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Effective Intrusion Detection in Highly Imbalanced
IoT Networks with Lightweight S2CGAN-IDS
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Abstract—Since the advent of the Internet of Things (IoT), ex-
changing vast amounts of information has increased the number
of security threats in networks. As a result, intrusion detection
based on deep learning (DL) has been developed to achieve high
throughput and high precision. Unlike general deep learning-
based scenarios, IoT networks contain benign traffic far more
than abnormal traffic, with some rare attacks. However, most
existing studies have been focused on sacrificing the detection
rate of the majority class in order to improve the detection
rate of the minority class in class-imbalanced IoT networks.
Although this way can reduce the false negative rate of minority
classes, it both wastes resources and reduces the credibility of
the intrusion detection systems. To address this issue, we propose
a lightweight framework named S2CGAN-IDS. The proposed
framework leverages the distribution characteristics of network
traffic to expand the number of minority categories in both data
space and feature space, resulting in a substantial increase in
the detection rate of minority categories while simultaneously
ensuring the detection precision of majority categories. To reduce
the impact of sparsity on the experiments, the CICIDS2017
numeric dataset is utilized to demonstrate the effectiveness of
the proposed method. The experimental results indicate that our
proposed approach outperforms the superior method in both
Precision and Recall, particularly with a 10.2% improvement in
the F1-score.

Index Terms—Deep learning, class imbalance, intrusion detec-
tion, generative adversarial networks, internet of things

I. INTRODUCTION

The emergence of the 5G era has brought new challenges
to cybersecurity due to the proliferation of the Internet of
Things (IoT). IoT devices are known to harbor a significant
amount of private information and are often secured with
simple encryption. As a result, a considerable number of these
devices may be rendered as zombie hosts or utilized as mining
tools, with some users even falling prey to cyber extortionists.

Intrusion detection systems (IDS) [1] constitute a pivotal
component of firewalls and can detect viruses before they
reach IoT devices. As such, IDS has become an indispensable
preventive measure for ensuring the security of IoT networks.
Conventional intrusion detection technologies heavily rely on
manually crafted rules and signatures. The creation and upkeep
of these rules and signatures require significant time and
labor. However, the contemporary proliferation of traffic and
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the rising prevalence of attacks stemming from the IoT have
rendered these traditional methods relatively ineffective.

To overcome the limitations of traditional intrusion detec-
tion methods, deep learning (DL) has surfaced as a promising
approach. DL algorithms, including deep belief networks
(DBN) [2], convolutional neural networks (CNN) [3], and
recurrent neural networks (RNN) [4], can automatically learn
complex patterns and anomalies from raw network traffic.
This enables more accurate automatic detection of potential
threats. Additionally, DL algorithms can effectively leverage
massive network traffic to identify potential attacks and adapt
to changing attack patterns, thereby significantly enhancing
the detection accuracy of the IDS.

DL algorithm has exhibited high accuracy in detecting net-
work attacks [5]. However, to operate effectively, DL models
require an adequate number of training examples. In com-
parison to the abundance of benign network traffic examples,
certain attack categories are scarce in number. Consequently,
DL-based intrusion detection models encounter the challenge
of a high false-negative rate [6], [7], [8].

In the realm of class imbalance, researchers have endeav-
ored to optimize the efficiency of deep learning techniques, in-
cluding data-level approaches [9], [10], algorithm-level strate-
gies [11], [12], integrated learning [13], [14], transfer learning
[15], [16], and evaluation metrics [17], with the primary aim
of mitigating the false-negative rate of intrusion detection
systems (IDS). However, this objective often comes at the
expense of precision for majority classes, while improving the
detection rate of minority attacks. Therefore, these methods
may ultimately not only compromise the reliability of the
system but also waste resources.

The motivation of this paper is to enhance the detection
rate of minority categories in IoT networks while minimizing
the impact on the detection rate of majority categories. By
focusing on the distinctive characteristics of attack frequency,
we try to pay more attention to the extremely rare attacks
and foster the advancement and innovation of this field from
different angles.

In response to the aforementioned concerns, we present
a proficient and lightweight S2CGAN-IDS framework that
leverages the distribution characteristics of traffic categories
within IoT networks. Our framework extends the original
imbalanced training data by considering two distinct per-
spectives: data space and feature space. This approach aims
to enhance the detection rate of underrepresented categories
while maintaining satisfactory detection rates for the majority
classes.
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The main contributions of this paper are summarized as
follows:

1) We have devised a lightweight S2CGAN-IDS framework
from a data-oriented perspective to address the issue
of class imbalance. This framework aims to improve
the detection rate of the underrepresented minority class
while maintaining accuracy for the majority class.

2) This paper presents an innovative feature extraction
method that combines Siamese networks and autoen-
coders to preserve class differences and significantly
accelerate the convergence speed of the adversarial gen-
erative network.

3) This paper presents a novel data augmentation tech-
nique, SCGAN, for categories exhibiting similar distri-
bution profiles. The proposed approach, which combines
Siamese networks and autoencoders, accelerates the
convergence rate significantly.

4) This paper introduces a highly efficient data synthesis
approach named synthetic k neighbors (SKN) that uti-
lizes feature space-based methods to generate samples
for categories that are extremely rare.

II. MOTIVATION

The class imbalance problem in IoT scenarios is of
paramount importance in ensuring IoT security [18]. This
problem stems from several key factors, including the ex-
tensive deployment of devices, the wide variety of malicious
behaviors, the limited resources of IoT devices, and the
heightened sensitivity of security requirements. These factors
collectively contribute to the scarcity of malicious behavior
data in IoT scenarios, making accurate detection of such
behaviors an urgent necessity [19]. Consequently, the effective
resolution of the class imbalance problem holds significant
significance in upholding IoT security.

