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Power-adaptive Communication with Channel-aware
Transmission Scheduling in WBANs
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Abstract—Radio links in Wireless Body Area Networks
(WBANs) are highly subject to short and long-term attenuation
due to the unstable network topology and frequent body block-
age. This instability makes it challenging to achieve reliable and
energy-efficient communication, but on the other hand, provides a
great potential for the sending nodes to dynamically schedule the
transmissions at the time with the best-expected channel quality.
Motivated by this, we propose IGE (Improved Gilbert-Elliott
Markov chain model), a memory-efficient Markov chain model
to monitor channel fluctuations and provide a long-term channel
prediction. We then design ATPS (Adaptive Transmission Power
Selection), a deadline-constrained channel scheduling scheme
that enables a sending node to buffer the packets when the
channel is bad and schedule them to be transmitted when the
channel is expected to be good within a deadline. ATPS can
self-learn the pattern of channel changes without imposing a
significant computation or memory overhead on the sending
node. We evaluate the performance of ATPS through experiments
using TelosB motes under different scenarios with different body
postures and packet rates. We further compare ATPS with
several state-of-the-art schemes including the optimal scheduling
policy in which the optimal transmission time for each packet is
calculated based on the collected RSSI (Received Signal Strength
Indicator) samples in an off-line manner. The experimental
results reveal that ATPS performs almost as efficiently as the
optimal scheme in high-date-rate scenarios and has a similar
trend on power level usage.

Index Terms—WBAN, Sensor Networks, Channel Prediction,
Markov Chain, Energy-aware, Power-adaptive Communication.

I. INTRODUCTION

OWING to technological advancements in designing tiny
communication and computing hardware, the idea of

using wearable sensors to monitor human health has attracted
tremendous interest. Motivated by this, the so-called Wireless
Body Area Networks (WBAN), a particular type of Wireless
Sensor Network (WSN) composed of a group of in-body
and/or on-body tiny sensors, has been standardized in IEEE
802.15.4 [1] and IEEE 802.15.6 [2] for the MAC and PHY
layers. In addition to health monitoring [3], WBANs support a
vast variety of applications from gaming and entertainment [4],
to fitness and sport [5], assisting with visual or aural disabil-
ities [6], and safety applications [7].

Due to the ever-increasing trend of miniaturizing sensors’
components, particularly the battery, energy efficient commu-
nication for WBANs to guarantee the long-lasting operation
of body sensors appears to be imperative, though challenging.
This is more problematic when it comes to the implanted
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sensors, which are expected to operate for several years. On the
other hand, WBANs drastically suffer from unstable channel
quality due to the frequent movements of the body or body
parts. Considering the inevitable demand for reliable delivery
of body sensor’s crucial measurements, designing an ultra-
reliable communication protocol over the unstable WBAN’s
channels is impossible to diminish. These concerns become
more challenging when high transmission power should be
used as little as possible to reduce interference. According to
the IEEE 802.15 working group document, the transmission
range of WBANs is expected to be less than 3 meters when
there could be up to 10 WBANs in a space of 6m3 [8].

A. Motivation & Challenges

This research primarily addresses the challenges in devel-
oping a power-adaptive communication protocol for WBANs.
This need arises from the dynamic topology of WBANs,
exemplified in Fig. 1, which shows different postures in a
walking gait cycle and their impact on the WBAN’s topol-
ogy. Our previous work, Chimp [9], demonstrated the initial
exploration of adapting transmit power in response to body
motion and channel fluctuations. Chimp’s approach, which
utilized angular velocity data in a reinforcement learning al-
gorithm, highlighted the potential for power adjustment based
on channel conditions. However, it exhibited limitations in
terms of slow adaptation to significant posture changes and
lacked long-term channel prediction and scheduling mecha-
nisms. This highlighted a gap in achieving efficient low-power
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Figure 1: Topology instability in WBANs [9].

