
1

Joint Computing, Pushing, and Caching
Optimization for Mobile Edge Computing Networks

via Soft Actor-Critic Learning
Xiangyu Gao, Student Member, IEEE, Yaping Sun, Hao Chen, Xiaodong Xu, Shuguang Cui, Fellow, IEEE

Abstract—Mobile edge computing (MEC) networks bring com-
puting and storage capabilities closer to edge devices, which
reduces latency and improves network performance. However,
to further reduce transmission and computation costs while
satisfying user-perceived quality of experience, a joint opti-
mization in computing, pushing, and caching is needed. In
this paper, we formulate the joint-design problem in MEC
networks as an infinite-horizon discounted-cost Markov decision
process and solve it using a deep reinforcement learning (DRL)-
based framework that enables the dynamic orchestration of
computing, pushing, and caching. Through the deep networks
embedded in the DRL structure, our framework can implicitly
predict user future requests and push or cache the appropriate
content to effectively enhance system performance. One issue
we encountered when considering three functions collectively is
the curse of dimensionality for the action space. To address
it, we relaxed the discrete action space into a continuous
space and then adopted soft actor-critic learning to solve the
optimization problem, followed by utilizing a vector quantization
method to obtain the desired discrete action. Additionally, an
action correction method was proposed to compress the action
space further and accelerate the convergence. Our simulations
under the setting of a general single-user, single-server MEC
network with dynamic transmission link quality demonstrate
that the proposed framework effectively decreases transmission
bandwidth and computing cost by proactively pushing data on
future demand to users and jointly optimizing the three functions.
We also conduct extensive parameter tuning analysis, which
shows that our approach outperforms the baselines under various
parameter settings.

Index Terms—computing, pushing, caching, mobile edge com-
puting network, deep reinforcement learning, soft actor-critic.

I. INTRODUCTION

Recent advancements in smart mobile devices have enabled
various emerging applications such as virtual / augmented real-

X. Gao is with the Department of Electrical and Computer Engineering,
University of Washington, Seattle, WA, USA. (email: xygao@uw.edu)

Y. Sun and H. Chen are with the Department of Broadband Communi-
cation, Peng Cheng Laboratory, Shenzhen 518000, China. (email: {sunyp,
chenh03}@pcl.ac.cn)

X. Xu is with the Beijing University of Posts and Telecommunications,
Beijing 100876, China, and affiliated with the Department of Broadband
Communication, Peng Cheng Laboratory, Shenzhen 518000, China. (email:
xuxiaodong@bupt.edu.cn)

S. Cui is with the School of Science and Engineering (SSE) and the Future
Network of Intelligent Institute (FNii), the Chinese University of Hong Kong
(Shenzhen), Shenzhen 518172, China. S. Cui is also with Shenzhen Research
Institute of Big Data, Shenzhen 518172, China, and affiliated with the
Department of Broadband Communication, Peng Cheng Laboratory, Shenzhen
518000, China (email: shuguangcui@cuhk.edu.cn).

Corresponding Author: Yaping Sun.

ity (VR/AR) [1], online gaming, and autonomous driving [2]–
[4]. These applications require ultra-high communication and
computation requirements, making it challenging for mobile
operators to minimize communication and computation costs
while ensuring the user-perceived quality of experience [5]. In
response to these challenges, the mobile edge computing net-
work has emerged as a promising solution by pushing caching
and computing resources to access points, base stations (BSs),
and mobile devices at the wireless network edge [1].

A. Prior Art: Caching, Pushing, and Computing Design

Caching can significantly improve bandwidth utilization
by placing popular content closer to users for future reuse,
leveraging the high degree of asynchronous content reuse
in mobile traffic [6]. Caching policies can be classified into
two types, static caching and dynamic caching, depending
on whether the cached contents remain unchanged or are
dynamically updated. Static caching policies are generally
determined based on the content popularity distribution, and
the cache state remains unchanged for a relatively long time
[6], [7]. In [7], a collaborative content caching scheme among
base stations (BSs) in cache-enabled multi-cell cooperative
networks is considered to minimize the average request delay,
formulated by the stochastic request traffic modeling. Dynamic
caching policies, on the other hand, involve updating the
content placement from time to time by using instantaneous
user request information, such as the least recently used (LRU)
and least frequently used (LFU) policy [8]. However, since
most caching policies are reactive operations and do not
consider proactive pushing, the system performance can be
further improved.

Joint pushing and caching can indeed improve system
performance by proactively transmitting contents during low
traffic periods to satisfy future user demands. Several studies
have explored this approach, such as [9] which considers a
multi-user wireless network with multicast opportunities to
minimize current and future transmission costs, and [10] which
uses content request delay information to predict a user’s
request time for certain content items and maximize effective
throughput. Additionally, [11] builds on RDI to characterize
asynchronous user requests and proposes a coded joint pushing
and caching method to minimize network traffic load with low
complexity. In [12], a continuous-time optimization problem
is formulated to determine optimal transmission and caching
policies for small cell and Device-to-Device networks with

ar
X

iv
:2

30
9.

15
36

9v
1 

 [
cs

.I
T

] 
 2

7 
Se

p 
20

23



known user demands in advance. However, existing joint
pushing and caching policies only consider content delivery
and have not taken into account the computation part, which
limits their applicability to modern mobile traffic services such
as mobile VR delivery.

To effectively serve modern mobile traffic, the joint design
of caching, computing, and communication (3C) has been
receiving increasing attention. One direction of 3C research
focuses on the joint utilization of cache and computing re-
sources at MEC servers to minimize transmission latency
[13], [14] and energy consumption [15]. Another direction
of 3C research considers the joint utilization of 3C resources
at mobile devices to minimize communication costs in both
single-user scenarios [1], [16] and multiple-user scenarios
[17]. However, these joint 3C designs consider only static
caching, where the cache states remain unchanged and do not
take into account the benefits of pushing. Therefore, the system
performance can be further improved through dynamic caching
policies.

B. DRL-based Systems
Recent advances in deep learning (DL) have enabled the

development of novel approaches for complicated classifica-
tion and detection tasks [18], [19], as well as the solving of
complex optimization problems that traditional methods may
not be effective or efficient at handling [20]–[27]. Among
all popular DL models, reinforcement learning (RL) [28]–
[30] has been widely used in scheduling and optimization
problems, such as transportation and resource allocation [31]–
[33], by learning an optimal policy for the agent to take actions
that maximize a reward signal. By using RL, an agent can
learn from experience and adapt its behavior over time to
achieve the best possible outcomes. For example, in [20],
a hierarchical RL algorithm is proposed to solve the joint
optimization of pushing and caching in a multi-access edge
computing network with multiuser and multicast data. The
objective is to maximize bandwidth utilization and decrease
the total quantity of data transmitted. In [21], the actor-critic
RL framework is utilized to solve the joint optimization of
caching, computation offloading, and radio resource allocation
in the fog-enabled Internet of Things (IoTs), with the aim
of minimizing the average end-to-end delay. In [22], Ning
et al. develop an intent-based traffic control system that
utilizes DRL for the 5G-envisioned Internet of Connected
Vehicles, which can dynamically orchestrate edge comput-
ing and content caching to improve the profits of mobile
network operators. Furthermore, in [23], a distributed DL-
based offloading algorithm is proposed, which uses multiple
parallel deep neural networks to generate offloading decisions
for MEC networks, where multiple wireless devices choose to
offload their computation tasks to an edge server. In [24], [25],
Zhao et al. and Huang et al. devise MEC networks for IoTs
by using DRL frameworks to make the offloading strategy
for offloading some computational tasks from IoT users to
the computational access points or MEC server to reduce
system latency and energy consumption. However, a common
issue encountered when applying DRL-based systems to real-
world optimization problems is the curse of dimensionality,

which cannot be effectively and efficiently solved by general
frameworks and optimization tools, especially for large-scale
networks and tasks.

C. Contributions

To address the issues mentioned earlier, we propose a joint
computing, pushing, and caching policy optimization frame-
work in MEC networks1. Our contributions are as follows:

• We propose a model for the MEC network that computes
its transmission and computation costs while taking into
account computing, pushing, and caching actions. By
representing system requests and their transition prob-
abilities through a first-order F-state Markov chain, we
formulate the joint optimization problem as an infinite-
horizon discounted-cost Markov decision process with the
dual objectives of reducing transmission and computation
costs. Solving this problem requires dynamically optimiz-
ing the computing, pushing, and caching decisions over
time to achieve the best overall performance.

