
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 1

Attention Mechanism-Aided Deep Reinforcement
Learning for Dynamic Edge Caching

Ziyi Teng, Student Member, IEEE, Juan Fang , Member, IEEE, Huijing Yang, Student Member, IEEE, Lu Yu,
Huijie Chen and Wei Xiang, Senior Member, IEEE

Abstract—The dynamic mechanism of joint proactive caching
and cache replacement, which involves placing content items
close to cache-enabled edge devices ahead of time until they
are requested, is a promising technique for enhancing traffic
offloading and relieving heavy network loads. However, due to
limited edge cache capacity and wireless transmission resources,
accurately predicting users’ future requests and performing
dynamic caching is crucial to effectively utilizing these limited
resources. This paper investigates joint proactive caching and
cache replacement strategies in a general mobile edge computing
(MEC) network with multiple users under a cloud-edge-device
collaboration architecture. The joint optimization problem is
formulated as a markov decision process (MDP) problem with
an infinite range of average network load costs, aiming to reduce
network load traffic while efficiently utilizing the limited available
transport resources. To address this issue, we design an Attention
Weighted Deep Deterministic Policy Gradient (AWD2PG) model,
which uses attention weights to allocate the number of channels
from server to user, and applies deep deterministic policies on
both user and server sides for Cache decision-making, so as
to achieve the purpose of reducing network traffic load and
improving network and cache resource utilization. We verify the
convergence of the corresponding algorithms and demonstrate
the effectiveness of the proposed AWD2PG strategy and bench-
mark in reducing network load and improving hit rate.

Index Terms—Wireless network, edge caching, attention-
weighted channel assignment, deep reinforcement learning.

I. INTRODUCTION

W ITH the rapid development of wireless access technol-
ogy and the Internet of Things (IoT), a variety of smart

mobile and IoT devices, such as smart phones and smart meter,
are connected to wireless networks, which brings rapid growth
service demand to mobile networks. Intelligent devices are
highly dependent on computing, storage, and communication
resources [1]. In traditional architectures, service requests

Manuscript received 31 May, 2023; revised 14 Aug, 2023; accepted 13
October, 2023. This work is supported by National Natural Science Foun-
dation of China (62202019,62276011,61202076), and supported by Beijing
Municipal Natural Science Foundation (4192007), and Beijing University of
Technology Project No. 2021C02, along with other government sponsors.

Ziyi Teng, Juan Fang, Huijing Yang and Huijie Chen are work with the
Faculty of Information Technology, Beijing University of Technology, Beijing
100124, China(e-mail: tengziyi@emails.bjut.edu.cn; fangjuan@bjut.edu.cn;
yangkx@emails.bjut.edu.cn; lu.yu@my.jcu.edu.au, chenhuijie@bjut.edu.cn;
Corresponding author: Juan Fang).

Lu Yu is with James Cook University, Cairns, QLD 4878, Australia(e-
mail:lu.yu@my.jcu.edu.cn).

Wei Xiang is with La Trobe University, Melbourne, VIC 3086, Australia(e-
mail: wei.xiang@latrobe.edu.au).

Copyright (c) 2023 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

require access to remote data centers (such as cloud servers)
through core networks, which is insufficient to meet the
requirements of delay sensitive and computationally intensive
data services, posing significant challenges to the computing
and caching capabilities of wireless communication systems
[2].

Mobile edge computing (MEC) integrates the storage and
processing capabilities of cloud computing into the edge of
the network closing to user equipment (UE) and base station
(BS), which is an effective way to reduce transmission distance
and relieve core network load, and also provides an effective
way to increase throughput and reduce latency simultaneously
[3]. Despite these benefits, the limited storage capacity of
edge nodes highlights the need to develop effective caching
strategies to improve caching efficiency and minimize latency
in edge networks.

Pure caching strategies have been extensively studied. Ac-
cording to the research method, it can be divided into two cat-
egories: rule-based and model-based. Traditional rule-based
caching strategies such as least recently used (LRU), first in
first out (FIFO) and their variants [3] are widely used due to
their low computational complexity and ease of use. However,
due to the lack of consideration of content popularity, these
traditional caching strategies cannot adapt to real-time user re-
quests when applied to edge nodes, thus exhibiting significant
performance degradation. The model-based caching strategy
[4]–[7] means that the content is dynamically updated accord-
ing to the established target model. For example, Hachem et
al. [4] and Shanmuga et al. [5] minimize caching cost and
request time respectively by establishing models of content
and wireless communication conditions. Furthermore, applied
machine learning algorithms [6] [7] have demonstrated their
effectiveness in edge cache optimization. Among them, Liu et
al. [6] and Yan et al. [7] apply cache updates based on the
popularity of the current request to reduce the traffic load on
the backhaul link. However, the above cache update strategies
are implemented ”reactively”, a reactive cache strategy that is
utilized only when a request arrives. Therefore, unable to adapt
to the variability of wireless channel conditions, resulting in
inefficient bandwidth utilization.

Network traffic exhibits tidal effects in data transmission.
For example, in the central business district, the network
traffic on the back-haul link shows different trends during the
day, and this tidal effect leads to lower bandwidth utilization
when the network is idle [8] [9]. In order to fully utilize
the bandwidth, the proactive caching strategy is introduced
to deliver frequently accessed content before it is requested

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-4542-8727


JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 2

by users during idle network time, allowing flexible use of
limited and time-varying communication resources.

Joint proactive caching and caching designs that can im-
prove system performance by proactively transferring and
replacing cached content during low-traffic times to meet
future user needs have been extensively studied [10]–[13].
Somuyiwa et al. [10] proposes a threshold-based proactive
caching strategy that requires causal knowledge of channel
quality, content profile, and user access behavior. Meanwhile,
Zheng et al. [11] decomposes the cache optimization problem
into storage allocation and user allocation, and uses the
Stackelberg game method to proactively cache content items to
solve the problem of storage allocation during off-peak hours.
Sun et al. [12] proposes a joint push and cache design to max-
imize bandwidth utilization. However, these proactive caching
schemes above do not consider the limitation of the wireless
transmission channel between the server and the user. On the
other hand, Chen et al. [13] develops a multi-cast proactive
content strategy based on structured deep learning, which
considers the complex coupling of time-varying transmission
capacity and proactive caching decisions between users, but
only focuses on proactive caching at the user end, ignoring
the its impact on the server side.

Based on the shortcomings of the above studies, we propose
a joint proactive caching and cache replacement strategy that
aims at proactively placing content items during network idle
time, while taking into account the impact of the limited
number of wireless channels and user caching decisions.
However, we face the following technical challenges. First,
each caching entity within the MEC system must determine
which content items to proactively store in the cache and
which ones to remove. Then, the user’s proactively cached files
must be forwarded through the server, and therefore, the user’s
proactive caching decisions must be taken into account at the
server. Last but not least, due to the limited capacity of the
transmission channel and the difference between the quality of
the users’ cache hit states and decision models, distributing the
number of channels uniformly among the users may lead to a
waste of network resources, which in turn affects the caching
performance. Specifically, the factors affecting channel allo-
cation can be classified into two categories: (1) user-related
factors, such as user request frequency and user preference.
User preferences play a significant role in determining the
selection of proactively pushed files, as they are influenced
by the file request probability. The request frequency, which
represents the number of files requested per unit of time,
further impacts the allocation and transmission of channels
during the decision-making process. Ultimately, these factors
have a direct impact on cache performance; (2) Model related
factors such as model performance loss and model quality. The
proactive selection of transferred files satisfying user requests
relies on models that exhibit low loss and high quality. These
models serve as crucial factors in determining the effectiveness
of proactive file selection.

To address these issues described above, a dynamic caching
strategy that combines proactive caching and cache replace-
ment must continuously update the cached content as the
environment changes, and reinforcement learning approaches

can effectively solve complex online optimization problems
and maximize the long-term reward without requiring prior
knowledge of the network under consideration. Reinforce-
ment learning approaches have been proven effective in
cache optimization in previous work [14]–[16]. In this study,
the attention-weighted depth deterministic policy gradient
(AWD2PG) is proposed to solve the dynamic joint cache
optimization problem between the user and server sides under
limited transmission channels and time-varying and unob-
servable content popularity. Specifically, the contributions are
summarized below.

• We formulate the joint proactive caching and cache re-
placement problems, and design dynamic caching mech-
anisms to minimize network load and improve the uti-
lization of cache resources and network resources in the
system.

• We transform the joint optimization problem into a
Markov decision process (MDP) and apply deep deter-
ministic strategies on both the user and server sides to
handle large dimensions in state space and action space.

• We propose the attention weighted deep deterministic
policy gradient (AWD2PG) framework, which uses an
inter-layer deep deterministic strategy to address the inter-
layer coupling caused by proactive caching. In particular,
we use an attention mechanism to control the allocation
of limited resource channels between users and server
to accommodate the number of files transferred by user
caching decisions for different time slots.

The remainder of this paper is organized as follows. Section
II provides a summary of related work. Section III describes
the system and the edge cache model. Section IV describes
the problem formulation and analysis. The AWD2PG strategy
is described in detail in Section V. The simulation results are
presented in Section VI, followed by the conclusion in Section
VII.

II. RELATED WORK
In this section, we mainly review the relevant research on

proactive edge cache optimization using machine learning, es-
pecially the application of reinforcement learning in proactive
proactive cache optimization.

