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Abstract—Physical-layer authentication is a popular alterna-
tive to the conventional key-based authentication for internet of
things (IoT) devices due to their limited computational capacity
and battery power. However, this approach has limitations due
to poor robustness under channel fluctuations, reconciliation
overhead, and no clear safeguard distance to ensure the secrecy
of the generated authentication keys. In this regard, we propose a
novel, secure, and lightweight continuous authentication scheme
for IoT device authentication. Our scheme utilizes the inherent
properties of the IoT devices’ transmission model as its source
for seed generation and device authentication. Specifically, our
proposed scheme provides continuous authentication by checking
the access time slots and spreading sequences of the IoT devices
instead of repeatedly generating and verifying shared keys. Due
to this, access to a coherent key is not required in our proposed
scheme, resulting in the concealment of the seed information
from attackers. Our proposed authentication scheme for IoT
devices demonstrates improved performance compared to the
benchmark schemes relying on physical channels. Our empirical
results find a near threefold decrease in the misdetection rate of
illegitimate devices and close to zero false alarm rate in various
system settings with varied numbers of active devices up to 200
and signal-to-noise ratio from 0 dB to 25 dB. Our proposed
authentication scheme also has a lower computational complexity
of at least half the computational cost of the benchmark schemes
based on support vector machine and binary hypothesis testing
in our studies. This further corroborates the practicality of our
scheme for IoT deployments.

Index Terms—Security of internet of things, lightweight au-
thentication.

I. INTRODUCTION

Internet of Things (IoT) devices are increasingly indispens-
able to modern society, industry, and governments [2]. These
devices are expected to increase from 14 billion in 2022 to
27 billion in 2025 [3]. Moreover, these devices will form an
integral part of future networks, including 6G [4]. However,
the security of these widely used IoT devices is an increasingly
essential issue [5].

IoT devices usually connect to a network through an access
point (AP). The conventional approach to establish secure
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communications between IoT devices and AP is to generate a
shared secret key by exploiting the reciprocity of the random
fading channel [6], [7]. Herein, the IoT devices measure
highly correlated wireless channel characteristics (e.g., channel
impulse responses, or received signal strengths) and use them
as shared random sources to generate a shared key. However,
the low-cost and often resource-constrained IoT devices cannot
facilitate physical-channel probing for a shared key generation
due to the limited resources. Instead, these IoT devices rely
on intermittent transmissions, which makes them highly sus-
ceptible to adversarial attacks [8].

Besides, IoT devices perform sporadic transmission to save
energy. Considering sporadic transmission and the massive
number of IoT devices in the future network, the non-
orthogonal multiple access (NOMA) transmission protocols,
which overlap multiple IoT devices over a single radio re-
source block, are envisioned as a potential solution [2], [9].
Though the sporadic transmission in NOMA enables IoT
devices to transmit for extended periods, it also negates the
suitability of conventional shared key generation schemes for
authentication due to their inherent complexity and reliance
on shared key updates. As a result, there can be potential
adversaries with abundant opportunities for certain attacks,
such as spoofing attacks and eavesdropping [10], [11].

Existing methods, such as upper-layer security protocols,
suffer from high computational overhead [12]. Conversely,
lightweight options are available, but these often rely on
physical channel attributes [13], [14] and are unreliable in the
presence of variations and noises. Furthermore, channel prob-
ing is challenging given the resource limitation of the devices.
This underscores the need for fast (enabled by continuous
authentication mechanism), reliable (no reliance on physical
channel attributes), and lightweight authentication mechanisms
for IoT devices.

A. Contributions

In this paper, we propose a novel lightweight and continuous
authentication scheme for resource-constrained IoT devices by
identifying the pre-arranged access time slots and spreading
pools of each IoT device, which provides high uncertainties for
the spoofers and supplies seamless protections for legitimate
communications. In our proposed scheme, the access time slots
are pre-agreed between a pair of IoT devices and the AP, which
are difficult for the adversaries to predict and do not require
additional hardware for implementation [15]. The access time
slots are generated using the spreading pools available at the
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AP and IoT devices. The access time slots for every IoT
device are generated independently at the AP and the IoT
devices, thereby obeying the grant-free NOMA protocol for a
practical massive IoT deployment. If the access time slot and
spreading pool of an IoT device are different from the access
time slot and spreading pool at the AP, it will be identified as
an illegitimate device by the AP. To our best knowledge, this
is the first work to authenticate multiple resource-constrained
IoT devices utilizing grant-free NOMA protocol by utilizing
their spreading pools and pre-arranged access time slots as
the source for authentication. The main contributions of this
work are summarised as follows.

• Authentication scheme: We propose a lightweight au-
thentication scheme comprised of four processes: access
time slots generation, spreading pool construction, seed
generation, and authentication decision. The scheme pro-
vides continuous authentication by checking the access
time slots and spreading pools of the IoT devices instead
of generating and verifying shared keys.

• Reduced overhead and latency: The spreading se-
quences, utilized by the IoT devices as part of the grant-
free NOMA transmission protocol, are used as the seed
source for access time slot generation and IoT device
authentication. Thus, our proposed scheme does not need
seed verification and reconciliation processes, which in-
cur massive overhead and latency.

• Improved authentication performance: Our results in
the misdetection rate of illegitimate devices indicate a
nearly threefold improvement, false alarm rate indicates
state-of-the-art, and spreading sequence collision rate
indicates superior performance in different settings while
boasting a lower complexity compared to the benchmark
schemes. Furthermore, our proposed scheme does not rely
on the physical channel reciprocity assumption, which
makes it a suitable authentication scheme for resource-
constraint IoT devices.

Paper organization : The rest of this paper is organized
as follows. In Section II, we review the related studies of
authentication schemes for IoTs. In Section III, we present the
system model and the authentication problem. In Section IV,
we describe the proposed authentication scheme and provide
a detailed description of the different phases of device authen-
tication. In Section V, we derive the performance analysis of
the proposed authentication scheme. In Section VI, we present
the simulation results to verify the performance gain of the
proposed technique. Finally, Section VII concludes the paper.

Notations: Lower and upper case boldface letters are used
for vectors and matrices, respectively. The transpose of a
vector a is aT . The norm is denoted by ||·||. Cx×y denotes
the complex valued space of size x × y respectively. ⊙, ⊘,
and (·)† denote the Hadamard product, the Hadamard division,
and the Moore-Penrose matrix inversion, respectively. Table I
summarizes the important symbols used in this work, including
the dimensions of vectors and matrices.

II. RELATED WORKS

Considering the adversaries, upper-layer security protocols
have been increasingly studied in the literature [12], [16].

TABLE I: Important symbols used in this work.