• To address the curse of dimensionality in the joint op-
timization problem, we implemented a continuous-space
DRL approach known as soft actor-critic (SAC) learning
[29]. Unlike classic discrete-space DRL algorithms, such
as deep Q-learning [30], which rely on the Q-networks
with a size linearly increased with the action space, SAC
only requires learning the Gaussian-format Q-functions
[29]. As a result, SAC significantly reduces the number
of parameters that need to be learned in a neural network.
However, this does introduce the challenge of having an
output action in continuous space that cannot be directly
utilized. Therefore, we have designed an action quanti-
zation and correction algorithm that allows us to tailor
SAC to our discrete optimization problem. Furthermore,
the SAC algorithm is known for its stability and ease of
convergence [29].

• We present simulation results with various system param-
eters under the setting of a general single-user, single-
server MEC network to demonstrate the effectiveness of
the proposed SAC algorithm. Our results show that by
considering the joint optimization of computing, pushing,
and caching, the performance of the MEC network can be
significantly improved in terms of lower computation cost
and reduced transmission cost. Moreover, our approach
outperforms baseline methods that consider only a subset
of these functions, demonstrating the benefits of the joint
optimization.

D. Outline

The paper is organized as follows: Section II outlines the
system model for the MEC network. Section III formulates
the joint policy optimization problem. Section IV presents the
utilization of SAC in optimization. Section V covers imple-
mentation details and evaluation results. Section VI concludes
the paper.

1The code and sample data of this framework will be made open-source and
available at https://github.com/Xiangyu-Gao/sac joint compute push cache

https://github.com/Xiangyu-Gao/sac_joint_compute_push_cache


Fig. 1: Illustration of MEC network with single MEC server
and single mobile device. The mobile device is assumed to
be moving at a small speed, such as an iPhone being carried
by an individual. The channel quality for communication
between the mobile device and the MEC server is modeled
as an SNR, which may change over time due to the
movement of the mobile device.

II. SYSTEM MODEL

Without loss of generality, we begin by considering a simple
mobile edge network consisting of one MEC server and one
mobile device, as shown in Fig. 1. The system model can be
extended to the multi-user scenario by summing the objective
functions of multiple users and considering the restrictions
of the total communication and computing resources. The
MEC server has a large cache size, sufficient to proactively
store the input and output data of all tasks requested by the
mobile device. In contrast, the cache size of the mobile device
is limited to a capacity denoted as C (in bits). The mobile
device is equipped with multi-core computing capabilities,
each with a computation frequency fD (in cycles/s), and the
number of computing cores is assumed to be M . The system
operates over an infinite time horizon, with time slotted and
indexed by t = 0, 1, 2, · · · , each with a fixed length of τ
seconds. At the start of each time slot, the mobile device
submits one task request, which is delay-intolerant and must
be served before the end of the slot. The tasks are categorized
as delay-intolerant due to the critical importance of upholding
optimal user experience and ensuring high-quality service for
applications such as AR/VR, real-time communication, and
streaming applications which are notably sensitive to delays.
Due to the mobility of the device, the data transmission rate
for the link between the mobile device and the server may vary
over time. To model this dynamic effect, we adopt the signal-
to-noise ratio (SNR) following the Shannon theory, which
measures the quality of the link. The system is designed to
optimize the joint pushing, caching, and computing functions
to minimize the computation and transmission costs of the
network while ensuring timely and efficient task execution.

A. Task Model

Assuming that the mobile device will request a total of F

tasks, we define the task set F as F ∆
= {1, 2, . . . , f, . . . , F}.

Each task f ∈ F is characterized by a 4-item tuple{
If (in bits), Of (in bits), wf (in cycles/bit), τ (in seconds)

}
.

Specifically, If represents the size of the input data generated
from the Internet which can be cached. Of represents the
size of the output data after the computation is completed2.
wf and τ denote the required computation cycles per bit and
the maximum service latency, respectively.

B. System State

1) Request State: At each time slot t, the mobile device
submits a single task request. The request state at time t is
denoted by A(t) ∈ F representing the requested task, where
A(t) = f signifies that task f in set F is being requested
by the mobile device. The size of F is F . To model the
evolution of requested tasks and their transition probabilities,
we employed a first-order F-state Markov chain [20], [34],
referred to as A(t) : t = 0, 1, 2, · · ·. In this context, each state
within the Markov chain corresponds to a distinct task, and the
total number of tasks is assumed to be F . The choice to use
a first-order Markov chain is rooted in its assumption that the
probability of transitioning to a particular state is solely de-
pendent on the current state. The probability of transitioning to
state j ∈ F at time slot t+1, given that the request state at time
slot t is i ∈ F , is represented by Pr[A(t+ 1) = j|A(t) = i].
It is assumed that A(t) is time-homogeneous. We denote the
transition probability matrix of A(t) with Q ≜

(
qi,j

)
i∈F,j∈F ,

where qi,j ≜ Pr [A(t+ 1) = j|A(t) = i]. Moreover, we focus
our attention on an irreducible Markov chain to reflect the idea
that any state in the system can be reached from any other state
with a non-zero probability. We denote the limiting distribution
of A(t) with p ≜ (pf )f∈F . Here, pf ≜ limt→∞ Pr[A(t) = f ],
and it should be noted that pf =

∑
i∈F piqi,f for all f ∈ F .

2) Cache State: Let SI
f (t) ∈ {0, 1} denote the indicator of

the cache state of the input data for task f stored in the mobile
device. Here, SI

f (t) = 1 means that the input data for task f is
cached in the mobile device, while SI

f (t) = 0 implies that the
input data is not cached. Similarly, let SO

f (t) ∈ {0, 1} denote
the indicator of the cache state of the output data for task f
stored in the mobile device, where SO

f (t) = 1 represents that
the output data for task f is cached in the mobile device, and
SO
f (t) = 0 implies that the output data is not cached. The

cache size of the mobile device is denoted by C (in bits). The
cache size constraint is given by

F∑
f=1

IfS
I
f (t) +OfS

O
f (t) ≤ C (1)

which enforces that the sum of the sizes of input and output
data cached for all tasks in the mobile device cannot exceed
the cache size.

2In many systems, the actual output size might not be known beforehand,
especially for computational tasks that involve dynamic data processing.
It’s possible that we could use historical data or estimations based on the
characteristics of the input data and the computation process.



We define the cache state of the mobile device at time slot
t, denoted by S(t) ≜ (SI

f (t), S
O
f (t))f∈F ∈ S, where S ≜

{(SI
f , S

O
f )f∈F ∈ {0, 1}F ×{0, 1}F :

∑
f∈F IfS

I
f +OfS

O
f ≤

C} represents the cache state space of the mobile device. Here,
Nmin ≜ C

maxf∈F If ,Of
and Nmax ≜ C

minf∈F If ,Of
represent the

lower and upper bounds, respectively, on the cardinality of S.
The cardinality of S is bounded by

(
F

Nmin

)
and

(
F

Nmax

)
from

below and above, respectively.
3) System State: At time slot t, the system state consists of

both system request state and system cache state, represented
by X(t) ≜ (A(t),S(t)) ∈ F ×S , where F ×S represents the
system state space.

C. System Action

1) Reactive Computation Action: At each time slot t, the
reactive transmission bandwidth cost and the reactive computa-
tion energy cost are denoted as BR(t) and ER(t), respectively.
The task request A(t) is served based on the current system
state X(t) = (A(t),S(t)) as follows:

• If the cache state SO
A(t)(t) is equal to 1, it indicates that

the output of task A(t) is already cached locally, hence
it can be retrieved without the need for any transmission
or computation. As a result, the delay is negligible, and
both the reactive computation energy and transmission
cost become zero.

