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A Relay System for Semantic Image Transmission
based on Shared Feature Extraction and Hyperprior

Entropy Compression
Wannian An, Zhicheng Bao, Haotai Liang, Chen Dong*, and Xiaodong Xu, Senior Member, IEEE

Abstract—Nowadays, the need for high-quality image recon-
struction and restoration is more and more urgent. However,
most image transmission systems may suffer from image quality
degradation or transmission interruption in the face of inter-
ference such as channel noise and link fading. To solve this
problem, a relay communication network for semantic image
transmission based on shared feature extraction and hyperprior
entropy compression (HEC) is proposed, where the shared feature
extraction technology based on Pearson correlation is proposed
to eliminate partial shared feature of extracted semantic latent
feature. In addition, the HEC technology is used to resist the
effect of channel noise and link fading and carried out respec-
tively at the source node and the relay node. Experimental results
demonstrate that compared with other recent research methods,
the proposed system has lower transmission overhead and higher
semantic image transmission performance. Particularly, under
the same conditions, the multi-scale structural similarity (MS-
SSIM) of this system is superior to the comparison method by
approximately 0.2.

Index Terms—Semantic communication, relay system, shared
feature extraction, hyperprior entropy compression.

I. INTRODUCTION

SEMANTIC communication technology is considered to be
one of the key technologies of future mobile communica-

tion [1], [2]. According to Shannon and Weaver’s information
theory [3], semantic communication is located at the second
level of the three levels of information transmission. The goal
of semantic communication is to accurately transmit semantic
information in the original data, rather than accurately transmit
the bit information of the original data.

For data with different structures, such as text [4], [5],
image [5], [6], voice [7] and video [8], [9], semantic infor-
mation is processed in different ways. Especially, literature
[4] develops a text semantic communication system named
DeepSC based on the text Tansformer framework. The layer-
based semantic communication system for image (LSCI) is
proposed in [6] to realize image semantic extraction and recon-
struction. In literature [7], a squeeze-and-excitation network
is used to develop a semantic communication system named
DeepSC-S, which is based on the attentional mechanism for
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the transmission of voice signals. In addition, a semantic
video conferencing network based on key-point transmission
is proposed [8], where an incremental redundancy hybrid
automatic repeat-request framework based on semantic error
detector is developed. Actually, compared with text modal
and speech modal, the visual modal encompasses a wealth of
information, including rich information such as color, shape,
texture, etc. With the rapid increase of the demand for high-
quality transmission of image signals [10], the research of
semantic image transmission gradually become a hot spot in
semantic communication research.

A deep joint source channel coding (JSCC) technology for
wireless image transmission is proposed [11], which directly
maps image pixel values to complex channel input symbols,
and verifies that the JSCC technology is not affected by
cliff effect. A practical multi-description JSCC scheme is
proposed in [12] for adaptive bandwidth image transmission
over wireless channels. Additionally, the attention deep learn-
ing based JSCC scheme is proposed in [13], which employs
channel-wise soft attention to adjust feature scaling based on
signal-to-noise ratio (SNR) conditions. In [14], the heteroge-
neous communication framework is studied, where semantic
communication and traditional communication coexist. The
non-orthogonal multiple access -based multi-user semantic
communication (NOMASC) system is proposed in [15] to
support the semantic transmission of multiple users.

Compared with the aforementioned deep JSCC schemes
[11]–[15], the codec schemes that combine deep JSCC with
feature importance (FI) have better performance in image
processing. In literature [16], the semantic transmission of
aerial image based on unmanned aerial vehicle is studied,
which achieves the balance between uplink transmission delay
and classification accuracy, using the nonlinear transformation
of block selection and compression of feature information. A
shared features extraction technology based on the distance
of feature elements is proposed to extract the shared feature
redundancy in image semantic features [17], so as to reduce the
transmission bandwidth of semantic information. A nonlinear
transform source-channel coding (NTSCC) for image semantic
transmission is proposed [18], and the essence is to learn the
hyperprior entropy model (HEM) of potential representation of
source data, so that to implicitly approximate the real source
distribution. Based on this entropy model, an adaptive rate
transmission and hyperprior assisted encoding and decoding
mechanism is designed to improve the performance of the
classical deep JSCC. In literature [19], a deep video semantic
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TABLE I: Comparison of references. Where N indicates that
the technology is not adopted in the study, and Y indicates
that the technology is adopted in the study.

Reference JSCC JSCC+FI System

[11]–[15] Y N E2E

[16]–[19] N Y E2E

[23], [24] Y N Relay

This work N Y Relay

transmission (DVST) framework is studied on the basis of
literature [18], where nonlinear transformation and conditional
coding architecture are used to adaptively extract semantic
features between video frames. Compared with traditional
wireless video encoding transmission schemes, the proposed
DVST has better transmission performance.

It is worth noting that all the semantic communication
systems described above are end-to-end (E2E) communication
systems. However, relay communication plays an important
role in resisting channel fading and expanding signal coverage
[20]–[22]. Different from traditional relays, semantic relays
ensure accurate forwarding of semantic information rather than
bit information [23], [24]. In this paper, we investigate a relay
communication network for semantic image transmission. In
the process of semantic image transmission, the shared feature
extraction technology based on Pearson correlation is used
to eliminate partial shared latent features, and the hyperprior
entropy compression (HEC) technology is used to effectively
compress transmission data under the condition of channel
noise and link fading. Table I shows the comparison between
our work and the above references. The main contributions of
this paper are summarized as follows:

1) Twice Compressed Semantic Image Relay Network: In
this paper, the twice compressed semantic image relay
network is proposed, where the semantic features trans-
mitted are compressed by the HEC technology according
to the condition of channel noise and link fading.