A. Proactive Edge Caching

In practice, based on the popularity of the content or future
user requests, the files are placed in advance to edge devices
with caching enabled, which can significantly reduce the traffic
load during peak times. Advances in machine learning and
big data analytics have made it possible to accurately predict
content popularity and user requests. Alqahtani et al. [16]
proposed a proactive caching approach with offloading capa-
bilities, which performs demand-aware offloading to meet the
concurrent service dissemination requirements. Zhang et al.
[17] designed a sequence-aware caching model to build a deep
learning-based proactive caching policy to avoid the resource
consumption of edge caching and achieve smaller traffic loads.
Yu et al. [18] used the AutoEncoder (AE) model to predict
request popularity and to perform proactive cache using the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 3

Cloud Server

·
·
·

·
·
·

Cache Queue

Request

Proactive + miss

BS

R
e
c
e
i
ve

r

T
r
a
n
s
mi

te
r

Cache of capacity MB

Proactive Cache

Local Cache

Proactive Cache

Local Cache

Cache of capacity MB

Proactive Cache

Local Cache

UE 1

UE 1

UE N

·
·
·

UE 1

UE 1

UE N

·
·
·

Request

Proactive + miss

Wireless area Backhaul Link

Wireless Link

UE i User Equipment ··· ···

Content Set

Wireless area Backhaul Link

Wireless Link

UE i User Equipment ···

Content Set

Cache of capacity Mi

Proactive Cache

Local Cache

Proactive Cache

Local Cache

Cache of capacity Mi

Proactive Cache

Local Cache

Cloud Server

·
·
·

Cache Queue

Request

Proactive + miss

BS

R
e
c
e
i
ve

r

T
r
a
n
s
mi

te
r

Cache of capacity MB

Proactive Cache

Local Cache

UE 1

UE 1

UE N

·
·
·

Request

Proactive + miss

Wireless area Backhaul Link

Wireless Link

UE i User Equipment ···

Content Set

Cache of capacity Mi

Proactive Cache

Local Cache

Fig. 1. The system architecture.

cooperative features of adjacent enabled cache devices. At the
same time, there are various joint proactive caching strategies
that aim to minimize traffic load [19], improve effective
throughput [20], or reduce transmission energy consumption
[21]. These strategies apply machine learning methods for
proactive edge caching. However, they do not consider the
network resources occupied by proactive caching and focus
on the caching benefits of proactive caching.

While the effectiveness of proactive caching has received
widespread attention, this study further explores proactive
caching strategies between the server and user under wireless
channel capacity constraints, which leads to network state
complexity. Traditional caching approaches make it almost
impossible to solve this complex problem. Therefore, we
design a reinforcement learning-based algorithm to solve this
problem.

B. Proactive Edge Caching with Applied Deep Reinforcement
Learning

In practical applications, deploying deep reinforcement
learning for online learning has been shown to be effective in
managing complex and rapidly changing situations. Various
studies have applied reinforcement learning techniques to
address dynamic caching decisions [22]–[27]. Somuyiwa et
al. [22] introduces an proactive caching strategy driven by
reinforcement learning, aiming to reduce the system cost
associated with wireless channel state and content download.
Similarly, research in [23] optimizes system cost through
reinforcement learning, while also considering how caching
decisions in different time periods affect future content ac-
cessibility. Gao et al. [24] focuses on collaborative caching
via reinforcement learning, with an emphasis on improving
the efficiency of maximum distance separable (MDS) coding
techniques. Sadeghi et al. [25], an important insight emerges:
intra-slot caching decisions affect immediate cost and future
cache availability. This has led to the application of reinforce-
ment learning to solve caching problems involving constantly
changing and stochastic costs. Also, Hebatullah et al. [26]
introduces a model-independent meta-reinforcement learning
algorithm to accommodate dynamic cache management and
accommodate fluctuations in content popularity caused by
changes in associated devices. Likewise, Zhou et al. [27]

utilizes multi-agent reinforcement learning to address the
challenges of cooperative and proactive caching, emphasizing
the minimization of average download latency.

Different from and complementary to the existing work
which focus primarily on proactive caching at the local or
server side, we consider dealing with the coupling problem of
the proactive caching scheme between the server and user side
under the Limited number of wireless channels.

III. SYSTEM MODEL

A. System Architecture

The general model of the MEC network for edge caching
considered in this study, including cloud, BS and N user
equipment (UE), is shown in Fig.1. All users represented
as N = {1, 2, . . . , N}. Both users and BS equipped with
servers have certain computing and caching capabilities. The
BS includes a receiver and a transmitter for receiving the
content transmitted by the cloud center and transmitting the
content to the user. That is, the cloud server transmits files
to users through BS. Let F = {1, 2, 3, . . . , F} denote the
content set of all these accessible from the cloud server. The
system operates in infinite time slots, divided into L time slots,
denoted as T = 1, 2, 3, . . . ,. In each time slot t, each UE-i
generates a different number of requests, and it is assumed
that users do not make repeated requests for the same file.

At each time slot t, for each user UE-i, if the request is
saved in the local cache, it will immediately return; Otherwise,
users must access the missed content from the server. Simi-
larly, when the MEC server cannot meet the requirements,
it is accessed through a backhaul link from the cloud data
center. The cache capacity of UE-i is Mi, MEC server is
MB . In general, Mi ≤ MB ≤ F . In each time slot t, the
wireless transmission channel between the MEC server and
users is limited, and the total number of available channels
is represented as C(t), which means that all users within the
base station range can transmit up to C(t) files.

B. Content Popularity and User Request Model

1) Content popularity: In our model, we represent the
user’s preference, which indicates the popularity of the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 4

requested content, using the Mandelbrot-Zipf (M-Zipf)
distribution [28].

Pf =
(of + τ)−β∑
i∈F(oi+τ)−β

,∀f ∈ F , (1)

where Of is the descending content popularity ranking
of content f , and τ and β respectively denote the plateau
factor and deviation factor, where τ ≥ 0. Furthermore, it
is assumed that the popularity of content changes slowly
over a relatively long period.

2) User request model: During the time slot t, each UE-i
generates content requests with an arrival rate λi, and the
number of user requests follows the Poisson distribution
[1] [7] [15] [29]:

P (X(t) = k) =
λki
k!
e−λi , (2)

where λi indicates the frequency of requests from UE-i
and k indicates the number of requests made by the user
in time slot t.

C. Model Validation and Insights

The goal of this section is to verify the effectiveness of
using Zipf distribution to simulate user request probability and
Poisson distribution to simulate cache request arrival rate when
the number of users is large.

Based on equation (1), in order to verify the validity, we
can approximate the probability as:

Pf ≈
(of + τ)−β∫∞

i=1
(oi + τ)−βdi

By employing integral approximation and assuming a large
number of users, we can derive the following approximation:

Pf ≈ C · (of + τ)−β

Here, C represents a constant. This approximation serves as
evidence that the Zipf distribution can effectively capture the
popularity of user requests when the number of users is large.

In order to prove the effectiveness of Poisson distribution
when the number of user requests increases, we need to
consider the limit situation when the number of user requests
increases. In this case, the arrival rate parameter λi also
increases significantly. It is known that when the event rate
increases, the Poisson distribution gradually approaches the
normal distribution. Therefore, when the number of user
requests is large, Poisson distribution can effectively represent
the arrival rate of user requests.

D. Dynamic Cache Handling Process

Due to the limited cache resources of MEC servers and
user devices, a joint proactive cache and cache replacement
strategy is proposed to reduce network costs caused by missing
requests. Fig.2 depicts the decision-making process within a
time slot t. Assuming the duration of a time slot tis long
enough to make dynamic caching decisions. The edge node
decision-making process with caching enabled can be divided

User Request Dynamic Cache 
Decision

Cache 
Update

Slot t

User Request Dynamic Cache 
Decision

Cache 
Update

Slot t

Fig. 2. The decision-making process in time slot t.

into three stages within a time slot. The first phase is the
“user request” phase, in which the user creates content
requests, checks the local cache for cache misses, and then
sends missing requests to the server. The second phase is
the “dynamic caching decision” phase. According to
the current request and miss file state, the proactive cache
files be selected from the content library. If the number of
proactive transmission files is greater than the number of free
caches on a wireless transmission channel constraints, the
replacement policy decides which contents must be replaced
from the cache. Finally, in the “cache update” phase, in
which the cache is dynamically updated prepare for the next
phase of user requests based on the cache policy obtained in
the previous phase, and the policy performance of the current
time slot is evaluated. The performance is determined by the
network traffic load, which primarily includes the load of
request misses in the first phase and the network load caused
by the proactive caching policy in the second phase.

E. System Model

The user request arrival rate follows the Poisson process (2),
with each UE-i submitting at least one request in time slot t.
The set of requested files is qi(t) = {qfi (t) ∈ {0, 1}|f ∈ F},
where qfi (t) = 1 means that the user requested f and qfi (t) =
0 means that the file f was not be requested in time slot t.
Lets CUi(t) = {CUf

i ∈ {0, 1}|f ∈ F} denotes the cache
state of UE-i in time slot t, where CUf

i (t) = 1 means that
UE-i has stored content f ; otherwise, CUf

i (t) = 0 means that
f has not been placed in the cache. To meet the cache space
size limit, the following must be satisfied.∑

f∈F

CUf
i ≤Mi (3)

If the requested file qfi (t) is saved in the cache, i.e., qfi (t) ∈
CUi(t), the local cache hits immediately; otherwise, the user
accesses the missing content from the MEC server. Similarly,
for the server side, let CUB(t) = {CUf

B(t) ∈ {0, 1}|f ∈ F}
indicate the cache state at the server in time slot t, where
CUf

B(t) = 1 means that the server stores content f and
CUf

B(t) = 0 means that f has not been placed in the
cache. Thus, under the limit of the server-side cache size, the
following holds. ∑

f∈F

CUf
B ≤MB (4)

The MEC server receives missing requests from all users
in the coverage area at each time slot, denoted as QG(t). The
MEC server needs to send missing requests and proactively

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 5

cached files to users. Therefore, the wireless channel resource
occupation between the MEC server and the user includes two
aspects: one is the file transfer caused by proactive caching,
and the other is the file transfer caused by file missing. Its file
sets can be expressed as PTi = {PT f

i (t) ∈ {0, 1}|f ∈ F}
and RTi = {RT f

i (t) ∈ {0, 1}|f ∈ F}, respectively, where
PT f

i = 1 means that the content f need proactively trans-
mitted to UE-i; otherwise if PT f

i = 0, it means no need to
transfer; RT f

i = 1 indicates reactive transmission caused by
missing requests; otherwise if RT f

i = 0, it means no need to
transfer. In order to meet the user’s request at the end of each
time slot, the reactive transmission from the MEC server to
the user should meet the following conditions.