• Assuming that SI
A(t)(t) = 1 and SO

A(t)(t) = 0, it
is possible to compute the requested task A(t) di-
rectly using the locally cached input data. Let us define
cR,f (t) ∈ {1, · · · ,M} as the number of computation
cores allocated for reactively processing task f at time
slot t on the mobile device. Consequently, we can set
cR,f (t) = 0 for all f ∈ F\A(t). To ensure that the
requested task A(t) is completed within τ , we must have
IA(t)wA(t)

τ ≤ cR,A(t)(t)fD.3 Here IA(t) and wA(t) denote
the input size and the computational workload of task
A(t), respectively. We can calculate the energy consumed
for computing one cycle with frequency cR,f (t)fD on the
mobile device as µc2R,f (t)f

2
D, where µ is the effective

switched capacitance related to the chip architecture
indicating the power efficiency of the CPU. Therefore,
the reactive computation energy cost ER(t) is given by
µc2R,A(t)(t)f

2
DIA(t)wA(t), and the reactive transmission

cost BR(t) is zero.
• If SI

A(t)(t) = 0 and SO
A(t)(t) = 0, the mobile

device must download the input data of task A(t)
from the MEC server before computing it locally.
Let SNR(t) be the SNR value of the data trans-
mission link at time slot t. The required latency
can be expressed as IA(t)

BR(t) log2 (1+SNR(t)) +
IA(t)wA(t)

cR,A(t)(t)fD
,

where BR(t) log2 (1 + SNR(t)) is the channel capac-
ity given by Shannon theory. To satisfy the latency
constraint, i.e., IA(t)

BR(t) log2 (1+SNR(t)) +
IA(t)wA(t)

cR,A(t)(t)fD
≤

3We assume that
Ifwf

τ
1(A(t) = f) ≤ MfD , for feasibility, where

1(A(t) = f) is the indicator function that is equal to 1 if A(t) = f , and
0 otherwise, and M is the maximum number of computation cores. This
assumption holds for all f ∈ F .

τ , the minimum reactive transmission cost BR(t)

is given by IA(t)(
τ−

IA(t)wA(t)
cR,A(t)(t)fD

)
log2 (1+SNR(t))

.4 The re-

active computation energy cost ER(t) is given by
µc2R,A(t)(t)f

2
DIA(t)wA(t).

In summary, at time slot t, the reactive computation action
cR,f (t) should satisfy

cR,f (t) ≤ 1(A(t) = f)
(
1− SO

f (t)
)
M, ∀f ∈ F , (2)

and the reactive transmission cost BR(t) is given by

BR(t) =
(
1− SI

A(t)(t)
)(

1− SO
A(t)(t)

)
(3)

×
IA(t)(

τ − IA(t)wA(t)

cR,A(t)(t)fD

)
log2 (1 + SNR(t))

, (4)

and the reactive computation cost ER(t) is given by

ER(t) =
(
1− SO

A(t)(t)
)
µc2R,A(t)(t)f

2
DIA(t)wA(t). (5)

Let cR ≜ (cR,f )f∈F ∈ ΠR
C(X) denote the reac-

tive computation action of the system, where ΠR
C(X) ≜{

(cR,f )f∈F ∈ {0, 1, · · · ,M}F : (2)
}

represents the decision
space for reactive computation of the system under state X.
It can be observed from Eq. (2) that the size of the reactive
computation action space is M + 1.

2) Proactive Transmission or Pushing Action: Let bf (t) ∈
{0, 1} denote the binary decision variable for task f ∈ F ,
where bf (t) = 1 indicates that the remote input data of
task f is pushed to the mobile device, and bf (t) = 0
otherwise. We assume that the pushed data is transmitted to
the mobile device by the end of the time slot. To ensure com-
pliance with the latency constraint, we enforce

∑F
f=1 If bf (t)

τ ≤
BP (t) log2 (1 + SNR(t)), where BP (t) denotes the proactive
transmission bandwidth cost. Thus, the minimum proactive
transmission cost can be expressed as:

BP (t) =

∑F
f=1 Ifbf (t)

τ log2 (1 + SNR(t))
. (6)

In summary, the system pushing action under system state
b ≜ (bf )f∈F ∈ {0, 1}

F . The size of the system pushing action
space under system state X is 2F

3) Cache Update Action: The cache state of each task f ∈
F is updated according to

SI
f (t+ 1) = SI

f (t) + ∆sIf (t), (7)

SO
f (t+ 1) = SO

f (t) + ∆sOf (t), (8)

4The steps of deriving BR(t) from the preceding latency constraint
are as follows: First, we have IA(t)/

(
BR (t) log2 (1 + SNR(t))

)
≤

τ − IA(t)wA(t)/
(
cR,A(t)fD

)
. Then, we can get IA(t)/B

R (t) ≤(
τ − IA(t)wA(t)/

(
cR,A(t)fD

))
log2 (1 + SNR(t)). Finally, we can get

BR (t) ≥ IA(t)/
((
τ − IA(t)wA(t)/

(
cR,A(t)fD

))
log2 (1 + SNR(t))

)
.



where ∆sIf (t) ∈ {−1, 0, 1} and ∆sOf (t) ∈ {−1, 0, 1} denote
the update action for the cache state of the input and output
data of task f , respectively. Then, we have ∀f ∈ F

− SI
f (t) ≤ ∆sIf (t) ≤ min

{
bf (t) + cR,f (t), 1− SI

f (t)
}

(9)

− SO
f (t) ≤ ∆sOf (t) ≤ min

{
cR,f (t), 1− SO

f (t)
}
, (10)∑F

f=1 If

(
SI
f (t) + ∆sIf (t)

)
+Of

(
SO
f (t) + ∆sOf (t)

)
≤ C, (11)

where the left-hand side of Eq. (9) specifies that the removal
of the input of task f from the mobile device is only possible
if it has been previously cached. On the other hand, the right-
hand side of Eq. (9) indicates that the caching of the input of
task f into the mobile device is only allowed if it has not been
cached before and if it is either proactively transmitted from
the MEC server or reactively transmitted, i.e., if bf (t) = 1
or cR,f (t) > 0. Similarly, the left-hand side of Eq. (10) states
that the output of task f can only be removed from the mobile
device if it has been previously cached. On the other hand, the
right-hand side of Eq. (10) specifies that the caching of the
output of task f into the mobile device is only allowed if it
has not been cached before and if it is reactively computed
at the mobile device, i.e., if cR,f (t) > 0. Finally, Eq. (11)
requires that the updated cache state complies with the cache
size constraint.

In summary, let ∆s ≜
(
∆sIf ,∆sOf

)
f ∈ F ∈ Π∆s(X)

denote the system cache update action, where Π∆s(X) ≜{(
∆sIf ,∆sOf

)
f∈F
∈{−1, 0, 1}F×{−1, 0, 1}F : (9), (10), (11)

}
.

Here, Π∆s(X) represents the system cache update action
space for the given system state X, and it includes tuples of
∆sIf and ∆sOf for each task f ∈ F , with values in {−1, 0, 1}
indicating whether to evict, retain, or cache a task’s input and
output data.

4) System Action: The system action at each time slot is
a combination of three distinct actions: reactive computation,
pushing, and cache update. This combination is represented as
(cR,b,∆s) ∈ Π(X), where Π(X) is the system action space
under the current system state X, Π(X) ≜ ΠR

C(X)×{0, 1}F ×
Π∆s(X).

D. System Cost

At each time slot t, the overall system cost is a combination
of two components, namely the transmission bandwidth cost
and the computation energy cost. The transmission bandwidth
cost consists of both proactive and reactive transmission costs
and is given by

B(t) = BR(t) +BP (t), (12)

where BR(t) is given in Eq. (3) and BP (t) is given in Eq. (6).
he reactive computation cost contributes to the computation
energy cost only and is given by

E(t) = ER(t), (13)

where ER(t) is given in Eq. (5).
To strike a balance between communication and compu-

tation cost, the system cost at time slot t is computed as the
weighted sum of transmission bandwidth cost and computation

energy cost, i.e., B(t) + λE(t), where λ is a non-negative
weighting factor.

III. PROBLEM FORMULATION

Given an observed system state X, the joint reactive comput-
ing, transmission, and caching action, denoted as (cR,b,∆s),
is determined according to a policy defined as below.

Definition 1 (Stationary Joint Computing, Pushing and
Caching Policy). A stationary joint computing, pushing, and
caching policy π is a mapping from system state X to system
action (cR, b,∆s), i.e., (cR, b,∆s) = π(X) ∈ Π(X).

From properties of {A(t)} and {S(t)}, the induced system
state process {X(t)} under policy π is a controlled Markov
chain. The expected total discounted cost ϕ(π) is given as:

ϕ(π) ≜ lim sup
T→∞

T−1∑
t=0

γtE [B(t) + λE(t)] , (14)

where T is the length of the request process, γ is the discount
factor, B(t), E(t) are the transmission bandwidth cost and
computation energy cost at time t, and λ is the weight
balancing two costs.

In this paper, we aim to obtain optimal joint computing,
pushing, and caching policy to minimize the sum of infinite
horizon discounted system cost, i.e., minimize both the trans-
mission and computation cost, as follows:

Problem 1 (Joint Computing, Pushing and Caching Policy
Optimization).

