIMENTS

We now present the experimental results of the proposed
multi-prototype-based federated learning strategy. We imple-
ment MP-FedCL on different datasets, and models and com-
pare with the most commonly used baselines including Local,
FedAvg [6], FedProx [9], and FedProto [19]. We first introduce
the datasets and local models in Section V-A. Then, the imple-
mentation details are provided in Section V-B. The selection
of K for different datasets is discussed in Section V-C. In
Section V-D, the test accuracy of different baselines under
different datasets with different non-IID settings is illustrated.
The robustness and communication efficiency comparison are
shown in Section V-E and V-F, respectively.

A. Datasets and Local Models
We conduct experiments on four popular benchmark

datasets: MNIST [67], Digit-5 [68], Office-10 [69], and Do-
mainNet [70] to verify the potential benefits of multiple-
prototype based federated learning for edge network intelli-
gence. MNIST is the handwritten digit recognition dataset. It
contains 10 different classes with 60,000 training samples and
10,000 test samples. Digit-5 is a collection of images of hand-
written digits from the five most popular datasets, including
SVHN, USPS, MNIST, MNIST-M and SynthDigits. Office-
10 consists of images from four different office environments,
each containing a distinct set of classes: Amazon (A), Webcam
(W), DSLR (D), and Caltech (C). DomainNet is a large-scale,
multi-domain image classification dataset. It consists of over
600,000 images from 345 categories, divided into 6 domains:
clipart, infograph, painting, quickdraw, real, and sketch. Each
domain contains a distinct set of classes and has its own
characteristics and challenges.

For local models, a 2-layer encoder network with 2 FC
layers and an MLP with 2 FC layers are considered for
MNIST, as shown in Table III. For these datasets that are
more complex than MNIST, such as Digit-5, Office-10, and
DomainNet, we use ResNet18 [71], which has been pre-trained
on DomainNet, as the encoder. Please refer to their work
[72] for more details about the pre-trained model. We employ
the same MLP architecture as in MNIST for these datasets.
The output dimension of the encoder and the input of the
decision-making layer of the MLP network are 512 and 256,
respectively. Note that for fair comparisons, all baselines adopt
the same network architecture as MP-FedCL, including MLP.

TABLE IV
EXPERIMENTAL PARAMETERS.

Parameters Values
Learning rate η 0.01

Learning rate decay 0.95
Batch size B 32

Local epoch E 1
Temperature τ 0.07

Dirichlet parameter α 0.05 (default)
Optimizer SGD

SGD momentum 0.5
K(MNIST) 2
K(Digit-5) 4
K(Office-10) 4
K(DomainNet) 3

MNIST Digit-5 Office-10 DomainNet
Datasets

0

10

20

30

40

50

60

70

80

Av
er

ag
e

Te
st

 A
cc

79.95

61.43

47.74

53.07

79.06

63.67

54.73 54.52

79.68

66.13

55.92
53.75

K = 2
K = 3
K = 4

Fig. 5. Average test accuracy (%) under the label distribution skew with
Dir(0.05) on four baseline datasets with K ranging from 2 to 4.

B. Implementation Details

We investigate two different non-IID settings to mimic non-
IID scenarios : (i) feature distribution skew: clients have the
same label distributions but different feature distributions, (ii)
label distribution skew: clients have different label distribu-
tions but the same feature distribution, which is simulated by
Dirichlet distribution Dir(α) [21]. Here, the more skewness
among clients is, the smaller the value α is, and vice versa.
The label distribution skewness α is set to 0.05 for all federated
training algorithms unless explicitly specified.

We compare our proposed method with popular FL algo-
rithms including Local where local models are updated in
each global round without any communication with others,
FedAvg [6], FedProto [19], and FedProx [9]. We use 5, 4,
and 6 clients for Digit-5, Office-10, and DomainNet in the
feature distribution skewed setting, respectively. In the label
distribution skewed setting, the number of clients for Digit-
5, Office-10, and DomainNet is all 5. We use 5 clients for
MNIST unless explicitly specified. The size of MNIST for all
experiments is 2,000 for simplicity. The visualization results
of all datasets with label non-IID and feature non-IID settings
are shown in Figure 6 and Figure 7, respectively.

We use PyTorch [73] to implement all the baselines. Fol-
lowing [9], [27], the grid search is used to select the optimal
hyperparameters for model training. Specifically, we use the

11

0 1 2 3 4 5 6 7 8 9
Class

0

50

100

150

200

250

of
 sa

m
pl

es
Client 0
Client 1
Client 2
Client 3
Client 4

(a) MNIST

0 1 2 3 4 5 6 7 8 9
Class

0

100

200

300

400

500

of

 sa
m

pl
es

Client 0
Client 1
Client 2
Client 3
Client 4

(b) Digit-5

backpack

bike
calculator

headphones

keyboard

laptop
monitor

mouse
mug

projector

0

20

40

60

80

of

 sa
m

pl
es

Client 0
Client 1
Client 2
Client 3
Client 4

(c) Office-10

bird
feather

headphones

icecream

teapot
tiger

whale
windmill

wineglass

zebra
0

25

50

75

100

125

150

175

200

of

 sa
m

pl
es

Client 0
Client 1
Client 2
Client 3
Client 4

(d) DomainNet

Fig. 6. Illustration of the label non-IID setting on MNIST, Digit-5, Office-10, and DomainNet datasets. The same color represents the same client, and each
client samples from their respective dataset according to Dir(0.05). The sampling results have the same feature distribution but different label distribution.

0 1 2 3 4 5 6 7 8 9
Class

0

100

200

300

400

500

of

 sa
m

pl
es

Client 0
Client 1
Client 2
Client 3
Client 4

(a) Digit-5

backpack

bike
calculator

headphones

keyboard

laptop
monitor

mouse
mug

projector

Class

0

20

40

60

80

100

120

140

of
 sa

m
pl

es
Client 0
Client 1
Client 2
Client 3

(b) Office-10

bird
feather

headphones

icecream

teapot
tiger

whale
windmill

wineglass

zebra

Class

0

10

20

30

40

50

60

of

 sa
m

pl
es

Client 0
Client 1
Client 2
Client 3
Client 4
Client 5

(c) DomainNet

Fig. 7. Illustration of the feature non-IID setting on Digit-5, Office-10, and DomainNet datasets. The different color represents clients with different datasets,
and the visualization result shows that each client shares the same label distribution but has different feature distribution.

SGD optimizer for all baselines, and the SGD momentum is
set to 0.5. The other training parameters are set to be B =
32, E = 1, τ = 0.07, η = 0.01 with decay rate = 0.95, which
denotes local batch size, local epochs, temperature, learning
rate, and learning rate decay per iteration, respectively.