RT f
i (t) = qfi (t)(1− CU

f
i (t)) (5)

The proactive and reactive transfer file sets on the server
side are represented as PTB(t) = {PT f

B(t) ∈ {0, 1}|f ∈ F}
and RTB = {RT f

B(t) ∈ {0, 1}|f ∈ F}, respectively. The
reactive transmission state of file f from the cloud server to
BS caused by a missing file is represented as follows.

RT f
B(t) = (QG(t) = f)(1− CUf

B(t)) (6)

If the content of the proactive cache decision transmission
at UE-i is already cached in CUi(t), it does not need to be
transmitted through the server; therefore, we have

PT f
i (t) = (1− qfi (t))(1− CU

f
i (t)). (7)

Similarly, proactive cache file transfer to the server side is
denoted as follows.

PT f
B(t) =

(
1− (QG(t) = f)

)
(1− CUf

B(t)) (8)

Considering that a file f can only be transmitted at most
once in a time slot t, we have

RT f
i (t)PT

f
i (t) = 0, (9)

RT f
B(t)PT

f
B(t) = 0. (10)

Taking into account the limitation of the number of wireless
transmission channels between BS and users. Therefore, it is
necessary to satisfy∑

i∈N

∑
f∈F

(
PT f

i (t) +RT f
i (t)

)
≤ C(t), (11)

where C(t) denotes the maximum number of wireless channel
transmissions allowed during time slot t.

Dynamic cache policies are used to improve the utilization
of cache resources. Let z+i (t) = [a+RTi

(t)]
|RTi(t)|
RTi=1 decide which

files in RTi(t) should be saved in the UE-i cache at time
t, where a+RTi

(t) = 1 indicates that the file fRTi
∈ RTi(t)

should be saved to CUi(t); otherwise, if a+RTi
(t) = 0 means

that the file should be discarded entirely. Thus, the new file
saved to the user-side cache at time slot t is represented as
a+i (t) = z+i (t)∪PTi(t). In addition, when the number of new
files is greater than the free space in the cache, the cached files
must be eviction. Let a−i (t) = [a−cui

(t)]Mi
cui=1 denote which

files from the cache CUi(t) should be selected for eviction
from UE-i at time slot t, where a−cui

(t) = 1 means that the
file fcui

∈ CUi(t) should be evicted from CUi(t); otherwise,
if a−cui

(t) = 0, the file should be retained. We can also obtain
the following cache capability constraint of UE-i

Mi∑
cui=1

a−cui
(t) =

|RTi(t)|∑
RTi=1

a+RTi
(t) + |PTi(t)|, (12)

which indicates that the number of files deleted from the cache
is consistent with the number of files placed in the cache.

The decisions for a−i (t) and a+i (t) are made in the final
phase "dynamic caching decision" of the dynamic
cache mechanism processing. This dynamic caching mecha-
nism is also present on the MEC server.

Let a−B(t) = [a−CB(t)]
MB

CB=1 decide which files fCB ∈
CB(t) should be evicted from the server-side cache CB(t)
at time slot t; where a−CB(t) = 1 indicates that the file
fCB ∈ CB(t) should be evicted from the server-side cache
CB(t) at time slot t; otherwise, if a−CB(t) = 0 indicates that
it still needs to be preserved. Let z+B(t) = [a+RTB

(t)]
|RTB(t)|
RTB=1

denotes which files in RTB(t) should be placed in the MEC
server cache at time t, where a+RTB

(t) = 1 means that the file
fRTB

∈ RTB(t) should be stored; otherwise, if a+RTB
(t) = 0,

it should be discarded. Therefore, the set of files that should
be replaced in the cache of the MEC server during the time
period t is expressed as a+B(t) = z+B(t)∪ PTB(t). Due to the
limitation of cache capacity, it should satisfy

MB∑
CB=1

a−CB(t) =

|RTB(t)|∑
rtB=1

a+rtB + |PTB(t)|. (13)

In other words, the number of files deleted from the MEC
server should match the number of files added to the cache.
On the user side, the dynamic caching action of joint proactive
caching and cache replacement is represented as follows.

ai(t) = {a+i (t), a
−
i (t)} (14)

Similarly, on the MEC server, dynamic caching action is
represented as follows.

aB(t) = {a+B(t), a
−
B(t)} (15)

After dynamically caching action ai, the user’s cache state
CUi(t) is updated to CUi(t+ 1) at time slot t in preparation
for the user request in the next time slot. This cache update
process also occurs in the second phase ”cache update” of the
dynamic cache mechanism processing. Similarly, the cache
state on the server side changes from CUB(t) to CUB(t+1)
under the action aB(t).

For ease of understanding, the notation used in this article
is summarized in Table I.

F. Network Traffic Load

The network load Ta(t) of each time slot t is defined
as the number of files transmitted in the network, includ-
ing the two parts of proactive push file transmission and
transmission caused by cache miss, which are recorded
as Ta1(t) and Ta2(t). According to the dynamic cache

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 6

TABLE I
MODELING PARAMETERS AND NOTATIONS

Symbol Description
t Index of the time slot.

N = {1, 2, . . . , N} Set of user labels.
F = {1, 2, . . . , F} Set of all contents.

Mi, MB Cache capacities of UE-i and the MEC server, respectively.
qi(t), q

f
i Request set of UE-i at time slot t.

QG(t) Missing requests from all users at time slot t.
C(t) Number of available channels in time slot t between the MEC server and the user.

CUi(t) /CB(t) Cache states of UE-i and the MEC server at time slot t, respectively.
PT f

i (t)/RT f
i (t), PT f

B(t)/RT f
B(t) Proactive/reactive file of UE-i and BS for file f at time slot t, respectively.

PTi, RTi Proctive transfers and missing transfers file sets for UE − i, respectively.
ai = {a+i (t), a−i (t)}, aB = {a+B(t), a−B(t)} Dynamic caching actions of UE-i and the MEC server at time slot t, respectively.

a+rti (t), a
−
cui

(t) Indicators for whether the UE-i adds or deletes the file from RTi(t)/CUi(t), respectively.
a+rtB (t), a−cuB

(t) Indicators for whether the MEC server adds or deletes the file from RTB(t)/CUB(t), respectively.

z+i (t) = [a+RTi
(t)]

|RTi(t)|
RTi=1 ,z+B(t) = [a+RTB

(t)]
|RTB(t)|
RTB=1 Indicates which files from RTi(t)/RTB(t) and should be saved to UE-i and BS cache at t, respectively.

Ta1(t), Ta2(t) Indicates the traffic load caused by missing requests and the traffic load caused by proactive transmission, respectively.
Tai(t), TaB(t) Indicates the traffic load caused by UE-i and MEC server request loss and proactive transmission, respectively.
ωp
i /ωm

i , ωp
B /ωm

B Indicates the proportions of active transmission and request loss traffic loads on the user side and the MEC server side, respectively.

handing processing, the traffic load caused by missing re-
quests occurs in the ”user request” phase, and the
traffic load caused by proactive transmission occurs in the
”Dynamic Cache Decision” phase. The missing request
in the time period t − 1 means that its cached content
CUi(t−1) or CUB(t−1) cannot meet the request, which needs
to be forwarded to the upper level for processing. Therefore,
the file loss traffic loads on the user side and the MEC server
side are expressed respectively as

Ta1i (t) = 2f0
∑
f∈F

RT f
i (t), (16)

Ta1B(t) = 2f0
∑
f∈F

RT f
B(t), (17)

where f0 represents the size of the requested contents. The
traffic load caused by proactively caching at the user and MEC
server side are respectively expressed as follows.

Ta2i (t) = f0
∑
f∈F

PT f
i (t), (18)

Ta2B(t) = f0
∑
f∈F

PT f
B(t). (19)

Therefore, the network load caused by UE-i is denoted as

Tai(t) = ωm
i Ta

1
i (t) + ωp

i Ta
2
i (t), (20)

where ωm
i and ωp

i respectively denote the user-side traffic load
shares, where ωm

i +ωp
i = 1. Similarly, the traffic load between

the cloud server and the MEC server is expressed as

TaB(t) = ωm
B Ta

1
B(t) + ωp

BTa
2
B(t), (21)

where ωm
B and ωP

B respectively denote the weights of the
server-side traffic load of request misses and the proactive
cache traffic load, where ωm

B + ωP
B = 1.

To achieve the objective of minimizing the network load
Ta(t) within the system, which is represented by the expres-
sion Ta(t) =

∑N
i=1 Tai(t) + TaB(t), the method of problem

decomposition is utilized. Specifically, this approach involves
solving problems (20) and (21) separately.

IV. PROBLEM FORMATION AND ANALYSIS

A. Problem Formation

To effectively utilize the limited cache resources in MEC
systems, the joint proactive caching and cache replacement
problem can be formulated as an optimization problem. That
is, at each time slot t, each edge cache node must decide
which files to cache and replace. The caching decisions at
the user side and the MEC server side are defined as µi

and µB , respectively. In order to reduce the network load,
a traffic load cost is defined to measure the performance of
the dynamic caching strategy for better utilization of network
resources. Considering the uncertainty of the UE request,
the average transmission traffic load of the user side in the
time slot t is E[ωm

i Ta
1
i (t) + ωp

i Ta
2
i (t)], where E is the

expected requirement of UE-i. In order to obtain the optimal
transmission cost in an infinite time range, the average network
transmission load cost of UE-i is defined as follows

ψ(µi) = lim
T→+∞

1

T

T∑
t=1

E[ωm
i Ta

1
i (t) + ωp

i Ta
2
i (t)]. (22)

Correspondingly, the average network transmission load
cost between the cloud server and the MEC server is defined
as follows.