ϕ∗ ≜min
π

ϕ(π)

s.t. π(X) ∈ Π(X), ∀X ∈ F × S.

IV. SOFT ACTOR-CRITIC LEARNING

A. SAC System State and Action

The system state x of SAC is designed the match the
system state X in the formulated problem, such that x = X =
(A(t),S(t)), with a vector size of 2F + 1.

The SAC algorithm is designed to solve continuous-action
problems, whereas the required system action (cR,b,∆s)
in the formulated problem is discrete. To address this
issue, we define the system action of the SAC as
the continuous version of the formulated system ac-
tion space. This continuous version is denoted as a =(
c̄R, b̄,∆s̄

)
∈ Π̄(X) ≜ Π̄R

C(X) × [0, 1]F × Π̄∆s(X). Here,
Π̄R

C(X) ≜
{
(cR,f )f∈F ∈ [0,M ]

F
: (2)

}
, and Π̄∆s(X) ≜{(

∆sIf ,∆sOf

)
f∈F
∈ [−1, 1]F × [−1, 1]F : (9), (10), (11)

}
.

As c̄R ≜ {(c̄R,f )f∈F} must always equal zero for f ∈
F\A(t), the action space of SAC can be simplified by disre-
garding the computing cores for non-requested tasks. We can
obtain the simplified form of action a as a =

(
c̄A(t), b̄,∆s̄

)
,

with a vector size of 3F + 1.



B. SAC Learning

SAC is an off-policy deep reinforcement learning method
that maintains the advantages of entropy maximization and sta-
bility while offering sample-efficient learning [29]. It operates
on an actor-critic framework where the actor is responsible for
maximizing expected reward while simultaneously maximiz-
ing entropy. The critic evaluates the effectiveness of the policy
being followed.

A general form of maximum-entropy RL is given by:

J(π) =

T∑
t=0

E(xt,at)∼ρπ
[r (xt,at) + αH (π (· | xt))] (15)

where the temperature parameter α determines the relative im-
portance of the entropy term against the reward r, and the en-
tropy term is given by H (π (· | xt)) = Eat

[− log π (at | xt)].
The SAC algorithm is a policy iteration approach designed

to solve the optimization problem in Eq. (15) [29]. It comprises
two essential components: soft Q-function Qθ (xt,at), and
policy πϕ (at | xt). To deal with the large continuous domains,
neural networks are utilized to approximate these components,
with the network parameters denoted by θ and ϕ. For example,
the policy is modeled as a Gaussian distribution with a
fully connected network providing the mean and covariance
value, and the Q-function is also approximated using a fully
connected neural network. Following [29], the update rules for
θ and ϕ are provided below.

The soft Q-function parameters can be trained to minimize
the soft Bellman residual

JQ(θ) = E(xt,at)∼D

[1
2

(
Qθ (xt,at)−

(
r (xt,at)+

γExt+1∼p [Vθ̄ (xt+1)]
))2]

,
(16)

where D is the distribution of previously sampled states and
actions, p is the transition probability between states, and the
value function Vθ̄(xt) is implicitly parameterized through the
soft Q-function parameters as follows

Vθ̄ (xt) = Eat∼π [Qθ̄ (xt,at)− α log π (at | xt)] (17)

The update makes use of a target soft Q-function Qθ̄ with
parameters θ̄ obtained as an exponentially moving average of
the soft Q-function weights θ, which helps stabilize training.
The soft Bellman residual JQ(θ) in Eq. (16) can be optimized
with stochastic gradients

∇̂θJQ(θ) =∇θQθ (at,xt)
(
Qθ (xt,at)−

(
r (xt,at)+

γ (Qθ̄ (xt+1,at+1)− α log (πϕ (at+1 | xt+1)))
))

.

(18)
The policy parameters ϕ can be learned by directly mini-

mizing the expected KL divergence in

Jπ(ϕ) = Ext∼D

[
Eat∼πϕ

[
α log (πϕ (at | xt))−

Qθ (xt,at)
]] (19)

A neural network transformation is used to parameterize the
policy as at = fϕ (ϵt;xt), where ϵt is an input noise vector

sampled from a Gaussian distribution. The objective stated by
Eq. (19) can be rewritten as:

Jπ(ϕ) = Ext∼D,ϵt∼N
[
α log πϕ (fϕ (ϵt;xt) | xt)

−Qθ (xt, fϕ (ϵt;xt))
]
,

(20)

where πϕ is defined implicitly in terms of fϕ. The gradient of
Eq. (20) is approximated with

∇̂ϕJπ(ϕ) =∇ϕα log (πϕ (at | xt)) +
(
∇at

α log (πϕ (at | xt))

−∇atQ (xt,at)
)
∇ϕfϕ (ϵt;xt) ,

(21)
where at is evaluated using fϕ (ϵt;xt).
Remark: In the maximum entropy framework, the soft policy
iteration that alternates between the policy evaluation Eq. (16)
and the policy improvement Eq. (19) converges to the optimal
policy. Proof in [29].

C. Action Quantization and Correction

In the context of SAC learning, the output at any given time
t corresponds to the SAC action at, which seeks to maximize
the policy value πϕ (at | xt) with respect to the current SAC
state xt. In order to assess the reward and update the cache, it
is necessary to discretize the continuous SAC action at and
obtain a discrete action

(
cA(t),b,∆s

)
. To achieve this goal,

a simple action quantization approach was implemented that
relies on thresholding and integer projection.

Action quantization: Let us consider an element η̄ in the
SAC action a and its corresponding quantized version η with
the selection set Sη . To obtain η from η̄, we adopt a uniform
thresholding method for integer projection. Specifically, we
use the following equation:

η = minSη +(η̄−minSη)mod
maxSη −minSη

maxSη −minSη + 1
(22)

As an example, consider the push action bf (t) ∈ Sbf =
{0, 1}, we can determine its quantized value bf (t) = b̄f (t)
mod 0.5 using Eq. (22).

Action correction: The valid action space of the system is
highly constrained due to the limitations imposed by Eq. (2),
(3), (9), (10), and (11), resulting in a sparsely-spanning space
with a cardinality of (M + 1) × 2F × 32F . Consequently,
even with techniques such as penalty reward, it becomes
challenging for the SAC algorithm to identify which actions
are valid in this vast space. Therefore, the post-quantization
action

(
cA(t),b,∆s

)
obtained from SAC is often invalid. In

order to address this issue, we propose Rules 1, 5, and 7 to
ensure that the output action of SAC is valid, while satisfying
the constraints outlined in Section II-C. Additionally, we
introduce Rules 2, 3, 4, and 6 to improve the training process
and enhance the system’s overall performance by further
compressing the action space, reducing unnecessary costs, and
minimizing waste.

• Rule 1: When SO
A(t) equals 0, the system checks if

the suggested number of computation cores, denoted as
cA(t), is less than the minimum workable value given by
⌈IA(t)wA(t)/(τfD)⌉ where ⌈·⌉ represents rounding up to
the nearest integer. If this is the case, cA(t) is updated to
⌈IA(t)wA(t)/(τfD)⌉. On the other hand, if SO

A(t) equals



1, cA(t) is set to 0. These rules are designed to fulfill
the service latency constraint and reduce unnecessary
computation.

• Rule 2: When SI
f + SO

f ≥ 1, we set bf = 0. This rule
indicates that there is no need for proactive pushing if
any data of a task is already cached.

• Rule 3: To minimize the cost of pushing data to the mo-
bile device, we ensure that at most one task is proactively
transmitted, and this task must have the largest b̄f value
among all un-pushed tasks. The selected task will have a
bf value of 1, while all other tasks will have a bf value of
0. This approach is adopted to avoid unnecessary pushing
costs, as the mobile device is only capable of processing
one task request per time slot.

• Rule 4: If bf = 1, we set ∆sIf = 1, indicating that the
data being proactively pushed needs to be cached.

• Rule 5: If the sum of cache sizes given by Eq. (11)
exceeds the cache capacity, we drop the input or output
cache depending on the ascending order of their corre-
sponding s̄ values until the cache capacity is satisfied.

• Rule 6: If the sum of the caches given by Eq. (11) is
less than the capacity, we attempt to add reactive input
or output cache based on the decreasing order of the
continuous variables ∆s̄IA(t) and ∆s̄OA(t).

• Rule 7: The cache action ∆s should be clipped according
to the minimum and maximum limits specified in Eq. (9)
and Eq. (10).