After an extensive literature search, NSLKDD, UNSW-
NB15, and CICIDS2017 have emerged as the predominant
datasets utilized in this field over the past two decades. An
evaluation of attack frequency across these datasets reveals a
distinct gradient shift. Notably, CICIDS2017 exhibits a con-
spicuous step-like upgrade while possessing the most recent
and sparsest characteristics, aligning it more closely with
the traffic observed in real IoT network environments [20].
Consequently, CICIDS2017 has been chosen for subsequent
analysis and experimentation.

TABLE I: Some details of commonly used classic datasets.

Dataset Year Characteristics Sparsity Frequency

NSLKDD 1999 Network-based,
real-world traffic,
KDD Cup 1999

Medium Uniform

UNSW-NB15 2015 Network-based,
real-world traffic,
contains synthetic
and real data

High Gradual

CICIDS2017 2017 Network-based,
real-world traffic,
contains IoT and
normal traffic

Low Stepped

Based on the analysis mentioned above, the fundamental
issue that must be addressed by an effective IoT network
intrusion detection model is enhancing the detection rate of
the minority categories while maintaining the accuracy of the
majority categories. To tackle this problem, we conducted
Principal Component Analysis (PCA) on a widely used in-
trusion detection dataset and generated a scatterplot based on
the resulting PCA data (Fig. 1).

Fig. 1: The scatter of CICIDS2017 dataset.

Analysis of Fig. 1 reveals that categories located in the
upper-left region of the scatterplot possess an ample number
of samples and exhibit a complete distribution. Conversely, the
categories in the middle region are relatively scarce, and the
distribution outline is rather rough. Finally, categories situated
in the lower-right region contain only a few, scattered data
points.

Based on the observed characteristics in the scatter, we
calculate the imbalance ratio (IRi) for each class by nmax/ni,
where ni represents the number of the type-i attack, and nmax

represents the number of normal samples. Remarkably, our
calculations revealed a distinct step-wise distribution pattern
in the IRi values, which aligned with the visual representation
depicted in the scatter.

TABLE II: The labels, IRi values and quantity levels of the
CICIDS2017 dataset.

Subclass Label IRi Level
BEINGN BEINGN
DoS
DoS Hulk
DDoS
DoS GoldenEye DoS/DDoS 5.98 ample
DoS slowloris
DoS Slowhttptest
PortScan PortScan 14.31
FTP-Patator Patator
SSH-Patator 164.33
Web Attack-Brute Force
Web Attack-XSS Web Attack 1042.28 scarce
Web Attack-Sql Injection
Bot Bot 1156.92
Infiltration Infiltration 63141.03 rare
Heartbleed Heartbleed 206645.18

By considering the step distribution of IRi values and its
coherence with the visual depiction of the scatter, we classify
intrusion detection traffic into ample-level, scarce-level, and
rare-level (as shown in Table II), and treat them differently
based on their respective attributes.
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To minimize the computational overhead while ensuring a
high detection rate for the majority category, we specifically
avoid processing the majority category (ample-level), which
already exhibits a complete distribution.

In the scenario addressed in this paper, a challenge arises
due to the significant disparity in the number of minority
samples. Solely relying on data space-based data augmentation
methods to generate minority samples may be ineffective for
rare-level categories, as depicted in the lower right part of
Fig. 1, where the scarcity of samples hinders the generation
of new instances. Conversely, employing only feature space-
based data enhancement methods to synthesize minority sam-
ples may result in synthetic samples that closely resemble the
original ones. Consequently, the performance of the scarce-
level categories in the middle part of Fig. 1 may be con-
strained.

Consequently, we partition the minority categories into
scarce-level and rare-level. For scarce-level categories, we
adopt advanced data space-based data augmentation methods,
while for rare-level categories, we rely on feature space-based
data enhancement techniques.

The remaining parts of this paper are organized as follows.
Section III gives the outline of our framework. Section IV
introduces the main algorithms used to design the proposed
S2CGAN. Section V presents a detailed explanation of the
architecture and results of the experiments conducted in this
study. Section VI reviews the literature on IDS and class
imbalance problems. followed by Section VII, which provides
concluding remarks and suggests avenues for future research.

III. METHODOLOY OVERVIEW

In this section, we present our lightweight intrusion detec-
tion framework, which comprises three primary components
as shown in Fig. 2.

These include dataset processing, the S2CGAN module,
and classifier training and testing. Our framework is designed
to improve the performance of intrusion detection systems
in highly imbalanced datasets by employing different data
augmentation techniques for different category levels. The
specific detection process of the IDS framework is as follows.
Dataset processing. The dataset is processed through the
following steps: normalization, and train-test split.
S2CGAN module. As a case study, we classify all categories
within this dataset into three levels based on the step-change
characteristics of their respective numbers. And employ the
S2CGAN module to enhance the dataset, Which is a data
generation model incorporating two techniques: SCGAN and
SKN. The SCGAN is utilized to generate scarce-level attacks,
while a filter is applied to the generated data to enhance the
consistency of generated samples and original samples. On
the other hand, SKN is used to generate rare-level attacks by
simulating potential rare-level attack distributions through the
KNN algorithm.
Training/testing. To evaluate the effectiveness of the proposed
data augmentation algorithm, we implemented it using a deep
neural network and trained an intrusion detection classifier
using the augmented dataset. The performance of the resulting
classifier was then verified using a separate test set.

Preprocessing

Training setTesting set

Scarce RareAmple

Siamese 
autoencoder 

network

Discriminator

z SKN

Filter

Deep neural 
network

Results

Enhanced 
training data

Training
Testing

Generator

Imbalanced 
dataset

S2CGAN
Module

Fig. 2: S2CGAN-IDS model framework. The framework di-
agram for the proposed algorithm consists of three primary
components: data preprocessing, data enhancement, and train-
ing and testing of the IDS classifier.