2) Shared Feature Extraction Technology based on Pearson
Correlation: In order to effectively reduce the seman-
tic latent feature space dimension in the transmission
process, the shared feature extraction technology based
on Pearson correlation is proposed, which makes the
encoding and transmission of semantic information more
efficient.

3) Performance Verification: The effectiveness of the pro-
posed semantic image relay communication system was
verified by comparing it with other recent research meth-
ods, such as the shared extraction technology based on the
distance of semantic feature elements. In particular, under
the same conditions, the proposed system can achieve
an MS-SSIM advantage of about 0.2 compared with the
comparison method.

The remainder of this paper is organized as follows. In
section II, the system model is described. In section III, the
proposed data processing methods are shown. The numerical
results are presented in Section IV. Finally, the conclusion is
presented in Section V.

Notations : A ∼ CN (0, θ) indicates the random variable
A follows the complex Gaussian distribution with mean 0 and
variance θ. ⌊·⌋ indicates round-down operation. ⌊·⌉ represents
the operation of rounding to an integer. The absolute value
of B is denoted by |B|. Ỹ is the quantized representation of
Y . E[·] denotes the expectation operator. Boldface capital and
lower-case letters stand for matrices and vectors, respectively.
e denotes identity vector and E denotes identity matrix.
Rk means an k-dimensional real number field space. d(a, b)
indicates the mean squared error (MSE) between a and b.

(
n
k

)
represents the number of combinations of selecting k elements
from n elements.

II. SYSTEM MODEL

A. Overall Architecture

The overall architecture of the semantic image transmission
relay system is depicted in Fig. 1, comprising three essential
components: a source node denoted as S, a relay node denoted
as R, and a destination node denoted as D. The source
node S is primarily responsible for semantic extraction, while
the relay node R facilitates semantic forwarding, and the
destination node D handles semantic recovery. Within this
communication system, it is assumed that both the source node
S and the destination node D possess an identical background
knowledge base. Furthermore, the transmit power P provided
by both the source node S and the relay node R remains
constant regardless of the volume of data being transmitted.
The subsequent subsections will provide detailed descriptions
of the functions of each component in the semantic image
transmission relay system.

B. Model Design for the Source Node S

The source node S consists of four primary modules: the
latent transform module, the shared feature extractor module,
the JSCC-encoder module, and the HEM compression module.
These modules collectively serve the purposes of informa-
tion preprocessing, latent space merging, joint source-channel
coding, and compression of coded semantic information prior
to transmission. The specific details of each module are as
follows:

1) latent transform module: As illustrated in Fig. 1, the
source node S employs a latent transform module, which is
mainly implemented by convolutional neural network struc-
ture. This module aims to convert the input RGB image data
Im = {Im1, Im2, . . . , ImN} into a low-dimensional latent
feature space, facilitating more effective extraction of semantic
features. The transformation process is expressed as follows:

Xi = LTe(Imi, αe), i ∈ {1, 2, . . . , N}, (1)

where LTe(·) denotes the latent transform operation with
parameter αe. Imi ∈ RW×H×3 represents the i-th input image
data, consisting of a width W , height H , and RGB three
channels. Moreover, Xi ∈ RW×H×C represents the latent
feature space corresponding to Imi, with dimensions of width
W , height H , and C channels.
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Fig. 1: System model architecture, which consists a source node S responsible for semantic extraction, a relay node R
responsible for semantic forwarding, and a destination node D responsible for semantic recovery. In each transmission cycle,
the source node S extracts semantic information from input images and transmits it to the relay node R. Subsequently, the
relay node R forwards the received semantic information to the destination node D.

2) shared feature extractor module: Since the input images
of the source node S are sourced from the same back-
ground knowledge base, the generated latent feature space
X = {X1,X2, . . . ,Xi, . . . ,XN} exhibits certain similarities.
To further simplify the latent feature space X and reduce the
complexity of semantic feature coding based on it, a shared
feature extractor based on Pearson correlation is employed.
This extractor diminishes redundant shared features within
the latent feature space X. The merged latent feature space,
denoted as S ∈ RW×H×C2, contains multiple input image
information. The merging process is represented as follows:

S = SMp(X, γp), (2)

where SMp(·) denotes the merging process with a shared
information extraction rate parameter γp. For further details
on the merging process, please refer to subsection III-A.

3) JSCC-encoder module: In order to effectively resist the
influence of channel fading during SR link transmission, JSCC
of latent feature space S is carried out as follows:

Y = Ae(S, φe), (3)

where Y ∈ RW×H×C2 denotes the encoded semantic feature
data, while Ae(·) represents the encoder, which consists of
a multi-layer convolutional structure and takes φe as the
parameter.

4) HEM compression module: To mitigate the impact of
channel fading during SR link transmission, the coding se-
mantic feature compression based on HEC technology is
employed. This approach selects a subset of the encoded
semantic feature data Y for transmission, taking into account
the importance I ∈ RW×H×C2 of the encoded semantic
feature data and the specified compression rate v1 of the
source node S. The process of obtaining the compressed
semantic feature data S1 ∈ R1×K1 is represented as follows:

S1 = C1(Y, I, v1), (4)

where C1(·) denotes a compression transformation with the
compression ratio v1 ∈ (0, 1) as the parameter. For a detailed
explanation of the compression process, please refer to sub-
section III-B-1.

After power normalization, the compressed feature S1 is
transmitted over the wireless channel to the relay node R.
The received semantic feature data Ŝ1 ∈ R1×K1 at the relay
node R is expressed as:

ŝ1 =
√
P̄ hSRs1 + nR. (5)

In the equation above, P̄ represents the average transmit
power for each semantic feature data. ŝ1 and s1 are the ele-
ments of Ŝ1 and S1 respectively. hSR ∼ N (0, d−aSR) denotes
the Rayleigh fading channel between the SR link, which
remains constant over a transmission period. nR ∼ N (0, NR)
represents the AWGN at the relay node R. Specifically, dSR
is the distance between the source node S and the relay node
R, a is the path-loss parameter, and NR represents the power
of the noise received at the relay node R.