C. Choosing K

The selection of K is performed in the feature space of
samples in different datasets. Intuitively, the feature space of
samples from different datasets is different; thus the number of
K is associated with specific datasets. Here, we adopt a similar
way as [30] to maintain a uniform value for K across classes
for simplicity, although this value may vary for different
classes. Note that since we focus on the fixed-prototype
strategy in this paper, we initially explore a dynamic prototype-
based scheme for completeness. Specifically, we study the
effect of different K ∈ {2, 3, 4} under label distribution skew
through heuristic selection and then apply the most appropriate
K value to all experiments under different non-IID settings.
Similar heuristic selection method applied in the feature space
has been utilized in many papers [16], [31], [74]. We run three
trials with different random seeds and report the average test
accuracy on validation datasets, as shown in Figure 5. The
number of communication rounds is set to 60 for all datasets. It
can be found that the appropriate K values for MNIST, Digit-
5, Office-10, and DomainNet are 2, 4, 4, and 3, respectively.
The hyperparameters used are presented in Table IV.

TABLE V
TOP-1 AVERAGE TEST ACCURACY (%) OF MP-FEDCL AND OTHER

BASELINES ON DIGIT-5 UNDER feature non-IID SETTING.

Method Local FedAvg FedProx FedProto MP-FedCL

MNIST 47.33(8.96) 53.00(4.32) 72.00(5.89) 88.00(2.83) 91.37(0.39)
SVHN 16.67(2.05) 18.67(1.25) 22.33(3.30) 25.00(1.41) 26.80(2.65)
USPS 60.33(1.25) 54.67(4.99) 71.67(5.73) 91.67(1.25) 93.93(0.65)
Synth 26.33(6.13) 36.00(2.94) 49.33(4.71) 56.67(1.25) 61.00(0.49)
MNIST-M 20.33(3.30) 32.00(4.55) 43.67(4.11) 48.67(3.68) 51.20(1.77)

Average 34.20(4.34) 38.87(3.61) 51.80(4.75) 62.00(2.08) 64.86(1.19)

TABLE VI
TOP-1 AVERAGE TEST ACCURACY (%) OF MP-FEDCL AND OTHER
BASELINES ON VARIOUS DATASETS UNDER label non-IID SETTING.

Method MNIST Digit-5 Office-10 DomainNet # of Comm
Rounds

FedAvg 66.40(2.89) 29.66(1.57) 24.00(1.55) 23.61(4.35) 110
FedProx 64.85(1.88) 28.51(2.13) 21.74(1.13) 22.78(5.66) 100
FedProto 33.27(1.74) 60.84(1.79) 39.79(3.15) 36.02(5.23) 100
DP-FedCL 78.49(3.09) 53.94(3.38) 37.22(1.75) 47.62(1.78) 60

SP-FedCL 79.44(3.48) 57.91(3.17) 43.11(4.30) 35.44(4.25) 60
MP-FedCL 79.95(3.76) 67.15(2.33) 59.07(3.41) 52.12(5.02) 60

D. Accuracy Comparison

In this section, given that the number of K may vary
across different classes, we attempt to explore another feature
clustering method for feature clustering, called density-based
spatial clustering of applications with noise (DBSCAN) [75],

12

which is different from k-means as it does not require spec-
ifying the number of clusters beforehand. It automatically
determines the number of clusters based on the data’s density
and has been applied in the image field [76]–[80]. Here, we
combine the DBSCAN clustering method with our proposal
that each client uses DBSCAN for clustering instead of k-
means, terming it DP-FedCL, and compare it with MP-FedCL
and other baselines.

Specifically, we compare our method with the baselines
under the feature non-IID and label non-IID settings where
feature non-IID means the feature distribution is skewed while
the label distribution is IID, and label non-IID means the label
distribution is skewed while the feature distribution is IID. For
the sake of fair comparison, we conduct experiments with the
same hyperparameters, run three trials, and report the mean
and standard derivation. The best results are shown in bold.

Table V reports the average test accuracies of our method
and baselines in the mean(std) format under the feature non-
IID setting. The results indicate that MP-FedCL achieves
higher test accuracy and smaller standard deviation compared
to most cases, with an improvement of approximately 4.6%
over the second-highest test accuracy. In addition, Table VI
presents our results and those of the baselines under the label
non-IID setting. In this setting, we use SP-FedCL, which refers
to our training strategy that employs a single prototype (i.e.,
K = 1). Specifically, we do not use any clustering algorithm
in Eq. 7, but instead take the mean value of the feature space
belonging to the same label as the prototype of the label, which
is also known as a single prototype. The results show that our
method enjoys relatively significant advantages over almost all
other baselines, and about at least 10.4% improvement in test
accuracy compared to most cases. Moreover, since the cost
of communication has been considered to be the bottleneck
of FL, we also report the number of communication rounds
for each algorithm in Table VI accordingly. It can be seen
that our proposal and other methods based on our strategy
only need relatively few communication rounds compared to
others. For DP-FedCL, the only difference from MP-FedCL
is that it dynamically selects the number of clusters using the
DBSCAN algorithm on each local client. The results indicate
that clustering using k-means and assigning an equal number
of prototypes to each class outperforms the adopted dynamic
selection approach. We conjecture that while dynamically se-
lecting the number of clusters might lead to varying prototype
assignments for each class, it can also introduce an imbalance
in class representations, resulting in biased model learning.

E. Robustness Comparison

Different degrees of label non-IID. Considering that
labeling non-IID is a common challenge in FL, designing
an algorithm that is robust to various heterogeneous data is
crucial for deploying the FL algorithm in real applications.
Therefore, we compare our method with several baselines
under different levels of label heterogeneity to verify the
robustness of different algorithms to data heterogeneity. As
shown in Figure 8, the α decreases from 1.0 to 0.1, controlling
the degree of label heterogeneity, which means that labels are
distributed more and more heterogeneously among clients. We

1.0 0.5 0.2 0.1
Dir()

0

10

20

30

40

50

60

70

Av
er

ag
e

Te
st

 A
cc

Local
FedAvg
FedProto
SP-FedCL
MP-FedCL

(a) Digit-5

1.0 0.5 0.2 0.1
Dir()

0

10

20

30

40

50

60

Av
er

ag
e

Te
st

 A
cc

Local
FedAvg
FedProto
SP-FedCL
MP-FedCL

(b) Office-10

Fig. 8. Illustration of the average test accuracy (%) on Digit-5 and Office-10
under different levels of label non-IID settings.

report the average test accuracy for Digit-5 under different
heterogeneities in Figure 8 (a). Note that since our proposal
requires only a small number of iterations, therefore the
number of communication rounds for MP-FedCL and SP-
FedCL is set to 60, and 100 for others. The results show
that our proposal outperforms all approaches under different
heterogeneous settings in terms of test accuracy, and enjoys a
relatively small deviation compared to those in most cases.