The S2CGAN module plays a central role in the algorithm
proposed in this paper. This module enhances the original data
set by operating in both the data and feature spaces, thus
improving the detection accuracy of minority categories in the
intrusion detection classifier. In the subsequent sections of this
paper, we will present a detailed exposition of the S2CGAN
(Algorithm 1).

IV. IMPLEMENTATION DETAILS OF S2CGAN

As demonstrated in the principal component analysis (PCA)
scatter plot of the CICIDS2017 dataset in Fig. 1, the data
distributions for ample-level categories are complete and can
be directly reserved in the augmented dataset. However,
scarce-level attacks have only approximate distribution. In this
situation, we utilize SCGAN to learn the original distribution
and generate missing data. Lastly, we employ SKN to expand
the original distribution as much as possible from the feature
space for rare-level attacks with only a few data points.

A. SCGAN for scarce-level attacks

This section is dedicated to the details of the SCGAN
module, which serves the purpose of generating scarce-level
categories. The SCGAN module consists of a Siamese autoen-
coder network (SAN) and a generative adversarial network
(GAN). Firstly, we introduce the SAN model to extract differ-
ential feature information for the SCGAN module. Algorithm
2 shows the detail.
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Algorithm 1: S2CGAN (main)

Data: Original training dataset To;
The SCGAN threshold η.

Result: Argument training dataset Ta.
1 Initialize Ta as an empty dataset;
2 Calculate IRi values of each class and divide them

into ample-level, scarce-level, and rare-level based
IRi rates from low to high;

3 if ample-level categories then
4 Add ample-level samples into Ta;
5 else if scarce-level categories then
6 Pretrain the SAE model by using Algorithm 2;
7 for each epoch do
8 Input the encoder result of SAE s and random

noise z to CGAN;
9 Calculate the losses of the generator G and the

discriminator D;
10 Update the generator G and the discriminator

D with their losses;
11 end
12 Use the generator G of well-trained SCGAN to

generate new scarce-level samples G(z|s);
13 for each G(z|s) do
14 Input G(z|s) into the discriminator D and

output (D(G(z|s));
15 if (D(G(z|s)) ≥ η) then
16 Add G(z|s) and its label into Ta;
17 end
18 Add scarce-level samples into Ta;
19 else if rare-level categories then
20 Synthesis new rare-level samples with Algorithm 3;
21 Add the synthesized samples and original rare-level

samples into Ta;
22 return The augmented training dataset Ta;

Algorithm 2: Siamese Autoencoder Networks (SAN)
Input: Training dataset (x1, y1), (x2, y2), ..., (xn, yn).
Output: Model parameters Ws, Wd, bs, bd.

1 Initialize Encoder parameters Ws, bs;
2 Initialize Decoder parameters Wd, bd;
3 for each epoch do
4 Randomly select two different samples (xi, yi) and

(xj , yj);
5 Feed each sample through a shared encoder to

obtain their encoder outputs f(xi) and f(xj);
6 Use f(xi) and f(xj) as inputs to a shared decoder,

producing the output x̄i and x̄j ;
7 Compute the loss function and backpropagate it

through the network;
8 Update model parameters Ws, Wd, bs, bd;
9 end

10 return model parameters Ws, Wd, bs, bd;

SAN comprises a pair of autoencoders (AEs) with Siamese
neural networks (SNNs). The SNNs are designed to capture

the differences between the extracted key features of various
attacks, while the AEs are responsible for extracting the most
significant features. By integrating both models in the SAN,
the features can be extracted more effectively and efficiently,
resulting in the creation of scarce-level attacks. Fig. 3 provides
a detailed illustration of the SAN.

Decoder

Difference Information

Decoder
Encoder

Encoder

Siamese Network

Fig. 3: Siamese autoencoder networks. It consists of a pair of
encoders sharing parameters and a pair of decoders sharing
parameters.

SNN is a type of neural network that consists of two
identical sub-networks, each taking a different input (i.e.
x1 and x2) but with the same architecture, parameters, and
weights. The two sub-networks output a pair of feature vectors
(fw(x1), fw(x2)), which can be used to compute the similarity
or difference between the two inputs. In this paper, the Eu-
clidean distance (Eq. (1)) was used to calculate the similarity
between the two feature vectors.

Ew(x1, x2) = ||fw(x1)− fw(x2)||. (1)

The parameters can be optimized by minimizing the recon-
struction error, which is typically computed with the following
formula (Eq. (2)):

LSNN =
1

2

∑
((1− y)E2

w + ymax(0,m− Ew)
2), (2)

where y is the binary label indicating whether the input pairs
(x1, x2) are similar (y = 0) or dissimilar (y = 1). E2

w

in the loss function computes the squared distance between
the feature vectors of similar pairs, while max(0,m − Ew)

2

computes the squared distance between the feature vectors of
dissimilar pairs, with a margin m to ensure that the distance
is smaller than m.

AE is a powerful unsupervised learning algorithm that is
widely used in the field of machine learning. Unlike supervised
learning methods, AE does not rely on labeled data for
training. It consists of two critical components: encoder and
decoder. The encoder is responsible for extracting the essential
features fw(x) of the original data x, and the decoder aims to
reconstruct the input data based on these extracted features.
By minimizing the error between the reconstructed data x̄ and
the original input data during the learning process, AE learns
the implicit feature representation of the data. In this study,
the cost function is given by Eq.(3).

LAE(x, x̄) =
1

n

n∑
i=1

(xi − x̄i)
2. (3)
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GAN is employed to learn the underlying data distribution
and generate novel samples to fill in the missing data. It was
first introduced by Goodfellow [21] as a powerful approach for
generating realistic images by training a generator network to
produce images that are indistinguishable from real images
by a discriminator network. Initially, GAN was used for
generating realistic images from random noise, but they have
since been extended to other domains, such as text and music
generation. In addition to generating new data, GAN can also
be used for other tasks, such as data augmentation, where the
generator is used to produce additional training data for a given
task.