Variable Description Dimension
K Total number of IoT devices 1× 1
N Total subcarriers 1× 1
S Active number of IoT devices 1× 1
J Number of time slots 1× 1
c Spreading sequence N × 1
h Channel N × 1
x Transmit signal K × 1
w Gaussian noise N × 1
y Received signal N × 1

G
Synthesis of channel vector and
spreading sequences N ×K

H Channel matrix N ×K
C Codebook matrix N ×K
X Transmit signal (continuous time slots) K × J

Ḡ
Synthesis of channel vector and
spreading sequences (continuous time slots) N ×K

W Gaussian noise (continuous time slots) N × J
Y Received signal (continuous time slots) N × J
Γ̄ Authenticated devices’ indicator K × J

X̃ Authenticated devices’ data K × J

However, they are not well suited for resource-constrained IoT
devices due to their massive computational overhead and ex-
cessive latency. In this regard, low-complexity authentication
schemes are desirable for resource-constrained IoT devices,
complementing the overall network entropy by introducing
additional measures for IoT device authentication in the lower
layers [17], [18].

Physical layer security schemes based on keyless authen-
tication [19]–[21] can provide lightweight security to the
resource-constrained IoT devices by exploiting the inherent
physical-channel attributes and/or device-specific features of
IoT devices. By doing so, the overall network entropy can be
improved while reducing IoT devices’ computational cost and
energy consumption. The authors in [19] introduced schedul-
ing policies to utilize the physical channel characteristics for
device authentication. The authors in [20] utilized the channel
and phase noise of the physical channel between a transceiver
pair utilizing multiple antennas for hypothesis testing and
device authentication. Similarly, the authors in [21] utilized the
correlation of multiple channel impulse responses (CIR) from
the physical channel for authentication. Recently, machine
learning has also been applied to combine with physical
layer authentication schemes to improve the robustness under
channel fluctuations [13], [14], [22]. However, the reliance of
these techniques on the physical channel for feature extraction
results in unreliable authentication performance due to varia-
tions and noises present in complex dynamic environments.

In a different approach, to achieve continuous authentica-
tion, the authors in [23] used an authentication mechanism
to create a learning-based kernel model that utilizes multi-
attributes from the physical channel for device authentica-
tion. Then, the authors in [15] utilized the multi-attribute
design of the physical channel and support vector machine
(SVM) to utilize pseudo-random binary access time slots
for device authentication. However, due to the time-varying
nature of the physical channel, especially in complex dynamic
environments, and the low-cost components utilized by the
IoT devices, the variations and noise cause unreliable seed
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Fig. 1: Illustration of our system model. The transmission between the IoT devices and the AP is carried out by following the
pre-agreed access time slots.

acquisition. Additionally, since these works are based on the
assumption of physical channel reciprocity, they will incur
a high seed mismatch rate due to the half-duplex nature of
the resource-constrained IoT devices; this results in multi-
staged parity bits for seed reconciliation, which is against
the deployment spirit of resource-constrained IoT devices.
Moreover, since the IoT devices are resource-constrained, the
physical channel probing process cannot be carried out due to
the inherent sporadic communication nature of the IoT devices.

In order to overcome the aforementioned challenges, we
propose an access-based framework that paves the way
for lightweight and continuous authentication tailored for
resource-constrained IoT devices.

III. SYSTEM MODEL

In this paper, we consider the scenario where IoT devices
wake up sporadically and transmit their data to the AP in a
grant-free manner, as depicted in Fig. 1. Thus, we consider a
spreading-based uplink grant-free NOMA system comprising
of an AP and K IoT devices with limited computing capabil-
ities. The AP has relatively powerful computing capabilities
and is at a fixed location. The AP and IoT devices are assumed
to be equipped with a single antenna, and their clocks are syn-
chronized1. We assume that upper-layer security mechanisms
are utilized initially to establish system parameters between
the AP and IoT devices [22]. During transmission, a subset of
the K IoT devices sporadically and randomly become active
when they have data to transmit. We consider an overloaded
system where the number of resource blocks N is less than
the number of IoT devices in a cell, i.e., N < K.

1Practically, clock synchronization can be achieved via methods described
in [24]–[26] to achieve energy-efficient communications for IoT devices.
However, this is outside the scope of this work.

A. Threat Model

In the system model, as depicted in Fig. 1, we assume
that illegitimate devices can be present anywhere in a cell,
including in close proximity to legitimate IoT devices, and
therefore, their physical channels can be correlated. As a result,
the AP can receive transmissions from both legitimate IoT
and illegitimate devices, where the illegitimate devices attempt
to access the network by conducting spoofing attacks, such
as man-in-the-middle attacks and replay attacks. With this
in mind, apart from the codebook matrix2, we assume that
the illegitimate devices utilize the same system parameters
and upper-layer signaling as the legitimate IoT devices, as
detailed in Table I. We further assume that the illegitimate
devices can remain active at all times and can scan the
network to learn the transmission pattern of legitimate IoT
devices. Thus, illegitimate devices can be resourceful and more
computationally capable than legitimate IoT devices.

B. Signal Model

Considering an arbitrary symbol interval, an IoT device
randomly wakes up and transmits its complex modulated
signal towards the AP, which are independent random variables
drawn from a standard symmetric discrete constellation set.
After modulation, the transmitted symbol xk from the k-th
IoT device is spread onto a spreading sequence ck of length
N . The received signal y on the n-th subcarrier at the AP is
given as

yn =

K∑
k=1

hnkcnkxk + wn, (1)

where hnk refer to the n-th subcarrier of the k-th IoT de-
vice’s channel vector hk = [h1k, h2k, . . . , hNk]

T ∈ CN×1,

2Generally, the AP can refresh the codebook matrix in a cell to enhance
communication using different methods [27], [28]. However, this is a separate
research topic and is, therefore, outside the scope of this work.
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cnk refer to the n-th component of the spreading sequence
ck = [c1k, c2k, . . . , cNk]

T ∈ CN×1, and wn is the Gaussian
noise on the n-th subcarrier with zero mean and variance σ2.
By combining the received signals overall N subcarriers, the
received signal vector y = [y1, y2, . . . , yN ]T ∈ CN×1 is given
as

y = Gx+w, (2)

where x = [x1, x2, . . . , xK ]T ∈ CK×1 is the transmitted
signal vector for all K devices and w = [w1, w2, . . . , wN ]

T ∈
CN×1 is the noise vector. G ∈ CN×K is the synthesis of the
channel vectors and spreading sequences, given as

G = H⊙C, (3)

where H = [h1,h2, . . . ,hK ] ∈ CN×K is the channel matrix,
C = [c1, c2, . . . , cK ] ∈ CN×K is the codebook matrix, and
⊙ is the Hadamard product, i.e., gnk = hnkcnk.