Specifically, in comparison to the performance under all
heterogeneity settings, our method achieves at least an 8.8%
and 2.0% increase in accuracy compared to the popular
baseline FedAvg and state-of-the-art FedProto, respectively.
To highlight the advantage of multi-prototype learning over
single-prototype learning, we conduct experiments using the
same learning strategy as the former, but with only a sin-
gle prototype, which we refer to as SP-FedCL. The results
show that our method consistently outperforms SP-FedCL by
approximately 2.0% in average test accuracy across various
scenarios. These results underscore the effectiveness of our
multi-prototype learning approach in FL, leading to improved

13

robustness compared to both single-prototype and state-of-
the-art methods. Interestingly, in some scenarios (such as
α = 0.1), the performance of FedAvg is lower than that of
Local, which shows that FedAvg does not always perform
well in dealing with heterogeneous scenarios. It would be an
intriguing research direction to explore the synergies between
local optimization and federated optimization, allowing us to
harness the advantages offered by both approaches.

Additionally, in Figure 8 (b), we present similar results
for Office-10 under various degrees of heterogeneity. The
findings further demonstrate that, in the majority of cases, our
proposed method outperforms all other approaches in terms of
test accuracy, highlighting its advantage in dealing with data
heterogeneity. Specifically, compared to SP-FedCL, FedProto,
and FedAvg, our method shows improvements of at least 0.3%,
1.4%, and 7.5%, respectively, across different label non-IID
settings. However, it is worth noting that almost all meth-
ods, including ours, encounter significant deviations under
extremely heterogeneous settings like Dir(0.1) and Dir(0.2).
This can be attributed to the relatively limited number of
training samples available in Office-10 compared to Digit-
5, which may lead to higher fluctuations in performance.
Moreover, it should be noted that similar results are observed
in this setting, with FedAvg performing worse than Local in
most cases.

Different numbers of clients. In addition to exploring the
robustness of our proposed algorithm to different levels of
data heterogeneity, we also aim to investigate its robustness
to varying numbers of participating clients in the FL setting.
As depicted in Figure 9, we demonstrate the robustness of
our proposed method by evaluating its performance across an
increasing number of clients, ranging from 5 to 40, with labels
distribution following Dir(0.1). The average test accuracy for
MNIST and Digit-5 under the various number of clients is
shown in Figure 9 (a) and Figure 9 (b), respectively. The
illustration demonstrates that our proposed method exhibits
a distinct advantage over FedAvg in terms of test accuracy
across different numbers of clients. Moreover, our approach
maintains a relatively small deviation compared to FedAvg in
most cases, further highlighting its robustness against various
numbers of clients.

Specifically, regarding the results of MNIST displayed in
Figure 9 (a), our proposed method achieves a remarkable
increase of at least 7.2% in test accuracy compared to the
baseline FedAvg when varying the number of clients. It
is interesting to note that, compared to both FedAvg and
MP-FedCL, FedProto exhibits inferior performance across all
numbers of participating clients. Moreover, the performance
of FedProto decreases as the number of clients increases, and
its peak performance is only about half of that of MP-FedCL.
This observation strongly suggests that the approach of not
transmitting the model parameters, as adopted in FedProto,
may not be suitable for models trained from scratch. Similarly,
in the case of Digit-5, as shown in Figure 9 (b), our proposal
consistently outperforms both FedAvg and FedProto in terms
of test accuracy across different numbers of clients. To be
precise, our method demonstrates an improvement of at least
18.73% and 10.99% compared to FedAvg and FedProto,

5 10 20 40
of clients

0

10

20

30

40

50

60

70

80

Av
er

ag
e

Te
st

 A
cc

FedAvg
FedProto
MP-FedCL

(a) MNIST

5 10 20 40
of clients

0

10

20

30

40

50

60

Av
er

ag
e

Te
st

 A
cc

FedAvg
FedProto
MP-FedCL

(b) Digit-5

Fig. 9. Illustration of the average test accuracy (%) on MNIST and Digit-5
based on Dir(0.1) with the varying numbers of clients.

respectively. Furthermore, it is worthwhile to mention that our
proposed method exhibits lower accuracy variance compared
to the other methods in the majority of cases, whereas FedAvg
experiences higher fluctuations. This observation could be
attributed to the inherent complexity of the feature space
in Digit-5, which is likely more intricate compared to the
MNIST dataset. Consequently, the variations between clients
in Digit-5 become more pronounced, leading to the observed
differences in performance for FedAvg. In contrast, prototype-
based schemes such as FedProto and MP-FedCL show more
robust results (in terms of accuracy variation) across differ-
ent numbers of participating clients in the FL setting. This
indicates that an approach based on prototypes successfully
handles heterogeneity to a certain extent.

F. Communication Efficiency Comparison

As FL involves training models across distributed clients,
ensuring a fast and efficient convergence rate is of great
importance. A faster convergence rate implies that the par-
ticipating clients can converge to the optimal with higher

14

0 10 20 30 40 50 60
Communication Round

25

30

35

40

45

50

55
Av

er
ag

e
Te

st
 A

cc

SP-FedCL
FedProto
MP-FedCL

52.43(2.15)

49.69(3.11)

51.03(2.92)

(a) Digit-5

0 10 20 30 40 50 60
Communication Round

20

25

30

35

40

45

50

Av
er

ag
e

Te
st

 A
cc

SP-FedCL
FedProto
MP-FedCL

49.90(2.61)

46.43(2.84)

44.98(2.20)

(b) Office-10

Fig. 10. Illustration of the average test accuracy (%) in each global round
on Digit-5 and Office-10, respectively. The upper subfigure result is reported
under label non-IID with Dir(1.0), and the below is reported under feature
non-IID.

accuracy in fewer communication rounds, reducing the overall
communication and computational overhead. Therefore, in this
section, we evaluate the convergence rate of our proposal and
conduct a comprehensive investigation with other benchmarks.

Table VII presents the top-1 average test accuracy (%) of
different methods, including Local, FedAvg, FedProto, DP-
FedCL, SP-FedCL, and MP-FedCL, on two datasets: Digit-5
and Office-10 and the corresponding communication rounds.
The evaluation is performed under the condition of label non-
IID with Dir(0.5) and feature non-IID. From the results in Ta-
ble VII, we observe that MP-FedCL consistently achieves the
highest top-1 average test accuracy and fewer communication
rounds compared to other methods in most cases. Specifically,
Local achieves the lowest accuracy since it does not participate
in FL rounds (0 communication rounds). The methods based
on federated training such as FedAvg and FedProto, have
shown improved performance, but they require a high number
of communication rounds (130 communication rounds). In
contrast, MP-FedCL consistently outperforms the other fed-

TABLE VII
TOP-1 AVERAGE TEST ACCURACY (%) OF MP-FEDCL AND OTHER
BASELINES ON DIGIT-5 AND OFFICE-10 UNDER label non-IID WITH

DIR(0.5) AND feature non-IID.

