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  Abstract—Owing to high flexibility and rapid deployment, 
unmanned aerial vehicles (UAVs) can offer network coverage for 
Internet of things (IoT) devices in post-disaster scenarios. UAV-
aided mobile edge computing (MEC) provides computational 
support and facilitates optimal decision-making processes for 
ground-based IoT devices. However, existing literature has 
separately examined both data aggregation and computational 
offloading. In this paper, we introduce a Joint Data Aggregation 
and Computational Offloading (JDACO) scheme for UAV-
enabled IoT systems in post-disaster scenarios. JDACO's 
primary objective is to minimize the overall energy consumption 
and latency in the aggregation and computation processes. It 
achieves this by employing UAVs as MEC servers and deploying 
multiple UAVs. We initially design an objective function to assess 
the costs associated with the aggregation and offloading processes. 
Subsequently, we frame the optimization problem as a Markov 
model and employ a multi-agent deep reinforcement learning 
algorithm. This approach utilizes value decomposition with the 
double deep Q-Network algorithm to optimize data aggregation 
and enable a cost-effective offloading process through 
cooperative learning. Our experimental results demonstrate that 
our proposed JDACO scheme surpasses existing methods in 
terms of training time reduction, processed data volume, energy 
efficiency, and mission duration by 20%, 11.4%, 5.6%, and 
11.2%, respectively, compared to the conventional schemes while 
serving up to 98% of IoT devices. 
 
Index Terms—Computation offloading, data aggregation, 
Internet of things, unmanned aerial vehicle, mobile edge 
computing, multi-agent reinforcement learning. 

I. INTRODUCTION 

apid advent in wireless communication networks and 
Internet of things (IoT) has made terrestrial 
communication possible [1]. Unmanned aerial 

vehicles (UAVs) have opened new avenues for 
communication technology [2]. UAVs will soon become an 
integral part of existing communication systems owing to their 
easy and rapid deployment. The use of UAVs is increasing 
from military missions to industrial and commercial 
applications [3], [4]. Recently, UAVs have been proposed for 

restoring communications in post-disaster scenarios [5]. 
Therefore, UAVs are expected to become powerful and 
important entities for shaping communication systems in the 
near future. 

The implementation of these new technologies poses 
various challenges. UAVs have limited battery capacity, 
resulting in limited flight time and need to be replenished 
before the next deployment. Therefore, to ensure smooth 
operation during the mission, the UAV flight trajectory should 
be carefully designed. Additionally, IoT devices installed for 
environmental monitoring are resource-constrained with 
limited computational capabilities and are often installed in 
hard-to-reach areas with the expectation of a long service life. 
Thus, any disruption in the existing communication systems 
can defeat the entire purpose of installing IoT devices. 
Moreover, because of their limited energy, IoT devices cannot 
communicate over long distances. Therefore, a well-planned 
strategy is required to maintain a stable connectivity between 
IoT devices and base stations (BS). 

Owing to the rapid deployment capability of UAVs with 
extended battery life resulting from recent technological 
advancements, they can perform aggregation missions and 
edge units to support data-driven IoT applications [6]. There 
are several approaches in the literature in which UAV collect 
data from ground IoT devices [7]. These studies primarily 
focused on the optimal point of data gathering, trajectory 
design for the UAV, devising an energy-saving scheme, 
resource allocation, and reducing the data collection period 
while ensuring the quality of service (QoS), data freshness, 
maximum data collection, and reduced loss of aggregated 
data. 

Similarly, considering UAV as edge servers, the existing 
literature focuses on minimizing the task execution delay and 
energy requirements while ensuring maximum throughput and 
computation capability within the available edge server 
resources [8]. If the computation requirement is beyond the 
processing power, all or some of the computations are 
offloaded to another server with a higher computation 
capability, such as the BS. Consequently, IoT nodes can 
eliminate the burden of computation and perform for long 
periods of time. UAVs are perfect suitors for solving 
communication and computational issues resulting from both 
natural and man-made disasters. 

The use of UAV as data aggregators has attracted 
considerable attention in recent years. Existing studies focus 
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on finding the optimal hovering location or cluster head 
selection for aggregating data from ground IoT nodes, as 
designing optimal path planning is essential for UAVs while 
ensuring minimal travel time and energy efficiency [9]. 
Similarly, UAVs are considered as an edge unit for offloading 
the computation-incentive tasks of IoT nodes, in which either 
binary or partial offloading is exploited in existing works [10]. 
Thus, IoT nodes are protected from heavy computation and 
long service times. Existing studies primarily focus on latency 
and energy minimization for the offloading process, while 
ensuring maximum data computation and throughput 
maximization. Although many studies have considered static 
and single-UAV scenarios, recent studies have focused on 
UAV mobility and multi-UAV deployment [10]. 

In the existing literature, it can be observed that data 
aggregation and computational offloading were studied 
separately. Recognizing the future prospects of UAVs for 
data-driven applications, especially for post-disaster scenarios 
where existing communication infrastructure is disrupted or no 
longer available, we propose a joint data aggregation and 
computation offloading scheme and introduce the two 
problems under the same umbrella, rather than considering 
them as separate problems. A more detailed study of the 
existing literature will be discussed in Section II. 

To address the aforementioned discussions and limitations, 
we propose a joint multi-UAV-based data aggregation and 
computation offloading scheme to mitigate the overall system 
cost of the process. More explicitly, multiple UAVs are 
deployed, where each UAV is responsible for data aggregation 
and computation, as well as offloading some computation to 
another UAV or BS with higher resources and computational 
capability. The introduction of a multiagent paradigm brings 
the action and decision-making of each UAV into unison, as 
all agents share their experiences with each other. The key 
contributions of this study are as follows:  

 We study a joint scenario of data aggregation and 
computation offloading from a data-driven aerial 
computing perspective, which has not yet been explored 
together for UAV-enabled services. 

 We develop a joint data aggregation and computational 
offloading (JDACO) scheme mathematically for a 
multi-UAV scenario. Our proposed optimization 
problem primarily focuses on minimizing the total cost 
of energy consumption and delay for the aggregation 
and offloading processes, while ensuring maximum IoT 
device coverage. 

 To address the joint optimization problem, we propose 
a multi-agent deep reinforcement learning (MA-DRL)-
based algorithm in which we adopt a dueling double 
deep Q network (D3QN) for the discrete action space 
and a decision maker for each UAV. We employ a 
value decomposition network (VDN) algorithm for 
cooperative learning among the UAVs. By combining 
D3QN and VDN, we propose value decomposition 
dueling double deep Q-network (VD3QN), which is an 
off-policy approach to solve our optimization problem. 

 We evaluate our algorithm using two other off-policy 
learning algorithms and one non-learning algorithm in 
terms of key performance metrics. Simulation results 
demonstrate the superiority of the proposed algorithm 
over other benchmarks. 

The remainder of this paper is organized as follows: We 
first explore the relevant studies that have been conducted thus 
far in the respective fields of data aggregation and task 
offloading in Section II. We present our system model in 
Section III, and formulate the optimization problem in Section 
IV. In Section V, the formulated optimization problem is 
transformed into a Markov game model. In Section VI, the 
performance of the proposed JDACO algorithm is 
demonstrated and compared with that of other benchmarks. 
Finally, we conclude our study in Section VII. 

II. RELATED WORKS 

Most studies on UAV-aided data-driven applications can be 
categorized into two main classes. The first focuses on 
utilizing UAV as relays or base stations (BS) to provide a 
backbone for data-gathering applications. In such cases, the 
UAV is considered a data aggregator, where the trajectory of 
the UAVs is designed based on the communication schedule 
[11], [12]. In the second class, UAVs act as mobile edge 
computing (MEC) units to support the computational 
capabilities of a given network [13]. 

A. UAV as Data Aggregator 

While considering aerial data aggregation scenarios, the 
existing studies have primarily focused on designing optimal 
trajectories by finding the optimal hovering point, minimizing 
mission energy, and covering the maximum number of IoT 
devices for aggregation. In [11], the authors studied mission 
cost minimization while covering the maximum number of 
IoT devices using multiple UAV as aggregators. A heuristic 
approach was used to solve the proposed problem. This study 
considers an IoT device activation model for an intruding 
probability scenario of communication between a UAV and 
IoT nodes. 

In [14], a UAV was employed as a data aggregator, and the 
aggregated data were relayed to a base station (BS). In 
addition to the impact of the UAV altitude on the aggregation 
rate, the data-to-overhead ratio was studied to measure the 
effectiveness of data aggregation using UAV. The study 
mentions the possibility of further utilization of UAV as an 
edge unit to minimize end-to-end delay but does not explore 
that option. 

The study in [15] aimed to minimize the hovering and 
travelling time for data aggregation by a UAV visiting each 
node using a decoupled heuristic approach. This study 
demonstrated that a clear trade-off between hovering and 
travelling times is necessary for optimal data aggregation. 

In [16], the struggle between the trajectory and data 
aggregation based on device activation in a multi-UAV 
scenario was studied. The concept of shared observation 
among UAV used a long short-term memory (LSTM) deep 
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deterministic policy gradient (DDPG) approach. The scheme 
addressed the pressing issues of data loss owing to buffer 
overflow and communication failures that may occur at 
ground IoT nodes.  

B. UAV as Edge Server for Computation Offloading 

Computation of the sensing data is necessary because IoT 
nodes are reconstructed and have very limited computation 
capability. Edge units or devices are often introduced to 
address the computation problem and reduce the overall 
latency and energy consumption of the offloading process 
[17]. 

The study in [10] studied UAVs as MEC edge units, where 
the offloading process was classified into two categories: 
binary and partial offloading. The main idea behind utilizing 
UAVs as edge units was to reduce the overall delay and 
energy consumption for IoT devices with resource-intensive 
tasks. Moreover, in hierarchical aerial networks such as the 
space-air-ground integrated network (SAGIN), every 
component of each layer was considered an MEC unit and was 
able to perform resource-intensive tasks. 