C. Model Design for the Relay Node R

The relay node R incorporates a HEM recompression mod-
ule, which is primarily responsible for recompression of the
received semantic feature data based on the condition of fading
in the RD link. Upon receiving the semantic feature data Ŝ1
from the source node S, along with the corresponding impor-
tance information I for the semantic feature data Ŝ1, the relay
node R chooses a portion of the received semantic feature data
Ŝ1 based on the importance information I. Subsequently, the
relay node R transmits the selected data to the destination
node D. The process of obtaining the compressed semantic
feature data S2 ∈ R1×K2 at the relay node R is expressed as
follows:

Ŷ1 = C−1
1 (Ŝ1, I),

S2 = C2(Ŷ1, I, v2),
(6)

where C−1
1 represents the reshaping transformation, and C2(·)

denotes a compression transformation with the compression
ratio v2 ∈ (0, 1) as the parameter. For a more detailed
explanation of the recompression process, please refer to
subsection III-B-2.

After power normalization, the compressed feature S2 is
transmitted over the wireless channel to the destination node
D. The received signal Ŝ2 ∈ R1×K2 at the destination node
D is expressed as:

ŝ2 =
√
P̄ hRDs2 + nD. (7)

In the equation above, ŝ2 and s2 represent the elements
of Ŝ2 and S2 respectively. hRD ∼ N (0, d−aRD) denotes the
Rayleigh fading channel between the RD link, which remains
constant over the transmission period. nD ∼ N (0, ND)
represents the AWGN at the destination node D. Specifically,
dRD refers to the distance between the relay node R and the
destination node D, and ND represents the power of the noise
received at the destination node D.
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D. Model Design for the Destination Node D

The destination node D consists of four main modules:
HEM reshaping, JSCC-decoder, shared feature combiner, and
latent inversion. These modules are responsible for performing
sparse reshaping of the received semantic feature data, joint
source channel decoding, splitting the latent space, and recov-
ering the semantic features. The details of each module are as
follows:

1) HEM reshaping module: Upon receiving the semantic
feature data Ŝ2 and the corresponding importance information
I from the relay node R, the destination node D performs a
sparsely reshaping operation on the received semantic feature
data. This reshaping is carried out based on the importance
information to recover the spatial location information of
the transmitted semantic feature data. The detailed process
of reshaping is described in section III-B-3. The reshaped
semantic feature data Ŷ ∈ RW×H×C2 is expressed as follows:

Ŷ = C−1
2 (Ŝ2, I), (8)

where C−1
2 (·) represents a reshaping transformation.

2) JSCC-decoder module: This module conducts joint
source channel decoding on the input sparse semantic feature
data, aiming to map it back to the approximate space of the
merged latent feature representation in the source node S. The
decoding process is described as follows:

Ŝ = Ad(Ŷ, θd), (9)

where Ŝ ∈ RW×H×C2 represents the obtained latent feature
space after decoding. The decoding operation is performed by
an decoder Ad(·), which consists of a multi-layer convolu-
tional structure and takes θd as the parameter.

3) shared feature combiner module: The latent feature
space Ŝ contains the latent features corresponding to the
transmitted multiple images. In order to effectively re-
cover the information of the transmitted multiple images,
it is necessary to separate the latent feature space X̂ =
{X̂1, X̂2, . . . , X̂i, . . . , X̂N} corresponding to each transmitted
image from Ŝ. The detailed process of separation is described
in subsection III-A.

4) latent inversion module: The latent inversion module
consists of a multi-layer transposed convolutional network de-
signed to map the latent feature space back to the original RGB
image data, thereby completing the semantic transmission of
images. The transformation process is expressed as follows:

Îmi = LTd(X̂i, αd), i ∈ {1, 2, . . . , N}. (10)

where LTd(·) represents the latent inversion transform param-
eterized by αd. The output Îmi ∈ RW×H×3 represents the i-th
reconstructed image data.

III. THE PROPOSED DATA PROCESSING METHODS

A. Shared Feature Extraction Technology

In order to effectively reduce the information redundancy
in latent feature space X = {X1,X2, . . . ,Xi, . . . ,XN}, a
shared feature extraction technology based on Pearson cor-
relation is employed to partition the latent feature space Xi

Fig. 2: Shared feature extraction technology based on Pearson
correlation for two latent feature spaces, which is used to
partition the latent feature space Xi(i ∈ 1, 2) into personalized
latent feature subspace Xip and shared latent feature subspace
Xis.

into personalized latent feature subspace Xip and shared latent
feature subspace Xis. Fig. 2 illustrates the partitioning process
for the case of N = 2, and the specific partitioning process is
as follows:

• Similarity measurement of output channel features for
latent transform module: Calculate the Pearson corre-
lation coefficient ρc(c ∈ {1, 2, . . . , C}) between the
feature vectors x1c ∈ R1×K and x2c ∈ R1×K , which
are obtained by flattening the feature matrices in the
latent feature spaces X1 and X2, where K =WH . The
Pearson correlation coefficient ρc is computed as follows:

ρc =

∣∣∣∣∣∣
∑K
k=1(x

k
1c − µ1)(x

k
2c − µ2)√∑K

k=1(x
k
1c − µ1)2

√∑K
k=1(x

k
2c − µ2)2

∣∣∣∣∣∣ , (11)

where µ1 and µ2 represent the means of the vectors x1c

and x2c, respectively. By utilizing Eq. (11), the Pearson
correlation coefficient vector ρ = [ρ1, ρ2, . . . , ρC ] corre-
sponding to the features X1 and X2 can be calculated.