ψ(µB) = lim
T→+∞

1

T

T∑
t=1

E[ωm
B Ta

1
B(t) + ωp

BTa
2
B(t)] (23)

To minimize the average network transmission load for UE-
i, the optimization problem is formulated as

ρ1 : ψ∗
i = min

µi

ψ(µi)

s.t.(3)(5)(7)(9)(11)(12),
(24)

where ψ∗
i is denoted as the optimal time-averaged network

load cost from the MEC server side to UE-i; constraint (3) is
the cache size constraints for the user; constraints (5), (7), and
(9) denote the limits on proactive and reactive file transfers;
constraints (11) denotes the wireless channel capacity limit
that should be satisfied by the transferred files, and (12)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 7

denotes the size constraints of dynamic cache decision. The
average traffic load problem from the cloud service center to
the server side can be formulated as

ρ2 : ψ∗
B = min

µB

ψ(µB)

s.t.(4)(6)(8)(10)(13),
(25)

where ψ∗
B is denoted as the optimal time-averaged network

load cost from the cloud server to the MEC server side;
constraint (4) is the cache size constraints for the MEC server;
constraints (6), (8), and (10) denote the limits on proactive and
reactive file transfer on the MEC server; and (13) denotes the
capacity constraints of dynamic cache decision on the MEC
server side.

Note that optimization problems (24) and (25) are charac-
terized by the following facts and technical challenges.

• The varying popularity and arrival rates of user requests
create a high-dimensional dynamic network, and the
caching policy of each caching node must solve quickly.

• The solutions to problems (5), (7) and (6), (8) are all
dynamic policies over time, rather than a transient ones.
In addition, the number of transmittable channels and the
number of local missing requests are variable within each
time slot t, so the dimensions of PT f

i (t) and RT f
i (t), and

those of PT f
B(t) and RT f

B(t), are also time-varying.
• Due to the heterogeneity of users’ decision model quality

and the number of requests, it is unreasonable to share
the limited number of channels equally among users.

• The file input on the MEC server side is determined by
user caching decisions, and user caching decisions also
affect the input state on the server side. Moreover, the
state of the MEC server and user conform to contextual
chain property over time.

B. Problem Recasting

The cache optimization problem is difficult to solve directly
due to the interaction between the user-side and server-side
caching policies, as well as the complexity of individual
caching policies without knowledge of user request popular-
ity and request transfer probability. To overcome the above
technical challenges, the underlying optimization problem is
converted into an MDP problem, to find the optimal policy
for minimizing the network load. The MDP consists of four
components, namely, the state space, action space, state trans-
fer probability, and reward. Specifically, the descriptions of
problems (24) and (25) are denoted as < Si, Ai, Pi, Ri > and
< SB , AB , PB , RB >, respectively.

• State: The set of states respectively describes the re-
quest and cache states on the user side and the MEC
server side. Considering the time variable t, the user
state and server-side state can be respectively repre-
sented as Si = {si(t)|t = 0, 1, 2, . . .} and SB =
{sB(t)|t = 0, 1, 2, . . .}. Based on the necessary in-
formation required for the dynamic caching of action,
si(t) = {CUi(t), qi(t)} and sB(t) = {CUB(t), Q

G(t)}
are defined, where QG(t) is represented as the missing
files of all users.

• Action: The cache actions of the user and server side are
to update their cache space according to the cache policy.
According to the problem statement provided previously,
ai and aB already exist, as shown in (14) and (15). There-
fore, the user-side and server-side cache action can be
respectively represented as Ai = {ai(t)|t = 0, 1, 2, . . .}
and AB = {aB(t)|t = 0, 1, 2, . . .}. After the user-side
and server-side caches execute an action, the cache state
is updated as CUi(t + 1) = CUi(t)\a

−
i (t) ∪ a

+
i (t),

CUB(t+ 1) = CUB(t)\a
−
B(t) ∪ a

+
B(t).

• Transfer probability P: The state transfer probability
describes the transfer of the system to the next state
after performing the action ai(t) or aB(t) in the current
state. For problems (24) and (25), the state transfer
probability can be expressed as Pi

(
si(t), s

′
i(t)|ai(t)

)
∈

Pi,∀si(t), s′i(t) ∈ Si and PB

(
sB(t), s

′
B(t)|aB(t)

)
∈

PB ,∀sB(t), s′B(t) ∈ SB , where s′i(t) and s′B(t) denote
the cache state after taking action in states si(t) and
sB(t), respectively.

• Reward: The reward is a function of the state and action,
and it measures the effect of the agent’s action in a given
state. Because the goal of the optimization is to reduce
the network traffic load, the reward is defined as the cost
of the file transfer, as follows.

ri(si(t), ai(t)) = −Tai(si(t), ai(t)) (26)

rB(sB(t), aB(t)) = −TaB(sB(t), aB(t)) (27)

The cumulative rewards from time t can respectively be
expressed as follows.

ri ≜
T∑

t=0

ri(si(t), ai(t)) (28)

rB ≜
T∑

t=0

rB(sB(t), aB(t)) (29)

C. Reinforcement Learning Formation

According to equations (28) and (29), the agent’s goal is to
learn a caching policy that maximizes the cumulative reward
value. The user-side and MEC server-side policy functions
are respectively defined as µi : si → ai and µB : sB → aB ,
which implements a mapping from the current system state to
a series of actions. The action ai(t) = µi[si(t)] determines
what should be stored in the cache in the current state si(t)
under the policies µi(∗). The goal of user side cache policy
is to find the best policy to maximize the cumulative reward
(state value function), which is expressed as follows.

Vµi
(si(t)) = lim

T→∞
E[

T∑
τ=t

γt−1ri(si(t), ai(t)|si(0) = si)]

(30)
This represents the average network traffic load cost in-

curred over an infinite time, where E denotes the expectation
and the discount factor is γ ∈ [0, 1). Action ai(t) affects the
user-side and server-side cache states in future time slots, so
past and present actions always have an impact on future costs.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 8

Due to the nature of Markov models, by using the Bellman
equation with recurrence relations [30], the value function (30)
can also be expressed as follows.

Vµi
(si(t)) =

∑
ai∈Ai

µi

(
ai(t)|si(t)

){
ri(si(t), ai(t))+

γ
∑
s′i

Pi

(
s′i(t)|si(t), ai(t)

)
V (s′i(t))

} (31)

Thus, the optimal strategies ψ∗
i and ψ∗

B for problems (24)
and (25) can be derived as objective strategy functions based
on the Bellman equation, respectively.

ψ∗
i = argmax

ai∈Ai

∑
si(t+1)∈Si

Pi(si(t), s
′
i(t)|ai(t))·(

ri(si(t), ai(t)) + γVµi(si(t+ 1))
) (32)

ψ∗
B = argmax

aB∈AB

∑
sB(t+1)∈SB

PB(sB(t), s
′
B(t)|aB(t))·(

rB(sB(t), aB(t)) + γVµB
(sB(t+ 1))

) (33)

The optimal caching policy ψ∗
i on the user side yields

the optimized action ai(t) at state si(t). The number of
transmitted files caused by an action ai(t) at time slot t varies
with C(t). As a result, traditional optimization techniques
such as dynamic programming are ineffective for solving the
problem considered in this study.

V. OVERVIEW DESIGN OF AWD2PG

To address the aforementioned optimal issue (32)(33), the
AWD2PG is proposed, which is combined with the dynamic
cache decision process as Section III-C and consists of four
major phases: the user request phase, the attention channel
allocation phase, the local cache decision phase and the server
cache decision phase. In particular, Section V-A presents the
overall process of the proposed AWD2PG at time t. Section
V-B and Section V-C describe the channel allocation method
for attention weights, as well as the user-side caching policy.
Finally, Section V-D describes the server-side caching strategy.

A. Whole Process

The overview process of the proposed AWD2PG at time t
is presented in Fig. 3.

1) User Request Phase: In this phase, the user sends the
request and checks the local cache, then sends the missing
files and user model related factors to the server.

2) Attention Channel Allocation Phase: In this phase, the
MEC server-side collects relevant factors for each UE
(e.g., the number of user misses, the average loss, and
the average reward value). Then, using an attention
mechanism, different channel allocation weights are given
to all devices within the coverage of the base station.
Finally, the obtained channel numbers are distributed to
corresponding devices for user-side caching decisions.

3) Local Cache Decision Phase: Due to the continuous
processing operation space of the cache decision, at

this stage, the user side adopts the deterministic policy
gradient (DDPG) model with high sampling efficiency,
generates a local cache policy according to the number
of allocated channels, and dynamically updates the cache.

4) MEC server Cache Decision Phase: All users in the
coverage area send proactive cache decision actions and
missing files to the server, which incorporates the current
cache state on the server side and uses the twin delayed
DDPG (TD3) [31] model to make cache decisions to
update the cache.

B. Weighted Channel Allocation

Under unicast between the MEC server and the user, all
users share the available channels equally. However, consid-
ering the difference in the performance of the UE’s local
decision-making model, it is unreasonable to allocate all
channels equally. Therefore, a weighted form (ie., weighted
channel allocation) is considered. In this model, a reward
ri((si(t), ai(t)) and some device-related metrics are used to
evaluate the number of channels allocated to user devices. This
happens in weighted channel allocation stage (shown in figure
3).
Problem Formulation: The corresponding weighted

channel assignment problem can be expressed as follows,

ci(t) = wiC(t), (34)

where wi is the weighting factor for UE-i, which is used to
calculate the proportion of channels allocated to users. The
weights wi for UE-i are calculated using the average reward,
the average loss of the critic/actor network, the number of
missing requests, and the batch size.

• Average reward: The average reward ri(t) of UE-i
is the average of all cache decision rewards in time slot
t− 1.

• The average loss of critic/actor network: The av-
erage loss value of the critic and the actor network for
UE-i respectively express as L

i

c(t) and L
i

a(t), which is
the average of the local training model losses over the
t− 1 time slot.