Dataset Method Label non-IID Feature non-IID # of Comm
Rounds

Local 27.60(3.33) 33.60(3.25) 0
FedAvg 40.80(3.71) 43.13(3.67) 130

Digit-5 FedProto 49.71(2.98) 63.99(0.38) 130
DP-FedCL 50.37(2.51) 63.49(2.02) 60
SP-FedCL 51.86(2.92) 65.49(1.14) 60
MP-FedCL 53.87(1.62) 65.08(0.91) 60

Local 30.89(3.50) 21.47(3.72) 0
FedAvg 22.51(7.50) 30.17(2.15) 130

Office-10 FedProto 36.75(3.50) 46.58(2.82) 130
DP-FedCL 35.74(5.33) 42.77(1.03) 60
SP-FedCL 38.44(6.15) 48.88(3.59) 60
MP-FedCL 42.98(3.79) 49.70(1.49) 60

TABLE VIII
TOP-1 AVERAGE TEST ACCURACY (%) OF MP-FEDCL AND OTHER
BASELINES ON DIGIT-5 AND OFFICE-10 UNDER label non-IID WITH

DIR(0.5) AND feature non-IID.

Dataset Method Label non-IID Training
Time (s) Feature non-IID Training

Time (s)

FedAvg 38.17(1.26) ≈ 600 43.00(3.49) ≈ 600
FedProto 52.67(1.03) ≈ 600 62.00(2.69) ≈ 600

Digit-5 DP-FedCL 52.42(1.83) ≈ 600 64.07(2.07) ≈ 600
SP-FedCL 52.46(1.58) ≈ 600 65.07(1.89) ≈ 600
MP-FedCL 52.94(1.68) ≈ 600 65.00(1.47) ≈ 600

FedAvg 23.59(5.69) ≈ 380 24.04(2.61) ≈ 380
FedProto 39.11(6.99) ≈ 380 45.34(2.72) ≈ 380

Office-10 DP-FedCL 35.98(5.95) ≈ 380 41.83(2.14) ≈ 380
SP-FedCL 39.60(5.89) ≈ 380 45.20(3.56) ≈ 380
MP-FedCL 43.59(5.54) ≈ 380 47.38(1.48) ≈ 380

erated methods in most cases and only requires about half the
number of communication rounds (60 communication rounds)
of FedAvg, showcasing its capability to learn from distributed
data efficiently. In other words, achieving similar performance
to the baselines MP-FedCL requires fewer computational
resources. Moreover, we observe a similar phenomenon as
in Table VI that DP-FedCL is still lower than the single-
prototype scheme and our proposal in this setting. However,
it is worthwhile to note that other schemes for dynamically
selecting prototypes may potentially outperform our current
approach, which leaves for our future work.

Table VIII shows the top-1 average test accuracy of MP-
FedCL and other baselines on Digit-5 and Office-10 under
label non-IID with Dir(0.5) and feature non-IID. All algo-
rithms are compared under similar training times. The results
show that MP-FedCL achieves comparable or superior per-
formance compared to baselines. In other words, MP-FedCL
can still achieve competitive performance under approximately
the same computational resources. In addition, we compare
the average test accuracy of our proposed MP-FedCL with
FedProto and SP-FedCL per global round during training
based on different kinds of heterogeneous settings (including
feature non-IID and label non-IID) after several runs with
different random seeds, as shown in Figure 10. Both subfigures
demonstrate that our method outperforms them in terms of
test accuracy and communication efficiency. Specifically, we
evaluate our proposal with FedProto and SP-FedCL on Digit-5

15

under label non-IID with Dir(1.0). It shows that our method
outperforms theirs by approximately 2.74% and 1.40% in
test accuracy, respectively, and also leads them the way in
convergence rate. Similar results are available in Figure 10
(b), which is the test accuracy of Office-10 with feature non-
IID. It demonstrates that our proposal still outperforms theirs
by 3.47% and 4.92% in terms of test accuracy, and they lag
behind us by a significant margin in terms of convergence
rate. This indicates the potential advantages of using multi-
prototype learning in handling heterogeneous tasks in FL, and
we believe that multi-prototype learning based on architectures
such as transformers will be a promising research direction
in the future. Moreover, it can be expected that combining
strategies aimed at accelerating k-means calculation and other
privacy-preserving techniques with our strategy will further
make contributions to the FL community.

VI. CONCLUSION

In this paper, we have introduced multi-prototype learning
into the federated learning framework, and at the same time,
a contrastive learning strategy is applied to multi-prototype
learning to make full use of multi-prototype knowledge. First,
a clustering-based multi-prototype calculation approach has
been proposed. In order to better leverage the knowledge
from each client, we then have proposed a contrastive learning
strategy that encourages clients to learn class-related knowl-
edge from others in each global round through multi-prototype
exchange, while reducing the absorption of class-unrelated
knowledge. Further, we have introduced a multi-prototype-
based model inference strategy into FL. This strategy also pro-
vides the potential for fast model training in distributed edge
networks, as only a small amount of training is required when
adding a new client, to compare its prototype with the trained
prototypes in the global prototype pool for fast and correct
predictions. Finally, extensive experiments on four datasets
demonstrate that our proposal has a robust performance against
label and feature heterogeneity in terms of test accuracy and
communication efficiency. Compared to several baselines, our
test accuracy improves by about 4.6% and 10.4% under feature
and label non-IID, respectively.

REFERENCES

[1] M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M. S. Kaiser, M. R.
Ahmed, O. Kaiwartya, and A. James-Taylor, “Toward a heterogeneous
mist, fog, and cloud-based framework for the internet of healthcare
things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4049–4062,
2018.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE internet of things journal, vol. 3, no. 5, pp. 637–646,
2016.

[3] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: The confluence of edge computing and artificial
intelligence,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457–
7469, 2020.

[4] M. Magdziarczyk, “Right to be forgotten in light of regulation (eu)
2016/679 of the european parliament and of the council of 27 april
2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing
directive 95/46/ec,” in 6th International Multidisciplinary Scientific
Conference on Social Sciences and Art Sgem 2019, 2019, pp. 177–184.

[5] H. Wu and P. Wang, “Node selection toward faster convergence for
federated learning on non-iid data,” IEEE Transactions on Network
Science and Engineering, vol. 9, no. 5, pp. 3099–3111, 2022.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[7] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” Proceedings of the IEEE, vol. 107, no. 11, pp.
2204–2239, 2019.

[8] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[9] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[10] J. Zhang, Z. Li, B. Li, J. Xu, S. Wu, S. Ding, and C. Wu, “Federated
learning with label distribution skew via logits calibration,” in Interna-
tional Conference on Machine Learning. PMLR, 2022, pp. 26 311–
26 329.

[11] G. Long, M. Xie, T. Shen, T. Zhou, X. Wang, and J. Jiang, “Multi-center
federated learning: clients clustering for better personalization,” World
Wide Web, vol. 26, no. 1, pp. 481–500, 2023.

[12] Y. Qiao, M. S. Munir, A. Adhikary, A. D. Raha, and C. S. Hong,
“Cdfed: Contribution-based dynamic federated learning for managing
system and statistical heterogeneity,” in NOMS 2023-2023 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 2023, pp.
1–5.

[13] C. T Dinh, N. Tran, and J. Nguyen, “Personalized federated learning
with moreau envelopes,” Advances in Neural Information Processing
Systems, vol. 33, pp. 21 394–21 405, 2020.

[14] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated
learning: A meta-learning approach,” arXiv preprint arXiv:2002.07948,
2020.