• Partition of personalized latent feature subspace and
shared latent feature subspace: To begin, set the shared
information extraction rate γp ∈ (0, 1), sort the elements
of ρ in ascending order. Next, create the shared channel
index vector is by selecting the indices of the C1 =
⌊γpC⌋ larger elements in ρ. Additionally, the indices
of the remaining elements in ρ form the personalized
channel index vector ip. Finally, extract the shared latent
feature subspace Xis ∈ RW×H×C1 and the personalized
latent feature subspace Xip ∈ RW×H×(C−C1) from
Xi, (i ∈ 1, 2), which performed based on the index
vectors is and ip, respectively.
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Furthermore, in the case of N > 2, the partitioning
process differs from the case of N = 2 in the following
manner: Firstly, the Pearson correlation coefficient vector
ρj (j ∈ {1, 2, . . . ,

(
N
2

)
}) is calculated between any two se-

mantic features Xi1 and Xi2 (i1 ̸= i2, i1, i2 ∈ {1, 2, . . . , N}).
Then, the minimum value of the corresponding element at
each position in all ρj vectors is selected to form the Pearson
correlation coefficient vector ρ. This operation ensures the
establishment of a lower bound for the correlation among all
semantic features.

In order to facilitate the sharing of the shared latent feature
subspace and the personalized latent feature subspace between
the source node S and the destination node D, a merging
protocol is proposed. This protocol combines the personalized
latent feature subspace Xip, (i ∈ 1, 2, . . . , N) and the shared
latent feature subspace Xs along the channel dimension. The
merged latent information space S ∈ RW×H×C2, where C2 =
N(C −C1) +C1, is then transmitted. The specific execution
process of this protocol is illustrated as follows:

S = cat
(
(X1p,Xs,X2p, . . . ,XNp), dim = channel

)
, (12)

where cat
(
(·), dim = channel

)
indicates the features merging

operation in the channel dimension. Moreover, the shared
latent information subspace Xs is obtained as follows

Xs = ave
(
X1s,X2s, . . . ,XNs), dim = channel

)
, (13)

where ave
(
(·), dim = channel

)
indicates the operation of

calculating the feature average value in the channel dimension.
After decoding the merged latent feature space Ŝ, the des-

tination node D identifies the personalized latent information
subspace X̂ip and the shared latent information subspace X̂is

for each image based on the merging protocol, the shared
information extraction rate γp and the number C of channels.
Subsequently, the destination node D performs a channel-
wise combination operation on X̂ip and X̂is, resulting in the
latent information space X̂i corresponding to each image. The
process is demonstrated as follows:

X̂i = cat
(
X̂ip, X̂is), dim = channel

)
. (14)

From the aforementioned combination process, it can be
concluded that there is no need for additional transmission
of the partitioned shared channel index vector is between the
source node S and the destination node D.

B. HEC Technology

1) HEC technology used at the source node S: As depicted
in Fig. 3, in order to ensure efficient transmission in the
fading channel, HEC technology is employed to compress the
encoded feature Y at the source node S. Additionally, it is
necessary to obtain the entropy model PỸ|σ̃ of the encoded
feature Y for effective compression of Y. According to [25],
the j-th element ỹj of the quantized encoded feature Ỹ can
be modeled as a random variable following the Gaussian
distribution N (0, σ̃2

j ) as follows:

Pỹj |σ̃j
=
(
N (0, σ̃2

j ) ∗ U(−
1

2
,
1

2
)
)
(ỹj), (15)

where ∗ denotes the convolutional operation. Furthermore,
the standard deviation parameter σ̃ for all elements of Ỹ is
obtained by the following nonlinear transformation:

σ̃ = hs(Z̃, θh), (16)

where hs(·) is a nonlinear transformation parameterized by θh,
Z̃ represents the quantized hyperprior information Z of feature
Y, and the extraction process of the hyperprior information Z
is defined as follows:

Z = ha(Y, φh), (17)

where the nonlinear transformation ha(·) is a feature compres-
sor parameterized by φh.

After obtaining the entropy model PỸ|σ̃ , the self-
information I ∈ RW×H×C2 of the element of feature Y can be
obtained to measure the importance of the element of feature
Y by the following operation:

I = − log2 PỸ|σ̃. (18)

Particularly, by employing lossless transmission indicated by
the dashed arrows in Fig. 3, I is sent as the side information to
the relay node R and the destination node D, enabling them
to share the entropy model with the source node S.

Then, according to this feature importance I, the quantized
feature Ỹ is effectively compressed to S1. The specific
compression process C1 based on the HEM at the source node
S is shown in the left figure of Fig. 4, where the process
of obtaining the mask matrix M1 from I is represented as
follows:

m1 =

{
1, I ≥ IS
0, I < IS .

(19)

In the equation above, m1 and I respectively represent the
elements at the same position in M1 and I, and IS is the
importance threshold, which corresponds to the value of the
⌊(1− v1)L⌋-th largest element in I, where L =W ×H×C2
is the number of elements of I. According to mask matrix
M1 and feature Ỹ, sparse feature Ỹ1 may be obtained, and
then the compressed feature S1 may also be obtained by
taking out the elements in Ỹ1 that are not zeroed. The above
compression process selects the (1−v1) proportion of features
with higher importance from Ỹ to be transmitted over the
wireless channel.

2) HEC technology used at the relay node R: As shown
in Fig. 3, before the compression transformation C2, it is
necessary to reshape the estimation Ŷ1 of sparse semantic
feature Ỹ1 according to the importance information I. The
detailed reshaping process C−1

1 based on the HEM is shown
in the right figure of Fig. 4. After obtaining the compression
ratio v1 according to the size of Ŝ1, the mask matrix M1 is
obtained by Eq. (19). Finally, according to M1, the received
encoding feature Ŝ1 is reshaped to the sparse feature Ŷ1.