However, the original GAN generates samples that belong
to a wide range of classes, without any control over the specific
class of the generated samples. To overcome this limitation,
conditional generative adversarial network (CGAN) [22] was
introduced in the same year as an extension of GAN. CGAN
incorporates conditional information into the generator G and
the discriminator D outputs the probability of real and fake
samples. This enables the generation of samples based on
specific input conditions, allowing for targeted data synthesis.

The proposed SCGAN model aims to accelerate the conver-
gence of CGAN. To achieve this goal, we employ difference
information s and random noise z ∈ N(µ, σ2) obtained from
the SAN model as input for CGAN. The generator G takes
s and z as the input and produces a set of pseudo samples
G(z|s), while the discriminator D takes both the real attack
samples x and generated attack samples G(z|s) as input.

The fundamental objective of SCGAN is demonstrated
through min

G
max
D

V(D,G), as formula Eq. (4):

V(D,G) = Ex∼px
log(D(x)) + Ez∼pz

log(1−D(G(z|s))).
(4)

To train the discriminator D, we feed the conditional
information s and the noise vector z into the generator G,
which generates the pseudo samples G(z|s). Subsequently,
we feed both the real samples x and the generated samples
G(z|s) into D and update the parameters of D based on the
loss function LD of the discriminator as shown in Eq. (5).

LD = −log(D(x))− log(1−D(G(z|s))). (5)

To train the generator G, we fix the parameters of the
discriminator D and the pseudo samples G(z|s) into D. The
error backpropagates to G and its parameters are updated
based on the loss function LG to enhance its performance
(Eq. (6)).

LG = −log(D(G(z|s)). (6)

The alternating iterative training process of the SCGAN
model persists until it reaches the stationary local Nash
equilibrium [23], wherein the discriminator is unable to effec-
tively differentiate between the pseudo samples and the real
samples. At this point, both the generator and the discriminator
have been effectively trained, enabling the SCGAN model
to generate high-quality pseudo samples that exhibit a close
resemblance to the actual attack samples.

After the generative adversarial network converges, the gen-
erated samples by the generator closely resemble real scarce-
level attacks. However, it is possible for some noise points

to still be present in the generated samples. To address this
concern, a filter is applied after the discriminator to eliminate
improperly generated samples. This ensures that the training
of the intrusion detection classifier remains unaffected by the
additional interference introduced by these samples.

B. SKN for rare-level attacks

Rare-level attacks are differentiated from scarce-level at-
tacks by their characteristics of having only a few scattered
points. The sparsity of data at this level presents a challenge
for deep neural networks to accurately simulate the possible
distributions. To overcome this issue, we introduce a feature
space-based oversampling method called SKN. This method
specifically addresses the limited number of samples at this
level, effectively avoiding the challenges associated with in-
sufficient data.

Oversampling is a widely adopted technique to tackle
imbalanced datasets, and popular methods include Random
Over Sampling (ROS), SMOTE, and its variants. ROS involves
replicating minority class instances to balance the class dis-
tribution while retaining the original information. However,
it is susceptible to overfitting since it duplicates the same
information multiple times. In contrast, SMOTE employs the
KNN algorithm in the feature space to generate new samples
and equalize the dataset.

Algorithm 3: Synthesis K Neighbors(SKN)

Input: Training dataset To, where X = x1, x2, ..., xn;
Class distribution C, where C = c1, c2, ..., cl;
The number of class i that need to be

synthesized Ni;
K-nearest neighbors parameter k.

Output: Synthetically over-sampled dataset Tr.
1 Initialize Tr as an empty dataset;
2 for each rare-level class ci do
3 Find the k-nearest neighbors of each rare-level

class sample xi;
4 for each sample xi do
5 Choose Ni k-nearest neighbors randomly and

denote them as x1, x2, ..., xNi
;

6 for each j = 1, 2, ..., Ni do
7 Choose a random number λ ∈ [0, 1];
8 Set xnew = xi + λ× (xj − xi);
9 end

10 Add the new sample xnew and ci into Tr;
11 end
12 end
13 return the over-sampled dataset Tr;

In this study, we propose a novel rare-level oversampling
method called SKN (Algorithm 3), which leverages the ad-
vantages of existing algorithms to design a logically simple
and efficient approach. The method involves three key steps.
First, we identify k adjacent samples of the i-th rare class by
means of a calculation process. Second, we randomly select
Ni samples from the adjacent set. Finally, we randomly apply
a transformation function to the selected samples as well as
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the rare class samples themselves in order to synthesize new
samples.

V. EXPERIMENT

A. Benchmark dataset

Our analysis of commonly used datasets from 1998 has
revealed that most of them are outdated and unreliable.
Some of these datasets suffer from limited traffic diversity
and capacity, while others lack coverage of various known
attacks. Additionally, some anonymize packet payload data,
which makes them unable to reflect current trends. Moreover,
several datasets lack essential features and metadata, which
are necessary for accurate analysis.

For our research, we utilized the CICIDS2017 dataset,
which is a publicly available dataset composed of network
traffic collected from the Canadian Institute for Cybersecurity
(CIC) during weekdays in 2017. This dataset includes fifty
sub-categories and seven major types of attacks and has
gained popularity as a replacement for the previously widely
used KDDCup99 and NSLKDD datasets due to its realistic
and diverse traffic scenarios. The CICIDS2017 [24] dataset
provides a reliable resource for studying network intrusion
detection methods and has been widely adopted by researchers
and practitioners in the field.

