
IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XXX 202X 1

Kalis2.0 - a SECaaS-based Context-aware
Self-adaptive Intrusion Detection System for the IoT
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Abstract—The wide variety of application domains makes
the Internet of Things (IoT) quite unique among other types
of computer networks: IoT networks can be made of devices
of different types, i.e., characterized by different hardware,
functionalities, computing capabilities, and also network topology
and communication protocols may drastically change from one
IoT application to another. Such a heterogeneity requires ad-
hoc security solutions, as security techniques that are effective in
one IoT context may not be so in another context. Furthermore,
IoT networks are ever-evolving by their very nature as smart
devices can be easily added or removed. These factors call for
the design of security tools capable of adapting themselves to
the specific IoT instance, but also to the continuous network
changes. In this paper we propose a context-aware, Security-
as-a-Service based approach for intrusion detection whereby an
IDS (i) autonomously collects information about the monitored
system, (ii) chooses the best detection strategy accordingly, and
(iii) modifies the detection strategy as the network evolves over
time. This comprehensive approach to intrusion detection is an
attempt to face the heterogeneity which characterizes the IoT
in all its aspects, making it possible the design of a security
tool able to be self-adaptive and context-aware, that is, effective
in different and evolving IoT scenarios with little or no human
intervention.

Index Terms—Internet of Things; Intrusion Detection System;
IDS; context-awareness; Security-as-a-Service; SECaaS; network
features; device features; software architecture.

I. INTRODUCTION

The security issues of the Internet of Things (IoT) are
caused by a number of factors. First, since security requires
investments, for business reasons manufacturers may sell vul-
nerable products, leaving users with security issues that are
unlikely to be resolved. For instance, widespread consumer
IoT devices, as well as the routers that connect such devices
to the Internet, leave the factory with default credentials that
final users are not going to change, and that attackers will
exploit to login and take over the system remotely. Also, due
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to the poor computational capabilities, most IoT devices are
unable to host intrusion prevention and/or intrusion detection
systems as laptops and desktop computers do. As a matter of
fact, IoT devices do not have enough computing power to run
an antivirus or even do not allow to install it. Despite some
sort of security is implemented by IoT enabling technologies
such as authentication and encryption, attackers still find the
way to compromise connected devices. Indeed, the numerous
hardware and software vulnerabilities of IoT devices, and the
multitude of malware that exploit such vulnerabilities, are
evidence of this. Therefore, the key to protect IoT devices is
to monitor for threats at the network level through an Intrusion
Detection System (IDS) installed on the border router or on a
dedicated device.

To date, researchers have focused their attention on the
development of IDSes for specific IoT technologies/scenarios,
possibly with a distributed architecture that requires agents
to be installed on IoT devices [13], [21], [42], [43]. These
approaches, however, lack of flexibility as they need to
be manually reconfigured when the monitored IoT network
evolves, and they are too invasive for particularly constrained
devices that barely have the capabilities of running an IDS
instance along with the task they are designed for, which
represents a further opportunity for attackers to easily perform
DoS attacks on those devices.

On the other hand, the industry has come up with centralized
security solutions for the IoT (e.g. Norton Core [7], ZingBox
[14], F-Secure SENSE [9], Bitdefender Box [3]) in the form of
routers with multiple functionalities such as antivirus, firewall,
IDS, and the ability of taking countermeasures upon the
detection of intrusions (e.g., isolating suspicious devices, or
shutting down the traffic to keep sensitive information from
leaving the network). One of the main strengths of these
products is the federated architecture they belong to, whereby
the parent company can keeps up to date all of its devices
against the most recent attacks thanks to the thousands of
security reports that they constantly deliver.

However, the heterogeneity which characterizes the IoT
increases the difficulty of deploying all-encompassing secu-
rity solutions. Such a heterogeneity mainly concerns network
topology, communication protocols, provided services, and
hardware, that may be of different types even within the same
IoT network, as in the case of smart homes. This variety of
technologies expands the attack surface compared to wireless
sensor networks that are composed of devices homogeneous
with respect to hardware and software. Furthermore, the ever-
evolving nature of IoT networks, i.e. the possibility of easily
add/remove (potentially different) devices into/from the mon-
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itored area, requires an IDS that is optimal at a certain point
in time that continues to be so even when changes occur.

Nevertheless, both the academy and the industry have paid
very poor attention to the importance of having a security
tool able to autonomously adapt to current network settings,
that is, choosing the best security strategy in relation to the
features of the system under monitoring. Such a characteristic
is called context-awareness [41], and refers to the ability of an
IDS to collect information about its surroundings at any given
time, and adapt its behavior according to the current needs.
Context-awareness may improve IDSes performances mainly
because when simply observing events that may be symptoms
of security incidents, a deep knowledge about the IoT network
(i.e., specific network features) can improve either the detec-
tion and the attack classification accuracy. In other words,
a deep knowledge of the system under monitoring allows an
IDS to focus only on the threats that may actually occur at the
present time, to spend the maximum computing capabilities for
the detection of such threats, and, as a consequence, to better
classify ongoing attacks. In particular, accurately classifying
detected attacks is extremely important when remedy actions
have to be performed in relation with the (potential) damage.
In such cases, a misclassification may produce an incorrect,
potentially harmful attack response.

In this work, we first analyze the characteristics that make
IoT a unique domain, we investigate the relationship between
different network/device features and related attacks, and
we outline the advantages that context-awareness entails for
intrusion detection. Then, we propose a hybrid Security-as-a-
Service (SECaaS) based approach for context-aware intrusion
detection, whereby the risk assessment and the selection of
the best detection strategy are accomplished on a cloud basis,
while the discovery of the network features and the detection
task are performed locally. We also present Kalis2.0, a Service-
Oriented software Architecture (SOA) [31] which enables the
security devices that operate at the local level to discover
the characteristics of the monitored IoT network and perform
intrusion detection.

Kalis2.0 is an improvement of Kalis, a preliminary version
of the architecture that we presented in [25]. In this work, we
rearrange the Kalis design to conform to a more functional
architecture, whereby each component carries out a specific
job for the purposes of system efficiency only, while all the
security tasks are exclusively carried out by detection modules.
Beside the architectural improvements, we also address a
significant limitation of Kalis lying in its local character,
whereby a Kalis node is manually configured by the local
administrator(s), who bases decisions on local evidence, and
the level of security is bounded by the administrator experience
and capabilities. In the model we propose in this article,
instead, the administrator is only required to subscribe at a
service provider and enroll one or more security devices, while
the service provider takes care of deploying all necessary
security solutions. The service provider is built according with
the SECaaS paradigm, whereby security experts exploit formal
and automated procedures for assessing risk and determining
defensive strategies accordingly. Figure 1 shows the differ-
ences between the two security models.

Fig. 1. Kalis (left) vs the SECaaS-based approach (right).

Finally, we propose a set of experiments to demonstrate
how context awareness is essential for enhancing intrusion
detection efficacy and efficiency.

Our contributions can be summarized as follows:
• the conceptual modeling of a Security-as-a-Service based

approach for the accomplishment of context-aware intru-
sion detection tasks in IoT networks;

• the definition of IoT attack taxonomies that show the rela-
tionship between network/device features, vulnerabilities,
and potential attacks as the basis of risk assessment;

• a systematic approach for assessing risk and selecting the
most appropriate detection strategy accordingly;

• the design of Kalis2.0, a software architecture for a self-
configuring, context-aware IDS;

• the evaluation of a Kalis2.0 prototype over a wide range
of network features and attacks.

The rest of the paper is organized as follows. In Section
II we discuss related work. In Section III we discuss some
background concepts on the IoT domain and on context-aware
intrusion detection. In Section IV we present our conceptual
model for context-aware intrusion detection. In section V we
discuss feature discovery techniques. In sections VI and VII
we present a systematic method for risk assessment, and for
the selection of the best detection strategy, respectively. In
section VIII we present Kalis2.0, a software architecture to
implement a self-adaptive, context-aware IDS. In Section IX
we talk about the potential advantages of using our context-
aware approach. In Section X we report experimental results
on the difference between context-aware and non-context-
aware intrusion detection. Finally, in Section XI we draw
conclusions and propose future work.

II. RELATED WORK

The literature on context-aware security for the IoT can
be classified in anomaly-based and risk-based approaches.
Anomaly-based approaches take security decisions depending
on whether or not specific events occur in their usual context.
Often the user is also considered as part of the system and its
behavior contributes to the definition of the context. In risk-
based approaches, instead, security actions are triggered based
on how potentially harmful the context is.
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TABLE I
LITERATURE COMPARISON.

Work Approach Context Context focus Objective Self-adaptive Scope

Sikder et al. [50] anomaly-based What the sys. does sensors and user data intrusion detection no sensor-based
IoT nets

Sikder et al. [51] anomaly-based What the sys. does sensors and user data intrusion detection no smart homes

Khanpara et al. [17] anomaly-based What the sys. does sensors and user data real time assessment
of user permissions no smart homes

Sylla et al. [52] risk-based What the sys. does sensors and user data real time enforcement of
security/privacy policies no smart

homes/cities
Pan et al. [36] anomaly-based What the sys. does sys log, GPS, protocols intrusion detection no BAC nets

De Matos et al. [8] risk-based What the sys. does sensors data real time enforcement of
security/privacy policies no generic

IoT nets

Park et al. [37] anomaly-based What the sys. does
sensors data, sys log,
net log, CPU usage, memory
usage, network usage

intrusion detection no smart
factories

Hameed et al. [12] anomaly-based What the sys. does device ID,
location and activity intrusion detection no mobile

IoT nets

Moshin et al. [27] risk-based What the sys. looks like network topology,
user security policies

recommendations
to increase resiliency no sensors-controllers-

actuators nets

Jia et al. [15] anomaly-based What the sys. does UID/GID, UI activity, control
flow, runtime value, data flow

real time enforcement
of app functionalities no appified

IoT platforms

Rullo et al. [44] risk-based What the sys. looks like protocols and protocols
embedded prevention systems

real time enforcement
of detection techniques yes generic

IoT nets

This work risk-based What the sys. looks like

network topology, mobility,
protocols, open ports, OS,
prevention systems,
network services, device model

real time enforcement
of detection techniques yes generic

IoT nets

A further classification can be made on the basis of how the
context is defined. In this regard, most of the work (typically
anomaly-based approaches) define the context based on what
the system does, that is, the context is learned on historical
data such as sensed data, user location, sensors-controllers-
actuators interaction patterns, temporal patterns, etc. On the
other hand, other work (either risk-based and anomaly-based)
define the context based on what the system looks like, that is,
the context is defined as the current state of the system in terms
of structural characteristics such as topology and mobility, user
security policies in place, communication protocols, network
services, protocol built-in security mechanisms etc.

Research has been conducted on the above topics under
various settings, and main challenges and results achieved so
far in the literature are discussed in the following subsections.
In Table I, related work are compared on the basis of a set of
features relevant for this topic.

A. Anomaly-based approaches

Sikder et al. [50] proposed 6thsense, an IDS for multi-
sensors devices that observes changes in sensor data and
creates a contextual model that distinguishes benign and
malicious behavior of the sensors in relation with the current
user task. The same authors proposed AEGIS [51], an IDS
for smart homes which correlates the devices’ operational
patterns with user activities, and builds a Markov Chain-
based machine learning model to define benign user behavior.
Similar to [51], Khanpara et al. [17] proposed a permission
framework for smart homes where the user is considered as
part of the monitored system, and the normal system behavior
(i.e., the context) is characterized by means of historical
data, such as devices’ locations, user’s locations, time usage
patterns, and actions. The user is granted with the permission
of using home devices prior authentication, and if his/her
current request pattern matches one of those that were labeled

as normal. Pan et al. [36] proposed an IDS for building
automation and control networks, where the concept of context
modeling is to represent the information acquired from the
sensors and resources during the execution of the system. A
vectorial representation is generated for each resource/sensor
as a description of its normal behavior, then Bayesian Network
and RIPPER algorithms are trained on historical data and
used to detect abnormal behavior. Paerk et al. [37] proposed
an IDS for smart factories, which exploits machine learning
techniques to build a model of the normal system’s behav-
ior. Hameed et al. [12] proposed a distributed clone node
attack detection technique for mobile IoT networks. When
the clone node detection is to be initiated, devices can either
assume the role of prover or the role of verifier. The prover
produces a proof of presence as a signature of its context
information, and the verifier checks the signature to confirm or
deny the prover’s physical presence. The context information
includes the device’s identifier, timestamp, device’s location,
and device’s activity. Jia et al. [15] proposed ContextIoT, a
permission system for appified IoT platforms that helps users
to perform access control, where the context is defined as the
program path of an app functionality, that is, the execution
flow of the code at runtime along with the data flowing
through the execution path. In these settings, app functions are
allowed only when the permissions granted by the user match
a particular usage context. ContextIoT learns the user security
preferences for each functionality and allows or denies their
enforcement on the basis of the current context.