The compression transformation C2 based on the HEM
is to compress the reshaped sparse feature Ŷ1 according
to the feature importance I and the compression rate v =
1 − (1 − v1)(1 − v2)), where v2 ∈ (0, 1) represents the
compression rate for received feature Ŝ1. Then, the com-
pressed feature S2 will be transmitted over the RD link. The
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Fig. 3: Double compression of semantic feature data based on the HEM in the SR link transmission process and the RD
link transmission process. Boxes denote data transformation or quantization, arrows represent the flow of data, W denotes the
wireless channel, CE represents the channel encoding and CD denotes the channel decoding. Additionally, U indicates the
addition of uniform noise during model training, while Q denotes the application of uniform scalar quantization ⌊·⌉ (rounding
to integers) during model testing.

Fig. 4: The compression encoding process C1 based on the HEM (left) and the reshaping process C−1
1 based on the HEM

(Right). Where the compression process C1 mainly selects the (1 − v1) proportion of features with higher importance from
Ỹ to be transmitted over the wireless channel, and the reshaping process C−1

1 is mainly to restore the received semantic
information to their specific position in the feature matrix Ỹ through the importance information I.

detailed compression encoding process of C2 is similar to the
compression encoding process of C1 at the source node S
shown in the left figure of Fig. 4, except that the compressed
feature is Ŷ1 and the compression rate is v.

3) semantic feature reshaping at the destination node D:
As shown in Fig. 3, the important information I is mainly used
to reshape the received semantic feature Ŝ2 at the destination
node D. The detailed reshaping process C−1

2 is similar to the
reshaping process C−1

1 at the delay node R shown in the right
figure of Fig. 4, except that the reshaping feature is Ŝ2.

C. Loss Function of System Model

The optimization problem of the proposed model mainly
consists of two parts: the optimization of system image
reconstruction and the optimization of the HEM. Specifi-

cally, the optimization of system image reconstruction can
be expressed as the MSE distortion problem of the input
images Im = {Im1, Im2, . . . , ImN} at the source mode S and
the reconstruction images Îm = {Îm1, Îm2, . . . , ÎmN} at the
destination node D, which can be defined as the following
E2E transmission distortion loss function:

L1(αe, αd) = d(Im, Îm). (20)

The optimization problem of the HEM can be expressed as
a variational autoencoder (VAE) model [25], and the goal of
the inference model is to use the parametric variational density
qỸ,Z̃|S to fit the true posterior probability pỸ,Z̃|S. This goal
can be optimized by minimizing the KL divergence of pỸ,Z̃|S
and qỸ,Z̃|S over the distribution pS of S as Eq. (21). The
analysis of each item in the square brackets on the last line of
Eq. (21) is as follows.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XXX 2023 7

min
φe,φh,θd,θh

ES∼pSDKL

[
qỸ,Z̃|S∥pỸ,Z̃|S

]
= min
φe,φh,θd,θh

ES∼pSEỸ,Z̃∼q
Ỹ,Z̃|S

[
log qỸ,Z̃|S(Ỹ, Z̃|S)− log pỸ,Z̃|S(Ỹ, Z̃|S)

]
= min
φe,φh,θd,θh

ES∼pSEỸ,Z̃∼q
Ỹ,Z̃|S

[
log qỸ,Z̃|S(Ỹ, Z̃|S)− log pỸ|Z̃(Ỹ|Z̃)

− log pZ̃(Z̃)− log pS|Ỹ(S|Ỹ)
]
+ const,

(21)

The the parametric variational density qỸ,Z̃|S(Ỹ, Z̃|S) in
the first term represents joint distribution of the hidden layer Ỹ
and Z̃, which can be expressed as a joint factorized variational
posterior [25]:

qỸ,Z̃|S(Ỹ, Z̃|S)

=
∏
i1

U(ỹi1|yi1 −
1

2
, yi1 +

1

2
)

×
∏
j1

U(z̃j1|zj1 −
1

2
, zi1 +

1

2
),

(22)

where U represents a uniform density with a width of 1, so
the value of Eq. (22) is 1 and the value of the first term is 0.

The second term indicates the cross-entropy of the encoding
Ỹ and the prior (entropy model) pỸ|Z̃(Ỹ|Z̃) can be obtained
by Eq. (15) and Eq. (16). Furthermore, the third term indicates
the cross entropy between the prior pZ̃(Z̃) and the marginal
qZ̃(Z̃) = ES∼pSEỸ∼q

Ỹ|S
qỸ,Z̃|S(Ỹ, Z̃|S), and Z̃ can be mod-

eled as a non-parametric fully factorized density as shown
below [25]:

pZ̃|ϕ(Z̃|ϕ) =
∏
j1

(
pzj1|ϕj1

(pzj1|ϕj1
) ∗ U(−1

2
,
1

2
)
)
(z̃j1), (23)

where ϕj1 encapsulates all the parameters of pzj1|ϕj1
, and ∗

denotes the convolutional operation.
The fourth term represents logarithmic likelihood, which

can be seen as the ϵ-weighted MSE distortion term in image
compression, if pS|Ỹ(S|Ỹ) is assumed to satisfy the following
distribution [18], [25]:

pS|Ỹ(S|Ỹ) = N (S|Ŝ, (2ϵ)−1E), (24)

where Ŝ is the output of JSCC-decoder module given in Eq.
(9). As shown in Fig. 3, Ŷ in Eq. (9) is obtained by Ỹ after
twice compressed transmissions.

According to the analysis of Eq. (21), the loss function of
the HEM shown in Fig. 3 can be defined as follows:

L2 =ES∼pS

[
d(S, Ŝ)+

λ
(
− log pỸ|Z̃(Ỹ|Z̃)− log pZ̃(Z̃)

) ]
.

(25)

As can be seen from Fig. 1, S and Ŝ are the latent spatial
features of system input Im and reconstruction output Îm,
respectively. Furthermore, combining the loss function defined
by Eq. (20) and Eq. (25), the loss function of the whole system
model may be defined as Eq. (26), where λ and η are the
weight coefficients.