• The number of missing requests: The number of
missing requests for UE-i in time slot t is mt

i.
• Batch size: The batch size of UE-i is bi; The larger the

batch size, the more data will be involved in the training
process of the local model.

In the proposed model, the Scaled dot-product attention is
utilized, and the evaluation metrics are defined as ”Keys” and
”Values” in the attention mechanism. Specifically, ”Keys” are
expressed as Ki = [ri(t), L

i

C(t), L
i

A(t),m
t
i, bi]. The objective

is to develop a more capable agent that can maximize rewards
while minimizing losses. Additionally, users believe that a
higher number of lost requests necessitates a higher number
of channels. As a result, the Query is designed as follows.

Q = [max
i

(ri(t)),min
i
(L

i

c(t)),min
i
(L

i

A(t)),max
i

(mt
i),max

i
(bi)]

(35)
In the attention weight distribution stage, the input on the

MEC server side includes query Q, keys Ki. Calculate the dot

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 9

MEC 

Time

User  Request

Local Cache Decision

t

t+1

Attention Channel 

Allocation

User Request

Attention Channel 

Allocation

Local Cache Decision

MEC Server Cache 

Decision

UE

User Request Miss File and local model 

Information

u1 u2 u3

MEC 

Time

User  Request

Local Cache Decision

t

t+1

Attention Channel 

Allocation

User Request

Attention Channel 

Allocation

Local Cache Decision

MEC Server Cache 

Decision

UE

User Request Miss File and local model 

Information

u1 u2 u3

Fig. 3. The whole process of the proposed AWD2PG framework at time slot t.

product of query and all keys, divide by
√
dk, and then use the

softmax function to get the weight of the value, where
√
dk

is the dimension of keys Ki. Therefore, for weight factors wi,
we have

wi = Attention(Q,Ki) = softmax(
QKT

i√
dk

),∀i ∈ N . (36)

C. Local Cache Decision

The user receives the number of channels allocated (34)
in the Local Caching Decision phase. The user then makes
a caching decision based on this, i.e., decides to proactively
transmit and cache the content to be replaced. However, due to
the large state space and action space, it is difficult to obtain
an optimal policy for problem (32).

In order to tackle the developed MDP problem, we have em-
ployed a reinforcement learning algorithm to execute dynamic
caching decisions based on the designated state and action
spaces. Firstly, within our scenario, the deployed agents on
edge devices are confronted with the task of making decisions
regarding caching or transmitting files. This decision-making
process involves selecting from a wide range of options,
thereby transforming it into a continuous action problem. Sec-
ondly, the agents deployed on the edge devices must engage
with the environment for training purposes. Given the limited
computational or storage resources available on these edge
devices, it becomes imperative to deploy a model that is both
straightforward and easy to implement. In related studies, we

discovered that the DDPG algorithm was effectively utilized
for distributed reinforcement learning training in [6]. Likewise,
in [9], the Deep Q-Network (DQN) algorithm was employed
to address the decomposed user caching optimization subprob-
lem. Drawing upon these findings, we have decided to utilize
the DDPG algorithm for executing dynamic caching decisions
within our scenario.

DDPG adopts the actor-critic method, the critic network
Qi(si, ai|θQi) evaluates the value of Q, and the actor net-
work evaluates the policy function µi(si|θµi). The training
parameters of critic network and action network are θQi and
θµi respectively.

In each time slot, the user sends out requests and gets the
missing information of the current request according to the
current cache state. After receiving the number of channels
allocated by the MEC server side, combine the user request
of the current slot with the cached state CUi(t) to generate
the current user state si(t) and feed it to the actor network.
The actor network equals a parameterized actor function
ai(t) = µi(si(t)|θµi), which determinedly mapped the state
to a specific action. For the intelligence to fully explore the
environment, exploration and exploitation are balanced in this
work by adding a Gaussian noise vector to the strategy output
[30], i.e.,

ai(t) = µi(si(t)|θµi) + n0(t)|n0(t)∼N (0,σ2), (37)

where n0(t) is a Gaussian-distributed noise vector with a mean
of 0 and a variance of 2. Under action ai(t), the user’s cache

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 10

state CUi(t) in time slot t is updated to CUi(t+ 1). The ob-
tained action ai(t) is then send to the critic network to obtain
the corresponding Q-value, denoted as Qi(si(t), ai(t)|θQi),
and the Q-value can be further expressed as follows.

Qi(si(t), ai(t)|θQi) = E[

+∞∑
τ=0

γt−1ri(si(t), ai(t))] (38)

Experience playback is used to improve the training stability
on the user side, and the dataset in its experience pool can be
represented as follows.

Ω = (si(t), ai(t), ri(t), s
′
i(t)) (39)

Furthermore, the networks µi(·|θµi) and Qi(·|θQi) are
referred to as online networks, and there are two identical
counterparts for greater stability and faster convergence. The
corresponding networks are the target actor network µi(si|θµ

′
i)

and the target critic network Qi(si, ai|θQ
′
i), where θµ

′
i and θQ

′
i

are the corresponding neural network parameter. The target
network is a time-delayed copy of the original network that
can track the learned network and softly update the target
network model parameters. Throughout the training process of
the system, the agent is randomly sampled from the empirical
playback pool with sampling points tNbs

. The real Q-values
obtained using the target critic network are as follows [30].

Vµi
(s′y(tNbs

) = ri

(
si(tNbs

), ai(tNbs
)
)
+

γ max
a′
i(tNbs

)
Qi

(
s′i(tNbs

), a′i(tNbs
)|θQ

′
i

) (40)

To make the output Q-value of the critic network closer to
the real Q-values y′(tNbs

) and guide the training of the actor,
the mean squared error (MSE) as a loss function to measure
the training loss is defined as follows.

L(θQi) =
1

Nbs

Nbs∑
b=1

(
y′(tNbs

)−Q(si(t), ai(t)|θQi)
)2

(41)

Using the gradient descent method, the critic network pa-
rameters θQi are optimized, which is denoted as

θQi ← θQi − η∇θQi (θQ
i

), (42)

where η represents the parameter of the update step size. The
objective of the actor Network aims to find the optimal policy
that maximizes the Q value, which can be expressed as:

µi(si|θµi) = argmax
ai

Q
(
si(t), ai(t)|θµi

)
. (43)

The performance objective function for the current policy
evaluation is designed as follows.

Jβ(µi) = Esi∼ρβ [Q(si(t), ai(t)|Θµi)] (44)

It estimates the expected value of the evaluation network
Q
(
si(t), ai(t)|θµi

)
under the state distribution si ∼ ρβ . Then,

the chain rule is applied to update the actor network, as
follows.

∇θµiJβ(µi) = Esi∼ρβ

[
∇ai

Q(si, ai|θµi)|ai=µi(si|θµi )

·∇θµiµi(si|θµi)
] (45)

The target parameters θQ
′
i and θµ

′
i are updated using a soft

update, as follows,

θQ
′
i = θQi + (1− τ)θQ

′
i , (46)

θµ
′
i = θµi + (1− τ)θµ

′
i , (47)

where τ represents the discount factor. During model training,
the critical network parameters are updated using Monte
Carlo sampling (41), and the target network parameters are
optimized using soft updates (46) and (47). The user-side
cache decision process is shown in the algorithm 1.

Algorithm 1 AWD2PG: Local Cache Decision.

Initialize the replay memory Ωi.
Initialize θµi , θQi and obtain θµ

′
i , θQ

′
i by cloning θµi ,θQi .

for t = 0, 1, 2, 3, ..., T do
for UE-i ∈ N in Parallel: do

UE-i send requests at t by qi(t).
Send missed files and user-related parameters to the
server.
Receive the Number of channels ci (34) allocated to
UE-i.
Observer the state si(t), and selects action by ai(t) =
µi(si(t)|θµi).
Observer reward feedback ri(t) (26), and obtain new
observations s′i(t).
Store {(si(t), ai(t), ri(t), s′i(t))} into its replay buffer
Ωi.
Randomly select a mini-batch of transitions
{(si(t), ai(t), ri(t), s′i(t))} from Ωi.
Calculate y′(tNbs

) by (40), Then update θQi by (42).
Soft-update the target actor/critic every φ steps as
(46)(47).

end for
end for

D. MEC Server Side Cache Decision

On the MEC server side, it receives all user cache decision-
making actions and requests, which leads to a sharp increase
in the dimension of the MEC side state, and it is impossible to
create a Q table for all possible state/action pairs. Therefore,
on the MEC server side, the TD3 algorithm is used to solve
the joint optimization problem, as shown in fig. 4. The TD3
architecture consists of value networks Qθ1 and Qθ2 , and
actor network πϕ. The online network corresponding to the
critic network is Qθ′

1
and Qθ′

2
, while the online network

corresponding to the actor network is πϕ′ . Since the server
receives proactive caching actions and lost files from all users
in the coverage area, and both proactive caching and reactive
caching files on the user side need to be transmitted through
the server. Therefore, the server’s caching decision-making
scope includes the above two types. The proactive cache files

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 11

Memory

Network 

environment

Miss request/
action

Actor net Actor net 

A
Critic 1Critic 1

Critic 2Critic 2

Critic 1

Critic 2

TD-error_1

TD-error_2

Actor target netActor target net

Target Critic 2Target Critic 2

A、

Target Critic 1Target Critic 1Target Critic 1

Min

Q

Target

R

MEC Server(Agent)

（State,
Action,
Reward,

Next state）

Reward

Action

Miss request/
action

Miss request/
action

UE-1

UE-2

UE-i

Fig. 4. The TD3 architecture applied to the MEC side.

of all users within the coverage area can be expressed as
PT (t) =

∑N
i=1 PTi(t) and QG(t). Thus, the server’s state

sB(t) can be rewritten as,

sB(t) = {CUB(t), Q
G(t) ∪ PT (t)}. (48)

The state sB(t) is sent to the actor network and the state
is mapped to a particular policy using aB(t) = µB(sB(t)|ϕ),
which can be expressed as

aB(t) = µB(sB(t))|ϕ) + nB(t)|nB(t)∼N(0,σ2), (49)

where nB(t) is the noise vector that follows the mean dis-
tribution. After receiving action aB(t), the server updates its
cache state CUB(t) to CUB(t + 1) in response to the next
server-side request. During the agent learning phase, a small
amount of random noise is added to the target actions and
averaged over a small batch to smooth out the target policy.

aB(sB(t)) = µB(sB(t)|ϕ′) + clip
(
(ϵ,−c, c

)
,

aLow, aHigh

)
, ϵ ∼ N (0, σ)

(50)

The action aB(sB(t)) is fed into the two critic target
networks, and the Q-values corresponding to the current state
and action are calculated as follows.