[15] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choud-
hary, “Federated learning with personalization layers,” arXiv preprint
arXiv:1912.00818, 2019.

[16] Y. Qiao, M. S. Munir, A. Adhikary, A. D. Raha, S. H. Hong, and
C. S. Hong, “A framework for multi-prototype based federated learning:
Towards the edge intelligence,” in 2023 International Conference on
Information Networking (ICOIN). IEEE, 2023, pp. 134–139.

[17] H. Zhu, J. Xu, S. Liu, and Y. Jin, “Federated learning on non-iid data:
A survey,” Neurocomputing, vol. 465, pp. 371–390, 2021.

[18] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid
data silos: An experimental study,” in 2022 IEEE 38th International
Conference on Data Engineering (ICDE). IEEE, 2022, pp. 965–978.

[19] Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang,
“Fedproto: Federated prototype learning across heterogeneous clients,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 8, 2022, pp. 8432–8440.

[20] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[21] M. Yurochkin, M. Agarwal, S. Ghosh, K. Greenewald, N. Hoang,
and Y. Khazaeni, “Bayesian nonparametric federated learning of neural
networks,” in International conference on machine learning. PMLR,
2019, pp. 7252–7261.

[22] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” Advances in neural information processing systems, vol. 30,
2017.

[23] R. Hou, Z. Chen, J. Chen, S. He, and Z. Zhou, “Imbalanced fault
identification via embedding-augmented gaussian prototype network
with meta-learning perspective,” Measurement Science and Technology,
vol. 33, no. 5, p. 055102, 2022.

[24] Z. Kang, K. Grauman, and F. Sha, “Learning with whom to share in
multi-task feature learning,” in Proceedings of the 28th International
Conference on Machine Learning (ICML-11), 2011, pp. 521–528.

[25] A. Quattoni, M. Collins, and T. Darrell, “Transfer learning for image
classification with sparse prototype representations,” in 2008 IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2008,
pp. 1–8.

[26] X. Mu, Y. Shen, K. Cheng, X. Geng, J. Fu, T. Zhang, and Z. Zhang,
“Fedproc: Prototypical contrastive federated learning on non-iid data,”
Future Generation Computer Systems, vol. 143, pp. 93–104, 2023.

[27] Y. Tan, G. Long, J. Ma, L. Liu, T. Zhou, and J. Jiang, “Federated learning
from pre-trained models: A contrastive learning approach,” Advances
in Neural Information Processing Systems, vol. 35, pp. 19 332–19 344,
2022.

16

[28] Y. Qiao, S.-B. Park, S. M. Kang, and C. S. Hong, “Prototype
helps federated learning: Towards faster convergence,” arXiv preprint
arXiv:2303.12296, 2023.

[29] H. Huang, Z. Wu, W. Li, J. Huo, and Y. Gao, “Local descriptor-based
multi-prototype network for few-shot learning,” Pattern Recognition, vol.
116, p. 107935, 2021.

[30] O. Rippel, M. Paluri, P. Dollar, and L. Bourdev, “Metric learning
with adaptive density discrimination,” arXiv preprint arXiv:1511.05939,
2015.

[31] J. Deuschel, D. Firmbach, C. I. Geppert, M. Eckstein, A. Hartmann,
V. Bruns, P. Kuritcyn, J. Dexl, D. Hartmann, D. Perrin et al., “Multi-
prototype few-shot learning in histopathology,” in Proceedings of the
IEEE/CVF international conference on computer vision, 2021, pp. 620–
628.

[32] Y.-J. Liu, S. Qin, G. Feng, D. Niyato, Y. Sun, and J. Zhou, “Adaptive
quantization based on ensemble distillation to support fl enabled edge
intelligence,” in GLOBECOM 2022-2022 IEEE Global Communications
Conference. IEEE, 2022, pp. 2194–2199.

[33] M. Beitollahi and N. Lu, “Federated learning over wireless networks:
Challenges and solutions,” IEEE Internet of Things Journal, 2023.

[34] Y. Zhang, Y. Hu, X. Gao, D. Gong, Y. Guo, K. Gao, and W. Zhang, “An
embedded vertical-federated feature selection algorithm based on parti-
cle swarm optimisation,” CAAI Transactions on Intelligence Technology,
2022.

[35] M. Alazab, S. P. RM, M. Parimala, P. K. R. Maddikunta, T. R.
Gadekallu, and Q.-V. Pham, “Federated learning for cybersecurity:
Concepts, challenges, and future directions,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 5, pp. 3501–3509, 2021.

[36] A. Anaissi, B. Suleiman, and M. Naji, “Intelligent structural damage
detection: a federated learning approach,” in Advances in Intelligent
Data Analysis XIX: 19th International Symposium on Intelligent Data
Analysis, IDA 2021, Porto, Portugal, April 26–28, 2021, Proceedings
19. Springer, 2021, pp. 155–170.

[37] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor, “Tackling the
objective inconsistency problem in heterogeneous federated optimiza-
tion,” Advances in neural information processing systems, vol. 33, pp.
7611–7623, 2020.

[38] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International Conference on Machine Learning. PMLR, 2020,
pp. 5132–5143.

[39] W. Luping, W. Wei, and L. Bo, “Cmfl: Mitigating communication
overhead for federated learning,” in 2019 IEEE 39th international
conference on distributed computing systems (ICDCS). IEEE, 2019,
pp. 954–964.

[40] X. Yao, T. Huang, C. Wu, R.-X. Zhang, and L. Sun, “Federated learning
with additional mechanisms on clients to reduce communication costs,”
arXiv preprint arXiv:1908.05891, 2019.

[41] N. Bouacida, J. Hou, H. Zang, and X. Liu, “Adaptive federated dropout:
Improving communication efficiency and generalization for federated
learning,” arXiv preprint arXiv:2011.04050, 2020.

[42] S. Caldas, J. Konečny, H. B. McMahan, and A. Talwalkar, “Expanding
the reach of federated learning by reducing client resource require-
ments,” arXiv preprint arXiv:1812.07210, 2018.

[43] Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H. Rangwala, “Fe-
dat: a high-performance and communication-efficient federated learning
system with asynchronous tiers,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–16.

[44] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

[45] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-iid data,” in 2020 IEEE
International Conference on Big Data (Big Data). IEEE, 2020, pp.
15–24.

[46] J. Park, D.-J. Han, M. Choi, and J. Moon, “Handling both stragglers and
adversaries for robust federated learning,” in ICML 2021 Workshop on
Federated Learning for User Privacy and Data Confidentiality. ICML
Board, 2021.

[47] Z. Wang, Z. Zhang, Y. Tian, Q. Yang, H. Shan, W. Wang, and T. Q.
Quek, “Asynchronous federated learning over wireless communication
networks,” IEEE Transactions on Wireless Communications, vol. 21,
no. 9, pp. 6961–6978, 2022.

[48] U. Michieli and P. Zanuttigh, “Continual semantic segmentation via
repulsion-attraction of sparse and disentangled latent representations,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 1114–1124.