D. Compression Parameter Optimization of System

In order to ensure the effective operation of the system, it
is assumed that the source node S has the model structure
of the whole system, and the source node S may determine
the compression ratio combination (v1op, v2op) to achieve the
optimal system performance Φ according to the average fading
condition of SR link and RD link. Then, the combination
(v1op, v2op) will be sent to the compression module of the
source node S and the relay node R as the additional infor-
mation. Furthermore, the following optimization problem is
formulated:

Φ = max
v1,v2∈[0,1)

Φ̃, (27)

where Φ̃ is the PSNR metric shown as follows:

PSNR(Im, Îm) = 10 log10

(
MAX2

I

MSE(Im, Îm)

)
, (28)

where MAXI represents the maximum possible pixel value
of the input image, and for unit8 image data, MAXI = 255.
MSE(Im, Îm) represents the MSE between input image data
Im and reconstruction image data Îm.

Since the optimization in Eq. (27) depends on the MSE
between input image data Im and reconstruction image data
Îm. The optimization in Eq. (27) may be regarded as a
maximum match problem of compression rate combination
(v1, v2). Grid search algorithm is used to solve the above
optimization problem, and its execution steps are as follows:

• Divide the search range [0, 1) in the direction of v1 and
v2 into K evenly spaced grid points, with the middle
value (v1k1, v2k2) for each grid point, where k1, k2 ∈
{1, 2, . . . ,K}.

• Calculate the PSNR value obtained by the system at each
grid point (v1k1, v2k2), and find out the compression ratio
combination (v1op, v2op) corresponding to the optimal
PSNR value.

IV. NUMERICAL RESULTS

In this section, a detailed analysis of system performance
will be presented in detail.

A. Experiments Setup

1) System and Model Parameters Setup: In all simulations,
the parameter settings of the system and the model training pa-
rameters are shown in Table II. The detailed network structure
parameters of the system are shown in Table III. In the first col-
umn, below each model module name are the input and output
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L = EIm∼pIm (Im)

[
λ
(
− log pỸ|Z̃(Ỹ|Z̃)− log pZ̃(Z̃)

)
+ ηd(Im, Îm)

]
= EIm∼pIm (Im)

[
λ
(
−
∑
j

log pỹj |σ̃j
(ỹj |σ̃j)−

∑
j1

log pz̃j1|ψj1
(z̃j1|ψj1)

)
+ ηd(Im, Îm)

]
.

(26)

TABLE II: System simulation and model training parameters

System Simulation Parameters Value

SR link noise power NR -80 dBm
RD link noise power ND -80 dBm

The distance dSD between S and D 100 m
Path-loss parameter a 3
Training rounds Ep 20

Number of input iamge N 2
shared information extraction rate γp 0.5

Optimizer Adam
Learning rate ξ 0.0001

Loss function factor λ 8192
Loss function factor η 1

3×512×1024

TABLE III: System network structure parameters

Module Layer Structure Activation

Latent Transform LTe

3x512x1024-64x64x128

Conv2d (3,64,3,1,1) GDN
Conv2d (64,128,3,2,1) GDN
Conv2d (128,256,3,2,1) GDN
Conv2d (256,64,3,2,1) None

JSCC Encoder Ae

96x64x128-96x64x128
Conv2d (96,48,3,1,1) GDN
Conv2d (48,96,3,1,1) None

nonlinear transformation ha

96x64x128-32x16x32

Conv2d (96,32,3,1,1) Relu
Conv2d (32,32,5,2,2) Relu
Conv2d (32,32,5,2,2) None

nonlinear transformation hs

32x16x32-96x64x128

ConvT (32,32,5,2,2,1) Relu
ConvT (32,32,5,2,2,1) Relu
ConvT (32,96,3,1,1,0) Relu

JSCC Decoder Ad

96x64x128-96x64x128
Conv2d (96,48,3,1,1) GDN
Conv2d (48,96,3,1,1) None

Latent Inversion LTd

64x64x128-3x512x1024

ConvT (64,256,3,2,1,1) GDN
ConvT (256,128,3,2,1,1) GDN
ConvT (128,64,3,2,1,1) GDN

Conv2d (64,3,3,1,1) Tanh

sizes of the modules. The parameters in brackets in the layer
structure column represents parameters (in−channels, out−
channels, kernel−size, stride, padding, output−padding).
In the third column are the activation function corresponding
to the network layer in the second column.

2) Model training Details: Specially, the model was trained
and tested using the Cityscapes data set with image size of
3×2048×1024. Prior to being fed into the model, the images
in the data set were down-sampled to 3 × 512 × 1024 and
normalized to the interval of [0, 1]. The training process of
the system model is shown in Alg. 1, and the training of the
whole model is completed based on dual RTX A6000 GPU.

3) Evaluation Metrics and Comparison Schemes: The
PSNR metric and MS-SSIM metric for image transmission

Algorithm 1 Training the System Model

Input: Training data Im, the loss function factors λ and η,
learning rate ξ, training rounds Ep, path-loss factor a,
shared information extraction rate γp, compression ratio
v1 = 0 and v2 = 0, noise power NR = ND = −66
dBm and total transmitted power P = 0 dBm, distance
dSR = dRD = 1m.

1: Randomly initialize k = 1 and model parameters W (0) =

{α(0)
e , φ

(0)
e , φ

(0)
h , θ

(0)
d , θ

(0)
h , α

(0)
d }.