Q
(
sB(t), aB(sB(t))|θ1

)
= EµB

[ +∞∑
τ=0

χτrB(t+τ)|sB(t), aB(t)
]

(51)

Q
(
sB(t), aB(sB(t))|θ2

)
= EµB

[ +∞∑
τ=0

χτrB(t+τ)|sB(t), aB(t)
]

(52)

The Clipped Double Q-learning method is used to learn the
two Q functions independently, and the smaller Q-value is
used for network updates [31].

y
(
sB(t), aB(sB(t))

)
= rB+γ min

i=1,2

(
Q(sB(t), aB(sB(t))

∣∣∣θ′i).
(53)

The predicted values are fed back to the critic network,
and the parameters of the two critic networks are updated
separately.

L(θ1) =
[
Q(sB(t), aB(sB(t))|θ1)− y

(
sB(t), aB(sB(t))

)]2
(54)

L(θ2) =
[
Q(sB(t), aB(sB(t))|θ2)− y

(
sB(t), aB(sB(t))

)]2
(55)

By maximizing the cumulative expected return, the param-
eters of the two critic networks are updated. The deterministic
strategy gradient algorithm is used by the actor network to
generate optimal strategies by maximizing the Q-value and
updating the strategy network parameters.

∇ϕJβ(ϕ) = EµB
[∇aB

Q(sB , aB |ϕ)|aB=µB(sB |θµB )

·∇ϕµB(sB |ϕ)]
(56)

MEC server-side cache decision is outlined in Algorithm 2,
where δ is the total episodes.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 12

Algorithm 2 AWD2PG: MEC Server Side Cache Decision.

Initialize the replay memory ΩB .
Initialize critic networks Qθ1 and Qθ2 , and the actor network
with random parameters ϕ.
Initialize target networks θ′2.← θ2, θ′1 ← θ1, ϕ′ ← ϕ..
for episode= 1, 2, 3, ..., δ do

for t = 0, 1, 2, 3, ..., T do
UE-i send requests at t by qi(t).
Receive all the user absent files and user-related pa-
rameters.
The channel assignment weight is calculated by the
attention mechanism (36), and the number of channels
ci(34) is sent to UE-i.
Local cache update phase.
Receive proactive cache action PT (t) and missing files
QG(t) from users.
Observe the state sB(t) and select the action aB(t)
with exploration noise by (49), receive reward feedback
rB(t), and obtain new observations s′B(t).
Store {sB(t), aB(t), rB(t), s′B(t)} into its replay
buffer ΩB .
Randomly select a mini-batch of transitions from ΩB .

Calculate aB by (50), and Calculate y by (53); Then
update the critic network parameters θ1 and θ2 by (54)
and (55), respectively.
Update the actor network parameter ϕ by (56).
Update target networks:

end for
end for

E. Convergence and Complexity

The time computational complexity and convergence of the
proposed algorithm are analyzed according to [32].

User side cache algorithm: As mentioned above, we de-
fine the number of users as N , the number of contents
as F , the cache capacity of users as Mi, and the number
of channels as C. In DDPG, the two phases that require
high computing power are the training of actor network
and critic network. The time calculation complexity of actor
network is O(DAi

DAu
+

∑U−2
u=1 DAu

DAu+1
+ DAi

DAu
),

where DAi = Si, representing the input layer. The number
of neurons in the output layer is DAu = C +Mi. Therefore,
the computational complexity of the actor network is O(γa =
δMBT1(DAi

DAu
+

∑U−2
u=1 DAu

DAu+1
+ DAi

DAu
)). where

δMB represents the batch size and T1 is the upper bound of the
training steps. The time computational complexity of the critic
network is O(γb = δMBT1(DCiDCu +

∑U−2
u=1 DCuDCu+1 +

DCi
DCu

)), where the number of neurons in the input layer
is DCi

= C + Mi + S, and the number of neurons in the
output layer is DCu

= 1. Therefore, the time complexity of
the proposed DDPG algorithm is O(max(γa, γb)).

Server side cache algorithm: Similar to the user-side al-
gorithm, the time computational complexity of the actor net-
work in the server-side TD3 algorithm can be expressed as
O(γa = δMBT1(EAi

EAu
+

∑U−2
u=1 EAu

EAu+1
+ EAi

EAu
)),

where EAi
= SB represents the number of neurons in the

input layer, and EAu represents the neurons in the output
layer quantity. The critic network in the TD3 algorithm also
needs to be updated. If we assume that the structure of
the double Q network in the TD3 algorithm is the same as
the critic network in DDPG, then the time computational
complexity can be expressed as O(2γb = 2δMBT1(ECi

ECu
+∑U−2

u=1 ECuECu+1 + ECiECu)), where ECi represents the
number of neurons in the input layer, and ECu

represents The
number of neurons in the output layer. Therefore, the update
of the TD3 algorithm involves updating the parameters of the
actor network and the critic network, and the time complexity
of the update step can be expressed as O(max(γa, 2γb)).

Proposed AWD2PG algorithm: During each iteration, two
subproblem algorithms are executed to solve the above two
subproblems. The complexity of the user-side and server
algorithms has been analyzed above. Therefore, the complexity
of the proposed AWD2PG algorithm is O(max(γa, 2γb)).

VI. NUMERICAL SIMULATION AND ANALYSIS

In this section, to evaluate the performance of the proposed
AWD2PG method, the proposed algorithm is compared with
other algorithms under different parameters.

A. Parameter Setting

In the simulation, the total number of files was set by
default to F = 48. Because the network adopts fragmented
transmission, all files were considered equivalent in size [33].
Furthermore, the cache size was equal for all users, i.e.,
mi = mj ,∀ ∈ i, j ∈ N , i ̸= j. The cache capacity of
users and MEC servers were respectively set to 4 and 8 by
default, and it was assumed that the cloud server could store
all content. According to [34], the popularity distribution of
BBC iPlayer video files requested by users in June 2014
can be approximated by a Zipf distribution with parameter
(τ, β) = (−0.86, 0.52). In addition, each user UE and BS
locally runs a DRL agent with a three-layer neural network,
all of which models adaptively learn their respective training
parameters using the Adam optimizer, starting from 10−4. In
addition, we set the batch size to [128, 256] to represent the
heterogeneity of the user model, the learning rate of the model
is set to 0.01, and the reward decay is set to 0.8. For the DRL
agent at the MEC server, the noise nB(t) of its action is set
to 0.5. The simulation parameter settings of DRL are shown
in Table II.

TABLE II
MODEL SIMULATION PARAMETERS

Parameter Value
learning rate 0.01
policy noise 0.5
action dim 300
batch size 256

gamma 0.8
Exploration rate 0.1

Hidden layer 3
Activation function ReLU

We set the time slot of the system to 250, and the number of
user requests in each time slot follows a Poisson distribution

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 13

of lam = 0.5. In each time slot, the server uses the attention
mechanism to allocate a certain number of wireless channels
to all users within the coverage area according to the received
information of all users. The attention mechanism used in the
experiment is Scaled dot-product attention, mainly by mapping
the input sequence and then calculating the dot product, then
scaling the dot product result, and finally weighting the scaled
result with the input vector , so as to obtain the output of the
self-attention mechanism.

B. Baseline Schemes and Performance Metrics

To evaluate the proposed AWD2PG model, some baseline
caching schemes are used for comparison such as follows.

• Least Recently Used (LRU): The LRU scheme is replac-
ing the cached file that has not been used for the longest
time when a new file arrives.

• Least Frequently Used (LFU): The LFU scheme re-
places the data with the lowest usage frequency, and if
there are other data with the same usage frequency, the
data with the longest unused time is evict.

• First-In-First-Out (FIFO): The FIFO scheme is replac-
ing the file that has been in the cache for the longest
time.

• Random choice (RC): The RC algorithm randomly
selects the content to be cached and replaced.

• Most popular (MP) [32]: The MP caching scheme uti-
lizes prior knowledge of user request patterns and the M-
Zipf request popularity model to estimate the likelihood
of file requests as the number of requests increases. The
file with the highest probability of being requested is then
selected for caching, aligning caching decisions with user
request popularity.

The effectiveness of the proposed AWD2PG algorithm was
evaluated in the following aspects. Firstly, the convergence of
the algorithm was verified. Secondly, the proposed caching
mechanism was evaluated based on the cache hit ratio and
network load, both on the user side and the server side. The
cache hit ratio on the user side was measured as the number
of hits divided by the total number of user requests, while the
network load included proactive transmission and the number
of missing files requested. On the server side, the evaluation
considered the cache hit rate and the number of proactively
transmitted and missing files over the backhaul link.