[49] G. Xue, M. Zhong, J. Li, J. Chen, C. Zhai, and R. Kong, “Dynamic
network embedding survey,” Neurocomputing, vol. 472, pp. 212–223,
2022.

[50] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu, “Towards universal
paraphrastic sentence embeddings,” arXiv preprint arXiv:1511.08198,
2015.

[51] U. Michieli and M. Ozay, “Prototype guided federated learning of visual
feature representations,” arXiv preprint arXiv:2105.08982, 2021.

[52] Q. Li, B. He, and D. Song, “Model-contrastive federated learning,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 10 713–10 722.

[53] X. Li, T. Tian, Y. Liu, H. Yu, J. Cao, and Z. Ma, “Adaptive multi-
prototype relation network,” in 2020 Asia-Pacific Signal and Information
Processing Association Annual Summit and Conference (APSIPA ASC).
IEEE, 2020, pp. 1707–1712.

[54] G. Li, V. Jampani, L. Sevilla-Lara, D. Sun, J. Kim, and J. Kim,
“Adaptive prototype learning and allocation for few-shot segmentation,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2021, pp. 8334–8343.

[55] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and
TensorFlow. ” O’Reilly Media, Inc.”, 2022.

[56] C. He, M. Annavaram, and S. Avestimehr, “Group knowledge transfer:
Federated learning of large cnns at the edge,” Advances in Neural
Information Processing Systems, vol. 33, pp. 14 068–14 080, 2020.

[57] W. Lou, Y. Xu, H. Xu, and Y. Liao, “Decentralized federated learning
with data feature transmission and neighbor selection,” in 2022 IEEE
28th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2023, pp. 688–695.

[58] X.-C. Li and D.-C. Zhan, “Fedrs: Federated learning with restricted
softmax for label distribution non-iid data,” in Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
2021, pp. 995–1005.

[59] Z. Zhou, S. S. Azam, C. Brinton, and D. I. Inouye, “Efficient feder-
ated domain translation,” in The Eleventh International Conference on
Learning Representations, 2022.

[60] M. Servetnyk, C. C. Fung, and Z. Han, “Unsupervised federated
learning for unbalanced data,” in GLOBECOM 2020-2020 IEEE Global
Communications Conference. IEEE, 2020, pp. 1–6.

[61] Y. Fraboni, R. Vidal, L. Kameni, and M. Lorenzi, “Clustered sampling:
Low-variance and improved representativity for clients selection in
federated learning,” in International Conference on Machine Learning.
PMLR, 2021, pp. 3407–3416.

[62] X. Shuai, Y. Shen, S. Jiang, Z. Zhao, Z. Yan, and G. Xing, “Balancefl:
Addressing class imbalance in long-tail federated learning,” in 2022
21st ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN). IEEE, 2022, pp. 271–284.

[63] D. Pal, S. Bose, B. Banerjee, and Y. Jeppu, “Extreme value meta-
learning for few-shot open-set recognition of hyperspectral images,”
IEEE Transactions on Geoscience and Remote Sensing, 2023.

[64] J. Zhou, J. Mei, H. Li, and Y. Hu, “Pmr-cnn: Prototype mixture r-cnn for
few-shot object detection,” in 2023 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 2023, pp. 1–7.

[65] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” Advances in neural information processing systems, vol. 33, pp.
18 661–18 673, 2020.

[66] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear of
heterogeneity: Classifier calibration for federated learning with non-iid
data,” Advances in Neural Information Processing Systems, vol. 34, pp.
5972–5984, 2021.

[67] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[68] K. Zhou, Y. Yang, T. Hospedales, and T. Xiang, “Learning to generate
novel domains for domain generalization,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XVI 16. Springer, 2020, pp. 561–578.

[69] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for
unsupervised domain adaptation,” in 2012 IEEE conference on computer
vision and pattern recognition. IEEE, 2012, pp. 2066–2073.

[70] X. Peng and K. Saenko, “Synthetic to real adaptation with generative
correlation alignment networks,” in 2018 IEEE Winter Conference on
Applications of Computer Vision (WACV). IEEE, 2018, pp. 1982–1991.

[71] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

17

[72] N. Dvornik, C. Schmid, and J. Mairal, “Selecting relevant features from
a multi-domain representation for few-shot classification,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part X 16. Springer, 2020, pp. 769–786.

[73] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[74] S. Gupta, R. Kumar, K. Lu, B. Moseley, and S. Vassilvitskii, “Local
search methods for k-means with outliers,” Proceedings of the VLDB
Endowment, vol. 10, no. 7, pp. 757–768, 2017.

[75] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in kdd, vol. 96, no. 34, 1996, pp. 226–231.

[76] X. He, Y. Jiang, B. Wang, H. Ji, and Z. Huang, “An image reconstruction
method of capacitively coupled electrical impedance tomography (cceit)
based on dbscan and image fusion,” IEEE Transactions on Instrumen-
tation and Measurement, vol. 70, pp. 1–11, 2021.

[77] J. Hou, H. Gao, and X. Li, “Dsets-dbscan: A parameter-free clustering
algorithm,” IEEE Transactions on Image Processing, vol. 25, no. 7, pp.
3182–3193, 2016.

[78] J. Shen, X. Hao, Z. Liang, Y. Liu, W. Wang, and L. Shao, “Real-
time superpixel segmentation by dbscan clustering algorithm,” IEEE
transactions on image processing, vol. 25, no. 12, pp. 5933–5942, 2016.

[79] E. mehdi Cherrat, R. Alaoui, and H. Bouzahir, “Improving of fingerprint
segmentation images based on k-means and dbscan clustering,” Interna-
tional Journal of Electrical and Computer Engineering (IJECE), vol. 9,
no. 4, pp. 2425–2432, 2019.

[80] A. Harisinghaney, A. Dixit, S. Gupta, and A. Arora, “Text and image
based spam email classification using knn, naı̈ve bayes and reverse
dbscan algorithm,” in 2014 International Conference on Reliability
Optimization and Information Technology (ICROIT). IEEE, 2014, pp.
153–155.

APPENDIX

A. Convergence Analysis
We provide a convergence analysis for MP-FedCL. We add

a subscript to the local objective defined in Eq. 2 indicating the
number of global iterations and give the following assumptions
following the literature [5], [9], [19], [43].
Assumption 1. Convex, ζ-Lipschitz, and L1-smooth.
The local loss objective Li(ω) is convex, ζ-Lipschitz, and L1-
smooth for each client i,

∥Li(ωt1)− Li(ωt2)∥ ≤ ζ∥ωt1 − ωt2∥,
∥∇Li(ωt1)−∇Li(ωt2)∥ ≤ L1∥ωt1 − ωt2∥,

∀t1, t2 > 0, i ∈ {1, 2, . . . , N}.
(14)

Based on Assumption 1, the definition of Li(ω), and triangle
inequality, it is easy to prove that Li(ω) is convex, ζ-Lipschitz,
and L1-smooth.