D. Reward Design

The reward function r(x,a) for the SAC state x and action
a is defined as a function of the resulting bandwidth and
computation cost. Specifically, it is given by

r(x,a) = −κ(B(t) + λE(t)) (23)

where κ is a normalization coefficient that is set to 10−6 in
this paper.

The complete SAC learning algorithm is presented in Al-
gorithm 1. The step sizes for stochastic gradient descent, λQ,
and λπ are set to 1× 10−4. The target smoothing coefficient,
ξ, is chosen to be 0.005.

V. IMPLEMENTATION AND EVALUATION

A. Baselines

The proposed system is built on the proactive transmis-
sion and dynamic-computing-frequency reactive service with
cache, referred to as PTDFC. For comparison, we have
selected the following baselines:

• Most-recently-used proactive transmission and least-
recently-used cache replacement (MRU-LRU): This is
a heuristic algorithm [8], [9], where at each time slot, the
requested task is reactively served, and the input data of
the most-recently-used task is proactively cached. When
the cache is full, the input data cache of the least-recently-
used task is replaced. We choose to cache only the input
data, excluding the output data (post-calculation), due
to the common scenario where output data tends to be

Algorithm 1 SAC Learning for Our Problem

Initialize parameters θ, θ̄, ϕ for networks Qθ, Qθ̄, πϕ.
Initialize learning rate λQ, λπ , and weight ξ.
for each iteration do

for each environment step do
at ∼ πϕ (at | xt)
xt+1 ∼ p (xt+1 | xt,at)
at quantization & correction, r (xt,at) calculation
D ← D ∪ {(xt,at, r (xt,at) ,xt+1)}

end for
for each gradient step do

θi ← θi − λQ∇̂θiJQ (θi) for i ∈ {1, 2}
ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
θ̄i ← ξθi + (1− ξ)θ̄i for i ∈ {1, 2}

end for
end for

larger in size than input data. This size difference makes
caching output data less efficient in the heuristic design
for the purpose of reducing overall costs. The number of
computing cores being used is fixed at 0.75M .

• Most-frequently-used proactive transmission and least-
frequently-used cache replacement (MFU-LFU): This
algorithm is similar to the MRU-LRU algorithm, except
that the most/least recently used task is replaced with the
most/least frequently used task [8], [9].

• Dynamic-computing-frequency reactive service with no
cache (DFNC): This algorithm provides reactive service
to the requested task, where the mobile device first
downloads the input data from the MEC server and then
computes it to obtain the output data.

• Dynamic-computing-frequency reactive service with
cache (DFC): This algorithm provides reactive service to
the requested task, with the option of caching the input
and output data into the limited capacity.

It is important to note that the DFC, DFNC, and PTDFC
algorithms are all implemented with the SAC algorithm, and
as a result, we refer to them as ‘SAC-enabled algorithms’ in
the following analysis.

B. Data Simulation

In this study, the training and testing data were generated
through a simulation process involving the creation of a
Markov chain from a set of tasks F . The transit probability
of a task i to another randomly selected task j ∈ F\i was es-
tablished as the maximum transition probability, pi,j = pmax.
For other tasks k ∈ F\j, the probability pi,k was calculated as
(1−pi,j)

|p′
i,k|∑

f∈F\j |p′
i,f |

, where p′i,k or p′i,f were randomly sam-
pled from a uniform distribution. The resulting Markov chain
represented the request popularity and transition preferences of
F tasks. Subsequently, 106 requested tasks were sampled using
a frame-by-frame method. To account for the slow movement
of mobile devices, the SNR of the communication channel
was dynamically changed every 300 epochs, with four possible
values: 0.5 dB, 1 dB, 2 dB, and 3 dB. The transition between



different SNRs was randomized with equal probabilities. The
simulation was conducted using default configurations, which
included M = 8, F = 4, a maximum transition probability
of 0.7, λ = 1, If around 16000 bits with random offset, Of

around 30000 bits with random offset, w = 800 cycles/bit,
τ = 0.02 seconds, fD = 1.7 × 108 cycles/s, µ = 10−19, and
C = 40000 bits.

C. Implementation

For the purposes of training and stabilization, the SAC
action at and system state xt are normalized to fall within
the range of [−1, 1]. Implementation of the system is accom-
plished through the use of Python and PyTorch. Training and
testing processes are executed on a computer with a TITAN
RTX GPU, utilizing a batch size of 256, a discount factor
of γ = 0.99, automatic entropy temperature α tuning [29], a
hidden-layer size of 256, one model update per step, one target
update per 1000 steps, and a replay buffer size of 1×107. The
testing process is executed 10 epochs after every 10 training
epochs, and the training and testing processes are halted when
the reward and loss have converged.

Fig. 2: Training reward of PTDFC, DFC, DFNC, MFU-LFU,
MRU-LRU algorithms when the SNR values are dynamically
changed every 300 epochs.

D. Convergence Analysis

We present the training convergence results of three SAC-
based algorithms, PTDFC, DFC, DFNC, and two heuristic
algorithms, MFU-LFU and MRU-LRU in Fig. 2. The curves
plot the reward versus epochs under different SNR conditions
for these algorithms. It is important to note that the MFU-
LFU and MRU-LRU algorithms are heuristic in nature, lacking
parameters for training. Despite this, we have included their
reward outcomes in Fig. 2, aiming to provide a more compre-
hensive perspective on their relative performance compared
to others. During the first 300 epochs, with SNR = 1dB,
the PTDFC, DFC, and DFNC algorithms commence with
neural network parameters initialized randomly and achieve
convergence in a substantial number of epochs (250, 135,
and 20 epochs, respectively). PTDFC requires more training
epochs to converge than DFC and DFNC simply because of
its larger action space. Starting from epoch 300, the SNR
value is increased to 2 dB, and the three SAC-based algorithms
converge again in less than 13 epochs using the pre-trained
model from the previous epochs. This finding demonstrates
the remarkable generalization ability of SAC-based algorithms

Fig. 3: The system performance for the proposed PTDFC
algorithm and the baselines with the configuration stated in
Section. V-B and V-C. (left) Transmission cost vs. SNR.
(right) Computation cost vs. SNR.

to handle SNR change cases. These SAC-based algorithms
can get fine-tuned and converged again within a few epochs
(around 10). The quick convergence ability is also validated
at epochs 600 and 900 when the SNR changes to 0.5 dB and
3 dB, respectively. We also noticed that there are significant
discrepancies in the convergence time between the two SNR =
1dB stages. In the later SNR = 1dB stage (epoch 1200-1500),
the PTDFC achieves convergence in approximately 10 epochs
after the SNR transition. This can be attributed to the solid
foundation of well-trained parameters established during the
preceding SNR = 3dB stage. This trend reaffirms the system’s
adeptness in rapidly adapting to environmental SNR changes.

The optimization problem at hand involves both linear and
nonlinear objective functions, constraints, and involves binary
variables. Consequently, it is classified as an Integer Nonlinear
Programming (INLP) problem and is notoriously difficult to
solve. Traditional optimization algorithms for INLP (such as
Branch and Bound) are not suitable for this problem due
to their exponential convergence time and the assumption
of global knowledge of the environment and its dynamics.
Moreover, in the event of a change in the environment, such
as a variation in channel SNR, it takes a considerable amount
of time to solve the problem and achieve convergence again.
Classical machine learning algorithms, exceptionally standard
reinforcement learning, also face challenges in scaling with the
large dimension of the variable set, requiring an excessively
large network size and convergence time to solve the problem.

E. Numerical Results

The system performance of the proposed PTDFC algorithm
and the baselines (DFC, DFNC, MRU-LRU, MFU-LFU) in
terms of transmission bandwidth cost and computation cost
for different channel SNRs is presented in Fig. 3. The results
show that the PTDFC algorithm achieves the lowest cost for
transmission bandwidth for various channel SNRs, followed
by the DFC, MFU-LFU, DFNC, and MRU-LRU algorithms.
In terms of computation cost, the top-performing algorithms
are PTDFC, MFU-LFU/MRU-LRU, DFC, and DFNC, respec-
tively. Overall, the PTDFC algorithm achieves a reduction of
around 5 × 105 bits/s in transmission cost and 3 × 105 J in



Fig. 4: A qualitative example for the joint optimization of 4 tasks using SAC-based PTDFC algorithm. (left) Visualization of
the Markov transition probability among 4 tasks. (right) The requested task, cache state, action, and reward for the first four
time slots of the proposed SAC system. If no action is mentioned, it defaults to no change with a value of 0.

computation cost for every SNR condition, compared to the
second-best algorithm. It is also observed that all algorithms
take less transmission bandwidth for the requested task as the
SNR value increases, indicating that a higher SNR results in
better channel quality.