B. Risk-based approaches

Moshin et al. [27] proposed IoTSAT, a formal framework
for security analysis of IoT networks that are based on
the ”sensors-controllers-actuators” model. IoTSAT defines the
context as the system current state on the basis of the network
topology and user security policies, and outputs a set of
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recommendations for increasing the system resiliency against
potential attacks (e.g., the increase of sensors redundancy).
De Matos et al. [8] proposed a reasoning engine architecture
designed to execute pre-defined security directives such as IF
contextA AND contextB THEN action, where the contexts are
defined as sets of past events, and action is the enforcement of
a security/privacy policy. Similarly, Sylla et al. [52] presented
SETUCOM, a risk assessment framework which selects secu-
rity and privacy policies (e.g., the application of two factor
authentication, the implementation of secure communication,
etc.) on the basis of both user’s and devices’ behavior. Rullo
et al. [44] proposed PAST a self-adaptive IDS which activates
specific defense techniques on the basis of the attacks targeting
the protocols adopted by the devices under monitoring, and of
the security features provided by the protocols themselves.

C. Other work
A detailed survey on context aware computing [39] de-

scribes diverse kinds of techniques for the collection, mod-
elling, reasoning, and distribution of context data of IoT
networks. The authors distinguished approaches to context
modelling into six categories, based on the data structures used
for the design and exchange of the context: key-value based
(e.g., text or binary files), used to model limited amount of data
such as network configuration and features; markup scheme
based (e.g., xml), useful for context exchange; graphical (e.g.,
databases), good for long term and large volume of permanent
data archival; object-oriented (e.g., programming languages),
used to model data using class hierarchies and relationships;
logic based (e.g., facts, expressions, and rules), primarily used
to express policies, constraints, and preferences, it enables for
reasoning tasks; ontology based (semantic technologies such
as RDF, RDFS and OWL), used to model domain knowledge
and context structure.

Context awareness was the core concept also for the design
of techniques to calculate the optimal placement of security
resources in IoT networks. In this regard, Rullo et al. [45]
showed how to determine Pareto-optimal resource allocation
strategies on the basis of the network topology and the charac-
teristics of the available security resources. This approach was
later adapted for large-scale [46] and mobile [47] networks.

Out of the IoT context and in a more general computer set-
ting, More et al. [28] stated that ontological reasoning can con-
fer an IDS the ability to link and infer means and consequences
of cyber threats and vulnerabilities whose signatures are not
yet available. In this regard, they presented a knowledge-
based approach to intrusion detection modeling, where data
from different sources (e.g., host logs, network logs, hardware
utilization), along with IDS/IPS-originated information, data
from different sensor streams, vulnerability description feeds,
and domain expert knowledge is collected into an ontological
form and fed into a reasoner with the purpose of detecting
ongoing attacks.

D. Discussion and Comparison
Though there is no direct comparable work to compare with,

differences between existing context-aware based security so-
lutions for the IoT and our framework can be noted as follows.

First, from Table I we observe that a method that enables
the security approach to be automatically adjusted to changes
in the context is not taken into account in the works thus
far discussed, except for our previous work [44] which is
focused on IoT protocols features only. Despite some of these
approaches are designed in a way that makes it simple to
implement the self-adaptive property, instructions on how to
do it have not been explicitly provided.

Second, risk-based approaches [8], [27], [52] do not focus
on intrusion detection, but rather on the real time enforcement
of attack prevention systems such as security and privacy
policies. On the other hand, works focusing on intrusion
detection [12], [36], [37], [50], [51] presented anomaly-based
approaches whereby the context is defined based on what the
system does, i.e., data collected from multiple sources which
characterize the behavior of the system in a global manner,
and fed into a predefined detection algorithm.

Finally, approaches whereby the context is defined based on
what the system looks like consider very few system features,
that are network topology and security policies in [27], and
protocols in [44].

Our work differs in the following things: (i) we provide the
guidelines for the design of a context-aware, risk-based IDS
architecture which does not rely on a predefined detection
algorithm, rather it enforces an ad-hoc detection strategy
determined on the basis of what the system looks like; we stress
that these characteristics make our framework orthogonal to
the approaches presented so far, rather than alternative; (ii)
we consider a wider range of system features, enabling a
detailed characterisation of the system under monitoring and,
as a result, an accurate assessment of the risk in terms of
potential attacks; and (iii) we consider the self-adaptiveness
as a key property for an IDS in the face of the continuous
evolutions that IoT networks experience throughout their life
cycle.

III. BACKGROUND

A. Internet of Things
The IoT has several characteristics that make it a chal-

lenging domain for security measures design. The wide range
of hardware used for IoT devices results in a diverse set of
communication mediums utilized. IoT applications serve for
many different human activities, thus application-dependent
features like network topology, network size, and mobility,
may present different criticalities and points of failure.

Despite the heterogeneity that characterizes the IoT in many
of its architectural aspects, several common security flaws put
IoT systems under the same umbrella. The majority of IoT
devices are low resource devices, in terms of power source,
bandwidth communication, and computational capabilities. In
contrast to standard computing systems, most IoT devices are
less maintained and upgraded by the manufacturers. The tech-
nologies used for communication, operating system design,
authentication, and firmware update share vulnerabilities that
malicious users can exploit to infect IoT devices and launch a
variety of attacks. These attacks may show different signatures
(or may not even occur) according with the features of the tar-
geted system, the most discriminating being mobility, network
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topology, communication protocols, and prevention systems in
use (e.g., access control, encryption, authentication).

B. Context-aware Intrusion Detection

Prevention mechanisms are proactive approaches that at-
tempt to prevent security attacks in the first place. However, it
is possible that security attacks succeed and proceed in an IoT
system despite the adoption of prevention techniques. Thus, it
is extremely important to detect such attacks at the earliest so
that actions can be taken to stop further damage. To this end,
reactive approaches like Intrusion Detection Systems (IDSes)
can be adopted as the last line of defense, in an attempt to
detect ongoing attacks.

The choice of the most effective techniques to be executed
by an IDS is a fundamental task. However, this task if far from
being simple as it requires a deep knowledge of the monitored
system to be really effective. Moreover, since IoT instances
are dynamic environments, a particular configuration of the
IDS that is optimal at a certain point in time might not any
longer be optimal later on. A possible, though naive solution, is
activating as many detection techniques as possible in order to
guarantee a good coverage against potential attacks. However,
it presents two main drawbacks: First, the deployment of
inappropriate detection techniques may be cause of inaccuracy,
as they would produce a high number of false positives.
Second, processing network events and traffic through all the
detection techniques requires an unnecessary high amount of
system resources, and can even introduce delays in the attack
reaction.

In light of these considerations, an IDS would certainly
benefit from an autonomous mechanism which collects the
features of the system under monitoring, and selects the
detection techniques that best fit with them. This working
mode can be referred to as context-aware intrusion detection.

Two properties must be met by an IDS in order for it to be
context aware, that are selectivity and self-adaptivity:

• Selectivity: An IDS must be able to drive the choice of
the defense strategy (either for the inclusion and exclusion
of detection techniques) based on the features of the
monitored network and entities. As a matter of fact, an
attacks can be carried out only when specific conditions
are in place. For instance, certain attacks that multi-
hop networks are vulnerable to do not affect single-hop
networks; also, the vulnerabilities affecting IoT devices
can be meant as the preconditions for specific attacks to
occur.

• Self-adaptivity: IoT networks may evolve over time, i.e.
devices may be introduced in/removed from the monitored
area. This may lead to structural changes of the monitored
environment, like topology changes, higher/lower network
traffic, etc. In this setting, an IDS must be able to auto-
configure itself in order to be effective anytime without
the need of human intervention.

IV. PROPOSED MODEL

A. Conceptual Model

Our conceptual model for context-aware intrusion detection
is based on the following key concepts:

Observation: a piece of information gathered by observing
the available events (e.g., the frequency of a type of traffic,
a special forwarding field in intercepted packets, a change in
signal strength from a node, etc.);

Feature: an intrinsic characteristic of the monitored entities
and networks (e.g., multihop vs. singlehop network, mobile vs.
static network, open ports of monitored devices, communica-
tion protocols, etc.);

Symptom: a particular case of observation that could be
associated with a potential security incident (e.g., data losses
or inconsistencies, packet duplication or alteration, packet
dropping, etc.);

Risk: the security flaws that can be exploited as attack
vectors against an IoT system;

Detection technique: a mean to distinguish a security inci-
dent (known attack or anomaly) from benign system behavior,
that may trigger response activities, such as an alert to a user,
and/or automatic response actions, such as re-transmission of
packets or device isolation.

With these notions in place, our context-aware intrusion de-
tection approach follows this conceptual process:

Using the set of collected observations, the set of features
F of the monitored system S can be determined. Based on the
knowledge about F , the risk can be assessed in terms of the
set of attacks A that can be potentially harmful for S. Based
on the knowledge about A, the set of detection techniques to
activate can be determined, which will process the available
information to detect security incidents by the set of observed
symptoms.

B. Context-aware Intrusion Detection-as-a-Service

Our conceptual model for intrusion detection requires four
main tasks to be implemented, that are:
(1) the discovery of the features of the system under moni-

toring;
(2) the assessment of the risk in terms of potential threats

based on the collected features;
(3) the selection of the most fitting detection strategy based

on the assessed risk;
(4) the execution of the selected detection techniques.

We implement the above tasks according to the Security-as-a-
Service (SECaaS) paradigm. In the SECaaS model a service
provider supplies security services on a subscription basis,
which offers subscribers a number of benefits: First, SECaaS
offers ongoing protection since databases are regularly updated
to offer the most recent security coverage. Second, when the
overall cost of ownership is taken into account, it can be done
more affordably than the majority of individuals can do on
their own.

Typical SECaaS-based applications provide for their ser-
vices to be executed on a cloud-basis. For instance, PENTE-
STON [38] is a platform designed to remotely collect infor-
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mation and vulnerabilities about the targeted systems (task 1);
also, the literature provides cloud-based solutions such as
[20], [55] where the intrusion detection functions are executed
remotely (task 4) with respect to where the data is collected.
Due to the high computational and storage capabilities, cloud-
based solutions can ensure high performances in terms of
detection accuracy. Indeed, they can collect very large amount
of data and fully exploit the potential of machine learning to
build very accurate models of the monitored IoT instances.
However, such an effectiveness does not come for free but
at expense of efficiency: it requires IoT data to be migrated
to the cloud, and the detection outcomes to be delivered far
away from where the detection task takes place. This brings
up various issues, including data privacy [54], significant
communication overhead, and high communication latency.
For these reasons we believe that a purely cloud-based security
solution is not fully appropriate to address the IoT’s security
issues.

In light of these considerations, we propose a hybrid model
composed of two interacting layers, namely, a cloud layer
and a local layer. According to this model, tasks 1 and 4
are performed locally, i.e., in the IoT network area or at
the most at the fog level [19], [22], while tasks 2 and 3
are implemented at the cloud level according to the SECaaS
paradigm, that is, a service provider assesses the risk based
on the information gathered by the security devices it interacts
with and deploys them the most suitable intrusion detection
techniques to perform in the monitored IoT networks. The
SECaaS-based approach for the accomplishment of tasks 2
and 3 brings two main advantages, that are: (i) a context-
aware, dynamic, flexible, and customized implementation of
an intrusion detection strategy as a set of detection functions
that are automatically provisioned and dynamically migrated
based on real-time security requirements; and (ii) the availabil-
ity of a wide variety of detection techniques to address the
heterogeneous nature of the IoT, which solves the problem
of individuals having to equip their security tools with a
limited set of intrusion detection modules that would never
be sufficient in the face of the large and ever-evolving attack
surface that characterizes the IoT.

Figure 2 depicts the interaction steps between the actors
of our SECaaS-based model, namely, the user, the security
devices, and the service provider. First, the user subscribes its
security devices at the service provider (1), which provides
them with a procedure for the discovery of the features of the
IoT networks under monitoring (2). Each device installs and
executes the feature discovery procedure (3) – task 1 – and
sends the collected data to the service provider (4), which we
refer to as feature discovery report. At this point the service
provider performs tasks 2 and 3 of our conceptual model, i.e.,
based on the set of collected features it assess the risk and
chooses the most fitting detection strategy as a set of detection
modules (5). Such modules are then sent to the security devices
deployed on the field (6), that will install and execute them (7)
– task 4.