Assumption 2. δ-local dissimilarity.
Each local loss function Li(ωt) is δ-local dissimilar at ωt, i.e.,

Ei∼Di [∥∇Li(ωt)∥2] ≤ ∥∇L(ωt)∥2δ2,
∀t > 0, i ∈ {1, 2, . . . , N}.

(15)

Ei∼Di [•] denotes the expectation over client i. ∇L(ωt) is
the global gradient at the t-th global round, which can be
defined as ∇L(ωt) =

1
Di

∑
i∈Di
∇Li(ωt). This assumption is

to ensure the bounded similarity between the local model and
the global model, thus ensuring the convergence of the model.

Assumption 3. Bounded Gradient.
The expectation of the stochastic gradient of each client i is
bounded by G, i.e.,

E[∥∇Li(ωt; ξt)∥] ≤ G,∀i ∈ {1, 2, . . . , N}. (16)

Assumption 4. Local embedding L2-Lipschitz continuous.
Each local embedding function is L2-Lipschitz continuous,
that is,

∥fe,i(ωe,t1)− fe,i(ωe,t2)∥ ≤ L2∥ωe,t1 − ωe,t2∥,
∀t1, t2 > 0, i ∈ {1, 2, . . . , N}.

(17)

Assumptions from 1 to 3 are standard, and have been made
in different variants by previous works [5], [9], [19], [43].
Further, the similar assumption defined in Assumption 4 can be
found in their works [19]. The main purpose of this assumption
is to control the changing rate of the local embedding function,
making it easier to study its behaviour and properties.

Lemma 1. Let assumptions 1 and 2 hold. For an arbitrary
client, the expected decrement in the local loss between two
consecutive global rounds satisfies

L(ωt+1) ≤ L(ωt)− (η − L1η
2

2
)δ2∥∇L(ωt))∥2, (18)

where η is the learning rate of SGD.

The proof of Lemma 1 is presented in Appendix-B. Lemma
1 provides a bound on how rapid the decrease of the local
loss for each client can be expected before the multi-prototype
aggregation in each global round.

Lemma 2. Let Assumptions 3 and 4 hold. After the multi-
prototype calculation is completed, the loss function of an
arbitrary client can be bounded as:

E [L(ωt+1+δt)] ≤ L(ωt+1) +
1

N

∑
i∈Di

N∑
i=1

ApL2ηG

τ
vt+1
i , (19)

where p ∈ P (y), Ap is the size of labels distinct from p.

The proof of Lemma 2 is presented in Appendix-C. Lemma
2 provides a bound on how rapid the decrease of the local
loss for each client can be expected after the multi-prototype
aggregation in each global round.

Theorem 1. Let Assumptions 1 to 4 hold. Assume a fixed unit
local updates between two consecutive global communication
rounds. For an arbitrary client, after every communication
round, we have,

E [L(ωt+1+δt)] ≤ L(ωt)− (η − L1η
2

2
)δ2∥∇L(ωt))∥2

+
1

N

∑
i∈Di

N∑
i=1

ApL2ηG

τ
vt+1
i .

(20)

The proof of Theorem 1 is presented in Appendix-D.
Theorem 1 expresses the deviation bound of an arbitrary
client’s local objective after each global round. The expected
decrease in loss per global round can be achieved through the
selection of an appropriate η, thus guaranteeing convergence.

Corollary 1. The loss function L of an arbitrary client
monotonously decreases in every communication round when

η ≤ 2

L1
−

2
∑

i∈Di

∑N
i=1 ApL2Gvt+1

i

L1Nτδ2∥∇L(ωt)∥2
. (21)

Therefore, the loss function reaches convergence.

18

The proof of Corollary 1 is presented in Appendix-D.
Corollary 1 is intended to ensure that the one-round expected
deviation of L is negative, thus achieving convergence of the
loss function, which can guide the selection of an appropriate
learning rate η to ensure convergence.

Theorem 2. Let Assumptions 1 to 4 hold. For an arbitrary
client, MP-FedCL achieves a upper bound after T global
rounds, when

η ≤ 2

L1
−

2
∑

i∈Di

∑N
i=1 ApL2Gvi

L1Nτδ2ϵ
. (22)

The proof of Theorem 2 is presented in Appendix-E. Theo-
rem 2 provides the convergence rate, indicating that achieving
a tighter bound ϵ requires more communication rounds T
and smaller learning rate η, which can guide the selection
of learning rate and communication round.

B. Proof of Lemma 1

Since this lemma is for arbitrary clients, the client notation i
is omitted. Based on the L1-smooth in Assumption 1 of L(ωt)
and applying Taylor expansion [5], we have

L(ωt+1) ≤ L(ωt) + ⟨∇L(ωt), ωt+1 − ωt⟩+
L1

2
∥ωt+1 − ωt∥2,

(A1)

which implies the following quadratic bound,

L(ωt+1)− L(ωt) ≤ ⟨∇L(ωt), ωt+1 − ωt⟩+
L1

2
∥ωt+1 − ωt∥2,

(A2)

Based on the local updates calculated in Eq. 4 and taking
expectations, we have a bounded ∥ωt+1 − ωt∥2 as

∥ωt+1 − ωt∥2 = (Ei∽Di [∥ωt+1 − ωt∥])2

= η2(Ei∽Di [∥∇Li(ωt))∥])2
(a)

≤ η2Ei∽Di

[
∥∇Li(ωt))∥2

]
(b)

≤ η2∥∇L(ωt))∥2δ2, (A3)

where (a) holds because of Cauchy-Schwarz inequality
(E∥X∥)2 ≤ E∥X2∥, and (b) follows from the bounded
dissimilarity Assumption 2.

Further, ⟨∇L(ωt), ωt+1 − ωt⟩ can be reformulated as:

⟨∇L(ωt), ωt+1 − ωt⟩ = −ηEi∽Di [⟨∇L(ωt), ωt+1 − ωt⟩]
(a)
= −ηEi∽Di

[⟨∇L(ωt),∇Li(ωt)⟩]
(b)
≈ −ηEi∽Di

[
∥∇Li(ωt))∥2

]
(c)

≤ −η∥∇L(ωt))∥2δ2, (A4)

where (a) holds because of the definition for SGD optimization
calculated in Eq. 4, (b) follows from ∇L(ωt) is calculated
by aggregating over local updates across distributed clients,
(c) follows from the bounded dissimilarity Assumption 2, and
Ei∼Di

[•] denotes the expectation over client i.

Substituting (A3) and (A4) into (A2), then

L(ωt+1)− L(ωt) ≤
L1η

2

2
∥∇L(ωt)∥2δ2 − η∥∇L(ωt)∥2δ2.