F. Qualitative Results Analysis

Fig. 4 provides an example of the status and action of four
requests when deploying the PTDFC algorithm. The figure
visualizes the requested task, cache state, action, and reward
of each time slot to show the joint computing, pushing, and
caching optimization of the four tasks. In this example, at t0,
the mobile device requests task 1 from the MEC server, which
has empty cache content. The system then makes reactive
transmission and computing for task 1 with five cores and
pushes the input data of unrequested task 3, followed by
caching the input data of tasks 1 and 3. At t1, the requested
task is task 3, and the system makes the reactive computing
of the cached task 3 with four cores and pushes the input data
of task 4. Then, the system replaces the cache of task 1 with
the input data for task 4. Similarly, at t2, the requested task
is task 4, and the system makes the reactive computing of the
cached task 4 with five cores and pushes the input data of task
2. Finally, the system removes the cache for task 3 and caches
the input data for task 2. The example illustrates that the
SAC-based PTDFC system is capable of predicting the user’s
future requests using deep networks and pushing or caching
the appropriate content to enhance system performance.

G. Tuning Analysis

In this section, we investigate the impact of several crucial
parameters on the performance of the proposed PTDFC algo-
rithm. These parameters include the cache size (C), number
of computing cores (M ), number of tasks (F ), maximum
transition probabilities, base computing frequency (fD), task
input size (If ), task output size (Of ), tolerable service delays
(τ ), and cost weights (λ). To analyze the effects of each
parameter, we hold the other parameters constant and observe
the resulting changes in performance. The default values for
these parameters are specified in Section V-B, and we maintain
a fixed channel SNR value of 1 to isolate the effects of
parameter tuning.

20000 30000 40000 50000
C (bits)

0.5

1

1.5

2

2.5

tr
an

sm
is

si
on

 c
os

t (
bi

t/
s)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

20000 30000 40000 50000
C (bits)

0.8

1

1.2

1.4

1.6

1.8

co
m

pu
ta

ti
on

co
st

 (
J)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

Fig. 5: Impact of varying the cache size C when using the
default configuration and fixed SNR. (left) Transmission cost
vs. C. (right) Computation cost vs. C.

1) Different Cache Size C: In Fig. 5, we have presented the
averaged transmission and computation costs of three SAC-
enabled algorithms, DFNC, DFC, and PTDFC, as well as
two heuristic algorithms, MRU-LRU and MFU-LFU, under
different cache sizes C. It is worth noting that the DFNC
algorithm is not affected by changes in cache size, as it
only provides reactive service without caching. The other
algorithms show a decrease in transmission costs as the cache
size is increased, due to the availability of more locally cached
input data. Moreover, our proposed PTDFC algorithm consis-
tently achieves lower transmission and computation costs than
the other algorithms, thanks to its ability to dynamically adjust
the cache via proactive transmission. With a very large cache
size, (e.g., C = 50000 bits), the performance of PTDFC and
DFC is similar because the cache is large enough to store
all input data and there is no need for a proactive transmis-
sion. Furthermore, we have observed a consistent overlapping
trend in the computation costs of MRU-LRU and MFU-LFU
across various configurations. This overlapping behavior can
be attributed to our design choice in both algorithms, wherein
solely the input data is cached. Consequently, the performance
of MRU-LRU and MFU-LFU in terms of computation cost
tends to align, as governed by Eq. (5), when SO

A(t)(t) = 0.
2) Different Number of Computation Cores M : Fig. 6

illustrates the performance of five algorithms, namely DFNC,
DFC, PTDFC, MRU-LRU, and MFU-LFU, under different



5 6 7 8
M

0

2

4

6

8

10

12

tr
an

sm
is

si
on

 c
os

t (
bi

t/
s)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

5 6 7 8
M

0.8

1

1.2

1.4

1.6

1.8

co
m

pu
ta

ti
on

co
st

 (
J)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

Fig. 6: Impact of varying the number of computing cores M
when using the default configuration and fixed SNR. (left)
Transmission cost vs. M . (right) Computation cost vs. M .

numbers of computation cores M . As the number of com-
puting cores increases, the transmission cost of all five al-
gorithms decreases, while their computation cost increases
correspondingly. This is because all the reactive tasks are time-
sensitive, and the system tends to utilize more computing cores
for computing to reduce the computing time and leave more
time for reactive transmission, which would effectively reduce
the transmission cost and total cost. The proposed PTDFC
algorithm consistently achieves a low transmission cost and
computation cost by selecting an appropriate computing core
number for the required task to achieve a better reward or a
smaller cost. In contrast, the heuristic algorithms MRU-LRU
and MFU-LFU have high transmission costs for small M and
significant computing costs for large M , as their computing
frequency is linearly adjusted with the increase of computing
cores.

3) Different Number of Tasks F : In Fig. 7, we present
the performance of five algorithms under various numbers of
tasks in the request set. As the number of tasks increases, we
observe a slight increase in the transmission and computation
costs for the DFC and PTDFC algorithms, possibly because
only a small portion of all tasks can be cached or proac-
tively transmitted, while the rest has to be reactively served,
leading to higher costs. However, it is worth noting that the
proposed PTDFC algorithm consistently outperforms all other
algorithms across different numbers of tasks. This is due to its
ability to dynamically select the best task in the task set for
caching and proactive transmission, thereby minimizing costs
associated with reactive service.

4) Different Maximum Transition Probabilities: We investi-
gated the impact of the maximum transition probabilities pmax

on the Markov chain simulation, which is a crucial parameter.
Accordingly, we conducted experiments by varying the pmax

value and evaluated the performance of five algorithms under
different pmax values. The results, shown in Fig. 8, indicate
that a higher pmax value leads to an easier prediction of
future service requests based on the current request, resulting
in the corresponding proactive push operation. Consequently,
the PTDFC algorithm, equipped with proactive transmission,
demonstrated significant reductions in transmission and com-
putation costs compared to the other algorithms, which do

4 6 8 10
F

1.4

1.6

1.8

2

2.2

2.4

tr
an

sm
is

si
on

 c
os

t (
bi

t/
s)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

4 6 8 10
F

1

1.2

1.4

1.6

1.8

co
m

pu
ta

ti
on

co
st

 (
J)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

Fig. 7: Impact of varying the task number F when using the
default configuration and fixed SNR. (left) Transmission cost
vs. F . (right) Computation cost vs. F .

0.5 0.6 0.7 0.8

Maximum transition probability

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

tr
an

sm
is

si
on

 c
os

t 
(b

it
/s

)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

0.5 0.6 0.7 0.8

Maximum transition probability

0.8

1

1.2

1.4

1.6

1.8

co
m

pu
ta

ti
on

co
st

 (
J)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

Fig. 8: Impact of varying the maximum transition probability
in Markov chain when using the default configuration and
fixed SNR. (left) Transmission cost vs. maximum transition
probability. (right) Computation cost vs. maximum transition
probability.

not consider proactive transmission. It is worth noting that
the other algorithms exhibited little to no variation in their
performance across different pmax values, as they do not rely
on the push operation.

5) Different Base Computing Frequency fD: To study the
impact of computing frequency on system performance, we
conducted an evaluation of five algorithms with varying fD
and presented our results in Fig. 9. As a general rule, in-
creasing the computing frequency is equivalent to having more
computing cores with a fixed value of fD. Therefore, the trends
observed in the results of Fig. 9 are similar to those previously
reported in Fig. 6. Notably, the PTDFC algorithm consistently
exhibits the lowest overall cost (i.e., the sum of transmission
and computation costs) across all fD configurations.

6) Different Task Input Size If : The default input data
size for all tasks is 16000 bits. To investigate the impact
of input data size on the system performance, we conducted
experiments by varying the input data size for four tasks and
evaluated the performance of five algorithms under different
If . The results are presented in Fig. 10, where it can be
observed that an increase in the input data size leads to an
increase in both transmission and computation costs for all
algorithms. This can be attributed to the fact that larger input



1.1e+08 1.4e+08 1.7e+08 2e+08 
f
D

(cycles/s)

0

0.5

1

1.5

2

2.5

3

tr
an

sm
is

si
on

 c
os

t (
bi

t/
s)

107

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

1.1e+08 1.4e+08 1.7e+08 2e+08 
f
D

(cycles/s)

0.6

0.8

1

1.2

1.4

1.6

1.8

2

co
m

pu
ta

ti
on

co
st

 (
J)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

Fig. 9: Impact of varying the base computing frequency fD
when using the default configuration and fixed SNR. (left)
Transmission cost vs. fD. (right) Computation cost vs. fD.