2: while k ≤ Ep do
3: Input data Im downsampling,
4: Calculate loss function L

(
W (k−1), λ, η

)
according to

Eq. (26),
5: Calculate the gradients ∇W (k−1)L

(
W (k−1), λ, η

)
,

6: Update W (k) ←W (k−1)−ξ∇W (k−1)L
(
W (k−1), λ, η

)
7: k = k + 1,
8: if k > Ep then
9: break,

10: end if
11: end while
Output: Trained model parameters
12: W (Ep) = {α(Ep)

e , φ
(Ep)
e , φ

(Ep)
h , θ

(Ep)
d , θ

(Ep)
h , α

(Ep)
d }.

were used to verify the image semantic transmission perfor-
mance of the proposed system. Specially, the formula for
calculating PSNR is as shown in Eq. (28), and the formula
for calculating MS-SSIM [26] is as follows:

MS − SSIM(Im, Îm) =

[lM (Im, Îm)]αM

M∏
j=1

[cj(Im, Îm)]βj [sj(Im, Îm)]γj .
(29)

where l(Im, Îm), c(Im, Îm) and s(Im, Îm) denote luminance,
contrast and structure comparison measures, respectively. Ex-
ponents αM , βj and γj are used to adjust the relative impor-
tance of different components.

Three different transmission schemes are used as com-
parison schemes to verify the performance of the proposed
transmission scheme. The first is the scheme that replaces the
shared features extraction technology in the proposed system
with the one proposed in [17]. The second is the scheme that
uses only HEC technology in the proposed system. Addition-
ally, the third is the LSCI scheme proposed in [6]. In order
to simplify the representation, the above three comparison
schemes and the scheme proposed in this paper are represented
as ED-HEM, HEM, LSCI and PC-HEM, respectively.
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(a) PSNR (b) MS-SSIM

Fig. 5: PSNR and MS-SSIM of system against the transmit power P for PC-HEM and ED-HEM schemes, with parameters
v2 = 0.2, dSR = dRD = 50 m, and three different compression ratio (v1 = 0.2, 0.5 and 0.8).

(a) PSNR (b) MS-SSIM

Fig. 6: PSNR and MS-SSIM of system against the transmit power P for PC-HEM scheme, with parameters v1 = 0.2,
dSR = dRD = 50 m, and four different compression ratio (v2 = 0, 0.2, 0.5 and 0.8).

B. Result Analysis

Fig. 5 illustrates the variation of PSNR and MS-SSIM with
respect to the transmit power P for the PC-HEM and ED-HEM
schemes, considering three different compression ratios (v1 =
0.2, 0.5, and 0.8). From Fig. 5, it is easily observed that the
PC-HEM scheme outperforms the ED-HEM scheme in terms
of both PSNR and MS-SSIM. Specifically, at P = 40 dBm
and v1 = 0.2, the PC-HEM scheme exhibits an approximate
9 dB advantage in PSNR and a approximate 0.2 advantage in
MS-SSIM compared to the ED-HEM scheme. Additionally, as
P decreases, larger values of v1 result in better PSNR and MS-
SSIM performance, while for larger P values, larger v1 values
lead to poorer PSNR and MS-SSIM performance. This is
because at lower P values, the system performance is heavily
influenced by the average SNR of the transmitted semantic

data, and larger v1 values result in a higher average SNR.
Conversely, at higher P values, the system performance is
primarily affected by the amount of transmitted semantic data,
and larger v1 values lead to a smaller amount of transmitted
semantic data.

Fig. 6 presents the variation of PSNR and MS-SSIM with
respect to the transmit power P for the PC-HEM scheme,
considering four different compression ratio combinations (v2
= 0, 0.2, 0.5 and 0.8). As can be seen from Fig. 6, when
the transmit power P is low, the larger the compression ratio
v2 of the received semantic data at the relay node R, the
better the PSNR and MS-SSIM performance of the system.
Specifically, when P = 10 dBm, compared to v2 = 0, v2 =
0.8 results in an increase of approximately 1.3 dB and 0.22 in
PSNR and MS-SSIM, respectively. However, as P increases,
the larger the value of v2, the slower the increase in PSNR
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(a) PSNR (b) MS-SSIM

Fig. 7: PSNR and MS-SSIM of system against the transmit power P for PC-HEM and HEM schemes, with parameters v2 = 0,
dSR = dRD = 50 m, and two different channel bandwidth ratio CBR = 0.125 and 0.05 at the source node S.

and MS-SSIM. In particular, when P = 30 dBm, compared
to v2 = 0.8, v2 = 0 leads to an increase of approximately 6
dB in PSNR and an increase of approximately 0.11 in MS-
SSIM. This phenomenon may be attributed to the fact that at
lower P values, a higher compression ratio v2 ensures a higher
average transmit power P̄ for semantic feature data over the
RD link, thereby guaranteeing the effective transmission of the
more important semantic features. However, when P is larger,
the smaller the compression ratio v2 is, the more semantic
information will be effectively transmitted by RD link.

Fig. 7 demonstrates the variation of PSNR and MS-SSIM
with respect to the transmit power P for the PC-HEM and
HEM schemes, considering two different CBR = 0.125 and
0.05 of the source node S. From Fig. 7, it is evident that
the PC-HEM scheme achieves better PSNR and MS-SSIM
performance compared to the HEM scheme. Specifically, at
P = 40 dBm and CBR = 0.05, the PC-HEM scheme exhibits
an approximate 5 dB advantage in PSNR and an approximate
0.1 advantage in MS-SSIM over the HEM scheme. This is
because the adopted shared features extraction technology
based on Pearson correlation effectively reduces the dimension
of the semantic latent feature space, thereby improving the
efficiency of semantic feature encoding and transmission.
Furthermore, at lower values of P , a smaller CBR corresponds
to better PSNR and MS-SSIM performance, while at higher
values of P , a larger CBR leads to better PSNR and MS-SSIM
performance. The underlying reasons are consistent with the
analysis of similar phenomena discussed in Fig. 5.