In [18], a partial offloading mechanism was proposed for a 
hierarchical network, where the IoT and UAV game-theoretic-
based offloading decision method was suggested. 
Additionally, a heuristic approach was proposed to make 
offloading decisions between the UAV and a high-altitude 
platform (HAP). To utilize all the layers to the fullest extent 
possible, an adjustment algorithm was introduced. However, 
the mobility of the UAV and HAP was static, and the detailed 
mechanism of task collection had not been studied. 

In [19], another partial offloading mechanism was studied, 
in which UAV mobility was considered. The proposed method 
aimed to minimize the overall delay and energy requirements 
of the offloading process, while maximizing the number of 
arrival tasks. This study considered the local processing and 
task queuing delays in the total processing delay calculation. 
The algorithmic approach utilized the multi-objective 

reinforcement learning (MORL) to obtain the optimal 
solution. However, their proposed problem was demonstrated 
using only a single UAV. 

In [20], a binary offloading problem was proposed, which 
was solved by a multi-agent actor-critic approach that aimed 
to solve multiple objectives such as offloading decisions, 
flight direction, and distance.  The proposed model had a 
relatively simple sensing model that is unrealistic considering 
the real environment. 

Considering all the matters at hand, we propose the JDACO 
scheme for maximum IoT device coverage with minimal 
energy and time expenditure for both data aggregation and 
computation offloading processes. Table I presents a relative 
summary of the existing works. 

III. SYSTEM MODEL 

In this section, we present our system model of a multi-UAV-
aided MEC for UAV-enabled IoT. After introducing the 
application scenario, mobility, communication, data 
aggregation, local computation, and offloading computation 
models were formally addressed.  

 A. Application Scenario 

We consider a post-disaster region where multiple UAVs are 
deployed to aggregate data from live homogeneous IoT nodes 
with various sensors on the ground, as existing communication 
infrastructure such as base stations (BS) are no longer 
available. The deployed IoT nodes are responsible for 
monitoring environmental conditions, and low-tier UAVs (LT-
UAV) are responsible for aggregating and offloading data 
based on the task size. Because the existing communication 
network has been disrupted, a UAV with a longer flight time 
and computation power, called a high-tier UAV (HT-UAV), 
hovers at a fixed altitude (which is higher than the altitudes of 
LT-UAVs) such that all the LT-UAVs are under the 
communication coverage of the HT-UAV. 

 

TABLE I 
COMPARATIVE SUMMARY OF EXISTING WORKS AND OURS 

Ref. 

Major focus Algorithm 
Number 
of UAVs

Optimization objective 

Considered factors 

Data 
aggregation 

Offloading DRL 
Non-
DRL 

Trajectory and 
hovering 
location 

Energy Delay 
Max number 

of IoT 
devices 

[11]  – –  Multiple
Max device coverage with 

min travel time 
  –  

[14]  – –  Single Min aggregation delay – –  – 

[15]  – –  Multiple Min aggregation delay  –   

[16]  –  – Multiple
Min travel time with 

device scheduling 
 –  – 

[17] –   – Multiple
Energy and delay 

minimization –   – 

[18] –  –  Multiple Max data computation –    

[19] –  –  Single 
Min energy and delay and 

max task computation –    

[20] –   – Multiple
Min energy and delay for 

task computation 
   – 

Ours    – Multiple Max device coverage, task 
with min energy and delay 

    

Note:  Studied; – Not studied
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Fig. 1.  Application scenario of typical network configuration.  

 

Fig.1 shows a typical example of the network configuration 
in our application scenario. To aggregate data from ground 
IoT devices, LT-UAVs must hover over several hovering 
locations where data can be collected from the maximum 
number of IoT devices. As LT-UAVs aggregate data from IoT 
devices, each LT-UAV flies for the maximum travel time of 
𝑇୫ୟ୶  before the maximum energy 𝐸୫ୟ୶  of the UAV is 
depleted, and then lands on the ground. Based on the 
aggregated data from the IoT devices, LT-UAVs begin to 
process the data. LT-UAVs are equipped with single-core 
CPU, which means that they can execute or handle one task 
simultaneously. Based on the task size of the received data, 
the LT-UAV offloads the data to the HT-UAV, where further 
processing occurs. 

We assume that, during the hovering mode, each LT-UAV 
flies at a pre-defined average velocity of 𝑉ୟ୴୥ and 𝑉 = 0 m/s. 
The ground node locations are known beforehand and are 
distributed statically over the area of interest. Node locations 
can be expressed as 𝒾 ൌ ሾ𝑥௜, 𝑦௜ሿ. To avoid collisions with other 
UAVs or foreign objects, each UAV has object detection 
capabilities, thereby ensuring a safe flight plan. IoT devices 
are static and randomly distributed across geographical areas. 
Each UAV maintains a considerable altitude to ensure strong 
line-of-sight (LoS) communication. Additionally, the HT-
UAV ensures the synchronized trajectory of other LT-UAVs 
for both non-overlapping aggregation locations and the 
estimation of the number of active IoT devices in the area of 
interest. Table II lists the key notations with respective 
definition used in this formulation. 

B. LT-UAV Mobility Model 

To ensure a strong LoS and avoid obstacles in the vicinity we 
assume that the LT-UAVs fly at a considerable altitude of ℎ௝. 
The horizontal direction and distance travelled by the LT-
UAV at time slot 𝑡 is denoted as ∅ሺ𝑡ሻ and 𝑑ሺ𝑡ሻ, respectively, 
provided the following conditions are satisfied:  

                    0 ൑ ∅ሺ𝑡ሻ ൑ 2𝜋,   0 ൑ 𝑑ሺ𝑡ሻ ൑ 𝑑୫ୟ୶,               (1) 

where 𝑑௠௔௫ is the maximum flying distance of the LT-UAV 
owing to its limited battery capacity. 

TABLE II 
KEY NOTATIONS 

Notation Definition 

𝑃୐୭ୗ
௜,௝ , 𝑃୒୐୭ୗ

௜,௝ Line-of-sight (LoS) and non-line-of-sight (NLoS) 
probability between IoT node i and LT-UAV j. 

𝐿୐୭ୗ
௜,௝ , 𝐿୒୐୭ୗ

௜,௝ Path loss for LoS and NLoS condition 

𝛬௜,௝ Average path loss between IoT node i and LT-UAV j. 

𝕊௜,௝ Signal-to-interference-plus-noise-ratio (SINR) between 
IoT node i and LT-UAV j. 

𝑅௜,௝ Expected data rate between IoT node i and LT-UAV j. 

𝐺௝,௞ Channel gain between LT-UAV j and HT-UAV k. 

𝕊௝,௞ Signal-to-interference-plus-noise-ratio (SINR) between 
LT-UAV j and HT-UAV k. 

𝑅௝,௞ Uplink data rate between LT-UAV j and HT-UAV k. 

𝑁௜ 
The number of active IoT nodes ready for transmitting 
data. 

Å௜,௝, 𝐴ሚ௜,௝ 
Indicator function for establishing communication and 
multiple transmissions between IoT node i and LT-UAV j.

𝛷௝,௞ 
Binary decision variable for local computation and 
offloading between LT-UAV j and HT-UAV k. 

 
We adopted a conventional Cartesian coordinate system to 

represent the mobility of the UAV. Let  𝒰ሺtሻ ൌ
ൣ𝑥௝ሺ𝑡ሻ, 𝑦௝ሺ𝑡ሻ൧ represent the LT-UAV’s location at time slot 𝑡. 
Thus, based on the ∅ሺtሻ and 𝑑ሺtሻ, the coordinate of the LT-
UAV at the next time slot t ൅ 1 can be expressed as   

              ቊ
𝑥௝ሺ𝑡 ൅ 1ሻ ൌ  𝑥௝ሺ𝑡ሻ ൅ 𝑑ሺ𝑡ሻ ∙ cosሺ∅ሺ𝑡ሻሻ
𝑦௝ሺ𝑡 ൅ 1ሻ ൌ 𝑦௝ሺ𝑡ሻ ൅ 𝑑ሺ𝑡ሻ ∙ sinሺ∅ሺ𝑡ሻሻ

.               (2) 

The LT-UAV was assumed to travel within an enclosed 
rectangular region with side lengths are 𝑥୫ୟ୶  and 𝑦୫ୟ୶ . We 
have 

                    0 ൑ 𝑥௝ሺ𝑡ሻ ൑ 𝑥୫ୟ୶ ,   0 ൑ 𝑦௝ሺ𝑡ሻ ൑ 𝑦୫ୟ୶.             (3) 

Similar to previous studies [19], [21], we adopted the 
propulsion power requirement of a rotary-wing UAV to define 
its power consumption, which is given by  

𝑃ሺ𝑣ሺ𝑡ሻሻ ൌ 𝑃ଵ ൬1 ൅ ଷ௩ሺ௧ሻమ

௎౪౟౦
మ ൰ ൅ 𝑃ଶ ൬ ට1 ൅ ௩ሺ௧ሻర

ସ௩బ
ర  െ ௩ሺ௧ሻమ

ଶ௩బ
మ ൰

ଵ/ଶ

  

൅ ଵ

ଶ
𝑑଴𝜌𝑔𝐴𝑣ሺ𝑡ሻଷ.                                          (4) 

The given equation comprises three components: blade profile, 
induced power, and parasitic power. 𝑃ଵ  is the blade profile 
power in the hovering state, and 𝑃ଶ is the induced power. 𝑈௧௜௣ 
refers to the speed of the rotor blade tip and 𝑣଴ is the average 
induced rotor velocity during the hovering state. The power of 
the parasite was also contained. 𝑑଴ , 𝜌 , 𝑔,  and 𝐴  which are 
fuselage drag ratio, density of air, solidity of the rotor, and 
disk area, respectively. Under hovering conditions, the power 
consumption of the UAV is an aggregation of 𝑃ଵ and 𝑃ଶ. The 
overall energy requirement of the UAV during its flight 
duration 𝑇 is given by 

                               𝐸௝
୤୪୷ሺ𝑡ሻ ൌ  ∑ 𝑃൫𝑣ሺ𝑡ሻ൯∆𝑡்

଴ .                      (5) 

C. Communication Model 

We formulated our communication model into two different 
segments: communication between the IoT node and LT-UAV 
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and communication between the LT-UAV and HT-UAV. 