The CICIDS2017 dataset [24] consists of benign and recent
common attacks. The dataset collection spanned five days
and concluded on July 7, 2017, at 5:00 pm. The attacks
were executed on Tuesday, Wednesday, Thursday, and Friday
morning and afternoon, respectively.

CICFlowMeter was utilized as a flow feature extraction tool
to generate a CSV file with over 80 features based on the
submitted PCAP file, which contains the flow data of the
network interface card that can be obtained via Wireshark
software or flow sniff function. There are two modes: online
and offline. The online mode allows for real-time monitoring
and feature generation, which can be saved locally after
monitoring, whereas the offline mode entails the submission of
a PCAP file and the receipt of a CSV file containing features.

After analyzing the dataset, we observed that some feature
values exhibited significant variation. This wide disparity in
feature values has the potential to result in slow network
convergence and neuron output saturation. Therefore, we
deemed it necessary to normalize the dataset. In this study, we
employed the Min-Max normalization method, which resulted
in the normalization of the data to a range of [0,1]. This
approach enhances the comparability and compatibility of the
features, mitigating the effects of the initial variation in the
dataset and improving the overall quality of the results. The
equation for the Min-Max normalization is as follows:

xnorm =
x− xmin

xmax − xmin
, (7)

where xnorm is the normalized value, x is the original feature
value, xmin is the minimum value of the feature, and xmax is
the maximum value of the feature.

In accordance with best practices in machine learning, we
partitioned the preprocessed dataset into training and test sets,
with an 8:2 ratio respectively. It is important to note that

the test set was only used during the evaluation phase of the
IDS to ensure the validity and reliability of our experimental
methodology.

We analyzed the imbalance ratio (IRi) for all categories in
the training set and observed a stepwise distribution of the
imbalance ratio value. Notably, we identified a significant gap
between the first and third echelons. To address this, we em-
ployed a categorization scheme where we grouped DoS/DDoS
and PortScan attacks into the ample level, while Patator,
Web Attack, and Bot attacks were assigned to the scarce
level. Infiltration and Heartbleed attacks were categorized as
rare level. Table II shows the specific division of labels in
the CICIDS2017 dataset and the corresponding attack levels
according to the IRi team.

In this experiment, the CICIDS2017 dataset is randomly
partitioned into training and test sets to validate the effective-
ness of our approach. The training set is utilized to train the
S2CGAN model and generate a sufficient number of samples
as outlined in Table III. Subsequently, the IDS classifier is
trained using the augmented dataset. To ensure unbiased and
fair results, the test set is exclusively used to evaluate the
performance of the IDS classifier.

TABLE III: The detailed size of the training set, test set, and
augmented datasets.

Category Training(80%) Testing(20%) After Augmentation
BEINGN 1818476 454620 1818476

DoS/DDoS 304550 76138 304550
PortScan 127144 31785 127144
Patator 11068 2767 127144

Web Attack 1744 436 127144
Bot 1573 393 127144

Infiltration 29 7 1573
Heartbleed 9 2 1573

B. Evaluation metrics

To comprehensively assess the performance of the proposed
intrusion detection system in this paper, we employ Precision,
Recall, and F-Score as evaluation metrics. These metrics are
calculated at the sub-category level, using both weighted and
macro averages. In this context, TP represents true positives,
TN represents true negatives, FP represents false positives,
and FN represents false negatives. These metrics provide
a comprehensive evaluation of the system’s performance in
terms of accuracy, sensitivity, and overall effectiveness in
detecting intrusions.

Precision is a metric that measures the proportion of cor-
rectly identified positive samples to all samples that were
predicted as positive. Mathematically, it can be represented
as:

Precision =
TP

TP + FP
. (8)

Recall, also known as sensitivity or true positive rate,
represents the number of samples of a specific class that were
correctly identified out of all the samples belonging to that
class. It can be calculated using the following equation:

Recall =
TP

TP + FN
. (9)

https://www.unb.ca/cic/datasets/ids-2017.html
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://www.unb.ca/cic/datasets/nsl.html
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The F-Score is a widely used metric that balances both
Precision and Recall and provides a more comprehensive
evaluation of the performance of a classifier. It is defined as
the harmonic mean of Precision and Recall, and is given by
the following formula:

Fβ =
(1 + β2)Precision×Recall

β2(Precision×Recall)
. (10)

The coefficient β is used to describe the relative importance
of Precision and Recall. For this particular experiment, we set
β as 1, which refers to the F1-score.

For the highly imbalanced dataset used in this experiment,
using the weighted average formulas in Eq. (11) for the overall
indicator may introduce a bias towards ample-level categories.
This bias occurs due to the vast quantity of samples belong-
ing to the ample-level categories compared to the minority
categories. As a result, the weighted average may overly
prioritize the performance of the ample-level categories and
may not accurately reflect the performance of the minority-
level categories.

Pweighted =

∑n
i=1 wi × Pi∑n

i=1 wi
;

Rweighted =

∑n
i=1 wi ×Ri∑n

i=1 wi
;

F1weighted =

∑n
i=1 wi × F1i∑n

i=1 wi
.

(11)

Here, n is the total number of samples, Pi, Ri, and F1i are the
Precision, Recall, and F1-score values for class i, respectively,
and wi is the weight assigned to class i, which is proportional
to the frequency of that class in the dataset.

Pmacro =
1

n

n∑
i=1

Pi;

Rmacro =
1

n

n∑
i=1

Ri;

F1macro =
1

n

n∑
i=1

F1i.

(12)

To evaluate the effectiveness of the S2CGAN model pro-
posed in this paper for highly imbalanced data, the study pri-
marily focuses on the macro average index. The macro average
treats each category equally, making it a reliable measure of
performance for attacks with a small number of categories.
The formulas for calculating the macro average index are
provided in Eq. (12). By giving equal weight to each category,
the macro average provides a comprehensive assessment of
the classifier’s performance in handling imbalanced scenarios,
particularly for rare-level categories.