C. Transmission Model

Different works [29]–[31] have assumed that the active IoT
devices remain unchanged in an entire frame. However, in
practical grant-free systems, the IoT devices access or leave
the system randomly [2]. Moreover, once active, due to the size
of their data payload, some IoT devices transmit their data in
consecutive time slots. From this, it concurs that the nature
of data transmission by IoT devices is generically random and
not deterministic. Therefore, we consider a scenario where the
IoT devices become active or inactive in different time slots,
which is a more practical scenario in 6G IoT applications with
sporadic communications. Motivated by this, we can extend
the signal model in (2) from a single time slot transmission
model to a continuous time-slots transmission model.

The transmitted signals X =
[
x[1],x[2], . . . ,x[J]

]
∈

CK×J are recovered from the received signals Y =[
y[1],y[2], . . . ,y[J]

]
∈ CN×J in J continuous time slots,

based on the LTE-Advanced standard protocol [32]. Thus, the
continuous time-slots transmission model for the j-th time slot
is given as

y[j] = G[j]x[j] +w[j], j = 1, 2, . . . , J, (4)

where G[j] ∈ CN×K is the synthesis of the channel vectors
and spreading sequences in the j-th time slot and w[j] is the
equivalent Gaussian noise vector in the j-th time slot.

D. Problem Statement

The sporadic nature of the IoT devices allows the illegit-
imate devices to impersonate the legitimate IoT devices to
spoof the AP and gain access to the core network. Assuming
that an IoT device transmits to the AP in the j-th time slot,
the objective at the AP is to authenticate the device if the
message originated from a legitimate IoT device. In order to
achieve this, the AP and the legitimate IoT devices can agree
on specific transceiver features or characteristics, which can
be used to distinguish legitimate IoT devices from illegitimate
devices. Let Γ[j] represent the authenticated devices indicator

in the j-th time slot; then, the authentication problem is given
as

Γ[j] =

{
1 if H0

0 if H1

, (5)

where H0 and H1 represents the received signal y[j] in the
j-th time slot, originated from a legitimate IoT device and
an illegitimate device, respectively, and act as the hypothesis
for IoT device authentication. The conventional schemes [20],
[33], [34] rely on quantization-based thresholds in (5) for
decision making. However, the authentication performance
significantly declines due to the quantization errors introduced
by the algorithms. Additionally, it is challenging to obtain
optimal values for the detection thresholds to maintain con-
tinuous authentication when a large number of IoT devices
are involved since exhaustive search methods are utilized to
obtain these values.

Another downside to these conventional schemes is that they
rely on the physical channel for seed acquisition, verification,
reconciliation, and IoT device authentication [5], [17], [18].
However, reliance on the physical channel for device authen-
tication does not explicitly apply to resource-constrained IoT
devices. The reasons for this are as follows.

• A transceiver pair cannot probe the physical channel
simultaneously for seed acquisition due to the half-
duplex nature of the radio. The resource-constrained IoT
devices are assumed to probe the physical channel for
seed acquisition and authentication in the conventional
physical-channel-based schemes. This is impractical since
the resource-constrained IoT devices cannot probe the
physical channel due to their limited battery; therefore,
the conventional schemes result in excessive battery loss
and time lag due to the radio distance turnaround time.

• The reconciliation overhead due to imperfect physical-
channel reciprocity increases with the increased key
length for seed generation. This means that to achieve a
higher authentication rate (by increasing key length), the
parity bit information to correct errors is also increased.
This is against the spirit of authentication mechanisms for
resource-constrained IoT devices, where channel train-
ing/probing of IoT devices should be minimized due to
their limited resources.

• A transceiver pair separated by a greater than half wave-
length distance does not guarantee independent physical
channels for seed acquisition [35]. This means that there
is no clear safeguard distance to ensure the secrecy of
the generated key, as typically assumed in the physical-
channel-based seed acquisition techniques [36].

From this discussion, we can conclude that (i) conventional
physical-channel-based authentication techniques exhibit these
intrinsic limitations, which limits their effectiveness in situa-
tions where a transceiver pair experiences spoofing attacks,
and (ii) the conventional physical-channel-based seed acquisi-
tion techniques are not practical for resource-constrained IoT
devices. Therefore, access to a coherent source for identical
and lightweight seed generation is crucial for continuous
authentication between the AP and resource-constrained IoT
devices.
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Fig. 2: Proposed authentication scheme comprises four processes: access time slots generation, spreading pool construction,
seed generation, and authentication decision.

IV. PROPOSED AUTHENTICATION SCHEME

With the sporadic nature of transmission of IoT devices in
mind, the objective at the AP is to authenticate the legitimate
IoT devices from the received signal y[j] in the j-th time slot.
Therefore, to achieve authentication, the generated seeds must
adhere to the policies as follows [15]: 1) a transceiver pair
must generate an identical seed stemming from an identical
feature for authentication at the AP; 2) seeds should be
undisclosed to any other devices, making the generated feature
unpredictable by illegitimate devices; and 3) seeds should be
proactively refreshed to maintain continuous authentication
while preserving uncertainty for illegitimate devices. To meet
these requirements, we use the transmission nature of the
grant-free NOMA in (4) as the seed source instead of relying
on physical-channel attributes for seed acquisition. Then, we
use the seed to generate the access time slots for IoT device
authentication.

The proposed authentication scheme consists of four pro-
cesses: (A) access time slots generation, (B) spreading pool
construction, (C) seed generation, and (D) authentication de-
cision, and is summarised in Fig. 2. The four processes form
a cohesive, secure, continuous authentication system between
an AP and IoT devices. The AP shares initial access time slots
and a codebook matrix with the IoT devices in the initialization
stage. The AP and IoT devices then independently refresh
the access time slots and generate spreading pools from the
codebook matrix. These spreading pools generate the seed for
the next round of access time slots. When the current access
time slots are exhausted, the seed is refreshed independently

at the AP and IoT devices. Finally, the AP uses the access
time slots and spreading sequences to make authentication
decisions without needing optimal threshold value updates.
By combining these processes, the system ensures that the
AP and IoT devices can securely communicate, authenticate
each other, and maintain continuous authentication over time.
This interaction of the proposed authentication scheme with
the grant-free NOMA system is illustrated in Fig. 3. The four
processes are further explained in detail below.