1)  Downlink Communication model 

As stated previously, the LT-UAV maintains a considerable 
altitude to maintain a strong LoS. Therefore, the LoS 
probability between the ground IoT node 𝑖 and LT-UAV 𝑗 can 
be expressed as 

                                  𝑃୐୭ୗ
௜,௝ ൌ  ଵ

ଵାఈ௘
షಊሺഇ೔,ೕషಉሻ,                           (6) 

where 𝛼 and 𝛽 are the environmental constant values and the 

elevation angle, respectively, and 𝜃௜,௝ ൌ ሺଵ଼଴

గ
ሻ sinିଵሺ

௛ೕ

ௗ೔,ೕ
ሻ , 

where 𝑑௜,௝  denotes the distance between IoT node 𝑖 and LT-
UAV 𝑗  and can be expressed as 𝑑௜,௝ ൌ

ටሺሺ𝑥௝ሺ𝑡ሻ െ 𝑥௜ሻଶ ൅ ሺ𝑦௝ሺ𝑡ሻ െ 𝑦௜ሻଶ ൅ ℎ௝
ଶሻሻ . As expected, non-

line-of-sight (NLoS) probability is 𝑃୒୐୭ୗ
௜,௝ ൌ 1 െ 𝑃୐୭ୗ

௜,௝ . The 
path-loss expression for both LoS and NLoS is expressed as 

𝐿୐୭ୗ
௜,௝ ൌ  𝜂୐୭ୗሺ

ସగ௙ౙ

௖
𝑑௜,௝ሻஞ                            (7) 

and 

                             𝐿୒୐୭ୗ
௜,௝ ൌ  𝜂୒୐୭ୗሺ

ସగ௙ౙ

௖
𝑑௜,௝ሻஞ,                        (8) 

respectively, where 𝜂௅௢ௌ  and 𝜂ே௅௢ௌ  are the attenuation factor 
for LoS and NLoS state, respectively, 𝑓௖  is the carrier 
frequency, 𝑐  is the speed of light, and 𝜉  is the path loss 
component. Thus, the average path loss 𝛬௜,௝ between IoT node 
𝑖 and LT-UAV 𝑗 can be found as 

                   𝛬௜,௝ ൌ  𝑃୐୭ୗ
௜,௝ ൈ  𝐿୐୭ୗ

௜,௝ ൅ 𝑃୒୐୭ୗ
௜,௝ ൈ  𝐿୒୐୭ୗ

௜,௝ .               (9) 

Therefore, average channel gain at time instant 𝑡  is 
𝐺௜,௝ሺ𝑡ሻ ൌ  𝛬௜,௝

ିଵ as studied in [11]. It is assumed that each IoT 
node 𝑖 has a transmit power 𝑃௜ሺ𝑡ሻ at time instant 𝑡 and the IoT 
devices communicate with the LT-UAV via a time-division 
multiple access (TDMA) scheme. Employing the TDMA 
scheme eliminates intracluster interference. However, 
neighboring UAV may cause interference. Considering these 
factors, the signal-to-interference-plus-noise-ratio (SINR) 
between IoT node i  and LT-UAV j  at time instant 𝑡  is 
expressed as 

                        𝕊௜,௝ሺ𝑡ሻ ൌ
ು೔ሺ೟ሻ ಸ೔,ೕሺ೟ሻ

ು೙ሺ೟ሻಸ೘,೙ሺ೟ሻశ഑మ  ௡ୀଵ,௠ஷ௜,௡ஷ௝,             (10) 

where 𝜎ଶ  denotes the Gaussian noise variance. Using 
Shannon’s theorem, we calculated the approximate data rate 
between IoT node 𝑖 and LT-UAV 𝑗, which is denoted as 

                         𝑅௜,௝ሺ𝑡ሻ ൌ  ℬଵ 𝑙𝑜𝑔ଶሺ1 ൅ 𝕊௜,௝ሺ𝑡ሻሻ.                (11) 

where ℬଵ  is the channel bandwidth for the downlink 
communication. 

2) Uplink Communication Model 

Because the existing communication infrastructure, such as 
the BS, is no longer available in the post-disaster scenario, 

LT-UAVs are resource-constrained and need to offload the 
aggregated data to the HT-UAV, which has higher processing 
power and computation capacity. Assuming that the wireless 
link between the LT-UAV and HT-UAV maintains clear LoS 
characteristics, the channel quality depends on the 
instantaneous distance between them [22]. Let 𝓋 ൌ ሾ𝑥୩, 𝑦୩ሿ 
denote HT-UAV coordinates. Then, the instantaneous distance 
between LT-UAV 𝑗  and HT-UAV k is given as 𝑑୨,୩ ൌ

ඥ||𝓋 െ 𝒰ሺtሻ||ଶ. Therefore, the channel power gain between 
the LT and HT-UAV, following the path loss model in free 
space at time instant 𝑡, can be expressed as 

𝐺௝,௞ሺ𝑡ሻ ൌ  𝒫଴𝑑௝,௞
ିଶ ൌ  𝒫బ

||𝓋ି𝒰ሺ௧ሻ||మ,                (12) 

where 𝒫଴ is the power gain of the channel at 1 m distance and 
is subjected to the antenna gain and carrier frequency. 

Because we intend to maintain communication between LT-
UAVs and HT-UAV continuously, we exploit the benefit of 
the frequency division multiple access (FDMA) scheme. The 
uplink bandwidth ℬଶ  is divided into 𝐽  non-overlapping sub-
bands of 𝐽 LT-UAVs. Thus, in each time slot, each LTUAV 

uplink was allotted a subband of 
ℬమ

௃
. Then, the SINR can be 

formulated as 

       𝕊௝,௞ሺ𝑡ሻ ൌ
ುೕሺ೟ሻಸೕ,ೖሺ೟ሻ

ℬమ
಻ ഑బ

మ
 ൌ

௉ೕሺ௧ሻ𝒫బ
ℬమ
಻

||𝓋ି𝒰ሺ௧ሻ||మఙబ
మ
,             (13) 

where 𝑃௝ሺtሻ is the transmission power of the LT-UAV and 𝜎଴
ଶ 

is the spectrum power density of white Gaussian noise (WGN) 
at the HT-UAV. Similar to Equation (10), we can calculate the 
uplink data rate using Shannon’s theorem:  

               𝑅௝,௞ሺ𝑡ሻ ൌ  
ℬమ

௃
𝑙𝑜𝑔ଶሺ1 ൅ 𝕊௝,௞ሺ𝑡ሻሻ.              (14) 

D. Data Aggregation Model 

For data aggregation from ground IoT nodes using a UAV, a 
definitive IoT device activation pattern is essential for designing 
appropriate waypoints and optimal hovering location [15]. 

1) IoT Device Activation Model 

Monitoring IoT sensors such as smart metering are usually 
accompanied by periodic activation, whereas event-driven IoT 
sensors such as wildfire monitoring follow random activation 
scenarios [11]. The central server has prior information regarding 
the periodic activation conditions. Thus, the periodic IoT device 
activation model for the number of active IoT devices, 𝒩ୟୡ୲, over 
period [0, 𝑇] can be expressed as  

               𝒩ୟୡ୲ ൌ
்

ఛ೔
,                           (15) 

where 𝜏௜ is the period during which the IoT device is active. In 
the case of randomly activated IoT devices that are often 
subjected to bursty traffic and short activation intervals, we 
incorporate the probability density function of the random 
activation model, 𝒩ୟୡ୲, as studied in [11] over the time period [0, 
𝑇], which is defined as  
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              𝐷ሺ𝑡ሻ ൌ  ௧𝒶షభሺ்ି௧ሻ𝒷షభ

்𝒶శ𝒷షభ ஻ሺ𝒶,𝒷ሻ
 ,          (16) 

where 𝐵ሺ𝒶, 𝒷ሻ ൌ ׬ 𝑡𝒶ିଵଵ
଴ ሺ1 െ 𝑡ሻ𝒷ିଵ𝑑𝑡  is the beta function 

with parameters denoted as 𝒶 and 𝒷 known as shape parameters 
(𝒶, 𝒷 ൒ 0ሻ. Using both periodic and random activation models is 
a crucial design consideration because we aim to determine the 
optimal hovering location for maximal data aggregation. 

2) Aggregation Cost Calculation 

The selection of an appropriate aggregation location is a 
prerequisite for energy-saving. In our work, we aim to find the 
optimal hovering location, where the maximum number of IoT 
devices can be served based on the received SINR at LT-UAV j. 
The number of active IoT devices at any given time can be 
expressed as |𝑁௜| ൌ  𝑁௜

୮ୣ୰ ൅  𝑁௜
୰ୟ୬ୢ. A more elaboration is  

        𝑁௜ሺ𝑡ሻ ൌ  ∑ 𝜑௜
୮ୣ୰ሺ𝑡ሻ

ௐ೔
౦౛౨

௜ୀଵ ൅ ∑ 𝜑௜
୰ୟ୬ୢሺ𝑡ሻௐ೔

౨౗౤ౚ

௜ୀଵ ,             (17) 

where 𝜑௜
୮ୣ୰ሺ𝑡ሻ and 𝜑௜

୰ୟ୬ୢሺ𝑡ሻ are binary functions and defined as 

                       𝜑௜
୮ୣ୰ሺ𝑡ሻ ൌ ൜

1,   if 𝑖 is active at 𝑡୮ 
0,                 otherwise

.        (18a) 

and 

                    𝜑௜
୰ୟ୬ୢሺ𝑡ሻ ൌ ൜

1,   if 𝐷ሺ𝑡ሻ ൒ 𝐷ሺ𝑡୲୦ሻ  
0,                  otherwise

.                 (18b) 

respectively. 
Furthermore, if the SINR value reaches certain threshold, 𝕊୧,୨

୲୦, 
then the IoT node establishes communication with LT-UAV and 
𝕊௜,௝ሺ𝑡ሻ ൒ 𝕊௜,௝

୲୦ . Therefore, the indicator function can be defined as: 