C. Experiment procedure

This study utilizes the Keras and PyTorch frameworks to
construct and evaluate the models. The experimentation is
conducted on the Google Colaboratory Pro platform. The
parameter settings and processing procedures for each module
are described below.

The initial step in the preprocessing phase involves applying
Min-Max normalization to the CICIDS2017 dataset, which
restricts all numerical features to a range between 0 and 1.
This normalization technique mitigates the influence of unit
inconsistencies during the neural network training process.
Subsequently, the dataset is randomly partitioned into a train-
ing set and a test set, with the training set representing 80%
of the total data.

Following the preprocessing phase, the training set is
utilized to train the difference information extraction SAN
module. The SAN module consists of two encoders and two
decoders with shared parameters. The hidden layer of the SAN
is configured as 64×32×16×32×64, with the input and output
layers comprising 78 neurons. The encoding dimension is set
to 16, and the activation function employed is LeakyReLU.
Each linear layer, excluding the output layer, is accompanied
by BatchNorm1d, which enhances the connectivity within each
batch. The batch size is specified as 64 to optimize the training
process.

Following the categorization of the training set based on
IRi, the scarce-level attacks are passed through a pre-trained
SAN to extract features that serve as the conditional informa-
tion s for the CGAN. In the CGAN architecture, the generator
takes s and Gaussian noise z as inputs. The hidden layer
parameters of the generator are configured as 32× 64× 128,
and the activation function employed for each layer, excluding
the output layer, is LeakyReLU. The output layer utilizes the
Sigmoid activation function. Each linear layer is accompanied
by BatchNorm1d to facilitate batch-level connectivity.

The discriminator in the CGAN architecture consists of
a hidden layer configured as 64 × 8. The activation func-
tion employed for each layer, excluding the output layer, is
LeakyReLU, and the output layer utilizes the Sigmoid acti-
vation function. Each linear layer is followed by LayerNorm,
which assists in normalizing the activations within each layer.
The batch size for this module is set to 16 to optimize the
training process.
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Fig. 4: Losses of training SCGAN.

Based on the experimental results as shown in Fig. 4, the
loss functions of the generator and discriminator in the SC-
GAN model stabilize at a specific value after multiple rounds
of adversarial training alternately them. This demonstrates that
the fake samples generated by the generator can successfully
deceive the discriminator, and it also shows that the SCGAN
model almost convergence.
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During the generation of scarce-level samples using the
trained generator, we ensure sample quality by incorporating
only those samples with a discriminator output exceeding 0.45
into the extended augmented dataset. For rare-level attacks,
SKN is used to generate a sufficient number of samples (as
Table III) to expand the augmented dataset.

D. Comparative experiments

This study entails a comparative analysis aimed at evaluat-
ing the performance of four algorithms for class imbalance.
Our analysis encompasses the feature-based oversampling
method SMOTE, as well as the data-based synthesis method
CVAE-AN and the hybrid method TACGAN. The algorithms
under investigation are as follows:
Original: This refers to the raw data without any processing.
SMOTE: Tesfahun et al. [25] proposed SMOTE as a solu-
tion to address imbalanced datasets in machine learning. To
generate a synthetic sample, SMOTE computes the difference
between the feature vector of the considered instance and its
nearest neighbor.
CVAE-AN: Sabeel et al. [26] introduced a novel adversarial
incremental learning approach called CVAE-AN. This ap-
proach employs a conditional variational autoencoder (CVAE)
to generate new samples by learning a distribution from the
training dataset. A Discriminator is then used to assess the
quality of the generated samples based on how closely they
resemble the original dataset.
TACGAN: Ding et al. [27] introduced a tabular auxiliary
classifier generative adversarial networks (TACGAN) model to
address the issue of imbalanced intrusion detection systems.
The proposed approach combines undersampling and oversam-
pling techniques to tackle class imbalance. To be more precise,
the majority class is undersampled using the KNN algorithm,
while GAN is utilized to oversample a limited number of
minority class samples.
S2CGAN: The method proposed in this paper.

E. Discussion of experimental results

To evaluate the effectiveness of S2CGAN for imbalanced
network intrusion detection, this paper employs a basic deep
neural network (DNN) as the intrusion detection classifier. The
classifier consists of four hidden layers with 128×64×32×16,
and the activation function for each layer is Relu.

Additionally, the output layer of the classifier is set to the
number of attack categories, and the activation function is
Softmax. The loss function used in the classifier is categorical
cross-entropy, and the optimizer is Adam. The batch size is
set to 128, and the maximum number of epochs is 100.

As previously discussed, intrusion detection systems often
encounter highly imbalanced network traffic, where accurate
identification of each type of attack is crucial for effective pre-
ventive measures and enhanced network security. The detailed
findings of the study are presented in Table IV, which provides
a comprehensive overview of the results obtained from the
evaluation of the proposed S2CGAN algorithm.

To facilitate a clear and comprehensive comparison of the
performance of the four algorithms, we establish the IDS

trained using the original dataset as the baseline. By analyzing
and comparing the differences between the baseline and the
four methods, we can gain insights into the effectiveness
of each algorithm in improving the detection performance
of the IDS. The details of our findings are presented in
Fig. 5, Fig. 6, and Fig. 7, which depict the precision, recall,
and F1-score, respectively. These figures provide a visual
representation of the performance improvements achieved by
each method across different attack categories, allowing for
a comprehensive evaluation and comparison of their effec-
tiveness in addressing the challenges posed by imbalanced
network intrusion detection.
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Fig. 5: The difference in Precision between each method and
the original dataset.
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Fig. 6: The difference in Recall between each method and the
original dataset.
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Fig. 7: The difference in F1-score between each method and
the original method.