C. Algorithm Evaluation

The comparison between the proposed AWD2PG algorithm
and N-AWD2PG algorithm in terms of convergence behavior
is depicted in Fig. 5. In this context, N-AWD2PG refers to the
method of sharing a certain number of channels on average
among all the users within the range of the base station during
file transmission. The figure illustrates the reward value of
the proposed AWD2PG algorithm compared to N-AWD2PG
algorithm, with the total channel capacity set to C(t) = 28.
It is evident that the AWD2PG algorithm achieves a higher
reward value faster and more smoothly than N-AWD2PG
algorithm due to its ability to dynamically allocate the num-
ber of channels based on the local model and the number

of requests. The suboptimal performance of N-AWD2PG is
mainly attributed to two situations: one is the poor quality of
the decision model maintained by the user, and the other is
when the number of files requested by the user within a given
time slot is small. Both of the above will allocate too many
channels to users, which leads to the proactive transmission
of files being unable to meet user requests for the next time
slot, thereby increasing network traffic load.

Fig. 5. The demonstration of the reward of the AWD2PG and N-AWD2PG
algorithms.

(a)

(b)
Fig. 6. The performance evaluation of different schemes in terms of the (a)
hit rate and (b) traffic load with respect to time

Fig. 6 demonstrates the change of network load and hit rate

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 14

(a) (b)
Fig. 7. The performance evaluation of different cache capacities on the user side in terms of the (a) hit rate and (b) network traffic load.

(a) (b)
Fig. 8. The performance evaluation of the models with different total numbers of files on the user side in terms of the (a) hit rate and (b)network traffic load.

during the training process of the proposed strategy, where
the total number of parameter files N = 48, and the user’s
cache size mi = 8. It can be seen from the figure that
the proposed AWD2PG strategy achieves the lowest network
load and the largest cache hit ratio, and is always better than
other strategies. In terms of hit rate, the proposed AWD2PG
algorithm outperforms N-AWD2PG, MP, LFU, LRU, FIFO
and RC algorithms by 10.17%, 19.61%, 36.24%, 64.05%, 82
% and 83.87%. According to Fig. 6(b), the proposed AWD2PG
scheme outperforms the first six baseline schemes by 5.66%-
37.47% in terms of network traffic.

D. Performance Evaluation of User-side Caching Decisions

In this section, simulation results are presented to validate
the performance of the proposed AWD2PG framework on the
user side. Given that the MP algorithm is a local caching
strategy based on the user request model, a preprocessing
approach can be used to obtain prior knowledge of the
likelihood of the requested file. Fig. 7 and Fig. 8 show how
the proposed dynamic caching policy AWD2PG compared
to N-AWD2PG and the baseline on the user side in terms
of two factors, namely the network transfer load cost, and
cache hit rate, which are the local cache size Mi and the total

number of files F , respectively. As displayed in the figures, the
proposed caching policy AWD2PG outperformed the others.
Fig. 7 demonstrates that the proposed strategy achieved a
low network load and a high cache hit ratio for various
cache capacities. This implies that the proposed approach is
more competitive in terms of cache optimization, especially
when user cache resources are limited. This improvement is
primarily due to the ability of the proposed algorithm to more
accurately predict the user request transition probability and
update the cached content.

Fig. 7(a) depicts the effect of the user cache size mi on
the cache hit rate. As the cache size increases, the cache has
a greater probability of storing the requested file, and thus
its cache hit rate increases. Specifically, compared to the N-
AWD2PG, LRU, FIFO, LFU, RC, and MP algorithms, the
proposed AWD2PG algorithm exhibited average increases in
the hit rate of 4.92%, 33.11%, 43.81%, 25.16%, 43.17%, and
10.77%, respectively.

Fig. 7(b) depicts the effect of the cache capacity on the
network traffic load. The network traffic load was found to
decrease monotonically with the monotonic growth of the
cache, for when the cache capacity is large enough, the trans-
mission of request traffic caused by file misses is reduced. For

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 15

(a) (b)
Fig. 9. The impact of the cache size on the MEC server side in terms of the (a) hit rate and (b) network traffic load.

(a) (b)
Fig. 10. The impact of the number of total contents F at the MEC server side with Mi = 4 and MB = 8 in terms of the (a) hit rate and (b) network traffic
load.

various cache capacities, the proposed AWD2PG algorithm
outperformed the N-AWD2PG, LRU, FIFO, LFU, RC, and MP
algorithms by 8.53%, 31.54%, 36.25%, 26.93%, and 14.37%,
respectively.

The performance of the models was compared when the
total number of files F varied from 16 to 64 and the user cache
capacity was mi = 4. In terms of the network load and cache
hit ratio, Fig. 8 shows that the proposed AWD2PG algorithm
outperformed all baseline methods. It can also be seen that as
the total number of files increased, the accuracy of the caching
algorithm decreased, and the cache performance gradually de-
creased. Fig. 8(a) depicts the effect of the total number of files
on the cache hit rate. The cache hit rate appeared to decrease
monotonically as the total number of files increased. The
proposed AWD2PG and MP algorithms had a performance
difference of 6.77% for a total of 16 files and 13.74% for a
total of 56 files. Compared to the N-AWD2PG, LRU, FIFO,
LFU, and RC algorithms, the performance increased by 6.99%,
64.72%, 83.87%, 30.3%, 83.94%, and 16.01%, respectively.

Fig. 8(b) shows the effect of the total number of files on
the network traffic load. The network load of the proposed
AWD2PG algorithm was lower than that of the baseline
method and increased along with the total number of files.

E. Performance Evaluation of MEC-side Caching Decisions

Considering that the MP algorithm is a local caching policy
based on the user request model, and the server receives
missing files from all users in the coverage area, the request
model on the BS side cannot be obtained directly. Therefore,
the MP algorithm was implemented during pre-processing
to generate a global popularity model to predict the request
probability of each file on the BS side. On the MEC server
side, the proposed AWD2PG algorithm compares the network
transmission load cost and cache hit rate with all baselines
in terms of cache size MB and the total number of files
F , respectively. As shown in Fig. 9, AWD2PG exhibited the
same performance variation trend on the server side as on the
user side under different factors, and outperformed the other
baseline methods on both the server and user sides.

Fig. 9 compares the performance of various caching
schemes on the server side at various cache capacities, ranging
from 8 to 28. Fig. 9 (a) depicts the relationship between
the hit rate and the cache capacity. The proposed AWD2PG
algorithm outperformed all baseline schemes, with a 24.6%-
165.56% average hit rate improvement and a 6.66%-79.37%
improvement over the MP algorithm. Fig. 9 (b) shows that the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXXX 2023 16

proposed AWD2PG scheme achieved a lower network load
than all baseline schemes. Fig. 9 also shows that AWD2PG
consistently outperformed the MP algorithm with a priori
knowledge for all factors. Furthermore, with the increase of
the cache size, the gap between AWD2PG and MP shrunk,
because as the cache size grows, there will be more cache
capacity to store files with a high request probability.

The impact of the total number of files on server-side perfor-
mance was subsequently investigated in greater depth, where
the total number of files F ranges from 16 to 64. Fig. 10 depicts
the impact of the total number of files on the server-side cache
performance. Fig. 10(a) shows that on the server side, the
proposed AWD2PG algorithm consistently outperformed the
baseline algorithms in terms of the hit rate. Fig. 10(b) shows
that the proposed AWD2PG algorithm offloaded more back-
haul link traffic and reduced it by averages of 65.14%, 65.10%,
56.13%, 61.78%, and 35.55% compared to LRU, FIFO, LFU,
RC, and MP algorithms, respectively.

VII. CONCLUSION
In this study, the optimization problem of joint proactive

caching and cache replacement for edge caches in mobile
networks is investigated. Furthermore, the joint optimization
problem at the user side and edge side was respectively
formulated as an infinite-range average cost MDP process
with a cost function defined to minimize the network load.
The AWD2PG framework is proposed to solve the joint cache
optimization problem on the user and server sides separately
while controlling the allocation of limited available channels
between them. In particular, the DDPG and TD3 models are
adopted on the user side and the server side respectively to deal
with the caching decision problem based on network status
and historical data. Most importantly, an attention mechanism
is introduced to control the allocation weights of the limited
available channels on the user and server side to solve un-
even channel allocation among users. Simulation results show
that the proposed strategy is effective in predicting future
user requests and outperforms existing schemes compared
to baselines. In future research, the focus will be more on
practical considerations, exploring request distribution models
for different data types, and edge caching models for D2D and
cloud-edge device collaboration.

REFERENCES

[1] Wang X, Li X, Pack S, et al. STCS: Spatial-temporal collaborative
sampling in flow-aware Software defined networks[J]. IEEE journal on
selected areas in communications, 2020, 38(6): 999-1013.

[2] Fang J, Ma A. Iot application modules placement and dynamic task
processing in edge-cloud computing[J]. IEEE Internet of Things Journal,
2020, 8(16): 12771-12781.

[3] Podlipnig S , Boeszoermenyi L . A survey of Web cache replacement
strategies[J]. Acm Computing Surveys, 2003, 35(4):374-398.

[4] Hachem J, Karamchandani N, Diggavi S. Content caching and delivery
over heterogeneous wireless networks[C]//2015 IEEE conference on com-
puter communications (INFOCOM). IEEE, 2015: 756-764.

[5] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch and G. Caire,
”FemtoCaching: Wireless Content Delivery Through Distributed Caching
Helpers,” in IEEE Transactions on Information Theory, vol. 59, no. 12,
pp. 8402-8413, Dec. 2013, doi: 10.1109/TIT.2013.2281606.

[6] Liu S, Zheng C, Huang Y, et al. Distributed Reinforcement Learning for
Privacy-Preserving Dynamic Edge Caching[J]. IEEE Journal on Selected
Areas in Communications, 2022, 40(3): 749-760.

[7] Yan S, Jiao M, Zhou Y, et al. Machine-learning approach for user
association and content placement in fog radio access networks[J]. IEEE
Internet of Things Journal, 2020, 7(10): 9413-9425.

[8] Tadrous J, Eryilmaz A. On optimal proactive caching for mobile networks
with demand uncertainties[J]. IEEE/ACM Transactions on Networking,
2015, 24(5): 2715-2727.

[9] Qian Y , Wang R , Wu J, et al. Reinforcement Learning Based Optimal
Computing and Caching in Mobile Edge Network[J]. IEEE Journal on
Selected Areas in Communications, 2020, PP(99):1-1.