                           Å௜,௝ሺ𝑡ሻ ൌ ቊ
1, if 𝕊௜,௝ሺ𝑡ሻ ൒ 𝕊௜,௝

୲୦

0,         otherwise
.         (19) 

To avoid multiple communications and ensure that one IoT node 
communicates with a particular LT-UAV simultaneously, we 
introduce another indicator function: 

    𝐴ሚ௜,௝ሺ𝑡ሻ ൌ ൜ 1, if Å௜,௝ሺ𝑡ሻ ൌ 1 and 𝜑௜ ൌ 1
0,                          otherwise

.            (20) 

Therefore, the modified expression for the data rate in Equation 
(10) is transformed into: 

𝑅௜,௝ሺ𝑡ሻ ൌ  Å௜,௝ሺ𝑡ሻ𝐴ሚ௜,௝ሺ𝑡ሻℬଵ 𝑙𝑜𝑔ଶሺ1 ൅ 𝕊௜,௝ሺ𝑡ሻሻ.           (21) 

Finally, the time period for aggregating data at a particular 
hovering point of the LT-UAV can be expressed as 

   𝑇௝
ୟ୥୥ ൌ  ∑ 𝜑௜

୮ୣ୰ௐ೔
౦౛౨

௜ୀଵ ሺ ௌ೔

ோ೔,ೕሺ௧ሻ
ሻ ൅ ∑ 𝜑௜

୰ୟ୬ୢ ൬ ௌ೔

ோ೔,ೕሺ௧ሻ
൰

ௐ೔
౨౗౤ౚ

௜ୀଵ .  (22) 

where 𝑆௜ is the data or task size collected from the IoT devices, 
and the energy during hovering can be expressed as 

                           𝐸௝
ୟ୥୥ሺ𝑡ሻ ൌ ∑ 𝑃൫𝑣ሺ𝑡ሻ൯∆𝑡ೕ்

౗ౝౝ

଴ .                     (23) 

E. Local Computation Model 

After all data from the IoT nodes are aggregated by the LT-
UAV, the onboard processing unit starts processing the data 
locally. Similar to the local processing model in [20], the 
internal unit of each LT-UAV was equipped with a single-core 
CPU. Thus, the LT-UAV can execute only one task at a time, 
and the remainder is offloaded to the HT-UAV for further 
processing. Thus, the queuing delay was not considered in the 
proposed model. Because IoT nodes are homogenous, the task 
size is uniform, and the number of arriving tasks is the same as 
the number of active IoT nodes at a particular time, 𝑁௜ሺ𝑡ሻ. The 
duration of the local computing can be expressed as   

                            𝑇௝
୪୭ୡሺtሻ ൌ ∑ ሺ1 െ 𝛷௝,௞ ሻ

ௌ೔௏ೕ

௙ೕ
ౢ౥ౙ

୎
௝ୀଵ ,        (24) 

where 𝑓௝
୪୭ୡ is the local CPU frequency of the LT-UAV, and 𝑉௝ 

is the task processing density (in CPU cycles/bit) to complete 
the task. 𝛷௝,௞ ∈ ሾ0, 1ሿ is the binary decision variable for either 
local execution or offloading to the HT-UAV, and can be 
represented as 

                           𝛷௝,௞ ൌ  ൜
1,           if offloaded  
0,  locally computed.                 (25) 

We can compute the energy expanded for the local 
computation as  

    𝐸௝
୪୭ୡሺ𝑡ሻ ൌ  𝑃௝

୪୭ୡ ൈ 𝑇௝
୪୭ୡሺ𝑡ሻ ൌ 𝑃௝

୪୭ୡ ∑ ሺ1 െ 𝛷௝,௞ሻ
ௌ೔௏ౠ

௙ౠ
ౢ౥ౙ

௃
௝ୀଵ ,    (26) 

where 𝑃௝
୪୭ୡ is the power requirement for local computation and 

is proportional to the cubic power of the local frequency 𝑓௝
୪୭ୡ 

of the LT-UAV [23]. The resulting equation is as follows:  

                  𝐸௝
୪୭ୡሺ𝑡ሻ ൌ  𝜇ሺ𝑓୨

୪୭ୡሻଶ ∑ ሺ1 െ 𝛷௝,௞ሻ𝑆௜𝑉௝
௃
௝ୀଵ ,           (27) 

where 𝜇  is the LT-UAV’s effective capacitance factor 
subjected to the CPU chip architecture. 

F. Offloading Computation Model 

Considering the limited resources and computational capacity 
of LT-UAVs, tasks are offloaded to HT-UAV. In our study, 
the processing power of the HT-UAV is limited but sufficient 
enough to process the tasks come from a given number of LT-
UAVs as in [24]. Regarding the resource allocation in the HT-
UAV, interesting readers may refer to [24] for more details. 
Therefore, the transmission time from an LT-UAV 𝑗 to an HT-
UAV 𝑘 can be written as 

                        𝑇௝
୲୰ୟ୬ሺ𝑡ሻ ൌ ∑ ∑ ሺ𝛷௝,௞ሻ ௌ೔௏ೖ 

ோೕ,ೖሺ௧ሻ

ே೔ିଵ
௡ୀ଴

୎
୨ୀଵ .             (28) 

Similarly, the energy requirement for the data transmission 
is expressed as  

                       𝐸௝
୲୰ୟ୬ሺ𝑡ሻ ൌ 𝑃௝

୲୰ୟ୬ ൈ 𝑇௝
୲୰ୟ୬ሺ𝑡ሻ,                     (29) 

where 𝑃௝
୲୰ୟ୬ is the transmission energy required for offloading. 

Similar to the previously defined duration of the local 
computation, we define the offloading computation time as  
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                        𝑇௝
୓୤୤ሺtሻ ൌ ∑ ∑ ሺ𝛷௝,௞ሻ ௌ೔௏ೖ

௙ೖ
౥౜౜

ே୧ିଵ
௡ୀ଴

୎
௝ୀଵ ,                 (30) 

where 𝑓௞
୭୤୤  denotes the computation capacity (cycles/sec) of 

the HT-UAV edge unit which is allocated to the LT-UAV 𝑗 at 
time slot 𝑡 [25] and 𝑉௞ is the task processing density (in CPU 
cycles/bit). Similarly, the energy expanded for offloading can 
be calculated as follows: 

 𝐸௞
୭୤୤ሺ𝑡ሻ ൌ  𝑃௝

୭୤୤ ൈ 𝑇௝
୓୤୤ ൌ 𝑃௝

୭୤୤ ∑ ∑ ሺ𝛷௝,௞ሻ ௌ೔௏ೖ

௙ೖ
౥౜౜

ே୧ିଵ
௡ୀ଴

୎
௝ୀଵ ,   (31) 

where 𝑃௝
୭୤୤ denotes the processing power required for the HT-

UAV and 𝜇 is the effective capacitance factor subjected to the 
CPU chip architecture. As mentioned previously, the resulting 
equation becomes 

             𝐸௞
୭୤୤ሺ𝑡ሻ ൌ  𝜇ሺ𝑓௞

୭୤୤ሻଶ ∑ ∑ ൫𝛷௝,௞൯𝑆௜𝑉௞
ே୧ିଵ
௡ୀ଴

௃
௝ୀଵ ,             (32) 

G. Energy and Delay Cost Calculation 

According to all the defined equations, we can obtain the total 
cost of energy and delay associated with the proposed problem. 
Therefore, the overall energy cost associated with the joint 
data aggregation and offloading processes can be expressed as:  

  𝐸୲୭୲ሺ𝑡ሻ ൌ  𝐸௝
୤୪୷ሺ𝑡ሻ ൅ 𝐸௝

ୟ୥୥ሺ𝑡ሻ ൅ 𝐸௝
୪୭ୡሺ𝑡ሻ ൅ 𝐸௝

୲୰ୟ୬ሺ𝑡ሻ 

൅ 𝐸௞
୭୤୤ሺ𝑡ሻ.                                     (33) 

Similarly, the total delay can be expressed as  

         𝑇୲୭୲ሺ𝑡ሻ ൌ  𝑇௝
ୟ୥୥ሺ𝑡ሻ ൅ 𝑇௝

୪୭ୡሺ𝑡ሻ ൅ 𝑇௝
୲୰ୟ୬ሺ𝑡ሻ൅ 𝑇௞

୭୤୤ሺ𝑡ሻ.    (34)                                                  

IV. PROBLEM FORMULATION 

Our objective is to design an optimized algorithm for the overall 
data aggregation and offloading processes while serving the 
maximum number of IoT nodes. Based on an earlier discussion, 
our goal is to minimize both the total energy consumption of LT-
UAVs and the total aggregation and task execution time. Task 
execution time is the elapsed time for local execution and 
offloading. The total aggregation and task execution time is the 
time elapsed from the beginning of the data aggregation (i.e., the 
first transmission of the data to be aggregated from the IoT 
devices) to the end of the computation offloading (i.e., the last 
reception of the task to be offloaded). To define the optimization 
problem, we normalized 𝐸୲୭୲  and 𝑇୲୭୲  as 𝐸௡ ൌ 𝐸୲୭୲ 𝐸୫ୟ୶⁄  and 
𝑇௡ ൌ 𝑇୲୭୲ 𝑇୫ୟ୶⁄ , respectively, where 𝐸୫ୟ୶  and 𝑇୫ୟ୶  are the 
maximum values of 𝐸୲୭୲  and 𝑇୲୭୲ , respectively. The maximum 
values of 𝐸୲୭୲ and 𝑇୲୭୲ are dynamically updated at each time step. 
The optimization problem can be formulated as follows:  

               Pଵ :      
min
𝑁୧, 𝐻 𝜔ଵ𝐸୬ ൅ 𝜔ଶ𝑇୬                                 (35) 