The security devices repeat the discovery process at regular
time intervals, or when cues of network changes are detected.
The discovery of new features causes further connections with

Fig. 2. The proposed SECaaS-based model.

the service provider and the consequent potential installation
of new detection modules, and/or the uninstallation of the
detection modules in execution that are no longer useful in
the current network setting.

In order for security devices to accomplish these tasks,
we propose Kalis2.0, a service oriented software architecture
that enables security devices to discover the characteristics
of the monitored IoT network (task 1) and perform intrusion
detection accordingly (task 4). Kalis2.0 is a modular architec-
ture, whose components interact with each other to efficiently
handle sniffed network traffic in relation to the detection mod-
ules in execution. In particular: a module collects information
about the monitored entities; a module generates and maintains
a concise representation of the feature discovery report; a
module supplies the detection algorithms in execution with
only the network packets of interest for the specific detection
task; a module routes sniffed traffic to the other components;
and a module in is charge of configuring the whole system
and coordinating the interactions between components. A rep-
resentation of Kalis2.0 is depicted in Figure 5. In Section VIII
a more detailed description of each architectural component is
provided.

V. FEATURE DISCOVERY

Feature discovery is the key activity that enables intrusion
detection to be context sensitive. The outcome of feature
discovery is a report on the characteristics of the monitored
system either at the network and device level. In the following
we describe three techniques for feature discovery, namely,
port scanning, banner grabbing, and penetration testing, and
provide some hints on how they must be performed in an IoT
scenario.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3333948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XXX 202X 7

A. Port Scanning

Port scanning consists in sending requests to a range of
port addresses on a host, with the goal of finding active
ports. Considered that there are 65536 distinct port addresses,
many port scanning tools only test the ports most commonly
associated with most commonly used network services, in
order to avoid keeping busy the computational resources of
the tested device. However, modern malware are aware of that,
and purposely scan on uncommon port numbers in order to
pass undetected by IDSs (see Table VII). In light of this, a TCP
scan can be performed on all the 65536 ports only during the
time slots in which the tested devices are in an idle state, so
as to not affect their normal operation. The TCP port scan is
preferred to other types of scan (e.g. UDP and SYN scans)
as, besides enumerating open ports, it also allows to collect
information about the network services running behind such
ports.

B. Banner Grabbing

Banner grabbing allows to gain information about a net-
worked system, which include device’s related information
such as communication protocols in use, Operating System,
network services (and their version), MAC address, device
type, model and manufacturer, and network’s related informa-
tion such as topology and routing scheme. Banner grabbing
can be conducted either in a passive and in an active manner:
the passive mode provides for the inspection of the header
of sniffed packets, while the active one involves probing the
tested device with a port scan, and then analyze the response
data. The data gathered by banner grabbing can be used to
further investigate on the tested devices in order to collect
additional information, that in turn may reveal further security
flaws. Also, some vulnerabilities can be traced back from the
knowledge about the device type and the network services it
hosts.

C. Penetration Testing

A penetration test is an offensive security approach in
which the tester probes the target system in order to gain
information about its security flaws [49]. Penetration tests are
fundamental as they allow to determine the security status of
the monitored IoT devices, that is, how vulnerable are them
and to which attacks. Such information can be collected by
means of a process enumeration task, a vulnerability scan, and
by simulating attacks (without performing malicious actions)
to discover further vulnerabilities. The analysis of running
processes can be leveraged to trace back to vulnerabilities af-
fecting those processes. A dictionary attack can be performed
to check whether the tested devices have weak credentials.
Such an attack provides for the tester to login by trying
different default usernames and passwords, in particular the
username-password pairs typically used by malware to gain
user privileges (e.g., Mirai [2] uses 62 pairs), plus the default
credentials typically assigned by devices’ manufacturers. The
tested devices are affected by such a vulnerability if one or
more of the following situations occur:

• the tester authenticates with default credentials (weak
password vulnerability);

• the tested device does not ask for a second authentication
step after the tester guesses a username-password pair (no-
two factor authentication vulnerability);

• after a low number of failed login attempts (typically
3 or 5) the tested device allows to continue sending
authentication attempts (account lockout vulnerability);

• the tested device leaks useful information in response of
each failed authentication attempt (username enumeration
vulnerability).

The vulnerability scan assesses the tested devices for known
vulnerabilities. There exist two types of vulnerability scans,
namely authenticated and unauthenticated. The first type
authenticates using login credentials and performs a more
accurate test by accessing low-level data, such as specific
services and configuration details of the Operating System.
The unauthenticated scan, instead, cannot go as deep as its au-
thenticated counterpart, thus it retrieves fewer information. A
vulnerability scan can be performed following the simulation
of a dictionary attack. In this regard, if the dictionary attack
succeeds, then an authenticated scan can be performed with the
guessed username-password pair, otherwise an unauthenticated
scan can be initiated.

VI. RISK ASSESSMENT

Risk assessment is the process of identifying potential
threats on the basis of the characteristics of a target system.
As we mentioned in Section II, contrary to the majority of
work on context-aware IoT security, we do not characterize
the target system in terms of what it does, but rather in terms
of how it is made as the knowledge obtained by means of a
feature discovery task. In particular, we distinguish two types
of knowledge, namely structural and security. The former is
about the anatomy of the monitored system, such as network
topology, mobility, protocol stack, devices’ type, devices’ op-
erating system/firmware, devices’ open ports, MAC addresses,
devices’ running processes, attack prevention systems and
network services provided by the IoT technologies in place.
It is collected by means of port scanning, banner grabbing
and process enumeration, and its analysis allows to assess
the risk in terms of which attacks the target system can
undergo and which not. In fact, there are relationships between
IoT technologies and security incidents that allow to assess
the possibility and impossibility for an attack to happen in
presence of a specific feature.

Security knowledge is about the security weaknesses af-
fecting the monitored entities, such as weak authentication,
weak encryption, and weak update mechanisms, as well as
the set of vulnerabilities retrieved by the vulnerability scan.
As opposed to structural knowledge, which must instead be
analysed offline to uncover clues about potential hazards,
such security flaws are instantly detectable through the online
analysis of sniffed network traffic and penetration testing tech-
niques. Structural and security information allows to obtain a
full picture of the monitored IoT system as the starting point
for a risk assessment task.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3333948

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, XXX 202X 8

TABLE II
A CLASSIFICATION OF IOT VULNERABILITIES BASED ON FEATURE DISCOVERY TECHNIQUES.

Category Vulnerabilities Consequences Discovery technique

V1

V1.1 - Username Enumeration
V1.2 - Weak Passwords
V1.3 - Account Lockout
V1.4 - No Two-factor Authentication

After the attacker takes control of the device s/he can launch any kind of
attack against other entities, or put the device out of service. penetration testing

V2
V2.1 - Unencrypted Services
V2.2 - Poorly Implemented Encryption
V2.3 - Update Sent Without Encryption

Data could be loss, stolen or modified and, depending on the data exposed,
could lead to complete compromise of the device or user account. Architec-
ture of a device, it’s file system, any buffer overflows and secret information
such as passwords, certificate information or database addresses could be
disclosed if updates are sent without been encrypted. The attacker can inject
extra code in firmware so that unauthorized operations can be performed.

passive banner grabbing

V3 V3.1 - Update Location Writable
V3.2 - Firmware and storage extraction

Attackers can intercept OTA updates, or even download the firmware from
the manufacturer web page. In both cases attackers can modify the firmware
and distribute it to all users. Insecure firmware could lead to compromise
of user data, control over the device and attacks against other devices.

offline analysis of the structural
knowledge collected with banner
grabbing

V4 V4.1 - Insecure Components
V4.2 - Insecure Network Services

Attackers can gain access to the device by means of ports unnecessary
exposed to the internet. Insecure network services and running processes,
such as out of date versions of busybox, openssl, ssh, web servers, etc.,
may be susceptible to buffer overflow or denial of service. Denial of service
attacks against other users may also be facilitated when insecure network
services are available.

offline analysis of the structural
knowledge collected with port
scanning and process enumeration

As it receives a feature discovery report, the service provider
determines the set of vulnerabilities the monitored system is
affected by, that are the necessary conditions and the points
of entry for attackers and malware to perform malicious tasks.
There are vulnerabilities in almost every aspect of IoT, in-
cluding operating system, communication protocols, and APIs,
and their exploitation causes either the control of the affected
devices and the leakage of exchanged data, opening the door
to a variety of attacks at network level such as eavesdropping,
man in the middle, spoofing, flooding, routing attacks, but also
to malware infections, leading to consequences like denial of
service, data theft, and data loss.

The Open Web Application Security Project (OWASP) [33]
has identified the most common vulnerabilities of IoT devices,
among which we have selected those that can be retrieved
by means of the feature discovery techniques discussed in
Section V, while excluding those that are detectable by means
of human intervention only, such as the susceptibility to side
channel attacks like glitching [30], which requires the physical
access to a device. We grouped them into four categories on
the basis of the technique used for their discovery. Table II
maps OWASP vulnerabilities with the four categories, and for
each category it shows the consequences that could arise if the
related vulnerabilities were exploited, along with the technique
required for their discovery.

A. Taxonomies
In order to meaningfully characterize the IoT threats in

relation with the feature discovery reports it receives, the
service provider uses a set of taxonomies that look at the
IoT security from different perspectives, namely, the network
perspective and the device perspective.

We hereby show instances of such taxonomies for the
two perspectives. Since a complete characterization of IoT
threats is beyond the scope of this paper, they should not
be considered exhaustive or accurate, rather, they must be
intended only as illustrative examples.

1) Network Perspective: There exist a number of attacks
that can be performed at the network layer, and as such, the

TABLE III
TAXONOMY FOR NETWORK ATTACKS AND NETWORK FEATURES.
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NETWORK ATTACKS si
ng

le
ho

p

m
ul

ti
ho

p

st
at

ic
dy

na
m

ic
sh

or
te

st
pa

th
m

ul
ty

-p
at

h
M

A
C

en
cr

yp
tio

n
FH

SS
E

C
C

si
gn

at
ur

es
se

q.
nu

m
be

r

selective forwarding × • • • • × • • • • • •
replay • • • • • • × • • • × ×

sinkhole × • × • • × • • • • • •
sybil • • • • • • × × • • × •

wormhole × • • • • • • • • • • •
data alteration × • • • • • × • • • × •

delay × • • • • • • • • • • •
jamming/collision • • • • • • • • × × • •

flooding × • • • • • × • • • × •
smurf/fraggle × • • • • • × • • • × •

spoofing • • • • • • × × • • × •
eavesdropping • • • • • • • × • • • •

possibility for these attack to happen/success strictly depends
on the presence of specific network features. In Table III we
show a taxonomy for the most common network features
and network attacks, with dots and crosses indicating the
possibility and impossibility, respectively, for an attack to
happen in presence of a specific feature. For instance, sinkhole
attacks cannot be performed when routing paths are static,
while smurf attacks are not possible in single-hop topology.
We also include the presence of prevention systems. Although
they could be considered as a device feature, prevention
systems decrease the success rate of most network attacks.
The knowledge about the prevention mechanisms in place
is fundamental for risk assessment since they serve as a
first line of defense, preventing or thwarting some malicious
activities and allowing the IDS to account for a smaller number
of threats. Data tampering attempts, for example, are made
ineffective if authentication mechanisms such as signatures or
Message Authentication Codes (MAC) are enforced by some
of the monitored devices.
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Device
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2022-21801 2022-21134 2022-21796 2019-11001 2020-25173 2020-25169

TRÅDFRI gateway TRÅDFRI bulb

2022-39065 2022-39064

< 1.19.26 all versions

manufacturer

device name

firmware version

CVE

all versions

Fig. 3. Taxonomy for device model and related threats.

TABLE IV
TAXONOMY FOR IOT OPERATING SYSTEMS AND RELATED THREATS.