A. Access Time Slots Generation

The access time slots for IoT device transmission are di-
vided into recurring time slots of fixed length [15], as depicted
in Fig. 1. The IoT devices transmit their signals to the AP
in time slots pre-agreed upon between the IoT devices and
the AP. Therefore, the AP can quickly identify an illegitimate
device based on its time slot access. If the seeds are hidden
from illegitimate devices, the access time slots are highly
unpredictable. More importantly, a seed can generate several
access time slots, allowing each IoT device at the AP to be
identified continuously for an extended period. Unlike conven-
tional key-based physical-channel schemes, authentication via
access time slots does not entail complex computation or high
latencies because, in key-based schemes, access to a coherent
key is required for every message transmission. In contrast,
the access time slots do not require a shared key for every
transmission since the transmission schedules are followed by
the IoT device and verified by the AP. Thereby, continuous and
lightweight authentication between a transceiver is achieved.
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Fig. 3: Flowchart of proposed authentication scheme and its interaction with grant-free NOMA system model considered in
this work.

The access time slots are generated using linear feedback
shift registers, which entails a statistical behaviour close to
truly random sequences and does not entail expensive expo-
nential or modulo operations [37]. Therefore, the access time
slots are lightweight and challenging to predict by adversaries
who do not know the pseudo-random transmission schedules.
The access time slots are generated using a monic polynomial
of degree µ, which is a prime number with 2µ−1 the maximum
length of the generated access time slots [38]. The generating
monic polynomial for a generic variable κ is given as

f(κ) = C0 + C1κ + C2κ2 + . . .+ Cµκµ =

i=µ∑
i=1

Ciκi,

(C0 = Cµ = 1),
(6)

where C0, C1, . . . , Cµ are the constant coefficients of the
polynomial. It should be noted that it is difficult for illegit-
imate devices to predict the monic polynomial function used
for the access time slot generation since the AP and IoT

devices can refresh the monic polynomial, further enhancing
the authentication performance. Furthermore, the process of
access time slots generation using the monic polynomial in
(6) is repeated independently at the AP and k-th IoT device to
renew the transmission schedule for continuous authentication,
provided they have access to an identical seed. Therefore, a
transceiver pair does not have to carry out complex hash func-
tion operations for seed concealment and sharing, testifying
to the low complexity and lightweight nature of the proposed
authentication scheme.

B. Spreading Pool Construction

In this work, we consider that the transmission symbols of
the IoT devices are spread with a family of short complex-
valued spreading sequences with low cross-correlation values
[9], [39], as shown in (2). This allows for loading more
IoT devices in a resource block and reducing implementation
complexity. Let C(4,6) represent a complex-valued codebook
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matrix to support K = 6 devices using N = 4 resource blocks
in an overloaded3 scenario, given as

C(4,6) =


w0 w4 w3 w1 w6 w5

0 w2 w6 w4 w5 w0

w4 w7 w0 w3 w0 0
w3 w0 w2 w4 w3 w6

 , (7)

where wn is the non-zero elements of the codeword. The
non-binary and complex-valued spreading sequences in (7)
allow for a higher degree of freedom for loading a larger
number of IoT devices, thus providing much more flexibility
in spreading sequences design, which is reflected by a high
overloading factor and demonstrates a true sense of grant-free
transmission4.

Conventionally in grant-free systems, the codebook matrix
in (3) is stored locally with the AP and shared with all IoT
devices independently in the initialization stage, which is later
utilized by the IoT devices for data transmission [2], [43]. With
this sense of practicality in mind, we propose constructing
a lightweight mechanism to utilize the codebook matrix in
(3) for enhanced authentication. This involves constructing
spreading pools from the codebook matrix in (3) for every IoT
device in a cell. Let γk denote the spreading pool constructed
using the codebook matrix C(4,6) in (7) for the k-th IoT
device. As such, for the overloaded scenario in (7), the
respective spreading pools for K = 6 IoT devices can be
constructed as

γ1 = {w0, 0, w4, w3},
γ2 = {w4, w2, w7, w0},
γ3 = {w3, w6, w0, w2},
γ4 = {w1, w4, w3, w4},
γ5 = {w6, w5, w0, w3},
γ6 = {w5, w0, 0, w6}.

(8)

Once the spreading pools are constructed, the access time
slots are superimposed over the spreading pools for intelligent
transmission and enhanced authentication. Thus, the spreading
pools in (8) can therefore be rewritten as

γ1 = {
1︷︸︸︷
w0 ,

1︷︸︸︷
0 ,

0︷︸︸︷
w4 ,

0︷︸︸︷
w3 },

γ2 = {
1︷︸︸︷
w4 ,

1︷︸︸︷
w2 ,

0︷︸︸︷
w7 ,

1︷︸︸︷
w0 },

γ3 = {
1︷︸︸︷
w3 ,

0︷︸︸︷
w6 ,

0︷︸︸︷
w0 ,

0︷︸︸︷
w2 },

γ4 = {
1︷︸︸︷
w1 ,

1︷︸︸︷
w4 ,

1︷︸︸︷
w3 ,

0︷︸︸︷
w4 },

γ5 = {
1︷︸︸︷
w6 ,

0︷︸︸︷
w5 ,

0︷︸︸︷
w0 ,

0︷︸︸︷
w3 },

γ6 = {
1︷︸︸︷
w5 ,

1︷︸︸︷
w0 ,

1︷︸︸︷
0 ,

0︷︸︸︷
w6 }.

(9)

3The overloading factor is defined as the ratio of the number of potential
IoT devices to the number of available resource blocks in the system, i.e.,
overloading factor (%) = K

N
× 100.

4The design of the codebook matrix can be carried out in different ways [2],
[40]–[42] to enhance the overloading factor of the system further. However,
this is outside the scope of this work.

From (9), it can be seen that by jointly utilizing the
spreading pools and access time slots, an enhanced security
mechanism can be developed, which provides a higher degree
of system efficiency (reduction in spreading sequence colli-
sion due to intelligent transmission) and security entropy (a
two-step mechanism for device authentication). The utilized
spreading pools by the respective IoT devices are then used
for seed and refreshed access time slot generation. Herein, it
should be noted that a longer length of spreading pool and
access time slots results in a higher authentication entropy.
However, a shorter length results in lower bit-error-rate (BER)
performance. This demonstrates a trade-off between authenti-
cation and BER performance which can be controlled based
on the network requirements.