[10] Somuyiwa S O, György A, Gündüz D. A reinforcement-learning ap-
proach to proactive caching in wireless networks[J]. IEEE Journal on
Selected Areas in Communications, 2018, 36(6): 1331-1344.

[11] Zheng Z, Song L, Han Z, et al. A stackelberg game approach to proactive
caching in large-scale mobile edge networks[J]. IEEE Transactions on
Wireless Communications, 2018, 17(8): 5198-5211.

[12] Sun Y, Cui Y, Liu H. Joint pushing and caching for bandwidth utilization
maximization in wireless networks[J]. IEEE Transactions on Communi-
cations, 2018, 67(1): 391-404.

[13] Chen Q, Wang W, Chen W, et al. Cache-enabled multicast content
pushing with structured deep learning[J]. IEEE Journal on Selected Areas
in Communications, 2021, 39(7): 2135-2149.

[14] Wang F, Wang F, Liu J, et al. Intelligent video caching at network
edge: A multi-agent deep reinforcement learning approach[C]// IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
2020: 2499-2508.

[15] Peng H, Shen X. Multi-agent reinforcement learning based resource
management in MEC-and UAV-assisted vehicular networks[J]. IEEE
Journal on Selected Areas in Communications, 2020, 39(1): 131-141.

[16] Alqahtani F, Al-Maitah M, Elshakankiry O. A proactive caching and
offloading technique using machine learning for mobile edge computing
users[J]. Computer Communications, 2022, 181: 224-235.

[17] Zhang Y, Li Y, Wang R, et al. PSAC: Proactive sequence-aware content
caching via deep learning at the network edge[J]. IEEE Transactions on
Network Science and Engineering, 2020, 7(4): 2145-2154.

[18] Yu Z, Hu J, Min G, et al. Privacy-preserving federated deep learning
for cooperative hierarchical caching in fog computing[J]. IEEE Internet
of Things Journal, 2021.

[19] Y. Lu, W. Chen and H. V. Poor, ”Coded Joint Pushing and Caching
With Asynchronous User Requests,” in IEEE Journal on Selected Areas
in Communications, vol. 36, no. 8, pp. 1843-1856, Aug. 2018, doi:
10.1109/JSAC.2018.2844918.

[20] W. Chen and H. V. Poor, ”Content Pushing With Request Delay
Information,” in IEEE Transactions on Communications, vol. 65, no. 3,
pp. 1146-1161, March 2017, doi: 10.1109/TCOMM.2017.2648800.

[21] Gregori M, Gómez-Vilardebó J, Matamoros J, et al. Wireless content
caching for small cell and D2D networks[J]. IEEE Journal on Selected
Areas in Communications, 2016, 34(5): 1222-1234.

[22] Somuyiwa S O, Gündüz D, Gyorgy A. Reinforcement learning for
proactive caching of contents with different demand probabilities[C]//
2018 15th International Symposium on Wireless Communication Systems
(ISWCS). IEEE, 2018: 1-6.

[23] Somuyiwa S O, György A, Gündüz D. Multicast-aware proactive
caching in wireless networks with deep reinforcement learning[C]//2019
IEEE 20th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC). IEEE, 2019: 1-5.

[24] Gao S, Dong P, Pan Z, et al. Reinforcement learning based cooperative
coded caching under dynamic popularities in ultra-dense networks[J].
IEEE Transactions on Vehicular Technology, 2020, 69(5): 5442-5456.

[25] Sadeghi A, Sheikholeslami F, Marques A G, et al. Reinforcement
learning for adaptive caching with dynamic storage pricing[J]. IEEE
Journal on Selected Areas in Communications, 2019, 37(10): 2267-2281.

[26] Sakr H, Elsabrouty M. Meta-reinforcement learning for edge caching in
vehicular networks[J]. Journal of Ambient Intelligence and Humanized
Computing, 2023, 14(4): 4607-4619.

[27] X. Zhou, Z. Ke and T. Qiu, ”Recommendation-Driven Multi-
Cell Cooperative Caching: A Multi-Agent Reinforcement Learn-
ing Approach,” in IEEE Transactions on Mobile Computing, doi:
10.1109/TMC.2023.3297213.

[28] X. Wang, R. Li, C. Wang, X. Li, T. Taleb and V. C. M. Leung,
”Attention-Weighted Federated Deep Reinforcement Learning for Device-
to-Device Assisted Heterogeneous Collaborative Edge Caching,” in IEEE
Journal on Selected Areas in Communications, vol. 39, no. 1, pp. 154-
169, Jan. 2021, doi: 10.1109/JSAC.2020.3036946.

[29] Wang X, Wang C, Li X, et al. Federated deep reinforcement learning for
Internet of Things with decentralized cooperative edge caching[J]. IEEE
Internet of Things Journal, 2020, 7(10): 9441-9455.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



17

[30] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep
reinforcement learning[J]. arXiv preprint arXiv:1509.02971, 2015.

[31] Fujimoto S , Hoof H V , Meger D . Addressing Function Approximation
Error in Actor-Critic Methods[J]. 2018.

[32] T. Zhang, Y. Wang, W. Yi, Y. Liu, C. Feng and A. Nallanathan, ”Two
Time-Scale Caching Placement and User Association in Dynamic Cellular
Networks,” in IEEE Transactions on Communications, vol. 70, no. 4, pp.
2561-2574, April 2022, doi: 10.1109/TCOMM.2022.3152265.

[33] Poularakis K, Iosifidis G, Sourlas V, et al. Multicast-aware caching
for small cell networks[C]//2014 IEEE wireless communications and
networking conference [2CNC). IEEE, 2014: 2300-2305.

[34] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy,
and J. Zahorjan, “Measurement, modeling, and analysis of a peer-topeer
file-sharing workload,” in Proc. 19th ACM Symp. Operating Syst. Princ.,

Juan Fang received the M.S. degree from Jilin Uni-
versity of Technology, Changchun, China in 1997
and her Ph.D. degree from the College of Computer
Science, Beijing University of Technology, Beijing,
China in 2005. In 1997, she joined the College of
Computer Science, Beijing University of Technol-
ogy. From 2015, she is the professor of Beijing
University of Technology. She currently works with
the Faculty of Information Technology, Beijing Uni-
versity of Technology, Beijing. Her research interests
include high performance computing, heterogeneous

intelligent computing and edge computing.

Huijing Yang received the B.S. degree from
Zhoukou Normal University, Zhoukou, China in
2018. She is currently a Ph.D. student at Beijing
University of Technology, Beijing, China. She is a
student member of CCF. Her main research direction
is computer architecture.

Yu Lu received the Msc degree in college of com-
puter science from Beijing University of Technology
in 2015. She is currently working towards a Ph.D.
degree in computer science from James Cook Uni-
versity. Her research interests are computer vision
and explainable AI.

2003, pp. 314–329.

Ziyi Teng received the B.S. degree from the North
China University of Water Resources and Electric
Power, Zhengzhou, China in 2019. She is currently
pursuing the Ph.D. degree with the Beijing Univer-
sity of Technology, Beijing, China. She is a student
member of CCF. Her research interests in mobile
edge computing.

Huijie Chen received the B.Eng degree from the
School of Computer Science, Henan University of
Economics and Law, Zhengzhou, China in 2010,
the M.Seng degree from the School of Computer
Science, Taiyuan University of Science and Tech-
nology, Taiyuan, China in 2013, and Ph.D. degree in
computer sience from the Beijing Institute of Tech-
nology, Beijing, China in 2020. He currently works
in the school of computer science, Beijing University
of Technology, Beijing, China. His research interests
include Smart Sensing, crowdsensing, and mobile

edge computing.

Wei Xiang (Senior Member, IEEE) received the
B.Eng. and M.Eng. degrees in electronic engineer-
ing from the University of Electronic Science and
Technology of China, Chengdu, China, in 1997
and 2000, respectively, and the Ph.D. degree in
telecommunications engineering from the University
of South Australia, Adelaide, SA, Australia, in 2004.
He is the Cisco Research Chair of AI and IoT and
Director Cisco-La Trobe Centre for AI and IoT, the
School of Engineering and Mathematical Sciences,
La Trobe University, Melbourne, VIC, Australia. He

is currently also a part-time research fellow with the Network Communication
Research Center, Peng Cheng Laboratory, Shenzhen, China. He was the
Foundation Chair and the Head of Discipline of IoT Engineering, James
Cook University, Cairns, QLD, Australia. Due to his instrumental leadership
in establishing Australia’s first accredited Internet of Things Engineering
degree program, he was inducted into Pearcy Foundation’s Hall of Fame in
October 2018. He has published over 250 peer-reviewed papers, including
three books and 180 journal articles. His research interest includes the Internet
of Things, wireless communications, machine learning for IoT data analytics,
and computer vision.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3327656

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


	Introduction
	RELATED WORK
	Proactive Edge Caching
	Proactive Edge Caching with Applied Deep Reinforcement Learning

	SYSTEM MODEL
	System Architecture
	Content Popularity and User Request Model
	Model Validation and Insights
	Dynamic Cache Handling Process
	System Model
	Network Traffic Load

	Problem Formation and Analysis
	Problem Formation
	Problem Recasting
	Reinforcement Learning Formation

	Overview Design Of AWD2PG
	Whole Process
	Weighted Channel Allocation
	Local Cache Decision
	MEC Server Side Cache Decision
	Convergence and Complexity

	NUMERICAL SIMULATION AND ANALYSIS
	Parameter Setting
	Baseline Schemes and Performance Metrics
	Algorithm Evaluation
	Performance Evaluation of User-side Caching Decisions
	Performance Evaluation of MEC-side Caching Decisions

	CONCLUSION
	References
	Juan Fang
	Huijing Yang
	Yu Lu
	Biographies
	Ziyi Teng
	Huijie Chen
	Wei Xiang