OS Attack CVE Protocol

RIOT

break encryption 2021-41061 none
buffer overflow 2021-31664 none
DoS 2019-15702 TCP
DoS 2019-16754 MQTT
buffer overflow 2019-1000006 DNS

Tizen arbitrary code execution 2021-25437 none
arbitrary code execution 2021-25436 none

Mbed

memory leaks 2020-12887 CoAP
buffer overflow 2020-12886 CoAP
resource consumption 2020-12885 CoAP
DoS 2019-17210 MQTT

Ubuntu Core privilege escalation 2017-6507 none
privilege escalation 2016-1576 none

Fuchsia modify data 2022-0882 none
privilege escalation 2021-22566 none

HarmonyOS
memory heap overflow 2021-22480 none
DoS 2021-22479 none
information leakage 2021-22478 none

NuttX remote code execution 2021-26461 none
memory corruption 2020-17529 TCP

FreeRTOS
privilege escalation 2021-43997 none
buffer overflow 2021-42553 none
information leakage 2018-16603 TCP

OpenWRT XSS 2022-41435 none
memory leaks 2022-38333 none

Contiki-NG

buffer overflow 2021-21281 TCP
remote code execution 2018-19417 MQTT
buffer overflow 2022-35927 RPL
buffer overflow 2022-36054 6LowPAN
buffer overflow 2023-23609 BLE
buffer overflow 2022-36053 IPv6

2) Device Perspective: We characterize IoT devices on the
basis of the features that can be linked to known attacks and
security flaws, namely: manufacturer, device name, operating
system/firmware version, protocols, open ports, and network
services. Most of information about the relationships be-
tween devices features and cyber threats are publicly available
in online repositories such as NVD [29], CERT [5], and
MITRE [26].

Figure 3 shows a taxonomy for manufacturer, device
name, firmware version and vulnerabilities. Device name
and firmware version uniquely identify a device model and
thus, the set of vulnerabilities it is affected by. On the other
hand, feature discovery may not reveal complete information
on the device model, which may result in a larger range of
vulnerabilities, that is, the leaves belonging to the sub-tree
rooted to its manufacturer or device name node.

The analysis of Operating Systems (OSes) related threats
plays an important role for risk assessment since OSes are
the main software that devices run. Moreover, since the

implementation of the IoT protocol stack is different for each
OS, some OS vulnerability can be exploited only if specific
protocols are in place and not otherwise. As an example, Table
IV reports a taxonomy of the relationships between OSes,
protocols and vulnerabilities.

While non-IoT networks run mostly on top of the TCP/UDP
and IP protocols, the IoT depends on a diverse set of communi-
cation protocols. In Table V we show a taxonomy for the IoT
protocol stack and the attacks IoT protocols are vulnerable
to. Some protocols feature intrinsic security flaws, while
other ones are vulnerable to a variety of attacks depending
on specific devices’ features. For instance, the RPL routing
protocol is subject to the rank and version number attacks [1]
by design, i.e., regardless of device model or OS, whereas
the MQTT application protocol can be an attack vector when
certain device models are used, or when specific MQTT
implementations are in place. For the MQTT protocol, indeed,
several implementations are available which can be deduced
by looking at the broker’s address (which is always visible),
and some of which have their own security issues as shown
in Table VI.

For a complete understanding of the circumstances under
which a malware assault can be successful, devices’ open
ports and network services are meant as the prerequisites for
malware propagation, along with other device features such
as type, model, and CPU architecture. Malware can have a
variety of negative effects, including the interruption of devices
or network’s regular operation (local DoS), the steal of private
data like user credentials or user sensitive information (privacy
attack), or distributed attacks against a remote host/server
(DDoS). Table VII shows a taxonomy of the relationships
between devices’ features and malware. For each malware, the
class of the vulnerability it exploits for infection is indicated
in round brackets. For a more exhaustive behavioral analysis
of IoT malware we remind the reader to [11].

Notice that features such as device type, protocol, and OS
are covered by more than one taxonomy. Despite it may
looks inefficient, on the contrary such a redundancy allows
to get to vulnerabilities from different perspectives, allowing a
vulnerability that is shared by multiple features to be disclosed
if at least one of those features is detected. For instance, the
vulnerability CVE-2023-24157 affects the device TOTOLINK
T8 V4.1.5cu when the application protocol is MQTT (see Ta-
ble V). Whether the service provider is aware of both features
or only one of them (i.e., device model and App protocol),
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TABLE V
TAXONOMY FOR IOT PROTOCOLS AND RELATED THREATS.

Protocol Layer Attack Device Feature → Feature value

CoAP Application

amplification attack -
memory corruption (CVE-2022-33211) device model → Qualcomm 9207 LTE Modem
read memory (CVE-2020-12886) device OS → Arm Mbed OS 5.15.3
buffer overflow (CVE-2019-17212) device OS → Arm Mbed OS 5.14.0
DoS (CVE-2020-10063) device OS → Zephyr RTOS > 2.2

XMPP Application XMPPbomb -
Authentication bypass (CVE-2018-15721) device model → Logitech Harmony Hub

AMQP Application
CSRF (CVE-2023-24447) network service → RabbitMQ message broker
DoS (CVE-2020-4931) network service → IBM MQ messaging system
MITM (CVE-2018-11087) running process → Pivotal Spring

MQTT Application

arbitrary command execution (CVE-2023-24157) device model → TOTOLINK T8 V4.1.5cu
improper access control (CVE-2023-22600) device model → InHand Networks InRouter 302
DoS (CVE-2019-17389) device OS → RIOT OS before 2019.07
remote code execution (CVE-2018-19417) device OS → Contiki-NG OS before 4.2

DDS Application privacy laeks (CVE-2019-15135), buffer overflow (CVE-2022-41838) -

NTP Application DoS [10] -
Command Injection (CVE-2022-36786) device OS → D-link router DSL-224

TCP Transport
TCP SYN Flood -
buffer overflow (CVE-2021-21281) device OS → Contiki-NG OS before 4.6
DoS (CVE-2019-15702) device OS → RIOT OS before 2019.07

RPL Network
local repair, DAO/DAG inconsistency, rank attack, worst parent, rout-
ing table overload, DIO/DIS flooding, version number [53] -

buffer overflow (CVE-2022-35927) device OS → Contiki-NG OS before 4.7
MPL Network Suppression attack (DoS) [40] -

OLSR Network MPR flooding attack, incorrect ANSN generation, incorrect
TC/MID/HNA message generation -

AODV, DSR Network rush attack, RREP flooding,modification of RREP/RREQ/RRER mes-
sages -

6LoWPAN Physical buffer reservation, fragment duplication, authentication attack [53] -
buffer overflow (CVE-2022-36054) device OS → Contiki-NG OS

ZigBee App/Tran/Net
CSRF (CVE-2019-20480) device model → MIELE XGW 3000
DoS (CVE-2022-39064) device model → TRÅDFRI bulb
DoS (CVE-2019-15915) device model → Xiaomi DGNWG03LM

Z-WAVE All key reset attack, S0 downgrade attack, route modification, sniffing,
DoS, impersonation -

TABLE VI
MQTT IMPLEMENTATIONS WITH RELATED THREATS

Name Broker Address CVE

Mosquitto mqtt.eclipse.org 2021-41039 (DoS)
2021-34432 (DoS)

HiveMQ broker.hivemq.com 2020-13821 (credential theft)
Flespi mqtt.flespi.io -
Dioty mqtt.dioty.co -
Fluux mqtt.fluux.io -

EMQ X broker.emqx.io 2021-46434 (username enumeration)
2021-33175 (DoS)

it can nonetheless take into account this vulnerability, even
though with different degrees of confidence, which would be
high if both features were known, and lower if just one of
them was. We will discuss this aspect more in detail in the
next subsection.

B. The Inference Process

Risk assessment is accomplished by cross-referencing the
feature discovery report delivered by an enrolled security
device with the collection of taxonomies that map IoT features
to known threats. This process takes the name of inference
process, and outputs a collection of security flaws and potential
attacks, which we refer to as the risk model.

The inference process is quite straightforward when it
comes to assessing risk connected to network features and
devices models. In the first case, a boolean relation as the
one shown in Table III can be used to carry out a top-down

TABLE VII
TAXONOMY FOR DEVICES’ FEATURES AND MALWARE.

Malware Device feature→Value Port-Service
Hajime (V1.2) type→DVR, IP cam, router TCP 23-Telnet

Satori (V4.2) model→d-link router 52869-UPnP SOAP
model→Huawei HG532 37215-N/A

Mirai (V1.2) type→IP cam, router TCP 23-Telnet
Okiru (V1.2) processor→ARC TCP 23-Telnet

Masuta (V4.2) model→D-Link EDB 38722 N/A-HNAP,SOAP

Wicked (V4.1)
model→Netgear DGN-1000 8080-HTTP
type→CCTV-DVR 81-HTTP
model→Netgear R7000 8443-N/A

Sora (V4.1) model→Rasilient PixelStor N/A-N/A
Amnesia (V4.1) type→DVR N/A-N/A

Remaiten (V1.2) type→router TCP 23-Telnet
BrickerBot (V4.2) any TCP 23-Telnet

Darlloz (V4.1) type→router, IP cam, N/A-N/Atype→set-top box
Aidra (V1.2) processor→ARM TCP 23-Telnet

Bashlite (V4.2) model→D-Link 850 L Router N/A-N/A
Moose (V1.2) processor→ARM, MIPS TCP 23-Telnet

PNscan (V1.2) processor→x86, ARM, TCP 22-SSHMIPS, MIPSEL
Routrem (V1.2) type→router TCP 23-Telnet

XOR DDoS (V1.2) processor→ARM, x86, x64 TCP 22-SSH
Persirai (V4.2) type→IP cam TCP 81-HTTP

Hide ’N Seek (V1.2) type→IP cam 8080, 2480
80, 5984, 23-N/A

IRCTelnet (V1.2) type→DVR, IP cam TCP 23-Telnet
Rakos (V1.2) any TCP 22-SSH
Kaiji (V1.2) any TCP 22-SSH

IOTroop (V1.2) type→IP cam N/A-N/A
Linux Rabbit (V1.2) any TCP 22-SSH
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approach, whereby a subset of network attacks is excluded
from the set of all possible attacks based on actual network
features, to obtain the set of attacks that can actually happen.
A tree-based taxonomy as the one shown in Figure 3, instead,
can be used to identify a device’s security flaws as the leaves
belonging to the sub-tree rooted to its manufacturer, name, or
firmware version node.

Other features, instead, such as protocols, Operating Sys-
tems and open ports, may pose risks either on their own and
in combination with other features. For these, a more powerful
knowledge representation scheme is required for the risk to
be quantified. To this end, we implement the taxonomies
for protocols, Operating Systems and open ports as a set of
directed acyclic attack graphs (DAAGs). In a DAAG, start
and intermediate nodes represent features, and terminal nodes
represent attacks and security flaws. Two examples are shown
in Figure 4, which depicts an excerpt from the DAAGs used to
identify the security flaws affecting application protocols (left)
and the malware that exploit port 23 to infect devices (right).
According to this method, the taxonomy for protocols as the
one shown in Table V can be represented with four DAAGs,
one for each layer of the IoT protocol stack (Application,
Transport, Network, Physical).

The threats to an IoT system caused by a feature f are iden-
tified by the set of terminal nodes of a DAAG rooted in f , that
are reachable via the intermediate nodes labeled with the name
of the features for which some information has been collected.
Information are provided by feature discovery reports either at
network and device level as a set of feature-value pairs, with
value “N/A” denoting the absence of information for a given
feature. We formally define a DAAG as follows.

Definition 1 (directed acyclic attack graph): A directed
acyclic attack graph (DAAG) is a tuple ⟨s,NF , NV , NT , E, δ⟩,
where:

• s ∈ NF is the start node, i.e., a node with in-degree 0;
• NF is the set of feature nodes, i.e., nodes labeled with

feature names;
• NV is the set of value nodes, i.e., nodes labeled with

feature values;
• NT is the set of terminal nodes, i.e., nodes with out-degree

0, and labeled with threats names;
• E ⊆ {NF ×NV } ∪ {NV ×NF } ∪ {NV ×NT } is the set

of edges;
• δ : NV × NT → (0, 1] is an edge labeling function

that associates a value in the range (0, 1] to each edge
originating from a value node labeled with “N/A” and
ending at a terminal node.

In Figure 4, feature nodes and value nodes are represented
as pointy rectangles and rectangles, respectively. From now
on, for ease of explanation, we may denote a node x labeled
with “l” simply as the node l.

Given a value node N/A, and a terminal node t, δ(N/A, t)
tells how likely threat t affects the monitored device according
to the information collected about the features that can cause
t. Further details on δ will be provided later in this section.
The edges going from a feature node f to the value nodes
v1, . . . , vn represent the n possible values for feature f , the

N/A value included.