The performance analysis for the ample-level categories,
as shown in the front sections of Fig. 5 and Fig. 6, reveals
that there is minimal variation in performance among the
four methods employed in this study. Our method takes into
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TABLE IV: Experimental results of multi-classification. Include the original classifier and four class imbalance algorithms.

Methods Baseline CVAE+GAN SMOTE TACGAN S2CGAN
Metric Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

BEINGN 0.9949 0.9916 0.9932 0.9979 0.9877 0.9928 0.9971 0.9847 0.9908 0.9965 0.9898 0.9931 0.9955 0.9903 0.9929
DoS/DDoS 0.9894 0.9994 0.9944 0.9904 0.9984 0.9944 0.9878 0.9993 0.9935 0.9904 0.9990 0.9947 0.9896 0.9993 0.9944
PortScan 0.9082 0.9369 0.9223 0.8671 0.9818 0.9209 0.8722 0.9644 0.9160 0.8878 0.9607 0.9228 0.9016 0.9417 0.9212
Patator 0.9856 0.9884 0.9870 0.9682 0.9892 0.9785 0.9845 0.9895 0.9870 0.9824 0.9895 0.9860 0.9433 0.9924 0.9672

Web Attack 0.9784 0.9358 0.9566 0.8881 0.8922 0.8902 0.2350 0.9404 0.3760 0.9000 0.9083 0.9041 0.9794 0.9794 0.9794
Bot 1.0000 0.3715 0.5417 1.0000 0.3740 0.5444 0.5746 0.7354 0.6451 0.9928 0.3486 0.5160 0.6091 0.7455 0.6705

Infiltration 0.0000 0.0000 0.0000 0.2500 0.1429 0.1818 0.8333 0.7143 0.7692 0.0000 0.0000 0.0000 1.0000 0.7143 0.8333
Heartbleed 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

consideration that ample-level samples exhibit a relatively
comprehensive distribution following category classification.
Therefore, no additional processing is conducted on samples
of this level to minimize computational costs. Since the other
three methods do not involve a separate class classification
step, they process both ample-level samples and other samples
in the same manner. Despite the additional computational cost
incurred by SMOTE, CVAE-AN, and TACGAN, the expected
performance improvements have not been observed at this
level.

Regarding the scarce-level categories, the middle sections of
Fig. 5 and Fig. 6 demonstrate that both our proposed method
and SMOTE exhibit a slight decrease in Precision for the
Patator attack. Upon analyzing the scatter plot in Fig. 1, it
is evident that the distribution of the Patator attack is highly
concentrated. While our method successfully simulates the
original distribution, it generates new points that lie outside
the boundaries. However, it is reassuring that our method
maintains a high Recall rate, ensuring the effective detection
of the Patator attack.

In the case of other scarce-level attacks, the SCGAN algo-
rithm proposed in this study leverages the original data distri-
bution to simulate the possible distribution of these scarce-
level categories. This can be observed in the intermediate
sections of Fig. 5 and Fig. 6, where both Precision and Recall
show improvements for the Web Attack and Bot categories.
This indicates that our algorithm effectively captures and
simulates the genuine data distribution of these two attack
types, resulting in an enhanced detection rate for scarce-level
attacks.

When considering rare-level attacks, the latter sections of
Fig. 5 and Fig. 6 clearly show that both the baseline and
TACGAN struggle to detect such attacks effectively. This is
because the baseline and TACGAN rely solely on deep neural
networks, which face difficulties in accurately representing the
distribution of rare-level attacks due to the limited number
of training samples available. On the other hand, CVAE-
AN demonstrates a slight performance improvement as the
variational encoder generates a larger number of slightly
varied rare-level attacks. However, our method and SMOTE
overcome the limitations of the data space by sampling
from the eigenspace of rare-level attacks, taking into account
the similarity of features among neighboring points in the
eigenspace. The results clearly demonstrate that our method
and SMOTE achieve outstanding performance in detecting
rare-level attacks.

Fig. 7 provides a visual representation of the difference in

comprehensive F1-score between the four methods and the
baseline for each category. The figure clearly demonstrates the
significant performance advantage of our method over other
approaches for all minority categories. Our method consis-
tently achieves a higher F1-score, indicating its effectiveness
in accurately detecting and classifying attacks across various
minority categories.
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Fig. 8: Weighted average: Each class is given different weights
according to the frequency of each class.
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Fig. 9: Macro average: Each class is given the same weight.

When assessing the overall performance of the entire
dataset, the weighted average is calculated by considering the
frequency of occurrence of each category. This provides a
comprehensive evaluation of the performance in unbalanced
scenarios. Fig. 8 visually presents the comparison between our
proposed framework and other methods across various cate-
gories. The figure indicates that our method performs similarly
to other approaches regarding the weighted average, effectively
ensuring a high detection rate for the overall dataset.

In IoT scenarios with less frequent attacks, using a single
weighted average metric may not adequately capture the per-
formance of minority categories. To overcome this limitation,
we utilize the macro-average metric, which specifically eval-
uates the detection performance of classifiers in unbalanced
scenarios. The macro average index assigns equal weight
to each category, enabling a more accurate assessment of
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classifier performance in unbalanced settings. As depicted in
Fig. 9, the macro-average index confirms that our framework
successfully addresses the challenge of extreme class imbal-
ance in intrusion detection systems. Our method demonstrates
favorable outcomes even in highly imbalanced scenarios.

When comparing our method with the original classifier,
significant improvements are observed in Precision, Recall,
and F1-score. Specifically, our method demonstrates a remark-
able increase of 22.05% in Precision, a substantial improve-
ment of 43.81% in Recall, and a notable enhancement of
35.47% in F1-score.