C. Seed Generation

Once the spreading pools and their tagged access time
slots are exhausted, the AP and IoT devices need to recreate
newer spreading pools and access time slots for continuous
authentication. In this regard, the k-th IoT device can use
its current spreading pool to generate a seed value for the
newer pools. Let (c1k, c2k, . . . , cNk) represent the length of
the spreading sequences inside a spreading pool γk, and
(l1k, l2k, . . . , lLk) represent the access time slots of the k-th
IoT device. Then, we generate the seed by taking the XOR of
the access time slots and calculating the ℓ2 norm of the tagged
spreading sequences. This process for an arbitrary spreading
pool γk of the k-th IoT device is as follows:
Step 1: Take the original spreading pool and its superimposed
access time slots

γk = {
1︷︸︸︷
w0 ,

1︷︸︸︷
0 ,

0︷︸︸︷
w4 ,

0︷︸︸︷
w3 } (10)

Step 2: Take XOR of the access time slots

γk = {
0︷︸︸︷
w0 ,

0︷︸︸︷
0 ,

1︷︸︸︷
w4 ,

1︷︸︸︷
w3 } (11)

Step 3: Nullify the spreading sequences under 0’s

γk = {
0︷︸︸︷
0 ,

0︷︸︸︷
0 ,

1︷︸︸︷
w4 ,

1︷︸︸︷
w3 } (12)

Step 4: Take the sum and ℓ2 norm of the spreading sequences
under 1’s to obtain preliminary seed

Θ = ||w4 + w3||2 (13)

Step 5: Take the square of the preliminary seed to obtain the
final seed

seed = Θ2. (14)

This process is performed independently at the AP and the IoT
devices. It should be noted that steps 4 and 5 depend on the re-
source availability of the IoT devices. That is to say; if the IoT
devices are extremely resource-constrained, the preliminary Θ
can be used for access time slots generation since it averts
computationally expensive O(L2) operation in step 5, as well
as results in a shorter key length. However, step 5 provides
a longer key length for increased authentication, thereby pro-
viding prolonged authentication. The choice of seed in steps
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4 and 5 demonstrates a trade-off between the computational
performance and security performance of a transceiver pair.
Hence, this process should be well-designed to achieve a better
trade-off. Furthermore, it should be noted that, unlike the
conventional physical-channel-based schemes, the proposed
authentication scheme does not rely on channel probing for
seed acquisition, seed reconciliation, or authentication. This
means that the seed verification phase, which is required in the
conventional physical-channel-based authentication schemes
due to either imperfect channel probing or quantization errors,
is not needed in the proposed authentication scheme, thus
paving the way for a practical, lightweight, and independent
authentication mechanism in a grant-free NOMA system.

D. Authentication Decision

The conventional physical-channel-based authentication
schemes rely on quantization-aided hypothesis testing as a
decision criterion in (5). However, such benchmarks rely
on static statistical properties of the physical channel and
cannot account for varying attributes of fast-fading physical-
channel characteristics, resulting in misdetection. As opposed
to this, the proposed authentication scheme does not rely on
a quantization-based threshold as an authentication criterion.
Instead, the proposed scheme utilizes a two-step authentication
decision process, where the AP first matches the access time
slots of the transceiver pair and then compares the spreading
sequences of the following transmitting schedule. The two-
step authentication process enables mitigating misdetection at
the AP and averts false alarms. This authentication process
is summarised in Algorithm 1, and the main procedure is
presented as follows.

1) Line 2: The sparse transmitted signal vector in the j-th
time slot is estimated and detected at the AP by the least
squares algorithm as [44]:

x̂[j] =
(
G[j]

)†
y[j]. (15)

2) Line 3: The codebook matrix C[j] utilized by the IoT
devices in the j-th time slot is extracted by applying
Hadamard division on the channel matrix as:

C[j] = G[j] ⊘H[j]. (16)

3) Line 6: The spreading pools and the transmission sched-
ule of the K IoT devices is extracted from the codebook
matrix in the j-th time slot as:

γ
[j](l)
k [device] = C[j](:, k). (17)

4) Line 7-12: The l-th access time slot of the k-th IoT
device γ

[j](l)
k [device] in the j-th time slot is compared

with the l-th access time slot of the AP γ
[j](l)
k [AP] in

the j-th time slot. If the access time slot matches, the
authenticated devices indicator function Γ

[j]
k for the k-th

device in the j-th time slot is set to 1. Otherwise, the
indicator function records a 0, deeming the k-th device
as illegitimate.

5) Line 13-17: The l-th spreading sequence of the k-th IoT
device γ[j](k, l)[device] from the extracted spreading

Algorithm 1 The Proposed Authentication Scheme.
Input:
Received signals: Y =

[
y[1],y[2], . . . ,y[J]

]
;

Equivalent channel matrices: Ḡ =
[
G[1],G[2], . . . ,G[J]

]
.

Output:
Authenticated devices indicator: Γ̄ =

[
Γ[1],Γ[2], . . . ,Γ[J]

]
;

Authenticated devices symbols: X̃ =
[
x̃[1], x̃[2], . . . , x̃[J]

]
.

Device detection
1: for j = 1 to J do
2: x̂[j] =

(
G[j]

)†
y[j]

3: C[j] = G[j] ⊘H[j]

Device authentication
4: for l = 1 to L do
5: for k = 1 to K do
6: γ

[j](l)
k [device] = C[j](:, k).

Step 1: (Access time slot check)
7: if γ[j](l)

k [AP] == γ
[j](l)
k [device] then

8: Γ
[j](l)
k = 1.

9: else
10: Γ

[j](l)
k = 0.

11: Skip to line 17.
12: end if

Step 2: (Spreading sequence check)
13: if γ[j](k, l)[AP] == γ[j](k, l)[device] then
14: Γ

[j](l)
k = 1.

15: else
16: Γ

[j](l)
k = 0.

17: end if
18: end for
19: end for
20: x̃[j] = x̂[j] ⊙ Γ[j].
21: end for
Return:
Γ̄ =

[
Γ[1],Γ[2], . . . ,Γ[J]

]
;

X̃ =
[
x̃[1], x̃[2], . . . , x̃[J]

]
.

pool in the j-th time slot is compared with the l-th
spreading sequence of the AP γ[j](k, l)[AP] in the j-
th time slot. If the spreading sequence matches, the
authenticated devices indicator function Γ

[j]
k for the k-th

device in the j-th time slot is set to 1. Otherwise, the
indicator function records a 0, deeming the k-th device
as illegitimate.