Definition 2 (active edge): Let G = ⟨s,NF , NV , NT , E, δ⟩
be a DAAG, and e = (x, y) ∈ E be an edge. e is defined as
active in the following two cases:

• e ∈ NF ×NV and there exists a feature with name x and
value y in the feature discovery report;

• there exists an active edge (z, x) ∈ NF ×NV .

Terminal nodes of a DAAG can be reached starting from the
start node and following paths involving active edges only. A
threat t joins the risk model if there exists a path as a sequence
of active edges from s to a terminal node t. In Figure 4, active
edges and selected thrates are highlighted in green.

DAAGs and feature discovery reports guide the inference
process in determining a risk model for the enrolled security
devices. However, a security device may fail to gather all
or part of the relevant information about the IoT entities
under observation, or rather, it may discover features that are
unknown to the service provider. For example, it is reasonable
to consider a newly released device model as a feature that
is ignored by the service provider for a while, at least until
security experts fill in the missing data. In these cases, it’s
imperative that risk models are also built upon missing knowl-
edge in addition to learned knowledge, otherwise ineffective
detection settings could be deployed. Therefore, the absence
of information is not be interpreted as the absence of risk,
but rather, it must encourage the generation of redundant risk
models, i.e., that include threats that are mutually exclusive
because they originate from the same feature when this is given
alternative values, but whose current value is unknown. The
fundamental rule to comply with when assessing risk is thus:
When there is no knowledge on the target system or a part of
it, a redundant risk model must be generated; if information
are provided instead, a more specific risk model can be
endorsed. The deployment of redundant detection settings as
a result of a redundant risk model still guarantees adequate
protection against potential attacks, but is poorly efficient due
to its redundant nature. Redundant settings, for instance, may
include detection techniques for the attacks targeting different
routing protocols, even though a set of interacting devices do
not use more than one routing protocol at the same time.
But in absence of information about routing, all available
means are required to identify any potential threat to routing
tasks, preferring a higher false positive rate to some, but way
harmful, false negatives. If the routing protocol is known,
instead, a more specific risk model can be generated in favour
of a more customized security solution.

To deal with this aspect, a DAAG is designed so that the
edges originating from a value node N/A directly reach all
the terminal nodes that are also reachable via a feature node f
such that (f,N/A) ∈ E. This construction allows to include
into the risk model all the threats caused by a given feature
in the case no information is provided about it.

Example 1: Figure 4 (left) shows an excerpt of the DAAG
which guides the inference process in finding the security
flaws linked to IoT application protocols. The active edge
going from the start node to the value node MQTT is an
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Fig. 4. An excerpt of the DAAGs that guide the inference process in finding the security flaws of IoT protocols (left), and in determining the set of malware
that can threaten an IoT device when a set of open ports is given (right).

indication that the feature discovery report includes the pair
(app protocol, MQTT). According with Definition 2, all the
edges outgoing from the MQTT node are active. The feature
nodes implementation, devicesOS and device model de-
note features that, in combination with the MQTT protocol,
may expose an IoT device to a number of risks depending on
their value. The active edges going from nodes deviceOS and
device model to the N/A nodes are an indication that the fea-
ture discovery report does not provide any information about
such features, while it does for the feature implementation

with the value HiveMQ. As a consequence, the edges linking
the N/A nodes to the security flaws caused by deviceOS and
device model features become active. The terminal nodes in
green represent the security flaws that will join the risk model.

Example 2: Figure 4 (right) shows an excerpt of the DAAG
which guides the inference process in determining what are
the malware that can threaten an IoT device when TCP port
23 is open. According with this example, the risk model will
include (i) the malware that exploit the Telnet service via the
TCP port number 23 and affect DVR devices for which no
knowledge about their processor is given, plus (ii) Brickerbot,
a malware that exploits the Telnet service via the TCP port
number 23 and spreads without any additional device-specific
feature.

With the above concepts in mind we can now clarify how
function δ works and why it is relevant. As we have ex-
plained earlier in this section, the lack of knowledge about the
characteristics of the monitored entities results in a redundant
risk model, that is, a collection of threats that are mutually
exclusive because they derive from the same feature when
this is given values that exclude one another, but that are
unknown. For such threats, function δ derives a real value
in the range (0, 1] as a measure of the degree of confidence of
their existence. More precisely, given the set of active edges
{(x, t1) . . . (x, tn)} where x is labeled with N/A, the value
obtained by applying δ(x, ti) denotes how likely threat ti
affects the device being monitored, considering the possibility
that one of the other n− 1 threats may be in its place.

The behavior of function δ is described by the pseudocode
sketched in Algorithm 1. For this purpose we use the two

utility functions in and siblings, defined as:

in(y) ={x|(x, y) ∈ E ∧ x ̸= “N/A”}
siblings(y) ={x|∃z : (z, x) ∈ E ∧ (z, y) ∈ E}

where E is the set of edges. Given a node y, function in(y)
returns the set of nodes x ̸= N/A such that there exists an
edge (x, y), while function siblings(y) returns the set of nodes
x such that in(x) ∩ in(y) ̸= ∅.

Algorithm 1 function δ

Input: x ∈ NV labeled with “N/A”, y ∈ NT such that (x, y) ∈ E
Output: a label c ∈ (0, 1] for the edge (x, y)

1: I = in(y)
2: S = ∅
3: c = 1
4: while x /∈ S do
5: z ← I ▷ z is a node sampled from I
6: S = siblings(z)
7: if y ∈ NF ∨ y ∈ NT then
8: c = c · |I|/|S|
9: y = z

10: I = in(y)

11: return c

Example 3: Consider the set of security flaws highlighted
in green in the DAAG of Figure 4 (left). Vulnerability CVE−
2020−1382 is certainly a security flaw that affects the target
IoT device as it belongs to a path which does not include N/A
nodes. On the other hand, there is a 0.5 degree of confidence
that the other vulnerabilities affect the device being monitored.
The rationale behind the value 0.5 (computed as the result of
the evaluation of function δ) is that each CVE is enabled when
the feature which gives rise to it assumes a specific value out
of two potential values. Note that, in the case we were not
aware of protocol being used, these vulnerabilities would have
a degree of confidence of 0.5/3 = 0.16, where 3 is the number
of different application protocols (MQTT, XMPP amd CoAP)
provided in this DAAG.

Example 4: Consider the set of malware highlighted in green
in the DAAG of Figure 4 (right). Malware Okiru, Aidra and
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Moose join the risk model as endings of paths that include
an N/A node, and thus with a degree of confidence smaller
than 1. Either malware Okiru and Aidra can manifest with a
degree of confidence of 1/3 = 0.33. The value 0.33 is because
they can threaten devices having ARC and ARM processors,
respectively, that are one of the three potential values (ARM,
ARC and MIPS) of the feature device processor. Malware
Moose, instead, has a degree of confidence of 2/3 = 0.66,
since it can threaten devices having either an ARM or a MIPS
processor.

Every threat included in a risk model is represented as a
pair ⟨t, c⟩, where t is the threat identifier, and c is a real value
in (0, 1] obtained as the result of the evaluation of function δ.
For threats to which δ does not apply but that still belong to
the risk model, c = 1 by default (e.g., CVE-2020-1382 in the
DAAG of Figure 4 (left)).

As we are going to see in the next section, function δ
can help tuning detection settings for efficiency purposes.
Security tools deploying detection settings derived from highly
redundant risk models, indeed, may incur in a significant com-
putational burden. To avoid this, more lightweight detection
settings can be obtained by excluding from the risk model
some of the threats characterized by very low c values.

VII. SELECTION OF THE DETECTION STRATEGY

Based on the risk assessed in terms of vulnerabilities and
potential attacks, the service provider determines the intrusion
detection settings for enrolled security devices, that we refer
to as detection strategies (DSes). A DS is a collection of
detection modules (or simply modules), i.e., detection algo-
rithms that analyze network traffic and raise an alert if security
incidents or anomalies are recognized. We assume, without
loss of generality, that there exists a 1-to-n mapping from the
set of detection modules to the set of threats, i.e., a detection
module addresses one or more threats. This is a reasonable
assumption since attacks that cause the same symptoms (i.e.,
thet share the same signature) can be detected by the same
detection technique. This is the case, for example, of many
malware such as Mirai, Remaiten, Okiru, etc., that establish a
connection with the target device on the TCP port 23 and
perform DDoS attacks, thus generating a large amount of
outbound traffic.

A detection module dm is identified by a triple ⟨T,w,D⟩,
where T is the set of threats dm deals with, w = max⟨t,c⟩∈T c
is a real value in (0, 1], and D is the set of IoT devices to be
monitored by dm to address threats in T . w is the highest c
value among the threats ⟨t, c⟩ ∈ T , and denotes how likely at
least one threat in T will affect the IoT devices in D.

The first step for determining a detection strategy is select-
ing the detection modules that address the threats provided
in the risk model. A detection strategy generated from a
redundant risk model, however, may also be redundant, and as
such it may experience performance issues like computational
overhead, high false positive rate, and low attack classifica-
tion accuracy. The redundancy degree of a detection strategy
DS can be derived by evaluating an aggregate function
ϕ : DS → [0, 1) over the w values of the detection modules

in DS, with value 0 meaning a non-redundant strategy, and
value 1 a very high redundant one. Two candidate aggregate
functions are:

ϕ(DS) =1− 1

|DS|
·

∑
⟨T,w,D⟩∈DS

w

ϕ(DS) =1− min
⟨T,w,D⟩∈DS

w

that generate a real value as the complement to 1 of the
average (top) and the minimum (bottom) w values computed
over the set of modules. The aggregate function can be either
fixed or user-dependent, i.e., chosen or defined by the user at
enrollment time depending on his/her security requirements. If
the redundancy degree r of a detection strategy DS goes above
a certain threshold value h ∈ (0, 1), the service provider seeks
to generate a more lightweight strategy DS∗ with r∗ < h.
The process by which from DS we get to DS∗ follows an
incremental approach, whereby a strategy DS′ is generated
from a risk model M ′, that in turn is obtained by removing
from M some threat ⟨t, c⟩ having c under a threshold value
h∗, where M is the risk model which originated DS; now,
if r′ < h then DS∗ = DS′, otherwise the same process is
applied to M ′ until a strategy characterized by a redundancy
degree < h is found.

The policy to decide which threats, among those having
c < h∗, must be removed from a risk model, can be
chosen by the user at enrollment time. For instance, criteria
for threat removal can be derived from the metrics used in
the NVD to characterize vulnerabilities. As an example, the
user may want to remove vulnerabilities having low impact
on the target system as first filtering method, and if this does
not provide a strategy with redundancy degree < h, then
s/he can request that vulnerabilities having medium impact be
removed as well.1 Similarly, the vulnerability consequences,
i.e., the security area that is violated when a vulnerability is
exploited (e.g., integrity, availability, etc.), can be used as an
alternative to, or in cascade with, the aforementioned impact-
based approach. In this case, the user may be more interested
in keeping modules for the detection of attacks to the integrity
of data rather than for those that threaten the availability of
IoT devices. As well, the user can choose to apply specific
policies to routers, and different ones to other kind of devices.
In general, whatever policy for threat removal which provides
a good trade-off between effectiveness and efficiency can be
adopted.

The service provider maintains the list of enrolled secu-
rity devices s1, s2, . . . , sn along with the detection strategies
DS1, DS2, . . . , DSn they enforce. When a security device si
delivers a new feature discovery report, the service provider
determines a new detection strategy DS

′

i and sends si the sets
DM in and DMout, where:

• DM in = DS
′

i \ DSi is the set of detection modules to
install;

• DMout = DSi \DS
′

i is the set of detection modules to
uninstall;

1In NVD, vulnerabilities are classified as critical, high, medium or low, to
quantify the impact they have on a target system when they are exploited.
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Fig. 5. The architecture of Kalis2.0.

Note that either DM in or DMout can be empty, and that
DM in contains the (encrypted) executable code of the detec-
tion modules to install, while DMout contains the identifiers
of the detection modules to uninstall.

VIII. KALIS2.0 – A SERVICE-ORIENTED SOFTWARE
ARCHITECTURE FOR SECURITY DEVICES

We hereby present Kalis2.0, a service oriented architecture
for a context-aware, self-adaptive, network-based, centralized
IDS for the IoT. Kalis2.0 enables security devices to enforce
the intrusion detection as-a-service approach at the local
layer by implementing the feature discovery and the intrusion
detection tasks.