These results emphasize the effectiveness and superiority
of our method in detecting attacks in highly imbalanced
IoT networks. Our approach demonstrates exceptional perfor-
mance in accurately identifying and classifying attacks, even in
scenarios where the class distribution is heavily skewed. This
highlights the practical relevance and robustness of our method
in improving the security and reliability of IoT networks.

VI. RELATED WORKS

Intrusion detection systems are an essential part of IoT
network security, playing a crucial role in detecting malicious
network activities. With the proliferation of IoT devices and
the increasing sophistication of attacks, there is a growing need
for robust and efficient IDS. In recent years, deep learning has
emerged as a promising approach to enhance the effectiveness
of IDS. In this section, we provide a concise overview of the
literature on deep learning-based intrusion detection, with a
specific focus on addressing the problem of class imbalance
in deep intrusion detection systems.

A. Deep learning-based IDS

The utilization of deep learning has gained substantial
popularity in the domain of intrusion detection. Various deep
learning techniques, including deep belief networks (DBNs)
[28], [29], convolutional neural networks (CNNs) [30], [31],
[32], and recurrent neural networks (RNNs) [33], [34], have
been employed for this purpose.

Deep learning has demonstrated its efficacy in detecting
abnormal patterns in network traffic and identifying potential
intrusions. However, in order to achieve optimal performance,
deep learning models necessitate comprehensive data distribu-
tion. Regrettably, intrusion detection systems often encounter
the challenge of class imbalance, leading to inadequate per-
formance of deep learning models, particularly in detecting
attacks that belong to the minority class.

B. Class imbalance in IDS

The issue of class imbalance is prevalent in intrusion
detection, where the number of normal samples outweighs the
number of attack samples. To tackle this challenge, researchers
have proposed various techniques from three different per-
spectives: the loss function or structure of the classifier, the
synthesis of minority class samples from the feature space,
and the generation of new minority class samples from the
data space.

In terms of the classifier, Wang et al. [35] proposed a
new loss function called mean false error (MFE) along with
its improved version, mean squared false error (MSFE), that
captures errors of both majority and minority classes equally,
providing a solution to the data imbalance problem in deep
networks from an evaluation perspective. Bedi et al. [36],
[37] employed Siamese neural networks in Siam-IDS and its
improved variant, I-SiamIDS, to achieve higher recall values
for both R2L and U2R attack classes. Meanwhile, Gupta
et al. [38], [39] proposed two intrusion detection methods:
CSE-IDS, which integrates the eXtreme gradient boosting
(XGBoost) algorithm with sensitive unbalanced deep intrusion
detection, and LIO-IDS, based on long short-term memory
(LSTM) and One-vs-One algorithms, both of which demon-
strate high detection rates and reduced computational costs.

However, these approaches often come at the expense
of sacrificing the detection accuracy of majority categories,
resulting in an increased detection rate for minority categories.
This trade-off undermines the reliability of intrusion detection
systems.

For the method of synthesizing minority classes from the
feature space, Al et al. [40] developed the CNN-LSTM
method, which combines a hybrid deep learning (HDL) ap-
proach with STL (SMOTE + Tomek-Link) class imbalance
processing to enhance intrusion detection performance. Hasib
et al. [41] proposed a hybrid method that combines KNN
undersampling with SMOTE oversampling to enhance the
dataset of network intrusion detection systems.

Merely synthesizing new samples of minority categories
from the feature space alone is insufficient to capture the
comprehensive information present in the high-dimensional
space of minority category attacks. Consequently, the detection
rate of these methods for minority categories remains severely
limited.

Fortunately, the emergence of GAN has brought about new
techniques for generating new samples of minority classes
from the data space. These advancements bring renewed hope
for effectively addressing the class imbalance problem in IDS.

Lee et al. [42] proposed the use of GAN to generate
synthetic data to balance datasets and improve the performance
of imbalanced IDS. Recent studies have shown that GANs can
effectively generate realistic attack traffic [43] and enhance
the accuracy of intrusion detection models [44]. Huang [45]
proposed Imbalance Generative Adversarial Networks (IGAN)
to generate representative samples for minority classes, while
Cui et al. [46] introduced a Wasserstein GAN (WGAN)
module to address unbalanced data.

These approaches have shown notable advancements in
addressing the class imbalance between minority and majority
classes compared to generating synthetic data solely from the
feature spaces. However, in the domain of wireless networks,
there are highly rare attacks that can inflict significant damage
on network devices if they occur. Regrettably, the aforemen-
tioned method of generating new attacks from the data space is
not effective in addressing these types of highly rare attacks. In
such scenarios, alternative approaches need to be explored to
tackle the challenges posed by these exceptionally rare attack
instances.



11

VII. CONCLUSIONS AND FUTURE WORK

Intrusion detection is a critical technology that is essential
for ensuring IoT network security. However, the problem of
extreme class imbalance can severely compromise the perfor-
mance of intrusion detection systems. To address this issue,
we propose a lightweight framework for intrusion detection
called S2CGAN-IDS. Our framework includes a data process-
ing module that categorizes network traffic into three levels:
ample, scarce, and rare, based on the degree of imbalance.
We then employ an efficient SCGAN model to generate new
scarce-level attacks and use simple SKN to oversample rare-
level attacks. Finally, we train a simple DNN classifier with the
augmented dataset. Our experimental findings demonstrate the
superiority of our method over other approaches for addressing
the class imbalance, as evidenced by the macro average metric.
Notably, our framework exhibits enhanced detection rates for
nearly all minority classes while maintaining a high detection
rate for the majority class.

In the future, we plan to explore additional classification
models to further validate the effectiveness of our proposed
scheme. Additionally, we acknowledge that this paper is a
case study in division category levels, and we aim to apply
our S2CGAN-IDS to more general scenes in future research.
By doing so, we hope to gain a deeper understanding of the
generalizability and scalability of our proposed approach, and
its potential to improve intrusion detection performance on a
broader range of datasets.
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