6) Line 20: The authenticated devices data x̃[j] in the j-
th time slot is determined by calculating the Hadamard
product between the estimated sparse transmitted sig-
nal vector x̂[j] and the authenticated devices indicator
function Γ[j] in the j-th time slot, given as:

x̃[j] = x̂[j] ⊙ Γ[j]. (18)

At the end of the iteration, the authenticated devices data
x̃[j] in the j-th time slot is transformed into a sparse vector,
where the data of the illegitimate devices is replaced with 0’s,
whereas the authenticated devices data is recovered.
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V. SECURITY PERFORMANCE ANALYSIS

The performance of any new authentication scheme can
be assessed using security analysis. A comprehensive formal
security analysis often necessitates sophisticated modelling,
which entails using advanced mathematical frameworks and
cryptographic primitives to replicate potential threat scenarios
and evaluate system vulnerabilities. In such modelling, formal
methods and symbolic representations are employed to capture
and analyze the intricate dynamics of potential attacks and
the protective countermeasures of the system. This intricate
modelling process aims to uncover hidden vulnerabilities, test
the system’s resilience against various threats, and derive
insights for strengthening the system’s defence mechanisms
[45]. However, a formal security analysis is outside the scope
of this work. Instead, similar to [15], the effectiveness of our
proposed authentication scheme can be assessed rigorously
using performance metrics such as entropy, key space, and
computational efficiency. Here is why these metrics are em-
ployed:

• Entropy: This metric indicates a system’s resilience
against unauthorized access. Specifically, greater entropy
suggests that an illegitimate device would be computa-
tionally arduous to predict or deduce the system’s state.

• Key Space: This metric represents the total set of po-
tential keys that could be employed within the system,
offering a quantifiable measure of its complexity against
brute-force attacks.

• Lightweight: This metric aims to minimize computational
demands and resource consumption while maintaining
stringent security standards.

By focusing on these metrics, we can demonstrate the robust-
ness and security performance of the proposed authentication
scheme.

A. Entropy

Legitimate IoT devices go through periodic updates of the
access time slots and spreading pools; therefore, it is chal-
lenging for illegitimate devices to spoof the AP. Furthermore,
since a transceiver pair independently but identically utilizes
multiple spreading sequences from the spreading pool for seed
generation, they are difficult for illegitimate devices to predict.
Following this, it is clear that the seed is concealed from an
adversary if it does not know the access time slots and the cor-
responding spreading pools. Furthermore, updating the access
time slots and spreading pools will provide further protection
for legitimate IoT devices by renewing their access sequences
over time. Hence, the proposed authentication scheme provides
enhanced protection against spoofing attacks and pertains to
legitimate communications between IoT devices and the AP.

With this understanding, entropy is defined as a metric that
measures the uncertainty associated with the randomness of a
system [46] and is used to evaluate the security strength of
the authentication scheme. Thus, entropy is defined as

Etotal =

R∑
r=1

Er, (19)

where

Er = −pr0 log pr0 − (1− pr0) log(1− pr0). (20)

R represents the total length of the shared key, and pr0 denotes
the posterior probability of the r-th bit when it is 0 from the
illegitimate devices’ knowledge.

Lemma 1: The entropy of the proposed authentication
scheme is higher than that of the physical-channel key gener-
ation schemes of [46]–[49].

Proof: We provide proof using heuristic arguments as fol-
lows. Assuming R denotes the length of the access time slots
and the key in the physical-channel key generation schemes,
we denote pI

r0 and pII
r0 as their posterior probabilities of the

r-th bit when it is 0 from the illegitimate devices’ knowledge,
respectively. It should be noted that the proposed authen-
tication scheme relies on multiple attributes, i.e., it utilizes
N spreading sequences for seed generation. On the contrary,
the physical-channel key generation schemes rely on a single
attribute for shared key generation. Since multiple attributes
are being utilized in the proposed authentication scheme and
legitimate IoT devices follow the pre-agreed access time slots
for transmission, it is difficult for illegitimate devices to spoof
the AP. Then, ∣∣∣∣pI

r0 −
1

2

∣∣∣∣ < ∣∣∣∣pII
r0 −

1

2

∣∣∣∣ (21)

holds [15], which means the illegitimate devices have less
knowledge that the r-th bit is 0 in the proposed authentication
scheme. Let EI

r denote the entropy of the proposed authenti-
cation scheme, and EII

r denote the entropy of the physical-
channel key generation schemes. Then, from (21), we can
concur that

EI
r > EII

r (22)

holds. This completes the proof.

B. Key Space

Due to their limited computational resources, the resource-
constrained IoT devices cannot compute shared keys for every
data transmission, required by conventional encryption meth-
ods. To overcome this inherent issue, resource-constrained IoT
devices rely on shortened keys to reduce the computational
overhead. However, shortened keys can be more vulnerable to
malicious attacks as they can be easily cracked by attackers
using brute force. This is because sophisticated attackers
with rapidly growing processing power can compromise the
short-length keys within a much shorter time than before,
for example, by using exhaustive search approaches [36].
Therefore, an additional layer of security based on low com-
putational cost is required. Based on multi-factor attributes,
the proposed authentication method complements the overall
security paradigm by acting as another source of randomness
to provide additional entropy to the system. This authentication
at the lower layer compensates for entropy loss due to the use
of shortened keys in the higher layers in resource-constrained
IoT devices.

Lemma 2: The key space of the proposed authentication
scheme is higher than that of the physical-channel key gener-
ation schemes of [46]–[49].
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TABLE II: Key length versus search space complexity of
physical-channel-based and proposed techniques.

Key length
Physical-channel key generation schemes Proposed authentication scheme

Search space Authentication complexity Search space Authentication complexity

9 512

O(N )

8192

O(1)

11 2048 32768

13 8192 131072

15 32768 524288

17 131072 2097152

Proof: We provide proof using heuristic arguments as
follows. Assuming that R represents the length of the key
in the proposed authentication scheme and physical-channel
key generation schemes, we denote κI

R and κII
R as the upper

bound of the key search space, respectively. We know that
the proposed authentication scheme utilizes the access time
slots and the complex spreading sequences for IoT device
authentication. On the other hand, the physical-channel key
generation schemes rely on the attribute of the physical
channel for key generation. Thus, in Table II, we demonstrate
the key search space versus the key length of the proposed
authentication scheme and physical-channel key generation
schemes. It is evident that the proposed authentication scheme
achieves a higher search space than the physical-channel
key generation schemes for the same key length. This is
because the proposed technique utilizes complex spreading
sequences and access time slots, which adds another source
of randomness to the system for key generation. Therefore,
the proposed authentication scheme is less susceptible to brute
force attacks than the physical-channel key generation schemes
for the same key length. Thus, from Table II, it is concurred
that

κI
R > κII

R (23)

holds. This completes the proof.
Since the proposed authentication scheme introduces more

randomness into the network, the total system entropy Etotal is
higher than physical-channel key generation schemes. Hence,
the proposed authentication scheme can be integrated into
the network to provide additional entropy for improving the
system’s resistance to attacks.

C. Lightweight

The proposed authentication scheme utilizes the transmis-
sion parameters and access time slots for IoT device authen-
tication. Conversely, the proposed authentication scheme does
not rely on physical-channel probing for IoT device authenti-
cation. As a result, the seed verification phase is not required
in our proposed authentication scheme. More importantly,
the proposed schemes provide continuous authentication by
checking the spreading sequences and access time slots of the
IoT devices instead of generating and verifying shared keys
repeatedly. As a result, as shown in Table II, compared to
the physical-channel-based key generation schemes, the pro-
posed authentication schemes achieve a lower authentication
complexity for N times of authentication, which validates the
lightweight nature of the proposed authentication scheme.