Figure 5 depicts the architecture of Kalis2.0, which consists
of 6 main components: the I/O Module routes inbound traffic
to the other architectural components, and outbound traffic
(generated for feature discovery) to the IoT devices under
monitoring using the appropriate physical layer protocol; the
Feature Discovery Module enforces the feature discovery
techniques described in Section V; the Module Manager is
responsible for the configuration of the other architectural
components; the Detection Engine enforces the detection
strategy; the Packet Dispatcher forwards network packets to
the detection modules in execution; and the Knowledge Base
holds the feature discovery report generated by the Feature
Discovery module. Kalis2.0 enables collaborative detection to
be performed by security devices monitoring the same IoT
system, that is, distributed detection tasks can be carried out
by exchanging locally collected knowledge and network events
relevant to the security goal.

In the following we describe in detail each component and
how they interact with each other.

1) Module Manager: The Module Manager is in charge
of setting up the whole system to operate in accordance with
the IoT environment being monitored. It reads the Knowledge
Base at regular time intervals, and if its content has changed
with respect to the last access, the Module Manager con-
nects with the service provider for sharing the new collected
knowledge. This responds with a new detection strategy, which
entails the configuration of the other architectural components.
In particular, the Detection Engine is updated with the new
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Fig. 6. The Feature Discovery module.

detection strategy; the I/O Module is set up to enable the
communication with new IoT devices, if any; and the Packet
Dispatcher is configured so as each detection module is fed
only with network packets originated from, or destined to the
devices they are monitoring.

2) Feature Discovery Module: The Feature Discovery
Module (Figure 6) enforces the autonomous knowledge dis-
covery mechanism of Kalis2.0. As explained in Section V,
feature discovery can be performed either in a passive and
an active manner. The passive mode provides knowledge to
be extracted from the sniffed network traffic, the active one,
instead, enforces penetration testing, port scanning and active
banner grabbing techniques. The submodules that work in
passive mode are: the Topology Discovery module, which
reconstructs the topology of the network under monitoring; the
Mobility Awareness module, which detects mobility based on
some criteria such as the changing of devices’ signal strength
beyond a certain threshold; ad the Passive Banner Grabbing
module, which analyzes the data contained in the sniffed
packets.

The active knowledge extraction concerns penetration tests
and active banner grabbing on the IoT devices under moni-
toring, as well as the generation (detection) of advertisement
packets to manifest itself to (detect the presence of) other
security devices to share collected knowledge with. Sharing
knowledge among different security devices can enable the
discovery of features that single nodes cannot find out locally.
As an example, being aware that other security devices are
noticing changes in signal strength for specific IoT devices
can enable a security device to correlate such changes with
those experienced locally and detect mobility in the network
with higher confidence.

The information collected either in the active and passive
modes are stored into the Knowledge Base. In particular, for
each IoT device the IP address, the protocols it uses, the signal
strength, the list of devices it communicates with, the Oper-
ating System/firmware version, its open ports with associated
network services, and the vulnerabilities it is affected by are
reported.

The discovery process is activated in three circumstances:
(i) a timeout expires; (ii) the Packet Dispatcher detects a
new IP address; (iii) a detection module receives no packets
for a long time. In the first case, the timeout duration is
fixed, and the timeout is reset every time one of the other
two circumstances occurs. The second and third cases occur
when some device joins, and is removed from the network,
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respectively. In this cases the discovery task is re-executed in
order to update the network topology, and to figure out which
technologies are being used by the new devices, if any.

When the discovery process terminates, the Feature Dis-
covery module updates the Knowledge Base by replacing the
obsolete data with the fresh one.

3) I/O Module: The I/O module handles inbound and out-
bound traffic. Inbound traffic can be of three types: (i) traffic
originated by the monitored IoT network, which is forwarded
to the Packet Dispatcher for detection purposes, and to the
Feature Discovery module for discovery purposes; (ii) inbound
connections coming from the service provider, that are routed
to the Module Manager; and (iii) packets originated by other
security devices either for manifesting their presence, or for
exchanging collected features and network events, that are
forwarded to the Feature Discovery module in the first and
second cases, and to the Packet Dispatcher in the third case.

Outbound traffic can be of four types: (i) intrusion alerts
generated by the detection modules in execution; (ii) outbound
connections established by the Module Manager to transmit
the collected knowledge to the service provider; (iii) probe
packets originated by the Feature Discovery module; and
(iv) traffic originated by the collaborative detection modules
and destined to other security devices. Outbound connections
require a preliminary configuration phase to be performed.
This is done by the Module Manager which provides the
I/O Module with a set of pairs ⟨dest IP, PHY protocol⟩.
When the I/O Module receives an outbound connection request
by another architectural component, it looks for a matching
between the destination IP carried into the request and the
dest IP of one of the pairs it holds. If a match is found, it
encapsulates network layer packets into physical layer packets
according with the physical layer protocol the destinations
device dest IP uses. The pairs ⟨dest IP, PHY protocol⟩
are defined as a result of the feature discovery phase, and are
stored into the Knowledge Base.

4) Packet Dispatcher: The Packet Dispatcher receives net-
work packets from the I/O Module, and forwards them to the
detection modules being executed by the Detection Engine.
The Packet Dispatcher is configured by the Module Manager
so that each detection module only receives packets strictly
necessary for its detection task. When the Packet Dispatcher
detects a packet with a new IP address, then it notifies the
Feature Discovery Module, which in turn initiates a new
discovery task to identify potential network changes.

5) Knowledge Base: The Knowledge Base holds all the
information about the features of the monitored entities and
networks, and makes these available to the Module Manager.
We refer to an individual piece of knowledge as knowgget
(“knowledge nugget”). We model each knowgget as a label,
describing the information represented, and its associated
value. Each knowgget has a “creator” field – representing the
security device that created it (useful for knowledge sharing).
Knowggets may in turn be composed by several different
pieces of data; for example the knowledge about the current
traffic frequency (as packets per second) can include several
sub-pieces of information for each different packet type, such
as TCP SYN, TCP ACK or TinyOS CTP. We refer to these
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Fig. 7. An example of Knowledge Base with heterogeneous knowggets, each
showing label, value, and creator field. The RSSI multilevel knowgget is
composed of two knowggets generated by two different security devices.

as multilevel knowggets. The label of a multilevel knowgget
is thus not associated with a single value, but with a group
of other knowggets, in a tree-like structure. A knowgget k is
formally defined as a tuple ⟨l, v, s⟩, where l is the label, v is
either a primitive value or a set of knowggets (for multilevel
knowggets), and s is the identifier for the security device
creator of k. Figure 7 shows an example of Knowledge Base.

To enable the knowledge-sharing mechanism, the Knowl-
edge Exchange module sends the knowggets to other security
devices, making sure to mark the appropriate identity in the
“creator” field denoting the security device that generated the
knowgget. At the same time it receives knowggets from other
security devices. Note that this mechanism does not provide a
way for a security device to overwrite or alter the Knowledge
Base of another security device. When a security device, say
s1, receives a new or updated collective knowgget k from a
different security device, say s2, the Feature Discovery Module
of s1 checks whether the label and creator of k matches
any existing knowgget in the Knowledge Base. Therefore, s1
can only update those knowggets in s2 that were originally
generated by itself.

6) Detection Engine: The detection Engine enforces the
detection strategy. Detection modules analyze the captured
traffic and detect anomalies and security incidents. The Mod-
ule Manager coordinates all the modules, loading/unloading
them as needed, depending on changes in the Knowledge Base.

The deployment of two or more security devices in the same
network area enables the execution of collaborative detection
techniques. Each security device detects the presence of the
other ones, and send this information to the service provider.
This, in turn, will respond with a set of detection modules
to be executed in a distributed way, which allows to detect
security incidents that involve wide network areas. Collabora-
tive detection modules perform a distributed detection task by
exchanging locally collected knowledge and network events
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relevant for the security goal they pursue. The communication
between collaborative detection modules requires the sender to
broadcast detected network events along with the identifier of
the detection module to which data is intended. Collaborative
detection typically comes into play in large scale networks
where attacks may affect a portion of the network larger than
that monitored by a single security device. An example is
the Wormhole attack in which an attacker captures packets
at one point in the network by announcing a shorter route
to the destination, tunnels them to another point far in the
network, and then replays them from that point. If the two
points belong to network areas monitored by different security
devices, a single security device would not be able to detect
such an attack unless it receives additional information from
the security device which monitors the other side of the
network.

A. Operational Phase

Figure 8 shows the sequence diagram of the operational
phase of Kalis2.0. In particular, it depicts the situation in which
the Feature Discovery module discovers a new network fea-
ture. This causes the interaction between the Module Manager
and the service provider and the consequent installation of a
new detection module. Then, the Module Manager configures
the Packet Dispatcher to deliver incoming packets to the new
detection module. Notice that the Packet Dispatcher does not
deliver any packet before it has received instructions about
how to do it from the Module Manager. The detection module
starts working as soon as it receives incoming traffic from
the Packet Dispatcher, and activates the I/O module to raise
an alert following the detection of an intrusion. The detection
module will work until the Module Manager unloads it. All
the components in Kalis2.0 run independently. When a new
packet is captured on any protocol, all the interested parties
are asynchronously notified of the new packet event, and can
independently and concurrently process the new information.

IX. BENEFITS OF THE PROPOSED APPROACH

The benefits of the proposed context-aware detection ap-
proach mainly reflect in the following aspects: (i) higher
detection rate; (ii) higher detection accuracy; (iii) higher
classification accuracy; and (iv) reduced risk of unauthorized
disclosure of security algorithms. In the following subsections,
each aspect is discussed with the help of practical examples
of real IoT technologies. Next, in the experimental section we
show the benefits of context-awareness with practical tests.

A. Higher Detection Rate

The knowledge of the features of the monitored IoT network
allows to obtain higher detection performances in terms of
detection rate. Indeed, the selection of the most appropriate
detection method according with the network characteristics
is crucial for ensuring that all ongoing attacks are detected,
and insufficient enforcement of these criteria would limit the
detection capabilities of an IDS. As an example, distinguishing
factors include the ability to detect device mobility, as the
various types of mobility patterns in IoT guide the way
malware propagate [6] as well as the efficacy of other types
of attacks. Mobile IoT finds successful application in areas
such as healthcare, logistic, smart homes, smart cities, etc.
In these scenarios, it is important to detect mobility patterns
and determine the most appropriate security solutions that are
effective for enforcing a high security level. Literature on IoT
security provides numerous examples of security techniques
for mobile IoT scenarios, such as [18], [23], [48].

Beside mobility, the knowledge of other types of features
plays an important role as well. For instance, communication
protocols at different layers of the protocol stack suffer from
specific attacks that cannot be intercepted unless IDSes run
detection techniques that are designed specifically for them.
Examples are: the XMPPbomb attack to the XMPP protocol,
NDP spoofing attack to the NDP protocol, Version Number
attack, Rank attack and Worst Parent attack to the RPL
protocol, and so on.

As a further example, consider the Contiki-NG Operating
System which, depending on the specific OS version, is subject
to buffer overflow attacks at different layers of the protocol
stack, in particular at the Physical layer with the 6LowPan
protocol (CVE-2022-36054), at the Transport layer with the
TCP protocol (CVE-2022-36054), and at the Network layer
with the RPL protocol (CVE-2022-35927). In all these cases,
without knowledge about the protocol, the OS, and the OS
version, a buffer overflow attempt is unlikely to be detected.

In general, there are many aspects of IoT systems that
can be exploited to determine the most effective detection
strategy. For all of them, selecting the most appropriate
security techniques can avoid attacks that occur under specific
circumstances to go undetected.

B. Higher Detection Accuracy

The knowledge of the enabling technologies allows for
a more accurate detection task. For instance, an IDS may
confuse legitimate protocol activities with malicious actions
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when it does not have in-depth knowledge of how the protocols
work, thus the knowledge of protocols behavior may help
limiting the number of false positives. For example, the RPL,
AODV and DSR protocols require network nodes to drop
received packets when they do not satisfy certain requirements.
With this in mind an IDS can lower the number of false
positives because more likely to distinguish between malicious
and benign drops.

C. Higher Classification Accuracy

The knowledge about network features can be used to
distinguish attacks sharing similar symptoms, therefore hard
to distinguish to a passive external observer. Recognizing the
true nature of an attack can be of paramount importance,
especially when attack reaction mechanisms are to be initiated.
For instance, both ICMP Flood and Smurf attacks show a high
amount of ICMP Echo Reply messages sent to a victim node.
However, Smurf attacks cannot be carried out in single-hop
networks, and this information represents the distinguishing
factor that allows to recognize the true nature of the ongoing
attack.