                    𝑠. 𝑡. 𝐸୲୭୲ ൑ 𝐸୲୦,                                            (C1) 
                          0 ൑ ∅ሺ𝑡ሻ ൑ 2𝜋,                                     (C2) 
                          0 ൑ 𝑑ሺ𝑡ሻ ൑ 𝑑୫ୟ୶,                                 (C3) 

                          𝕊௜,௝ሺ𝑡ሻ ൒ 𝕊௜,௝
୲୦ ,                                         (C4) 

                         0 ൑ Å௜,௝ሺ𝑡ሻ  ൑ 1,                                    (C5) 

                         0 ൑ 𝐴ሚ௜,௝ሺ𝑡ሻ  ൑ 1,                                    (C6) 

                          𝑆௜ ൑ 𝑆௜ሺ୫ୟ୶ሻ                                          (C7) 

                          0 ൑ 𝛷௝,௞ ൑ 1,                                        (C8) 

where 𝜔ଵ and 𝜔ଶ are the weight parameters for the total energy 
requirement of LT-UAVs and the total aggregation and task 
execution time, respectively, and  𝜔ଵ  + 𝜔ଶ= 1. Based on the 
mission requirement, the two parameters 𝜔ଵ  and 𝜔ଶ  can be 
adjusted. Constraint C1 ensures that each UAV does not 
exceed the maximum threshold energy available for the 
duration of the mission. Constraints C2 and C3 are UAV 
movement constraints. Constraint C4 ensures the optimal 
hovering location selection based on the received SINR 
between the UAV and IoT nodes. where C5 is the indicator 
constraint for C4, Constraint C6 ensures that each IoT node 
can be connected simultaneously to a particular LT-UAV. 
Constraint C7 ensures that the UAV buffer memory is not 
overflowed by incoming data. C8 is the offloading constraint 
between LT-UAVs and HT-UAV, which depends on the 
computational capability of LT-UAVs. 

To select the optimal hovering location 𝐻 ൌ ‖ℎୣ െ ℎ୤‖ for 
data aggregation, we introduce several constraints on the UAV 
mobility to minimize the aggregation energy and the hovering 
time [12]. Therefore, we introduce another optimization 
problem for solving the UAV trajectory problem, which can 
be expressed as  

Pଶ :   min
ு

∑ ∑ ∑ ‖ℎୣ െ ℎ୤‖
ி
୤ୀ଴
୤ஷୣ

ா
ୣୀ଴

௎
୳ୀଵ 𝑥ୣ୤

୙           (36) 

     𝑠. 𝑡.  ∑ ∑ 𝑥ୣ୤
୙୉

ୣୀ଴
୙
୳ୀଵ ൌ 1 ∀௙ൌ 1, … , 𝐹,  f ് i,              (C9) 

           ∑ 𝑥ୣ୥
୙ െ୉

ୣୀଵ ∑ 𝑥୥୤
୙୉

୤ୀଵ ൌ 0 ∀୥ൌ 1, … , 𝐺,               (C10) 

                        ∑ 𝑥଴୤
୙୊

୤ୀଵ ൌ 1 ∀୤ൌ 1, … , F,                      (C11) 

                            ∑ 𝑥୤଴
୙୊

୤ ൌ 1 ∀୤ൌ F,                              (C12) 

                     𝜗௛౛
െ 𝜗௛౜

൅ 𝐸 ∑ 𝑥ୣ୤
୙୙

୳ୀଵ ൑ 𝐸 െ 1,             (C13) 

                                2 ൑ e ് f ൑ 𝐸,                              (C14) 

where, 𝑥ୣ୤
୙  ∈ ሼ0,1ሽ is a binary variable indicating LT-UAV’s 

movement for points e to f. Constraint C9 ensures that each 
hovering location is visited by UAV at least once. C10 ensures 
that each LT UAV leaves the same hovering point after 
aggregation. C11 and C12 indicate that the LT-UAV started 
its mission from the designated initial position and returned to 
the initial point after the completion of the mission. C13 and 
C14 are known as Miller-Tucker-Zemlin constraints [11], 
[26], which eliminate the subtour of LT-UAVs. 

V. JOINT DATA AGGREGATION AND COMPUTATION 

OFFLOADING 

In this section, we introduce an MA-DRL-based approach to 
address proposed optimization problem P1 for joint data 
aggregation and computation offloading. We first model our 
original optimization problem as a Markov game, and then use 
the VD3QN [27], which is an off-policy-based approach to solve 
the optimization problem.  
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A. Markov Game Formation 

Because we deployed multiple UAV for joint data aggregation 
and offloading, each UAV’s action was affected by the 
collaborative action of the other UAVs. Therefore, the 
proposed optimization problem can be transformed into a 
Markov game framework. The Markov game is an extension 
of the Markov decision process (MDP) for multi-agent 
scenarios [28]. A Markov game with 𝑁number agents can be 
designated as tuple ሺ𝑆, 𝐴, 𝑅, 𝑃ሻ, where  𝑆, 𝐴, 𝑅, 𝑃  denote the 
state, action, reward function, and state-transition probability, 
respectively. At each time step, the agent ƞ takes an action 
𝑎ƞ ∈ 𝐴 based on a certain policy after observing the current 
environment state 𝑠ƞ ∈ 𝑆. A next state 𝑠′ is chosen according 

to the state transition probability 𝑃൫𝑠ƞ
ᇱห𝑠ƞ, 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎ƞ൯ . 

By selecting the next state in an environment, reward 𝑟  is 
obtained based on the reward function  𝑅. In terms of machine 
learning, a reward is simply a quantitative value that 
demonstrates the amount of an agent’s action that has an 
impact on the agent’s learning or objective. 

We next discuss each component’s definition for the 
Markov game formulation. 

 Agent: Each LT-UAV is considered an agent as it begins 
interacting with the given environment and other LT-
UAVs to maximize collaborative non-overlapping 
rewards and exchange information with each other. 
Therefore, the environment becomes fully observable, and 
each observation can be considered a state. Because each 
LT-UAV (agent) is deployed from the depot for data 
aggregation and makes local computations or offloading 
decisions, each UAV performs an appropriate action 
based on its respective policy. As each action is 
performed, a reward is generated from the environment 
and forwarded to the subsequent state. When each agent 
reaches its optimal goal, it stops receiving an additional 
reward from the environment or moves to the next state. 
Our approach is an off-policy which allows the agent to 
learn from a mixture of data generated by different 
policies. The key idea is that they separate the policy used 
to explore the environment from the policy being learned.    

 State 𝑆: Because we deployed multiple LT-UAV in our 
simulation environment, our optimization problem can be 
described as a multi-agent Markov game. Every agent has 
its own state and acts independently of others. For the 
agent ƞ, the state space, 𝑠ƞ, can be defined as  

                            𝑠ƞ ൌ ሼ𝑂ƞ, 𝑂ିƞሽ.                         (37) 

The state space has two components, the first component 
𝑂ƞ  is the self-observations of LT-UAV, whereas, the 
second component 𝑂ିƞ is the observation of the other LT-
UAVs. The self-observations, 𝑂ƞ, can be defined as 𝑂ƞ ൌ

ሼ𝑏ƞ, 𝐸ƞ, 𝒾, 𝒰ƞ, 𝕊ƞ
୧,୨, 𝐴ሚ୧,୨ሺƞሻ, 𝑁୧ሽ  where 𝑏ƞ  is the network 

identifier of each LT-UAV as we utilize the network-
sharing method [29] and represented by one-hot vector, 
𝐸ƞ  is the remaining energy of the LT-UAV, 𝒾  is the 

location information of IoT nodes, 𝒰ƞ  is the location 

information, 𝕊ƞ
୧,୨ is the SINR between i and j, 𝐴ሚ௜,௝ሺƞሻ is the 

one-hot vector indexing indicating the UAV and IoT 
association and 𝑁୧  is the task aggregated by LT-UAV to 
process. Similarly, 𝑂ିƞ is the shared observation resulting 
from the other agents in the environment and can be 
described as  𝑂ିƞ ൌ ሼ𝒾, 𝒰ିƞ, 𝐴ሚ௜,௝ሺିƞሻሽ  where 𝒰ିƞ is the 
location information of other LT-UAVs and 𝐴ሚ௜,௝ሺିƞሻ is the 
device association parameter. 

 Action 𝐴: Each agent requires an appropriate action in 
every time slot based on the current self and shared 
observations. The combined action of the agents can be 
expressed as 𝑎ƞ ൌ ሼ𝑎ெ, Å୧,୨ሺƞሻ, 𝐴ሚ୧,୨ሺƞሻ, 𝑥ୣ୤

୙ , Φ୨ሺƞሻ,୩ሽ where all 
the actions are taken in discrete action place and 
Å୧,୨ሺƞሻ, 𝐴ሚ୧,୨ሺƞሻ, 𝑥ୣ୤

୙  , Φ୨ሺƞሻ,୩ ∈ ℵ ,  ℵ  being the number of 

possible actions of Å୧,୨ሺƞሻ, 𝐴ሚ୧,୨ሺƞሻ, 𝑥ୣ୤
୙ , Φ୨ሺƞሻ,୩  and are all 

binary variables. By integrating the LT-UAV mobility in 
horizontal direction, ∅ in discrete action space, the total 
number of possible actions for the LT-UAV is 2ℵ ൈ ∅.  