11000 16000 21000 26000
Task input size (bits)

0

2

4

6

8

10

tr
an

sm
is

si
on

 c
os

t (
bi

t/
s)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

11000 16000 21000 26000
Task input size (bits)

0

1

2

3

4

co
m

pu
ta

ti
on

co
st

(J
)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

Fig. 10: Impact of varying the input data size If for 4 tasks
when using the default configuration and fixed SNR. (left)
Transmission cost vs. If . (right) Computation cost vs. If .

data requires more bandwidth and computation, whether in
reactive or proactive cases, as indicated by Eq. (3), (5), (6).
On the other hand, when the input data size is relatively small
(e.g., 11000 bits), the PTDFC and DFC algorithms exhibit
similar performance, as the optimal policy for both algorithms
is to cache as much input data as possible and provide
full reactive service only for non-cached tasks. However, in
general, the PTDFC algorithm consistently outperforms the
other algorithms, achieving the smallest total cost across all
input data size configurations.

7) Different Task Output Size Of : After analyzing the
impact of input data size, we further examined the influence of
output data size on the system performance. For this purpose,
we altered the output data size of four tasks and evaluated the
performance of five algorithms under different Of . The default
output data size for all tasks was set to 30000 bits. As depicted
in Fig. 11, the transmission cost and computation cost for
the DFNC, MRU-LRU, and MFU-LFU algorithms remained
unchanged, as the output data size did not affect the calculation
of the two costs and the cache update mechanism. However,
for the DFC algorithm, the transmission cost fluctuated around
a constant level, and the computation cost increased as the
output data size increased from 15000 bits to 30000 bits. This
behavior can be attributed to the algorithm’s prioritization of
caching input data, which ensures a low transmission cost.

15000 20000 25000 30000

Task output size (bits)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

tr
an

sm
is

si
on

 c
o

st
 (

bi
t/

s)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

15000 20000 25000 30000

Task output size (bits)

0.6

0.8

1

1.2

1.4

co
m

pu
ta

ti
on

co
st

 (
J)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

Fig. 11: Impact of varying the output data size Of for 4 tasks
when using the default configuration and fixed SNR. (left)
Transmission cost vs. Of . (right) Computation cost vs. Of .

On the other hand, due to limited cache size, lower priority,
and increased output data size, only a small fraction of tasks
had the opportunity to cache their output data, resulting in
additional computation for reactive service. In contrast, the
PTDFC algorithm’s joint computing, pushing, and caching de-
sign demonstrated robustness to variations in Of , as evidenced
by the flat transmission and computation cost curves in Fig. 11.

8) Different Tolerable Service Delays τ : The tolerable ser-
vice delay is a critical parameter that significantly influences
the transmission and computation costs of the system. To
evaluate their impact, we tested the performance of five algo-
rithms under varying values of τ and present our findings in
Fig. 12. As we increase τ from 0.012 s to 0.024 s, we observe
a corresponding decline in the transmission and computation
costs for most algorithms. This is because the larger τ provides
more time for transmitting the input data of the requested
task, reducing the bandwidth cost as per Eq. (3). Similarly,
additional processing time is given to the computation step
for acquiring the output data, relaxing the requirement of the
computing frequency, and leading to a lower computation cost
as per Eq. (5). Notably, the PTDFC algorithm outperforms
the other algorithms by achieving the lowest transmission and
computation cost under all τ values. This is attributed to
its ability to design an optimal policy for joint computing,
pushing, and caching through deep reinforcement learning.
However, the transmission cost of all five algorithms converges
at larger τ , and the benefits of the PTDFC algorithm are miti-
gated as a lower computing frequency (one core) is employed
for all algorithms, resulting in comparable transmission costs.

9) Different Cost Weights λ: To guide policy learning
for the trade-off between transmission cost and computation
cost, the default cost weight of 1 is used for designing the
reward function in Eq. (23). To investigate the impact of this
parameter on the performance of the algorithms, we evaluated
the performance of five algorithms under different λ values
and present the results in Fig. 13. Notably, the SAC-enabled
algorithms show a clear trade-off between the two costs, as
increasing λ leads to a decrease in computation cost and a
corresponding increase in transmission cost, while the heuristic
algorithms MRU-LRU and MFU-LFU have completely flat
cost curves. The PTDFC algorithm consistently achieves the



0.012 0.016 0.02 0.024

(seconds)

0

0.5

1

1.5

2

2.5

tr
an

sm
is

si
on

 c
o

st
 (

bi
t/

s)

107

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

0.012 0.016 0.02 0.024

(seconds)

0.5

1

1.5

2

2.5

co
m

pu
ta

ti
on

co
st

 (
J)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

Fig. 12: Impact of varying the maximum tolerable service
latency τ when using the default configuration and fixed
SNR. (left) Transmission cost vs. τ . (right) Computation cost
vs. τ .

0.5 1 1.5 2 
0.5

1

1.5

2

2.5

3

tr
an

sm
is

si
on

 c
os

t (
bi

t/
s)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

0.5 1 1.5 2 

1

1.5

2

2.5

co
m

pu
ta

ti
on

co
st

 (
J)

106

DFC
PTDFC
DFNC
MRU-LRU
MFU-LFU

Fig. 13: Impact of varying cost weight λ when using the
default configuration and fixed SNR. (left) Transmission cost
vs. λ. (right) Computation cost vs. λ.

best performance under different λ values, which can be
attributed to its optimal computing, pushing, and caching
policy design through deep reinforcement learning.

H. Complexity Analysis

The computational complexity of the proposed PTDFC
algorithm largely relies on the number and structure of neural
networks in SAC system [35]. At the training stage, Algo-
rithm 1 incorporates the parameter updating of three neural
networks: Qθ, Qθ̄ (the actors), and πϕ (the critic). Therefore,
the computation of the complexity of Algorithm 1 is:

2×
J−1∑
j=0

nQ
j n

Q
j+1 +×

K−1∑
k=0

nπ
kn

π
k+1

= O

J−1∑
j=0

nQ
j n

Q
j+1 +

K−1∑
k=0

nπ
kn

π
k+1

 (24)

where J denotes the number of fully connected layers for
the Qθ and Qθ̄ networks (having identical structure), and K
denotes that for πϕ network. nQ

j and nπ
k represent the number

of neurons at the j-th layer of Qθ or Qθ̄ networks and the
k-th layer of πϕ network. j = 0 and k = 0 represent the input
layers.

At the testing stage, Algorithm 1 only needs to execute the
trained Qθ, Qθ̄ networks, so the computation complexity is
reduced to O

(∑J−1
j=0 nQ

j n
Q
j+1

)
. In our system, J = 3, K = 4,

NQ
j = 22, 256, 256, 1 for j = 0, 1, 2, 3, given the number of

tasks F = 4.

VI. CONCLUSION

In this paper, we explore joint optimization of computing,
pushing, and caching in MEC networks to further improve
user-perceived quality of experience. We formulate the joint-
design problem as an infinite-horizon discounted-cost Markov
decision process, which allows us to optimize the total quantity
of transmitted data and the total computation cost for the
mobile user. To solve this problem, we propose a framework
based on SAC learning that dynamically orchestrates the three
functions. The framework is featured with embedded deep
networks that implicitly predict user future requests and a
design for action quantization and correction that enables SAC
to work for this problem. In simulations using a single-user
single-server MEC network, our proposed framework effec-
tively reduces both transmission load and computing cost and
outperforms baseline algorithms across various parameters.

REFERENCES

[1] Y. Sun, Z. Chen, M. Tao, and H. Liu, “Communications, caching, and
computing for mobile virtual reality: Modeling and tradeoff,” IEEE
Trans. Commun., vol. 67, no. 11, pp. 7573–7586, Nov. 2019.

[2] X. Gao, G. Xing, S. Roy, and H. Liu, “Experiments with mmwave
automotive radar test-bed,” in 2019 53rd Asilomar Conference on
Signals, Systems, and Computers, 2019, pp. 1–6.

[3] X. Gao, S. Roy, G. Xing, and S. Jin, “Perception through 2d-mimo fmcw
automotive radar under adverse weather,” in 2021 IEEE International
Conference on Autonomous Systems (ICAS), 2021, pp. 1–5.