(A5)

Then (A5) can be reformulated into

L(ωt+1) ≤ L(ωt)− (η − L1η
2

2
)δ2∥∇L(ωt))∥2. (A6)

C. Proof of Lemma 2

Let Assumptions 3 and 4 hold, we suppose that t+ 1 + δt
denotes the training process between t + 1 and t + 2 global
round, that is, the multi-prototype calculation process before
the next global iteration starts, meaning that δt ∈ (0, 1). Then,
the local loss function can be reformulated as [19]:

L(ωt+1+δt) = L(ωt+1) + L(ωt+1+δt)− L(ωt+1)

= L(ωt+1) + LR(ωt+1+δt)− LR(ωt+1). (A7)

Let Z = exp(vi •up/τ)/
∑

a∈[C] exp(vi •ua/τ) for short, then

LR(ωt+1+δt)− LR(ωt+1)

=
1

KN |P (y)|
∑
i∈Di

N∑
i=1

K∑
k=1

∑
p∈P (y)

log (Zt+1/Zt+1+δt) . (A8)

Here, we first calculate Zt+1/Zt+1+δt in (A8) for simplicity,
then

Zt+1/Zt+1+δt

=
exp(vt+1

i
• ut+1

p /τ)∑
a∈[C] exp(v

t+1
i

• ut+1
a /τ)

/
exp(vt+1

i
• ut+2

p /τ)∑
a∈[C] exp(v

t+1
i

• ut+2
a /τ)

=
exp(vt+1

i
• ut+1

p /τ)

exp(vt+1
i

• ut+2
p /τ)

·
∑

a∈[C] exp(v
t+1
i

• ut+2
a /τ)∑

a∈[C] exp(v
t+1
i

• ut+1
a /τ)

= exp

(
vt+1
i

• (ut+1
p − ut+2

p)

τ

)
·
∑
a∈[C]

exp(
vt+1
i

•
(
ut+2
a − ut+1

a

)
τ

).

(A9)

Taking log operation of both sides of the above equation, we
have

log (Zt+1/Zt+1+δt)

=
vt+1
i

• (ut+1
p − ut+2

p)

τ
+ log

 ∑
a∈[C]

exp(
vt+1
i

•

(
ut+2
a − ut+1

a

)
τ

)

(a)

≤
vt+1
i

• (ut+1
p − ut+2

p)

τ
+

∑
a∈[C]

vt+1
i

•

(
ut+2
a − ut+1

a

)
τ

=
vt+1
i

τ
•

(ut+1
p − ut+2

p) +
∑

a∈[C]

(
ut+2
a − ut+1

a

)
(b)
=

vt+1
i

τ
•

(ut+1
p − ut+2

p) + (ut+2
p − ut+1

p) +
∑

a∈[C]/p

(
ut+2
a − ut+1

a

)
=

vt+1
i

τ
•

∑
a∈[C]/p

(
ut+2
a − ut+1

a

)
(c)

≤
vt+1
i

τ
•

∑
a∈[C]/p

∥ut+2
a − ut+1

a ∥

(d)
≈

vt+1
i

τ
•

∑
a∈[C]/p

∥vt+2
a − vt+1

a ∥

19

(e)
=

vt+1
i

τ
•

∑
a∈[C]/p

∥fe,i(ωe,t+2;xi,a)− fe,i(ωe,t+1;xi,a)∥

(f)

≤ Ap
vt+1
i

τ
• L2∥ωe,t+2 − ωe,t+1∥

(g)

≤
ApL2

τ
vt+1
i

• ∥ωt+2 − ωt+1∥

(h)

≤
ApL2η

τ
vt+1
i

• ∥∇Li(ωt))∥. (A10)

Substituting (A10) and (A8) into (A7), and taking expectations
of random variable ξ on both sides, then

E [L(ωt+1+δt)] ≤ L(ωt+1) +
1

N

∑
i∈Di

N∑
i=1

ApL2η

τ
vt+1
i

• E [∥∇Li(ωt))∥]

(i)

≤ L(ωt+1) +
1

N

∑
i∈Di

N∑
i=1

ApL2ηG

τ
vt+1
i , (A11)

where (a) follows from Jensen’s Inequality, (b) holds because
a ∈ [C]/p is created to represent the set of labels distinct from
p, (c) holds by applying triangle inequality, (d) holds from the
considering that the equation still approximately holds after
clustering where we consider 1

K

∑K
k=1(·) = 1 for simplicity,

(e) follows from Eq. 6, (f) holds because of Assumption 4
and the size of a ∈ [C]/p is represented as Ap, (g) holds
because the fact that ωe,t is a subset of ωt, (h) follows from the
definition of SGD in Eq. 4, (i) holds because of Assumption.
3.

D. Proof of Theorem 1 and Corollary 1

Taking the expectation of ω on both sides of Lemma 1 and
Lemma 2, and summing them, we have

E [L(ωt+1+δt)] ≤ L(ωt)− (η −
L1η2

2
)δ2∥∇L(ωt))∥2

+
1

N

∑
i∈Di

N∑
i=1

ApL2ηG

τ
vt+1
i . (A12)

Then, in order to ensure −(η − L1η
2

2)δ2∥∇L(ωt))∥2 +
1
N

∑
i∈Di

∑N
i=1

ApL2ηG
τ vt+1

i ≤ 0, we have

η ≤ 2

L1
−

2
∑

i∈Di

∑N
i=1 ApL2Gvt+1

i

L1Nτδ2∥∇L(ωt)∥2
. (A13)

Theorem 1 and Corollary 1 are proved, and the convergence
of L holds.

E. Proof of Theorem 2

Theorem 2 is proven by combing the deviation bound in
Theorem 1 with the result in [[19], Theorem 2], taking the
expectation of the result in Theorem 1 with respect to ω on
both sides, we have,

T−1∑
t=0

(E[L(ωt)]− E[L(ωt+1+δt)]) ≤ ∆, (A14)

where L(ω0) − L(ω∗) = ∆, and L(ω0) denotes the loss at
the first global round, and L(ω∗) represents the optimal local
model parameters that minimize L(ω).

Then, considering a total of T global communication rounds,
we have,

1

T

T−1∑
t=0

E
[
∥∇L(ωt)∥2

]
≤

1
TN

∑
i∈Di

∑N
i=1

∑T−1
t=0

ApL2ηG
τ vt+1

i + ∆
T

(η − L1η2

2)δ2
.

(A15)

Given some ϵ > 0 which indicates that there exists a positive
constant ϵ that is greater than the right side of the inequality
given in (A15). Then

ϵ ≥
1

TN

∑
i∈Di

∑N
i=1

∑T−1
t=0

ApL2ηG
τ vt+1

i + ∆
T

(η − L1η2

2)δ2
. (A16)

Let 1
T

∑T−1
t=0 vt+1

i = vi, that is,

T ≥ N∆

(η − L1η2

2)Nδ2ϵ−
∑

i∈Di

∑N
i=1

ApL2ηG
τ vi

. (A17)

Therefore, after T communication rounds, we have

1

T

T−1∑
t=0

E
[
∥∇L(ωt)∥2

]
≤ ϵ, (A18)

where a smaller ϵ means a tighter upper bound, which requires
more communication rounds T in (A17), when

η ≤ 2

L1
−

2
∑

i∈Di

∑N
i=1 ApL2Gvi

L1Nτδ2ϵ
. (A19)

Finally, Theorem 2 convergence rate is proved.