Another fitting example are malware. Malware classification
is a critical task as it drives the clean up process of infected
devices. In fact, the method used to sanitize a device relies on
where the infection is located on the device itself. As shown
in Table VIII, after infection a malware can hide in the device
memory, in the device file system, or in the device firmware.
The infected device must be restarted to remove malware that
reside in memory, formatted to remove malware that reside
in the file system, while a firmware update is necessary to
remove malware that reside in the device firmware.

TABLE VIII
IOT MALWARE CLASSIFIED BASED ON THE LOCATION OF THE INFECTION

Memory-Resident File System-Resident Firmware-Resident
Mirai Bashlite VPNFilter
Reaper (IoTroop) Remaiten Lillin Scanner
Masuta (PureMasuta) Torii TheMoon
Persirai Linux.MulDrop.14 RubyMiner
Hajime BrickerBot Anarchy
Gafgyt ELF Linux/Mirai Amnesia
Hide ’N Seek (HNS) ELF Linux/IRCTelnet AESDDoS
Okiru Kaiten (KTN) Linux.Darlloz
Satori LuaBot Linux.ProxyM
Tsunami Mukashi Linux.Moose
Echobot Manga Ttint

FBot Sbidiot

Uniquely identifying a malware by cross-referencing device
features and observed symptoms, however, may not always be
possible for two main reasons: first, the feature discovery task
may not retrieve all relevant information about the monitored
devices (e.g., the device model is known but its firmware
version is not), and second, malware may be indistinguishable
due to some commonalities (e.g., the majority of malware
perform TCP flood based DDoS attacks). Nonetheless, it is
often possible to narrow the range of possibilities by excluding
malware that do not cause the observed symptoms and that tar-
get devices with characteristics different from those collected.
The device model or manufacturer, in particular, are features

that significantly contribute to this assessment: when certain
network activities involve specific device models, there is a
good chance of determining the associated malware class.

As an example, consider a Huawei router with the port
Telnet 23 open as the set of collected features. The detection
of patterns that represent a dictionary attack on port 23 may
be the symptom of an ongoing malware infection. However,
this knowledge is not sufficient to uniquely identify the type
of malware since there exist many of them, especially Mirai
variants, that perform dictionary attacks on the Telnet port 23.
The further detection of outgoing traffic towards a blacklisted
IP address on the TCP port 7000 is another evidence of the
presence of a malware exchanging messages with its C&C
server. In this case, this additional symptom allows to restrict
the range of possibilities. Indeed, the only (known) malware
that affects Huawei router via Telnet port 23 and managed via
TCP port 7000 is Satori, which is memory-resident and thus
removable via device rebooting.

D. Reduced Risk of Unauthorized Disclosure of Security Al-
gorithms

When developing an IDS, it’s crucial to guarantee the
anonymity of the detection methods. In fact, if malicious users
manage to obtain the implementation details, they may be able
to devise and carry out detection-proof attacks with success
and remain undetected. In addition, there’s a chance that the
implementation details would be made public, which would
cause significant financial losses for the company that owns
the revealed technologies.

Even while security devices may have firmware upgrades
and their entire file system encrypted, attackers still have a
chance of learning the encryption keys. For instance, they can
perform a brute force attack to guess the encryption key and
then decrypt the content of the hard disk. Alternatively, they
can perform reverse engineering from the executable code in
the central memory (which is in cleartext), and reconstruct the
security techniques in execution.

Present-day commercial products are prone to this kind
of attacks. Security devices that host Kalis2.0, instead, are
initially “vacant”, and subsequently “stuffed” by the service
provider with a selection of detection modules according with
the features of the network under monitoring. This mode
ensures higher confidentiality for the organization which holds
the rights of the security techniques. Indeed, in order to acquire
necessary information, an attacker would be compelled to
carry out a number of onerous jobs: first, s/he has to deploy a
Kalis2.0 node into an IoT network, and wait for it to download
the detection modules from the service provider; second, s/he
would be able to disclose the detection modules selected for
that specific IoT network only; third, s/he must deploy the
Kalis2.0 node into a network with different characteristics
in order to gain further information. Thus, since the set of
security techniques is restricted by the actual network features,
an attacker cannot disclose more than what a Kalis2.0 node
actually uses to monitor the current network.
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Fig. 9. ICMP Flood attack (left) vs. Smurf attack (right).

X. EXPERIMENTAL RESULTS

We performed a wide set of experiments to show the benefits
of the proposed context-aware approach compared with a
non-context-aware IDS (NCA-IDS). To this end, we carried
out a number of attacks that are representative of situations
where context awareness offers better detection performance,
in particular:

• attacks that present identical or very similar symptoms,
and thus that are difficult to classify correctly (Sec-
tion X-A);

• attacks for which the detection technique to use depends
on specific network features (Section X-B);

• attacks that can be confused with legitimate network
activities (Section X-C);

• attacks for which their detection is easier when the
knowledge of specific protocol features is exploited (Sec-
tion X-D);

In these settings, we show how Kalis2.0 provides better de-
tection performances than the NCA-IDS, basing its decisions
on both network and device features such as network topol-
ogy, device mobility, protocols, and intrusion prevention
systems.

The two systems are evaluated in terms of: detection
rate – percentage of adverse events detected out of all the
adverse events in the test scenario; classification accuracy –
percentage of correctly classified attacks out of all the detected
attacks; false positive rate (where applicable) – percentage of
false alarms out of all the benign events in the test scenario;
CPU usage; and RAM usage.

A. Attack scenario 1: Same symptoms different threats – the
case of ICMP Flood and Smurf attacks

1) Description: The knowledge about network features
may be decisive for the correct classification of detected
attacks under the countermeasures that have to be performed.
A well fitting example is the case of ICMP Flood and Smurf
attacks that, even though they show same symptoms, can be
distinguished from each other because of the topology of the
target network.

In an ICMP Flood attack (Figure 9-left) the attacker node
floods the victim with ICMP Echo Reply messages using
several different identities as sender. In a Smurf attack (Figure
9-right), the attacker sends ICMP Echo Request messages to

several neighbors of the victim using the victim’s identity as
sender; those neighbors will thus respond with ICMP Echo
Reply messages directed to the victim. We note that, to an
external observer these two attacks show the same symptom,
that is a high amount of ICMP Echo Reply messages sent
to the victim node. However, in contrast to the ICMP Flood
attack, the accomplishment of a Smurf attack needs a specific
network topology to be in place, that is the one with a number
of network nodes close enough to both the malicious node and
the victim, that can act as reflectors of malicious traffic. In
this test, this knowledge is leveraged by Kalis2.0 to achieve
an accurate attack classification.

2) Implementation: We use the Cooja simulation environ-
ment [35] to simulate an IoT system made of 7 TelosB motes
with the TinyOS Operating System, the BLIP protocol stack
[32] (the Berkeley Low-power IPv6 stack for TinyOS), and
the TinyRPL implementation of the RPL routing protocol.
The nodes are placed in a 2000 m2 area, and feature a
communication rate of 1 pkt/sec. The simulation time is of
15 minutes.

We implemented two distinct network instances: in the
first one (we call it star), IoT nodes are too far apart to
communicate with each other, thus the RPL protocol builds
a star topology in which each node communicates with the
sink only (Figure 9-left); in the second network instance (we
call it tree), instead, IoT nodes are close enough to each other
for the RPL protocol to set up a tree-like topology (Figure 9-
right). In both networks a node acts as a sink.

In these settings, we note that the Smurf attack can only be
accomplished in the tree network where the malicious node
is close enough to other nodes to send them forged ICMP
Echo Request messages. The ICMP Flood attack, instead, can
be successfully performed in both networks as the malicious
node only needs to reach the victim, that is the sink node
in the star network, and any node falling in its action range
in the tree network. In light of this, 30 Smurf attacks and
30 ICMP Flood attacks are performed on the tree network,
whereas the star network experiences 30 ICMP Flood attacks
and no Smurf attacks. For each attack instance the malicious
node is chosen at random.

Both Kalis2.0 and the NCA-IDS are set with either the
ICMP Flood and the Smurf attack detection modules active.

3) Results: In both network scenarios either Kalis2.0 and
the NCA-IDS detect all attacks, demonstrating a 100% detec-
tion rate, however, in the tree network they are unable to recog-
nize the attack class since for every attack instance, regardless
of which one, either an ICMP Flood attack and a Smurf attack
alarm is raised. In the star network, instead, Kalis2.0 leverages
its knowledge of the current network topology to disable the
Smurf attack detection module, and as a consequence it is
able to correctly classify all the ICMP Flood attacks, while
the NCA-IDS keeps running both modules due to its inability
to match its detection capabilities with the context.

For what concerns computing resources, Kalis2.0 is more
efficient than the NCA-IDS when monitoring the star network
because it executes one detection module only (for the detec-
tion of ICMP Flood attack), while the NCA-IDS keeps running
both modules. In contrast, the NCA-IDS uses less computing
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resources than Kalis2.0 when monitoring the tree network
because, besides the two detection modules, Kalis2.0 runs
other architectural components in background, in particular
the Topology Discovery module and the Packet Dispatcher.
Table IX summarizes the obtained results.

TABLE IX
PERFORMANCES COMPARISON FOR ICMP FLOOD AND SMURF ATTACKS

tree network star network
NCA-IDS Kalis2.0 NCA-IDS Kalis2.0

detection rate 100% 100% 100% 100%
classification accuracy 0% 0% 0% 33%

CPU usage 0.55% 0.61% 0.49% 0.35%
RAM usage 16406 Kb 18406 Kb 15707 Kb 13809 Kb

B. Attack scenario 2: Same threat different detection methods
– the case of the Version Number attack

1) Description: The RPL protocol (IPv6 Routing Protocol
for Low-Power and Lossy Networks) creates a network topol-
ogy based on the concept of Destination Oriented Directed
Acyclic Graph (DODAG), which defines a tree-like, loop-free
structure that outlines paths between nodes. A network can
have one or more DODAG at once, which operate together
to generate an RPL Instance. The combination of RPLInstan-
ceID, DODAGID, and DODAGVersion identifies a DODAG.

By sending a DIO message (Destination Information Ob-
ject) to the neighbor nodes, the root node initiates the DODAG
formation. The neighbors figure out how much it will cost
to join the DODAG and create a path that leads to the root.
The adjacent nodes multicast DIO messages until the DODAG
is formed. The network becomes stable after the DODAG is
established. When some changes in the network occur, such as
a node changing its location, the formation of a new DODAG
with a higher version number is initiated.

The Version Number Attack (VNA) consists in a malicious
node sending a larger version number in the DIO message,
breaking off the network’s consistency. When the root node
gets a DIO message with a new version number, it initiates a
global repair operation to re-set the DODAG, which involves
all the network nodes.

2) Implementation: For this evaluation we use the Cooja
simulation environment, where 30 TelosB motes with the same
characteristics of those described in the previous experiment
are randomly distributed in a 200 m2 area. To handle nodes
mobility, we use the Cooja-Mobility-Plugin, with node speeds
set to 0.5 m/s. The network behavior alternates from static
to mobile for 50 times (25 static and 25 mobile), keeping
the same behavior for 1 minute during which one VNA is
performed at random times. The whole experiments lasts 50
minutes.

Many detection techniques exist for the VNA attack, how-
ever each one is specific to a network with certain characteris-
tics, e.g. mobility. In this evaluation, we provide two different
detection modules for VNA attacks, one suitable for static
networks [34], and the other for mobile networks [48]. The
NCA-IDS randomly selects one of the two modules for each
of the 50 experiment runs, closely simulating a static module
library configuration that does not adapt to the changes in

network features. Kalis2.0, instead, leverages the knowledge
by the Mobility Awareness module, and dynamically selects
the appropriate detection technique for the current network
mobility setting. To infer node mobility we use the Receive
Signal Strength Indicator (RSSI), which is supported by Cooja.

3) Results: The NCA-IDS misses attacks when the active
module is not the one suitable for the current mobility profile
of the network. Kalis2.0, instead, uses the right module in the
majority of cases, making mistakes only when the attack starts
immediately before or immediately after the moment in which
the network switches from mobile to static, and vice-versa,
since the Mobility Awareness module requires some seconds
to detect the change.

Compared to the NCA-IDS, Kalis2.0 uses more computing
resources due to the execution of the Mobility Awareness
module which activates 50 times, one for each experiment
run. Table X summarizes the obtained results.