TABLE III: Access time slots generation using seed.

State Observations
Spreading pool utilized
between a transceiver pair γ = {−4− 4i,−0 + 8i, 1− 1i, . . . ,−2 + 2i, 4}

Seed extracted by the AP 1111010000000
Seed extracted by the IoT 1111010000000

Access time slots at the AP
and IoT

1000010000001110110100101010110011
1100011100001001001111011101001110
1111100011100101111001111110010011
110110011110010000001

VI. RESULTS AND DISCUSSION

In this section, we evaluate the performance of the proposed
authentication scheme in solving the device authentication
problem. We plot the performance of three physical-channel-
based authentication benchmark solutions: using binary hy-
pothesis testing (BHT) [21], using machine learning-based
SVM [50], and using deep neural network-based (NN) de-
tection [51]. For these three benchmark solutions, the core
architectures are borrowed from the respective works but their
input configurations have been adjusted to our system model
for a fair comparison. For these benchmark solutions, the
estimates of the received signal strength indicator (RSSI), the
channel impulse response (CIR), and the channel frequency
response (CFR) are used as attributes from the physical chan-
nel for authentication [5]. Specifically, due to the correlation
of adjacent CIRs and CFRs on the same path, the temporal
process of the i-th subpath at the j-th time slot is given as [5]

hi(j) = ζhi(j − 1) +
√

(1− ζ2)σ2
i ui(j − 1), (24)

where ζ ∈ [0, 1] represents the physical-channel correlation of
two successive subpaths and ui is a driving noise which is
modeled as a zero-mean complex Gaussian random variable
with unit variance [21]. The path loss between the AP and
the k-th IoT device is modeled as 128.1 + 37.6 log10(di),
where di is the distance (in km) [32]. Additionally, for the
benchmark schemes, the physical channels of the illegitimate
devices are assumed to be independent of the legitimate IoT
devices, meaning the illegitimate devices are assumed to be
at a distance greater than half wavelength from the legitimate
IoT devices.

Assuming initial authentication between a transceiver pair
in the j-th time slot, their observation characteristics are
shown in Table III. As detailed in section III-C, the AP and
IoT device independently extract the seed by utilizing the
spreading pool used for data transmission. Since the seed
source is the spreading pool, extracted from the codebook
matrix and available with the transceiver pair locally, there
is no requirement for seed verification. Therefore, once the
seed is acquired, the AP and IoT independently generate the
access time slots required for transmission. In this work, we
utilize the following monic polynomial for the access time
slots generation

f(κ) = 1 + κ1 + κ3. (25)

A. Experimental Setup

In the simulations, unless otherwise stated, K = 200
potential devices simultaneously share N = 100 resources.
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Fig. 4: False alarm rate, ρfa, versus the time between updates
(sec), with the total number of potential devices K = 200,
the number of resources N = 100, and the number of active
devices S = 20.

Thus, the overloading factor (OF) is 200%. For every time slot,
there is S = 20 number of active devices randomly selected
from the set {1, 2, . . . ,K}. The number of time slots is fixed
at J = 7. The transmitted signals are modulated by Quadrature
Phase Shift Keying. The signal-to-noise ratio (SNR) range is
set between 0 to 25 dB. The oracle least squares algorithm is
utilized for device detection.

The simulations are carried out on the Gadi supercomputer
of the National Computational Infrastructure (NCI), Australia,
utilizing 48 cores of Intel Xeon Platinum 8274 (Cascade
Lake) processors and 192GB of random access memory. The
simulations are carried out on MATLAB 2021b. The results
are averaged over 1000 Monte Carlo trials.

B. Performance Metrics

In order to appropriately evaluate the authentication per-
formance, we use the following metrics: the false alarm rate
(ρfa), the misdetection rate (ρmd), and the spreading sequence
collision rate (ρsc) as performance metrics. Given the trans-
mit signal x, authenticated devices data x̃, the authenticated
devices indicator Γ, and the spreading pool γ for the k-th
IoT device in the j-th time slot, the performance metrics are
defined as follows.

• False alarm rate: This metric evaluates the rate of legit-
imate IoT devices being falsely detected as illegitimate
devices, given as

ρfa =
1

K

∑
k∈x[j]

P
{
Γ
[j]
k = 0 | x[j]

k = 1
}
. (26)

• Misdetection rate: This metric evaluates the rate of ille-
gitimate IoT devices being misdetected, given as

ρmd =
1

K

∑
k∈x[j]

P
{
Γ
[j]
k = 1 | x[j]

k = 0
}
. (27)

Fig. 5: Misdetection rate, ρmd, versus SNR (dB), with the total
number of potential devices K = 200, the number of resources
N = 100, and the number of active devices S = 20.

• Spreading sequence collision rate: This metric evaluates
the rate of legitimate IoT devices utilizing the same
spreading sequence in the same access time slot, given
as:

ρsc =
1

K

∑
k∈x̃[j]

P
{
γ
[j](l)
k == γ

[j](l)
i̸=k

}
. (28)

C. Authentication Performance

Fig. 4 plots the false alarm rate, ρfa, versus the time between
updates (sec) for K = 200, N = 100, and S = 20. The
false alarm events are avoided in the proposed authentication
scheme due to the spreading sequences-based seed generation
technique proposed in this paper. The spreading sequences-
based seed generation allows AP and IoT devices to inde-
pendently acquire identical seeds for the access time slots
generation. In essence, the access time slots generated in the
proposed authentication scheme between the AP and an IoT
device are identical and do not require parity bits for seed
reconciliation. On the contrary, since the benchmark schemes
rely on estimates of multiple attributes of the physical channel,
false alarm events are inevitable due to the imperfect and time-
varying nature of the physical channel encountered due to
reliance on the randomness of the channel for seed acquisition.
Moreover, lower SNR could lead to a higher false alarm
rate in physical-channel-based schemes since its performance
explicitly relies on observing physical-channel attributes.