Fig. 8 depicts the variation of PSNR with respect to SNR
for the PC-HEM scheme, considering two different values for
N (N = 2 and 3) and two different CBR values (CBR =
0.033 and 0.066) at the source node S. The results from Fig. 8
clearly indicate that the PC-HEM scheme with N = 3 achieves
superior PSNR performance compared to the PC-HEM scheme
with N = 2. Specifically, at SNR = 2 dB and CBR = 0.033,
the PC-HEM scheme with N = 3 exhibits an approximate

Fig. 8: PSNR of system against the SNR for PC-HEM scheme,
with parameters v2 = 0, dSR = dRD = 50 m, N ∈ {2, 3}
and two different channel bandwidth ratio CBR = 0.033 and
0.066 at the source node S.

0.9 dB advantage in PSNR over the PC-HEM scheme with
N = 2. This is because in the case of the same shared feature
extraction rate γp and the CBR, the N = 3 system has a larger
latent feature space compression rate and a smaller hyperprior
entropy compression rate v1 than the N = 2 system, thereby
transmitting more important semantic features.

Fig. 9 illustrates the additional transmission overhead re-
quired by the PC-HEM scheme. Fig. 9a shows the relationship
between the number of elements in shared channel index
vector is that need to be transmitted and the number C of latent
transform output channels. The comparison is made between
the PC-HEM scheme and ED-HEM scheme with N = 2
input images, considering three different channel feature sizes
(W,H) = (64,128),(32,64) and (16,32). From Fig. 9a, it can be
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(a) Number of elements in is (b) Number of elements in I

Fig. 9: Additional transmission overhead required by the PC-HEM scheme. (a) compares the number of elements in the shared
channel index vector is that need to be transmitted for PC-HEM and ED-HEM schemes with N = 2 input images. (b) compares
the number of elements in the important information matrix I that need to be transmitted for PC-HEM and HEM schemes
with N ∈ {2, 4} input images.

observed that the number of elements in shared channel index
vector is is zero for the PC-HEM scheme. This is because the
PC-HEM scheme does not require the transmission of shared
channel indexes. In contrast, the ED-HEM scheme requires
an increasing number of elements in the shared channel index
vector is as C and (W,H) increase. Specifically, when C = 60
and (W,H) = (64,128), the required number of elements for
the ED-HEM scheme is approximately 2.5× 105.

Furthermore, Fig. 9b shows the variation of the number of
elements in the importance matrix I against the number C of
latent transform output channels for the PC-HEM and HEM
schemes, considering (W,H) = (32,64) and N ∈ {2, 4}. It can
be observed from Fig. 9b that the PC-HEM scheme requires
fewer elements in the importance matrix I compared to the
ED-HEM scheme. Specifically, when C = 60 and N = 4,
the number of elements in the importance matrix I for the
HEM scheme is 5× 105, while for the PC-HEM scheme, it is
3 × 105. According to the analysis of Fig. 9, it is concluded
that the proposed PC-HEM scheme requires lower additional
information transmission overhead compared to the ED-HEM
and HEM schemes.

Fig. 10 illustrates the comparison of image recovery effect
between PC-HEM and ED-HEM schemes. Where, the top,
middle and bottom are the two input images Im1 and Im2

at the source node S, the recovered images Îm1 and Îm2 at
the destination node D of PC-HEM and ED-HEM schemes,
respectively. In addition, the data in parentheses represents
the MS-SSIM and PSNR performance of the system, respec-
tively. It can be clearly seen from the restored images and
performance data in Fig. 10 that the image recovery effect of
PC-HEM scheme is better than that of ED-HEM scheme. In
particular, the MS-SSIM performance of the PC-HEM scheme
is approximate 0.34 better than that of the ED-HEM scheme,
and the PSNR performance of the PC-HEM scheme is about

Fig. 10: Comparison of image recovery effect between PC-
HEM and ED-HEM schemes, with parameters v1 = 0.4, v2 =
0.1, P = 35 dBm, dSR = dRD = 50 m. where, the numbers
in parentheses indicate PSNR and MS-SSIM, respectively.

11 dB better than that of the ED-HEM scheme.
Fig. 11 depicts the variation of MS-SSIM of the E2E

communication system between the source node S and the
destination node D respect to SNR for the PC-HEM and
LSCI schemes, considering three different CBR values (CBR
= 1

4 , 1
6 and 1

12 ) at the source node S. From Fig. 11, it is
evident that in the case of lower SNR, the PC-HEM scheme
achieves better MS-SSIM performance compared to the LSCI
scheme. Specifically, at SNR = −5 dB and CBR = 1

6 , the
PC-HEM scheme exhibits an approximate 0.1 advantage in
MS-SSIM over the LSCI scheme. This is because the shared
features extraction technology based on Pearson correlation
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Fig. 11: MS-SSIM of the E2E communication system between
the source node S and the destination node D against the SNR
for PC-HEM and LSCI schemes, with parameters dSD = 100
m and three different channel bandwidth ratio CBR = 1

4 , 1
6

and 1
12 at the source node S.

and the HEC technology make the PC-HEM scheme more
effective than the LSCI scheme in extracting important features
of semantic information.

V. CONCLUSION

This paper proposes a semantic image transmission relay
communication network based on shared feature extraction and
hyperprior entropy compression. Specifically, shared feature
extraction technology based on Pearson correlation is used
to reduce redundancy among the semantic latent features of
input images. Moreover, a hyperprior entropy compression
technology is used to efficiently compress transmission data,
according to the conditions of channel noise and link fading.
The experiment results show that compared to recent research
methods, the proposed system exhibits lower additional trans-
mission overhead and achieves higher PSNR and MS-SSIM
performance for semantic image transmission. Under identical
conditions, the system exhibits an approximately 0.2 higher
MS-SSIM compared to the comparative method. Building
upon the research on fixed-ratio shared feature extraction
presented in this paper, an adaptive shared feature extraction
scheme emerges as a promising direction for further explo-
ration.
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