TABLE X
PERFORMANCES COMPARISON FOR THE VERSION NUMBER ATTACK

NCA-IDS Kalis2.0
detection rate 34% 96%

classification accuracy 100% 100%
CPU usage 2.59% 4.26%

RAM usage 44862 Kb 61998 Kb

C. Attack scenario 3: Symptoms disambiguation – the case of
the Selective Forwarding attack

1) Description: In Selective Forwarding attacks, a mali-
cious device forwards only a fraction of the received packets.
A widely used approach against dropping attacks is the watch-
dog [24], whereby a security device overhears the packets sent
by the nodes falling in its action range, and launches an alarm
as soon as a node does not forward a received packet. Some
routing protocols (e.g., RPL, AODV and DSR) enable nodes
to discard routing control packets when these do not satisfy
certain requirements. An effective watchdog would leverage
the knowledge of the routing protocol in use in order to
not confuse packets dropped by malicious nodes with those
dropped by the protocol itself.

The RPL routing protocol implements an optional de-
lay/replay protection mechanism, whereby a node discards
a packet if it does not pass the delay/replay check, i.e., if
it is delivered after a certain time threshold (delay), or if it
is a copy of a packet already delivered in the past (replay).
An incremental counter in the header of RPL secure control
messages is sequentially increased for each transmission, and
used for message replay attack protection. The counter can
alternatively store a timestamp in which case delay protection
is provided as well. According with [4], upon the reception of
a RPL secure control message, ”if the timestamp indicates a
transmission time prior to the locally maintained transmission
time counter for the originator address, a replay violation is
indicated and a node must discard the packet. If the received
timestamp indicates a message transmission time that is earlier
than the current time less the acceptable packet delay, a delay
violation is indicated and the node must discard the incoming
packet”.
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2) Implementation: For this evaluation we use a real testbed
made of 10 Sky Mote XM1000 sensor boards with the Contiki-
NG Operating System. Contiki-NG provides an implementa-
tion of the IoT protocol stack with the CoAP protocol at the
application layer, UDP at the transport layer, IPv6/ICMPv6 at
the network layer, RPL as routing protocol, and 6LoWPAN
at the adaptation layer. One mote is connected via USB to a
laptop to act as a sink (Figure 10). The laptop runs an instance
of the Kali Linux OS [16] which is an open-source, Debian-
based Linux distribution, which offers several hacking tools.
The laptop also hosts Kalis2.0 and the NCA-IDS, that use
the Wireshark sniffing tool to capture and inspect exchanged
packets, which comes as a Kali Linux facility.

After node deployment, the RPL routing protocol takes
about 15 seconds to set the network topology as depicted in
Figure 10. The attacking node n1 is programmed to randomly
drop 30% of packets (either application and RPL packets)
coming from nodes n3 and n4. These, in turn, are programmed
to delay 30% of the RPL messages coming from their child
nodes, in order to make n1 dropping such packets according
with RPL specifications. The delay time ranges from 0.1 to 1
sec. The whole experiment lasts 10 minutes.

Both IDSes run a detection module which works according
with the watchdog principle, that is, it computes the maximum
transmission time MTTc→p for each link between a child node
c and its parent p during a 10 sec attack-free period, as the
maximum time between when c sends a packet to p and when
p forwards the same packet to its parent, and raises an alarm
as soon as a node does not forward a received packet within
MTTc→p (we call this module simply Watchdog). Addition-
ally, Kalis2.0 is provided with a further detection module (we
call it WatchdogRPL) to be executed in parallel with Watchdog
if the RPL routing protocol is in use. WatchdogRPL exploits
the RPL built-in delay/replay protection mechanism described
above as a mean to distinguish between malicious and benign
drops, in particular: It computes MTTc→p as explained above,
then for each child node c it stores the timestamps tic and ti+1

c

of the last two forwarded RPL packets RPLi
c and RPLi+1

c ,
respectively.2 When the parent node p does not forward
upward a RPL message, WatchdogRPL verifies whether the
packet drop complies with the RPL specifications described
above, and if not it raises an alarm. In particular, it checks
whether the packet drop is not the result of the RPL delay
check, i.e. if T > ti+1

c ≥ T −MTTc→p, neither the result of
the RPL replay check, i.e. if ti+1

c > tic, where T is the actual
time. If both verifications are successful then it concludes that
p is arbitrarily dropping packet RPLi+1

c .
3) Results: Both Kalis2.0 and the NCA-IDS detect almost

all Selective Forwarding attacks, however the NCA-IDS gener-
ates some false positives because it raises an alarm for every
benign drop. In contrast, Kalis2.0 enables WatchdogRPL to
work in parallel with Watchdog, which allows to distinguish
between malicious and benign drops. The Packet Dispatcher
is instructed to forward RPL packets to the WatchdogRPL
module, and application packets to the Watchdog module.

2RPL nodes use Destination Advertisement Object (DAO) messages to
make known the routing tables of their descendants to their parent, which
in turn, updates and forwards them upwards.

sink

n1 n2

n3 n4 n5

n6 n7 n8 n9

Fig. 10. Testbed with 10 Sky Motes X1000, one is connected to a laptop to
act as a sink.

With these settings, the Watchdog module is hindered from
handling RPL packets, which prevents it from raising false
alarms like the NCA-IDS does. As a result, Kalis2.0 raises an
alarm when the WatchdogRPL module reports the detection of
a RPL packet drop, or when the Watchdog module reports
the detection of an application packet drop. In few cases
either Kalis2.0 and the NCA-IDS miss attacks because of the
coarse value of the maximum transmission time MTTc→p.
Indeed, MTTc→p is computed over the first 10 seconds of
network operation, which is a limited time period compared
with the duration of the whole experiment, and thus the actual
transmission time between a child node and its parent is
sometimes higher.

Kalis2.0 uses much more computing resources than the
NCA-IDS due to the execution of two detection modules in
place of one, in addition to the other architectural components.
Table XI summarizes the obtained results.

TABLE XI
PERFORMANCES COMPARISON FOR THE SELECTIVE FORWARDING

ATTACK

NCA-IDS Kalis2.0
detection rate 97% 97%

classification accuracy 100% 100%
false positive rate 11% 0%

CPU usage 0.87% 2.06%
RAM usage 18442 Kb 2966 Kb

D. Attack scenario 4: Exploiting protocol features – the case
of Delay and Replay attacks

1) Description: During a Delay attack, a malicious node
delays the packets it receives from its neighbors in order
to slow down the network operations. In a Replay attack, a
malicious node stores received packets to forward them later
in the future. Both delayed and replayed packets may fool
benign nodes which, as a result, may behave incorrectly with
respect to network rules. As explained in the previous attack
scenario, the RPL routing protocol provides a sort of protection
against delay/replay violations, whereby delayed and replayed
RPL packets are dropped. In this test, the knowledge of this
protocol mechanism is exploited by Kalis2.0 to provide better
detection performances with respect the NCA-IDS.
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2) Implementation: For this evaluation we use the testbed
depicted in Figure 10 which we already described in the
previous attack scenario. Node n3 is programmed to delay
30% of the packets coming from its child nodes, while node n4
is programmed to replay one packet randomly chosen among
those received from its child nodes in the 30% of transmissions
to n1. The whole experiment lasts 10 minutes.

The NCA-IDS runs a Replay attack detection module which
stores in a buffer the packets sent by each node, and raises
an alert if any of the packets sent at a later time are the
same as one in the buffer. As the buffer has a fixed size,
once it is filled up, it is updated according to a First-In-
First-Out (FIFO) policy. The Delay attack detection module
computes the maximum transmission time MTTc→p for each
link between a child node c and its parent p during a 10 sec
attack-free period as the maximum time between when c sends
a packet to p and when p forwards the same packet to its
parent. At runtime, it computes the current transmission time
CTTc→p for each transmission between a pair of nodes (c, p),
and raises an alarm whenever CTTc→p > MTTc→p.

Kalis2.0 is provided with the same detection algorithms as
those used by the NCA-IDS, plus two additional modules
(we call them DelayRPL and ReplayRPL), that handle RPL
packets only, while non-RPL packets are handled by the other
modules. The Packet Dispatcher takes care of forwarding
sniffed RPL packets to the DelayRPL and ReplayRPL mod-
ules. The ReplayRPL module stores the timestamps tic and ti+1

c

of the last two forwarded RPL packets RPLi
c and RPLi+1

c ,
respectively, for each child node c, and raises an alarm if
ti+1
c ≤ tc. The DelayRPL module computes the maximum

transmission time MTTc→p; stores the timestamps tic and ti+1
c

of the last two forwarded RPL packets RPLi
c and RPLi+1

c ,
respectively; and raises an alarm if ti+1

c < T − MTTc→p,
where T is the actual time.

We recall that the timestamp is available in RPL packets’
headers, while it is not in lower layers’ packets, and as
a consequence an IDS would not be able to exploit this
information unless provided with context-aware capabilities.

3) Results: Both the NCA-IDS and Kalis2.0 detect almost
all Delay attacks, providing a 95% and a 97% detection rate,
respectively, however Kalis2.0 is more efficient in getting
the desired goal. Indeed, while the NCA-IDS must compute
the current transmission time CTTc→p for each transmission
between each pair child-parent (c, p), Kalis2.0, in contrast,
only reads the timestamp feature of RPL packets’ header,
which entails much less computation. Both IDSes do not
achieve 100% detection rate because of the coarse value
of MTTc→p which is computed over the first 10 seconds
of network operation, thus resulting smaller than the actual
transmission time during 5% of attacks. Kalis2.0 has a 2%
detection rate higher than NCA-IDS since delayed RPL control
packets are handled by the DelayRPL module which does not
rely on MTTc→p.

For what concerns the Replay attack, the NCA-IDS and
Kalis2.0 provid a 96% and a 97% detection rate, respectively.
The detection module adopted by the NCA-IDS maintains a
buffer to store network packets sent by all nodes, which is
memory consuming, and compares the current packet with

all packets in the buffer, which is time and CPU consuming.
Furthermore, since the buffer has limited size, it is constantly
updated according to a FIFO policy and as a consequence, the
detection module misses replayed packets that are no longer
stored in the buffer, which is the reason for the 4% and
2% of false negatives generated by NCA-IDS and Kalis2.0,
respectively. In contrast, Kalis2.0 is more efficient in handling
RPL packets since the ReplayRPL only needs to read and
compare timestamp values pairs without having to store and
compare entire network packets. For the same reason Kalis2.0
has a 1% detection rate higher than NCA-IDS. Indeed, the
ReplayRPL module does not use a buffer to store network
packets, thus missing replayed packets that are not currently
buffered is not an issue with it. Table XII summarizes the
obtained results.

TABLE XII
PERFORMANCES COMPARISON FOR DELAY AND REPLAY ATTACKS

delay attack replay attack
NCA-IDS Kalis2.0 NCA-IDS Kalis2.0

detection rate 95% 97% 96% 97%
classification accuracy 100% 100% 100% 100%

CPU usage 1.39% 0.72% 1.95% 0.35%
RAM usage 13608 Kb 1406 Kb 21309 Kb 1839 Kb

XI. CONCLUSIONS

In this paper we presented a context-aware, self-adapting,
SECaaS-based IDS for the IoT, able to collect information
about its surroundings and adapt its behavior accordingly. As
opposed to most context-aware-based approaches, whereby the
context is built upon historical data, we defined the context in
terms of system features. We proposed a hybrid SECaaS-based
model composed of a cloud layer and a local layer, whereby
a service provider (cloud layer) takes care of assessing the
risk based on the system features discovered by the security
devices (local layer) it interacts with, and of deploying them
the most suitable intrusion detection techniques to perform in
the monitored IoT networks.

For the cloud tier, we defined (i) a method to quantify the
risk as a set of threats, each associated with the likelihood
of affecting the monitored devices based on the information
collected about the devices themselves, and (ii) a method to
determine the best detection strategy based on the assessed risk
as a set of detection algorithms with a good trade-off between
effectiveness and efficiency. For the local tier, we showed
(i) how to discover device and network features and how these
can be leveraged to collect further information useful for the
selection of the best detection strategy, and (ii) Kalis2.0, a
service oriented software architecture which dialogues with the
cloud layer and performs context-aware intrusion detection.

Finally, we discussed the advantages of using our context-
aware approach, which were also illustrated by the findings of
a series of experiments that show how effective context-aware
based detection is compared to non-context-aware detection in
terms of detection accuracy, attack classification accuracy, and
computing resource usage.

As future work we aim at extending our framework with
an Artificial Immune System to allow the IDS autonomously
evolve hand in hand with attack patterns over time.
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