 State Transition Probability 𝑃: The state of each agent or 
LT-UAV depends on its present location. Using equation 
(2) we can define the deterministic environment for the 
LT-UAV’s position where the state transition probability 
for the next state of the agent is  
𝑃൫𝑠ƞ

ᇱห𝑠ƞ, 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, … , 𝑎ƞ൯ ൌ 1.  
 Reward function 𝑅: As discussed earlier, the reward is the 

quantitative value received by an agent after interacting 
with the given environment, which numerically 
demonstrates how well the optimization objective has 
been achieved. The reward for the discrete time step can 
be defined as:  

                                   𝑟୲ ൌ 𝑟ୡ ൅ 𝑟 ൅ 𝑟୮ .                       (38) 

As indicated in (34), the reward equation comprises the 
following three parts: The first part 𝑟ୡ  is awarded to 
successfully complete the overall mission and is a positive 
number. The second part 𝑟  is a violation constraint owing 
to the energy of the agent and the negative number. The 
final term is the penalty term  𝑟௣, which is also a negative 
number. The penalty term is 𝑟୮ ൌ 𝑟ୗ୍୒ୖ ൅ 𝑟ୟୱୱ ൅ 𝑟୫୭୴ ൅
𝑟୭୤୤ , where 𝑟ୗ୍୒ୖ  is the SINR constraint violation term, 
𝑟ୟୱୱ  is the device association violation term, 𝑟୫୭୴  is the 
movement constraint violation term, and 𝑟୭୤୤  is the 
offloading constraint violation term.  

For each episode of time step 𝜏 , minimizing the overall 
energy and delay for the aggregation and offloading process, 
our proposed problem (P1) turns into maximizing the 
cumulative reward 𝐺 ൌ ∑ ∑ 𝑟௧

ƞே
ƞୀଵ

்
௧ୀଵ . Therefore, the proposed 

Markov game formulation was an episodic task [30]. In every 
episode, the agent begins its journey from the initial state and 
ends in the terminal state by returning to its initial deployment 
position.  
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Fig. 2. JDACO architecture and workflow. 

B. VD3QN Based Solution Approach 

To solve our modified formulated problem, we adopted a 
learning-based algorithm called VD3QN [27], which is a 
combination of VDN [29] and a Dueling Double Deep Q 
Network (D3QN) [31] as shown in Fig. 2. We modified the 
existing VD3QN algorithm to our advantage and modeled the 
proposed problem accordingly. The D3QN act as decision 
maker for each agent using the local action values 𝑄ሺ𝑠ƞ, 𝑎ƞሻ, 
whereas the VDN generates the global action value 𝑄୲୭୲ሺ𝑠, 𝑎ሻ. 
Therefore, sequential optimal actions were achieved by 
achieving a common objective for an individual agent or LT-
UAV. In the following section, the D3QN and VDN 
architectures are studied to solve the formulated Markov game.  

1) D3QN: To obtain an optimal policy for an action-value 
function, the D3QN can be utilized as a value-based 
reinforcement learning technique [31]. Unlike standard DQNs 
[32], D3QN approximates the state value and state-dependent 
information first for each action taken and then perform 
aggregation function of the layers to obtain estimated action 
value function 𝑄. 

Each agent acquires observation of the environmental state 
𝑠 and utilizing the parameterized deep neural network (DNN) 
to produce action-value function, 𝑄ሺ𝑠, 𝑎; 𝛿ሻ  which is an 
approximal value of the original action-value function, 𝑄ሺ𝑠, 𝑎ሻ. 
Moreover, utilizing the dueling architecture, the D3QN can 
quickly identify the 𝑄 value, which ultimately helps in a faster 
training process by choosing the appropriate action. 

To learn the parameters of the neural network (NN), 
storing the state transitions ሺ𝑠, 𝑎, 𝑟, 𝑠ᇱሻ  in experience replay 
buffer 𝑩  plays a significant role, where 𝑠ᇱ  is the next state 
after action 𝑎 is performed and reward r is received in return. 
As the training phase continued, a minibatch of state 
transitions was randomly chosen from the replay memory 
buffer. Then, the parameters are brought up to date each time 
by reducing the square of the temporal difference (TD) error, 
which is given by  

              𝐿ሺ𝛿ሻ ൌ 𝑬௦,௔,௥,௦ᇲሾ൫𝒚஽ଷொே െ 𝑄ሺ𝑠, 𝑎; 𝛿ሻ൯
𝟐

ሿ.           (39) 

To address the overestimation problem of original Q-
learning, we utilized the double Q-learning architecture [33], 
which is given by 

             𝒚ୈଷ୕୒ ൌ 𝑟 ൅ 𝜍𝑄 ሺsᇱ, arg min
ୟᇲ

𝑄ሺsᇱ, aᇱ ; δሻ; 𝛿୲ሻ.       (40) 

where 𝜍 is the discount factor and 𝛿୲ is the target parameters 
of the target neural network. It is to be noted that the 

architecture of the target network is same as action-value NN 
which obtains value from δ to ensure stable learning [34]. 

2) VDN Architecture: In the proposed model, each agent 
works for the common objective of maximizing the number of 
devices served while minimizing the overall energy and time. 
Value decomposition divides the value function of a multi-
agent problem into separate value functions for each agent. 
This allows agents to learn to cooperate with each other 
because they do not compete for the same resources. 
Therefore, all agents work independently and share their 
current state and observations cooperatively to find the global 
solution. Thus, we adopted the VDN [29] approach to find the 
global action-value function, which is denoted by 𝑄௧௢௧.VDN 
calculates the joint action-value function using the value-
decomposition layer. Then, the summation of the action-value 
functions is calculated from the other agents, which is defined 
as 

                       𝑄௧௢௧ሺ𝑠, 𝑎ሻ ൌ ∑ 𝑄ƞሺ𝑠ƞ, 𝑎ƞ; 𝛿ሻே
ƞୀଵ ,                   (41) 

where 𝑠ƞ and 𝑎ƞ are each agent’s state and actions respectively. 
By utilizing the value-decomposition layer, each agent can 
learn a better joint action in a noncompeting cooperative 
manner. 

Algorithm 1 describes the proposed JDACO algorithm. In 
the training mode, every episode is defined by events where 
all agents start from the initial position, carry out aggregation, 
local computing, and offloading procedures, and then return to 
the initial position based on the remaining battery level. For 
each agent, each episode begins with 𝜏 ൌ 0 with initial state 
and reset all other parameters as defined in line 3. In line 4, we 
impose the maximum number of allowable steps to prevent an 
agent wandering around, and an energy condition is imposed 
to ensure that the agent does not fall off while wandering 
around. This is necessary as at the early stage of the training 
phase, agents have very little knowledge with a high 
probability of exploration, 𝝐 . Therefore, a new episode is 
initiated if an agent meets the desired target, or if a selected 
number of steps is reached. As the training phase continues, 
each agent encounters local state 𝑠ƞ (line 6). From line 7 to 8, 
based on the observed state, a random action is chosen from 
the action space using 𝝐-greedy policy or using action-value 
function 𝑄ሺ𝑎ƞ, 𝑠ƞ; 𝜹ሻ  and then agent’s location, energy 
information and other binary parameters are updated. As stated in 
line 10, the environment then generates reward 𝑟ƞ based on the 
prescribed reward formulation. As agents work in a 
cooperative manner, the sum of all the agent’s reward is 
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calculated as 𝑟୲୭୲ୟ୪ ൌ ∑ 𝑟ƞƞ  (line 10). At this stage, the 
combined action 𝑎, current state 𝑠, following state 𝑠ᇱ, and total 
reward 𝑟୲୭୲ୟ୪  are recorded in the replay memory buffer 𝑩 . 
After that, time step 𝜏 and exploration rate 𝝐 are updated as 
stated in line 13. Using the stored transition at the end, the 
DNN of the agent is trained, as stated in lines 15–18. More 
importantly, the 𝜹  parameter is updated as loss function is 
minimized and denoted as: 

                 𝐿ሺ𝛿ሻ ൌ భ
⊓𝐛

∑ ሾ൫𝑦୲୭୲ െ 𝑄୲୭୲ሺ𝑠, 𝑎; 𝛿ሻ൯
ଶ

ሿ⊓𝐛
,             (42)  

with 

       𝑦୲୭୲ ൌ 𝑟୲୭୲ୟ୪ ൅ 𝜍𝑄୲୭୲ ሺsᇱ, arg min
ୟᇲ

𝑄୲୭୲ሺ𝑠ᇱ, 𝑎ᇱ ; 𝛿ሻ; 𝛿୲,     (43) 

where ⊓𝐛 is the sampled episode number from replay buffer 
and  𝜹𝐭 are the parameters of the target NN. To stabilize the 
training process, 𝜹𝐭 are soft updated after every 𝑊episodes, as 

mentioned in line 18. Notably the aggregation operation is 
performed to sum the respective 𝑄 values and is not included 
in the parameters of the NN. 

To analyze the complexity of our proposed scheme, we 
studied the time and space complexities of the DDQN training 
and VDN aggregation separately, and then studied the time 
and space complexities of our proposed JDACO algorithm 
based on the modified VD3QN. The time complexity of the 
DDQN architecture for experience collection is expressed by 
𝑂ሺ⊓ ൈ⊓𝐬𝐭𝐩ሻ , where ⊓  is the number of episodes during 
training phase and ⊓𝐬𝐭𝐩 is the timesteps per episode. To update 
the replay buffer during training phase, the time complexity is 
denoted as 𝑂ሺ ⊓𝐛ൈ 𝑀ሻ, where ⊓𝐛 is the batch size and 𝑀 is the 
number of iterations per episode. For the VDN aggregation, 
the time complexity can be given as 𝑂ሺƞ ൈ 𝐴ሻ, where ƞ being 
the number of agents and 𝐴  being the cardinality of the 
individual agent’s action space. Thus, the time complexity of 
JDACO can be given as 𝑂ሺ⊓𝐬𝐭𝐩ൈ 𝑆 ൈ 𝐴𝟐ሻ, where 𝑆 being the 
number of states and 𝐴 is the number of possible actions from 
the action space. This is because JDACO must explore all 
possible combinations of decision variables for all agents at 
each time step. 

The space complexity of the DDQN is 𝑂ሺ𝐵 ൅ 𝑃ሻ, where 𝐵 
and 𝑃 are the replay buffer size and number of parameters in 
the network used for storing experiences and neural 
parameters, respectively. As for the VDN space complexity, it 
can be defined as 𝑂ሺ𝐴 ൈ ƞሻ, The space complexity of JDACO 
can be expressed as 𝑂ሺ𝑆 ൈ 𝐴ሻ as JDACO needs to store the Q-
table, for every state and action. 