Fig. 5 plots the misdetection rate, ρmd, versus SNR (dB)
for K = 200, N = 100, and S = 205. We can observe
that in the entire SNR range, the proposed authentication
scheme’s misdetection rate decreases and achieves a near-
threefold performance gain against the benchmark schemes
at the higher SNR range. For instance, the performance gain
is around 10 dB compared to the traditional BHT-based

5Fig. 5 is simulated with 100,000 Monte Carlo trials to evaluate its
performance for the entire SNR range. This simulation took 19 hours to
execute on the Gadi NCI supercomputer.
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Fig. 6: Misdetection rate, ρmd, versus SNR (dB) for the
varying number of active devices S, with the total number
of potential devices K = 200, and the number of resources
N = 100.

authentication scheme at SNR = 6 dB. This trend is because
the AP and IoT devices identically but independently generate
the access time slots using the spreading sequences. These
spreading sequences and the access time slots are then used
for IoT device authentication. Hence, the proposed authenti-
cation scheme is robust in the noisy wireless communication
environment. Fig. 5 also demonstrates the authentication per-
formance of the benchmark schemes for single and multiple
attributes, which rely on estimates of these attributes from
the physical channel for device authentication. It can be
seen that the benchmark schemes have a higher misdetection
rate at lower SNR, which is due to the imperfect physical-
channel mismatch between the AP and IoT devices, which
requires the continuous updating of the decision boundary.
More importantly, the reliance of the proposed authentication
scheme on spreading sequences for continuous authentication
adds an additional element to the authentication mechanism
and generally makes it more difficult for an illegitimate device
to spoof the AP under the proposed authentication protocol. By
employing our proposed authentication scheme, the AP gains
the ability to differentiate between legitimate and illegitimate
devices based on their utilization of spreading sequences
and transmission characteristics. Consequently, our proposed
authentication scheme eliminates the disparities introduced by
distance-related factors when distinguishing between legiti-
mate and illegitimate devices, and therefore, the correlated
physical channel characteristics do not play a role in spoofing
the AP.

D. Robustness in Different Configurations

Fig. 6 plots the misdetection rate, ρmd, versus SNR (dB)
for the varying number of active devices S, with K = 200,
and N = 100. It can be seen that the proposed authentication
scheme is capable of handling a variety of active transmitting
devices S. This is because the proposed authentication scheme

Fig. 7: Spreading sequence collision rate, ρsc, versus the
varying number of active devices S, with the total number
of potential devices K = 200.

does not rely on physical channels for binary testing as a
decision boundary, which requires an update to the decision
boundary for every change in the number of active devices
S. Since the proposed authentication scheme relies on the
spreading sequences extracted from the codebook matrix, the
proposed authentication scheme can adapt to any number of
active transmitting devices S. It should be noted that the
reduction in misdetection rate ρmd, caused by the increase
in the number of active transmitting devices S is due to the
device estimation errors, which is a side effect of the grant-free
NOMA system.

Fig. 7 plots the spreading sequence collision rate, ρsc, versus
the number of active devices S for different OF settings, with
K = 200. The spreading sequence collision rate ρsc increases
with the number of active devices S. It is also evident that
a low number of resources N results in a higher OF, which
also increases the spreading sequence collision rate ρsc. This is
because when more active devices S transmit simultaneously
with shared resources N , the probability of the two or more
active devices using the same resource for transmission in-
creases, which increases the spreading sequence collision rate
ρsc. It should be noted that these collisions result from the
system’s bottleneck due to the inherent nature of the grant-
free NOMA systems. Even so, the proposed authentication
scheme can handle various active devices S and therefore is
robust to different system settings.

Fig. 8 plots the misdetection rate, ρmd, versus the time
between updates (sec) for K = 200, N = 100, and S = 20.
It can be seen that with the increase in the length L of the
access time slots, the misdetection rate ρmd of the proposed
authentication scheme decreases. This is because the longer
length of access time slots results in a more randomized
transmission pattern for legitimate IoT devices, which is
difficult for an illegitimate device to predict and spoof the AP.
However, shorter lengths of access time slots, which result in
a higher misdetection rate, are less computationally expensive
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Fig. 8: Misdetection rate, ρmd, versus the time between
updates (sec) for the varying length of authentication sequence
L, with the total number of potential devices K = 200, the
number of resources N = 100, and the number of active
devices S = 20.

to generate. Therefore, the choice between the length of the
access time slots and the system’s computational requirements
is a trade-off that can be carefully chosen, depending on the
requirement of the network.

Fig. 9 plots the computational cost versus the time between
updates (sec) for K = 200, N = 100, and S = 20. It
can be seen that the proposed authentication scheme attains
a lower computational cost than the benchmark schemes. This
is because the proposed authentication scheme relies on the
access time slots and the spreading pools as its source of
IoT device authentication. Since the codebook matrix, which
is utilized to derive the spreading pools, is managed by the
AP and does not require creating any threshold boundaries,
the proposed scheme has a lower computational cost. On the
contrary, the physical-channel-based benchmark schemes rely
on a computationally expensive exhaustive search to derive de-
cision boundaries for IoT device authentication. Furthermore,
methods such as SVM and hypothesis testing are required for
continuous parameter updates due to the time-varying nature
of the physical channel for device authentication.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a secure and efficient continuous
authentication scheme for IoT devices. Our scheme utilized
the grant-free NOMA protocol’s transmission characteristics
as a source for seed generation and device authentication.
By utilizing pre-arranged access time slots and spreading
sequences of IoT devices at the AP, the proposed scheme
eliminated the need for channel probing, seed reconciliation,
and authentication. Simulation results demonstrated the ef-
fectiveness of the proposed scheme, with a near three-fold
reduction in misdetection rate and close to zero false alarm rate
in various system configurations. Additionally, our proposed
scheme offered computational efficiency compared to bench-
mark schemes based on support vector machine and binary

Fig. 9: Computational cost versus the time between updates
(sec), with the total number of potential devices K = 200,
the number of resources N = 100, and the number of active
devices S = 20.

hypothesis testing utilizing physical channel information, with
at least half the computational cost.

Future research should explore the extended application of
the proposed authentication scheme beyond its current context
in signature-based grant-free NOMA schemes, examining its
adaptability in various scenarios to understand its effectiveness
in diverse wireless communication environments. Additionally,
investigating the authentication scheme’s implementation in
satellite-IoT networks presents an exciting opportunity to
address unique challenges related to vast coverage and long-
distance communication, potentially unlocking secure and
efficient communication in satellite-based IoT applications. To
ensure real-world viability, a comprehensive security analysis
is crucial, covering a wide range of potential attacks, includ-
ing adversarial and resource exhaustion attacks, to identify
weaknesses and develop robust authentication solutions for
IoT devices. Additionally, a formal security analysis of the
authentication scheme can be carried out to further understand
its workability in different scenarios. Furthermore, scalability
should be investigated to ensure efficient authentication, even
in massive-scale deployments. By optimizing the scheme
without compromising security and addressing these research
areas, the groundwork can be laid for secure, adaptive authen-
tication solutions that bolster IoT device security and seamless
integration into our interconnected world.
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