[4] X. Gao, S. Ding, K. Vanas, D. R. Harshavardhan, and H. Soder-
lund, “Deformable radar polygon: A lightweight and predictable occu-
pancy representation for short-range collision avoidance,” arXiv preprint
arXiv:2203.01442, 2022.

[5] U. Cisco, “Cisco annual internet report (2018-
2023),” White Paper, 2020. [Online]. Available: https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html

[6] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on information theory, vol. 60, no. 5, pp. 2856–2867,
2014.

[7] Y. Sun, Z. Chen, and H. Liu, “Delay analysis and optimization in cache-
enabled multi-cell cooperative networks,” in IEEE Global Communica-
tions Conference (GLOBECOM), 2016, pp. 1–7.

[8] J. Wang, “A survey of web caching schemes for the internet,”
SIGCOMM Comput. Commun. Rev., vol. 29, no. 5, p. 36–46, oct 1999.
[Online]. Available: https://doi.org/10.1145/505696.505701

[9] Y. Sun, Y. Cui, and H. Liu, “Joint pushing and caching for bandwidth
utilization maximization in wireless networks,” IEEE Transactions on
Communications, vol. 67, no. 1, pp. 391–404, 2019.

[10] W. Chen and H. V. Poor, “Content pushing with request delay infor-
mation,” IEEE Transactions on Communications, vol. 65, no. 3, pp.
1146–1161, 2017.

[11] Y. Lu, W. Chen, and H. V. Poor, “Coded joint pushing and caching
with asynchronous user requests,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 8, pp. 1843–1856, 2018.

[12] M. Gregori, J. Gómez-Vilardebó, J. Matamoros, and D. Gündüz, “Wire-
less content caching for small cell and d2d networks,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 5, pp. 1222–1234, 2016.

[13] X. Yang, Z. Fei, J. Zheng, N. Zhang, and A. Anpalagan, “Joint multi-user
computation offloading and data caching for hybrid mobile cloud/edge
computing,” IEEE Transactions on Vehicular Technology, vol. 68, no. 11,
pp. 11 018–11 030, 2019.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1145/505696.505701


[14] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, “Edge-cocaco:
Toward joint optimization of computation, caching, and communication
on edge cloud,” IEEE Wireless Communications, vol. 25, no. 3, pp. 21–
27, 2018.

[15] Y. Hao, M. Chen, L. Hu, M. S. Hossain, and A. Ghoneim, “Energy
efficient task caching and offloading for mobile edge computing,” IEEE
Access, vol. 6, pp. 11 365–11 373, 2018.

[16] L. Zhang, Y. Sun, Z. Chen, and S. Roy, “Communications-caching-
computing resource allocation for bidirectional data computation in
mobile edge networks,” IEEE Transactions on Communications, vol. 69,
no. 3, pp. 1496–1509, 2021.

[17] Y. Sun, Z. Chen, M. Tao, and H. Liu, “Bandwidth gain from mobile
edge computing and caching in wireless multicast systems,” IEEE
Transactions on Wireless Communications, vol. 19, no. 6, pp. 3992–
4007, 2020.

[18] X. Gao, G. Xing, S. Roy, and H. Liu, “Ramp-cnn: A novel neural net-
work for enhanced automotive radar object recognition,” IEEE Sensors
Journal, vol. 21, no. 4, pp. 5119–5132, 2021.

[19] X. Gao, H. Liu, S. Roy, G. Xing, A. Alansari, and Y. Luo, “Learning
to detect open carry and concealed object with 77 ghz radar,” IEEE
Journal of Selected Topics in Signal Processing, vol. 16, no. 4, pp.
791–803, 2022.

[20] Y. Qian, R. Wang, J. Wu, B. Tan, and H. Ren, “Reinforcement learning-
based optimal computing and caching in mobile edge network,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 10, pp. 2343–
2355, 2020.

[21] Y. Wei, F. R. Yu, M. Song, and Z. Han, “Joint optimization of caching,
computing, and radio resources for fog-enabled iot using natural ac-
tor–critic deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 6, no. 2, pp. 2061–2073, 2019.

[22] Z. Ning, K. Zhang, X. Wang, M. S. Obaidat, L. Guo, X. Hu, B. Hu,
Y. Guo, B. Sadoun, and R. Y. K. Kwok, “Joint computing and caching in
5g-envisioned internet of vehicles: A deep reinforcement learning-based
traffic control system,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 8, pp. 5201–5212, 2021.

[23] L. Huang, X. Feng, A. Feng, Y. Huang, and L. P. Qian, “Distributed
deep learning-based offloading for mobile edge computing networks,”
Mob. Netw. Appl., vol. 27, no. 3, p. 1123–1130, jun 2022. [Online].
Available: https://doi.org/10.1007/s11036-018-1177-x

[24] R. Zhao, X. Wang, J. Xia, and L. Fan, “Deep reinforcement learning
based mobile edge computing for intelligent internet of things,”
Physical Communication, vol. 43, p. 101184, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1874490720302615

[25] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-edge
computing networks,” IEEE Transactions on Mobile Computing, vol. 19,
no. 11, pp. 2581–2593, 2020.

[26] X. Gao, S. Roy, and G. Xing, “Mimo-sar: A hierarchical high-resolution
imaging algorithm for mmwave fmcw radar in autonomous driving,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 8, pp. 7322–
7334, 2021.

[27] X. Gao, S. Roy, and L. Zhang, “Static background removal in vehicular
radar: Filtering in azimuth-elevation-doppler domain,” arXiv preprint
arXiv:2307.01444, 2023.

[28] P. Dai, F. Song, K. Liu, Y. Dai, P. Zhou, and S. Guo, “Edge intelligence
for adaptive multimedia streaming in heterogeneous internet of vehicles,”
IEEE Transactions on Mobile Computing, vol. 22, no. 3, pp. 1464–1478,
2023.

[29] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel et al., “Soft actor-critic algorithms
and applications,” arXiv preprint arXiv:1812.05905, 2018.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[31] H. Yin, L. Zhang, and S. Roy, “Multiplexing urllc traffic within embb
services in 5g nr: Fair scheduling,” IEEE Transactions on Communica-
tions, vol. 69, no. 2, pp. 1080–1093, 2021.

[32] H. Yin, P. Liu, K. Liu, L. Cao, L. Zhang, Y. Gao, and X. Hei, “Ns3-ai:
Fostering artificial intelligence algorithms for networking research,” in
Proceedings of the 2020 Workshop on Ns-3, ser. WNS3 ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
57–64. [Online]. Available: https://doi.org/10.1145/3389400.3389404

[33] L. Zhang, H. Yin, Z. Zhou, S. Roy, and Y. Sun, “Enhancing wifi multiple
access performance with federated deep reinforcement learning,” in 2020
IEEE 92nd Vehicular Technology Conference (VTC2020-Fall), 2020, pp.
1–6.

[34] K. Psounis, A. Zhu, B. Prabhakar, and R. Motwani, “Modeling correla-
tions in web traces and implications for designing replacement policies,”
Computer Networks, vol. 45, no. 4, pp. 379–398, 2004.

[35] F. Zhang, G. Han, L. Liu, M. Martinez-Garcia, and Y. Peng, “Deep
reinforcement learning based cooperative partial task offloading and
resource allocation for iiot applications,” IEEE Transactions on Network
Science and Engineering, pp. 1–1, 2022.

https://doi.org/10.1007/s11036-018-1177-x
https://www.sciencedirect.com/science/article/pii/S1874490720302615
https://doi.org/10.1145/3389400.3389404

	Introduction
	Prior Art: Caching, Pushing, and Computing Design
	DRL-based Systems
	Contributions
	Outline

	System Model
	Task Model
	System State
	Request State
	Cache State
	System State

	System Action
	Reactive Computation Action
	Proactive Transmission or Pushing Action
	Cache Update Action
	System Action

	System Cost

	Problem Formulation
	Soft Actor-Critic Learning
	SAC System State and Action
	SAC Learning
	Action Quantization and Correction
	Reward Design

	Implementation and Evaluation
	Baselines
	Data Simulation
	Implementation
	Convergence Analysis
	Numerical Results
	Qualitative Results Analysis
	Tuning Analysis
	Different Cache Size C
	Different Number of Computation Cores M
	Different Number of Tasks F
	Different Maximum Transition Probabilities
	Different Base Computing Frequency fD
	Different Task Input Size If
	Different Task Output Size Of
	Different Tolerable Service Delays 
	Different Cost Weights 

	Complexity Analysis

	Conclusion
	References