VI. PERFORMANCE EVALUATION 

In this section, the performance of the proposed JDACO is 
evaluated by simulation results and compared to conventional 
schemes using TensorFlow framework version 1.15 on a 
desktop computer equipped with two 1070Ti processors with a 
total of 16GB of memory. To demonstrate the effectiveness of 
the proposed algorithm, we select two learning-based 
approaches as our benchmarks: Q-learning with mixing 
(Qmix) [35] and counterfactual multi-agent policy gradients 
(COMA) [36]. As our proposed scheme is an off-policy based 
algorithm, our benchmark selection procedure includes Qmix 
and COMA which are also off-policy based algorithms. 
Alongside, we also selected the heuristic greedy approach 
(HGA) as the non-learning based approach. 

Similar to the VDN approach, Qmix is a value-based 
approach that utilizes centralized training decentralize 
execution method. It addresses the challenge of coordinating 
multiple agents to achieve a common goal by combining 
individual agent policies into a joint action-value function. We 
replace the gated recurrent unit (GRU) with a D3QN unit to 
adopt Qmix in our problem. On the other hand, COMA is a 
deep reinforcement learning algorithm that uses counterfactual 
reasoning to assign credits to individual agents in cooperative 
multi-agent systems. It combines a centralized critic to 
evaluate the joint action value with individual actor networks 
that select actions for each agent based on local observations. 
To incorporate COMA into our formulated MDP, we replace 
the GRU with multi-layer perceptron (MPL) NN. For the non-

Algorithm 1: JDACO for energy and delay minimization 
Input: Maximum episode number ⊓𝐞𝐩𝐬, maximum step number per 
episode ⊓𝐬𝐭𝐩 , exploration at start 𝝐𝟎 , decay rate 𝜺 , achieving 
objective reward 𝒓𝐨, defilement reward 𝒓𝐝, replay buffer 𝑩, batch 
size ⊓𝐛, Number of agent ƞ, initial LT-UAV position 𝓤𝟎, LT-UAV 
maximum energy 𝑬୫ୟ୶  IoT node location 𝓲, Number of tasks 𝑵𝐢 , 
initial parameters for NN 𝜹 , target parameters for NN 𝜹𝐭 , rate of 
learning 𝜶, rate of soft update 𝜷. 
Output: Trained parameter 𝜹.  

1 Initialize 𝜹, 𝝐 ൌ 𝜺𝟎, 𝜹𝐭 ൌ 𝜹; 

2 for 𝑛ୣ୮ୱ ൌ 1,2,3, … ,⊓ୣ୮ୱ do 

3 Set timestep 𝜏 ൌ 0  and reset agent’s position and other 
parameters 
𝒰ƞሺtሻ= 𝒰ƞ

୧୬୧୲ for each LT-UAV ƞ; 
4 while 𝒰ƞሺtሻ ് 𝒰ƞ

୤୧୬ and 𝐸ƞ ൑ 𝑬୫ୟ୶  and 𝜏 ൑⊓ୱ୲୮ do 
5 for agent ƞ ൌ 1,2,3, … , 𝑁 do 

6 Get state 𝑠ƞ, based on agent’s position; 

7 Selection of action 𝑎ƞ from the defined action-space 𝐴
using 𝝐 -greedy exploration policy, as 𝑎ƞ ൌ 

ቊ
random action,             probabilistic 𝝐
arg max

௔ƞ∈஺
𝑄ሺ𝑎ƞ, 𝑠ƞ; 𝜹ሻ ,        otherwise; 

8 Perform action 𝑎ƞ , update agent’s position 𝒰ƞሺtሻ , 
agent’s energy and other binary parameters  

9 end 

10 Calculate reward 𝑟௧  using equation (38) and obtain the 
cumulative reward  𝐺. 

11 Collect combined action 𝑎, current state 𝑠 and following 
state 𝑠ᇱ; 

12 Record the state transition information ሺ𝑠, 𝑎, 𝑠ᇱ, 𝑟୲୭୲ୟ୪ሻ in 
replay buffer 𝑩; 

13 Update new timestep 𝜏 → 𝜏 ൅ 1 and new exploration rate 
𝝐 → 𝜺 ൈ 𝝐 

14 end 

15 Sample ⊓𝐛 episodes of minibatch from replay buffer 𝑩;  

16 Obtain the loss function using equation (37) 

17 Using gradient descent optimizer, update 𝜹 
𝜹 → 𝜹 െ 𝛼∇𝜹൫𝑦୲୭୲ െ 𝑄୲୭୲ሺ𝑠, 𝑎; 𝜹ሻ൯; 

18 After every 𝑊episodes, update target parameter 𝜹𝐭 using soft 
update mechanism using, 
𝜹𝐭 ൌ ሺ1 െ 𝜷ሻ𝜹𝐭 ൅ 𝜷𝜹; 

19 end 
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learning-based approach, we formulate the HGA as a binary 
integer programming problem by utilizing only the binary 
variables that are solved by the Python library called PuLP 
[37]. 

A. Simulation Setup 

We perform the primary simulation by deploying multiple LT-
UAVs from the initial coordinates (0, 0). The IoT nodes are 
randomly deployed over an area of (10 × 10 Km2). The 
coordinate of the HT-UAV is (5, 5). As we aim to minimize 
both the energy and delay for the aggregation and 
computational offloading processes simultaneously, we 
choose the two weight parameters as equal (i.e., 𝜔ଵ ൌ
𝜔ଶ ൌ0.5). The simulation parameters with respective values 
are listed in Table III. 

 
TABLE III 

SIMULATION PARAMETERS 
Parameter Value 

Simulation area 10×10 Km2

𝜂୐୭ୗ and 𝜂୒୐୭ୗ values 1.6 dBm and 23 dBm 
Carrier frequency,  2 GHz 
Environment constant α and β 10.39, 0.05 
Weight parameters 𝜔ଵ and 𝜔ଶ 0.5 (𝜔ଵ = 𝜔ଶሻ 
UAV altitude, ℎ௝ 100 m 
Number of IoT nodes [20, 40, 60 80, 100 (default),]
Number of UAVs [3, 5(default), 7] 
Blade profile power, 𝑃ଵ 79.8563 W 
Induced power, 𝑃ଶ 88.6279 W 
Rotor blade tip speed, 𝑈௧௜௣ 120 m/s 
Average induced velocity of rotor during 
hovering state, 𝑣଴  

4.03 m/s 

Fuselage drag ratio, 𝑑଴ 0.6 
Density of air, 𝜌 1.225 Kg/m3

Solidity of the rotor, 𝑔 0.05 
Disk area, 𝐴 0.503 m2

Effective capacitance factor, 𝜇  10-28 

Task size [2.5, 5 (default), 7.5, 10] Mbit
Channel power, 𝒫଴ 1.42×10-4

Local CPU frequency, 𝑓୨
୪୭ୡ 109 cycles/s 

CPU cycle to finish the task, 𝑉୨ 270 cycles/bit 

CPU frequency of the HT-UAV, 𝑓୩
୭୤୤ 5×1010 cycles/s 

Maximum episodes, ⊓𝐞𝐩𝐬 1200 

Maximum steps, ⊓𝐬𝐭𝐩 60 
Exploration probability at beginning 1 
Mission completion reward, 𝑟ୡ 130 
Energy violation reward, 𝑟  -20 
Batch size, ⊓𝐛 64 
Soft update, 𝛽 0.01 
Learning rate, 𝜶 0.001 
Discount factor, ℸ 0.99 
Buffer size 𝑩 500000 

 
In the proposed JDACO architecture, we utilize a feed-

forward, fully connected neural network with three hidden 
layers containing 256, 512, and 128 neurons. The neuron in 
the final layer corresponds to all possible actions that the 
agents can take. For simplicity, we consider three degrees of 
freedom (forward, left, and right) for each LT-UAV. The 
simulation values for the propulsion-power calculation of the 
LT-UAV are adopted from [38]. It is important to note that 
different factors, such as the number of agents and violation 
constraints, can have an impact on algorithm convergence. 

In our simulation, the following performance metrics are 
evaluated: A brief description of each metric is provided 
below.  

• Average reward: The performance indication of an agent 
over time helps to visualize the agent’s learning interactions 
from the environment. It comprises the cumulative reward 
over time by improving the decision-making policy. An 
average reward curve or learning curve illustrates the 
fluctuating rewards as an agent explores different strategies 
to achieve convergence or stability of the learning process. 

• Total number of IoT nodes in service: This performance 
metric indicates the active IoT nodes among all deployed 
IoT nodes that have successfully transmitted data to the LT-
UAV for computation. Usually, a higher number suggests 
that the proposed scheme can achieve large amounts of data 
without missing any IoT nodes that are ready to upload the 
data. 

• Total amount of computed data: This indicates the total 
amount of data that an LT-UAV can gather for processing. 
A higher amount of data computation indicates that the LT-
UAV was able to aggregate data from IoT nodes for 
computation or offloading without missing any of the nodes, 
which might result in data loss owing to the overflow of the 
buffer memory of IoT nodes.   

• Mission time: This indicates the average time required for 
LT-UAVs to complete their journey, starting from 
deployment from the initial position, data aggregation time, 
data computation time, offloading time, and finally 
returning to the initial deployment position. The shorter 
time required for the predefined energy of the LT-UAV 
demonstrates the effectiveness of the proposed scheme.  

• Total energy consumption: The total energy required for the 
LT-UAV to complete its mission, which includes travelling 
to the optimal hovering location, data aggregation, 
computation, and energy consumption offloading. Overall, 
lower energy consumption is an indication of an energy-
efficient scheme. 

• Total aggregation and task execution time: This refers to the 
time required to process data starting from the aggregation 
point when the UAV is hovering. In this state, the LT-UAV 
aggregates data from the ground nodes until no other nodes 
are ready to transmit the data. The execution time refers to 
the combination of local computation by the LT-UAV, 
transmission from the LT-UAV to the HT-UAV and 
offloading by the HT-UAV. Because the delay for each data 
point is variable, we calculate the average delay for the 
overall aggregation, offloading, and computation processes. 
In our proposed scheme, we ignore the queuing delay 
because the LT-UAV processes only a single task at a time, 
and the HT-UAV has sufficient processing power, making 
the queuing delay insignificant. The aggregation time for the 
LT-UAV is higher than the task execution time, as the LT-
UAV collects and aggregates data from IoT nodes and is 
usually expressed in seconds. On the other hand, task 
execution usually takes a shorter time frame of 
approximately a few milliseconds. 
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B. Simulation Results and Discussion 

First, we compare the performances of the training processes 
of the DRL-based approaches, as illustrated in Fig. 3. The 
simulation results for the training process involve two 
instances with three LT-UAVs and five HT-UAVs for all DRL 
approaches. The results demonstrate the convergence of the 
algorithms for all instances. However, among learning-based 
approaches, COMA performs the worst. COMA operates 
under the principle of a counterfactual baseline mechanism, 
which inhibits the exploratory ability of the centralized critic. 
This renders COMA unsuitable for the proposed JDACO 
scheme. However, JDACO and Qmix show similarities in 
performance because both provide value-factorization-based 
solutions. The performance of the Qmix network can be 
improved by combining it with a more complex NN 
architecture and a global state with an action value. This is 
still unlikely to outshine the performance of JDACO because 
the local state of an agent has full observation of all other 
agents, and further improvement is not guaranteed. Our 
JDACO algorithm takes leverage of both VDN and D3QN 
architecture to reach faster convergence and better stability in 
learning. Additionally, JDACO leverages the dueling 
architecture, which helps to identify the 𝑄  value quickly, 
which ultimately helps a faster training process by choosing 
the appropriate action Overall, JDACO reaches convergence 
at a faster rate than other baseline algorithms, reducing the 
training time by 20% compared to the Qmix approach, which 
is the second fastest one among the baselines. 

Fig. 4 shows the simulation scenario of our scheme with 
respect to an example deployment of HT-UAV, LT-UAVs, 
and IoT nodes. The IoT node distribution, LT-UAV coverage, 
HT-UAV coverage, and respective trajectories of the LT-
UAVs are graphically shown. A simulated environment is 
generated using three LT-UAVs for 100 IoT nodes. The 
trajectory of each LT-UAV is demonstrated by different colors. 
The coordinate (0, 0) indicates the deployment points of the 
LT-UAVs, and coordinate (5, 5) indicates the position of the 
HT-UAVs. Note that the negative distance is a vector 
representation of the simulation area. 

In Fig. 5, we explore the performance of all benchmarks for 
IoT devices. Compared to all the other benchmarks, HGA 
exhibits the poorest performance with 64% node coverage. 
This is understandable because a greedy approach aims to find 
the shortest way to finish the mission without prioritizing the 
number of IoT nodes in service and fulfilling the other 
constraints. On the other hand, among the learning-based 
benchmarks, JDACO and Qmix show similar performances, as 
both provide value-factorization-based solutions. The 
improvement of Qmix network is still not guaranteed even 
after combining it with a more complex NN architecture 
whereas JDACO benefits from the local state of an agent with 
full observation of all other agents. JDACO performs with 98% 
served IoT nodes which is superior to Qmix and COMA with 
94% and 88%, respectively. 

 

 
(a) 

 
(b) 

Fig. 3. Average reward with (a) 3 LT-UAVs and (b) 5 LT-
UAVs. 
 

 
Fig. 4. An example deployment of HT-UAV, LT-UAVs, and 
IoT nodes. 
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Fig. 5. Total number of IoT nodes in service. 
 

We further compare the amount of computed data among 
the different baseline algorithms, as shown in Fig. 6. For 
simplicity, we assume that the deployed nodes are sensory in 
nature, and each aggregated datum per sensor contains 
approximately 5 Mbits of data.  It can be observed that 
JDACO computes more data than the other baseline 
approaches. Our proposed JDACO scheme computes 4.9 Gbits 
of data for 100 IoT nodes whereas Qmix and COMA compute 
4.4 Gbits and 4.1 Gbits of data, respectively, showing an 
increased computation volume of around 11.4%. The value 
decomposition architecture of JDACO divides the value 
function of a multi-agent problem into separate value 
functions for each agent. This allows agents to learn to 
cooperate with each other because they do not compete for the 
same resources. This indicates that less data loss is ensured by 
the proposed JDACO scheme, whereas the other schemes fail 
to compute a portion of their data. This result also indicates 
the linear scalability of our proposed scheme compared to 
other baseline algorithms. 

We compare the mission times for the different schemes 
while varying the number of LT-UAVs deployed, as 
illustrated in Fig. 7. It is not surprising that the HGA scheme 
requires the longest time to complete the aggregation and 
offloading mission, as it must satisfy all conditions for 
aggregation and computation constraints. While it is true that 
increasing the number of UAVs reduces the overall average 
mission time for all baseline schemes, JDACO requires the 
shortest average mission time for all three use cases (i.e., for 
different numbers of LT-UAVs). In case of 5 LT-UAVs 
deployment scenario, JDACO takes only 206s on average 
whereas the other two learning-based approaches take 232s 
and 256s, respectively, and the non-learning-based approach 
takes 298s. Therefore, our scheme demonstrates an 11.2% 
reduced average mission time when compared to the baseline 
schemes. This is because the sequential optimal actions of our 
JDACO algorithm are achieved by going through with a 
common objective for an individual agent or LT-UAV.  

We study the energy consumed by the LT-UAVs for 
different baseline schemes. We calculate the average energy 
expenditures for different CPU cycles for an LT-UAV with 
100 IoT nodes. As shown in Fig. 8, the proposed JDACO 

algorithm consumes less average energy than the other 
learning-based algorithms. We also observe the impact of 
computational capability on the energy requirements. By 
proposing an energy-saving scheme, the UAVs can perform 
missions for a longer time in JDACO, which extends the 
scalability of the proposed scheme. 

 
Fig. 6. Total amount of computed data. 

 
Fig. 7. Average mission time for different number of LT-
UAVs. 

 
Fig. 8. Average total energy consumption of LT-UAVs for 
different computation power of LT-UAV processor. 
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We also evaluate the average aggregation and execution 
times for different task sizes and compared them with those of 
other benchmarks. We explore the average aggregation and 
offloading times for each benchmark because each LT-UAV 
has its own respective time based on observations from the 
environment. As seen from Fig. 9, our proposed JDACO 
scheme has overall less average aggregation and execution 
time when matched with other benchmarks. As for Fig. 9(a), 
for the default 5 Mbits of task size, our proposed JDACO 
scheme has an average aggregation time of 245s which is 11s 
lower than the Qmix and 20s lower than the COMA approach. 
The HGA has the highest aggregation time of 276s for the 
same task size. As for the average execution time shown in 
Fig. 9(b), our approach only requires 47ms whereas the other 
three benchmarks of Qmix, COMA and HGA require 48ms, 
52ms and 55ms, respectively. The HGA has a higher time 
requirement for both instances of aggregation and execution 
time. This shows a clear distinction of reaching global optima 
effectively for the proposed scheme by utilizing the 
decomposition layer architecture. Although Qmix 
demonstrates a performance similar to that of our proposed 
scheme, COMA requires longer aggregation and task 
execution times in both cases. 

 
(a) 

 
(b) 

Fig. 9. Average (a) aggregation time and (b) execution time for 
different task sizes. 
 

We study the impact of task size on performance. In other 
words, the total energy consumption and mission execution 
time are observed by varying the task size. First, we study the 
average energy consumed by the UAVs for different task sizes. 
Fig. 10 shows the energy consumed by the different 
benchmarks. It should be noted that increasing task size 
influences the overall energy consumption for the process (i.e., 
the task) to be completed. For the default 5 Mbits of data size, 
JDACO demonstrates an average reduction of 24 KJ which is 
around 5.6% of energy reduction. JDACO has a requirement 
of 402KJ whereas Qmix, COMA and HGA had an average 
energy requirement of 426KJ, 456KJ and 542KJ, respectively. 
Compared to the Qmix approach, our proposed scheme saves 
24KJ of energy. This is expected as both JDACO and Qmix 
show similar performances since both provide value-
factorization-based solutions. Still the proposed JDACO 
algorithm consumes the least amount of energy among all 
other benchmarks for the aggregation and computational 
offloading processes. 

Similar to the energy consumption, we also examine the 
average mission time by varying the task size. Increasing the 
task size increases the overall mission time, because additional 
time is required to aggregate and compute the data for 
different task sizes. Fig. 11 illustrates the different mission 
times required for the data aggregation and computation 

 
Fig. 10. Average total energy consumption of LT-UAVs for 
different task sizes. 

 
Fig. 11. Average mission time for different task sizes. 
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offloading processes for different schemes. Our proposed 
JDACO scheme requires the least mission time compared to 
all the other benchmarks. This is because COMA operates 
under the principle of a counterfactual baseline mechanism, 
which inhibits the exploratory ability of the centralized critic. 
For the task size of 5 Mbit, JDACO took a duration of 300s 
which is than 10s less than the Qmix algorithm. 

VII. CONCLUSION 

In this study, we have presented a joint data aggregation and 
computation offloading scheme for post-disaster scenarios that 
minimizes the total cost of energy consumption and delays the 
aggregation and offloading processes. Our work addresses the 
need for efficient and adaptable solutions in scenarios where 
timely data aggregation and processing are of utmost 
importance. The joint optimization problem has been defined 
and formulated as an MDP. We have then solved the 
formulated MDP problem by proposing an MA-DRL-based 
JDACO algorithm to perform discrete cooperative action. Our 
simulation study shows that the proposed JDACO algorithm 
performs superiorly compared to other benchmarks in terms of 
mission execution time (i.e., delay) and energy consumption, 
while ensuring the maximum number of IoT devices in service. 
In our future work, we will not only consider mobile ground 
nodes, but also incorporate the object detection ability of 
individual UAVs as an extension of this work. Additionally, 
we would like to further extend our work with the 
heterogeneous IoT nodes. 
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