TABLE I: PDR of Power Levels in Different Postures [9].
P:power level; T:transmission range (m); e:current usage (mA)

P T e Packet Delivery Rate (PDR)
(1) (2) (3) (4) (5)

1 1.2 7.6 0% 0% 0% 63.6% 84.3%
2 1.5 8.1 0% 7.1% 17.3% 88.3% 96.1%
3 35.5 8.5 92% 96.8% 95% 99.5% 99.3%
4 40.5 8.85 96.3% 99.2% 97.4% ≈100% ≈100%
5 44.5 9.2 96.6% 99.4% 97.4% ≈100% ≈100%
6 50.2 9.55 96.7% 99.4% 97.4% ≈100% ≈100%
7 > 50 9.9 99.2% 99.4% 98.7% ≈100% ≈100%
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communication, particularly when a Line-of-Sight (LoS) path
is anticipated to be available.

Table I shows the measurements for the seven lowest power
settings of the CC2420 radio [10] on the TelosB sensor
platform [11]. The data indicates that higher power levels,
while ensuring a better Packet Delivery Rate (PDR), also
result in increased energy consumption and a broader interfer-
ence range. Conversely, lower power levels are more energy-
efficient but show reduced PDR, especially in the absence of
a LoS path. These observations underline the need for a more
nuanced approach to power management in WBANs, one that
can dynamically adapt to changing channel conditions and
posture-related obstructions. This paper thus focuses on three
primary research challenges:
(1) Developing a method for a sending node in a WBAN

to predict highly unstable channel quality over extended
periods, despite rapid changes in body posture.

(2) Determining how a sending node can select the most
appropriate transmission power level based on this pre-
dicted channel quality, striking a balance between energy
efficiency and communication reliability.

(3) Designing a scheduling mechanism that allows the send-
ing node to choose its optimal transmission time, taking
advantage of periods with favorable channel conditions.

By addressing these challenges, we aim to enhance the
adaptability and efficiency of communication protocols in
WBANs, building on the insights gained from our previous
research and extending them with advanced prediction and
scheduling capabilities.

B. Novelty & Contributions

This paper introduces a novel communication method,
Adaptive Transmission Power Selection (ATPS) for WBANs.
The key idea of ATPS is to provide a long-term channel
prediction for the sending node to maximize its performance
through jointly adjusting the transmission power level and
rescheduling the packet if the channel quality is expected
to be better within the packet deadline. In this paper, a
new memory-efficient Markov chain model is designed to
address Challenge (1) by utilizing the relatively large channel
coherence time in WBANs (up to 70 ms [12]) and the periodic
nature of body activities (e.g., walking, jogging, running,
and cycling). Challenge (2) is addressed by utilizing a cost
function proposed in [9], through which the transmission
cost of each power level at a given channel quality can be
estimated. Finally, challenge (3) is addressed by introducing an
optimal deadline-constrained scheduling policy, using which
the sending node can select the best transmission time based
on the long-term channel prediction. Overall, each sending
node in ATPS can self-estimate its channel behavior and dy-
namically adjust its transmission power or schedule to achieve
high communication reliability, low energy consumption, and
low interference. The major contributions of this work are
summarized as follows:

• We present a comprehensive analysis of channel be-
havior study using two established models, leading to
the following key findings: (1) The Gilbert-Elliott (GE)

Markov chain model, while widely used, does not offer
the precision necessary for accurately capturing channel
behavior in WBANs. (2) The Extended GE (EGE) model,
though achieving high prediction accuracy, incurs sub-
stantial memory complexity, which limits its suitability
for resource-constrained body sensors. Building on this
analysis, we introduce the Improved GE Markov chain
model (IGE). IGE retains the predictive accuracy benefits
of the EGE model and effectively mitigates its memory
complexity issues. This approach allows for a detailed
comparative analysis of these three channel prediction
models.

• ATPS is designed to dynamically adjust the transmission
power at a per-transmission level using a channel predic-
tion model.

• A channel-aware deadline-constrained scheme for
scheduling packet transmissions is proposed to improve
the performance of ATPS. Based on the designed IGE
model, each sending node makes decisions on packet
transmissions to minimize the transmission cost, i.e., to
transmit immediately or wait for a future time frame
with better channel quality.

• The performance of the proposed channel model and
communication protocol is evaluated through experiments
on the TelosB sensor motes under different packet rates
and body postures. The results reveal a significant reduc-
tion in energy consumption and interference range.

The remainder of this paper is structured as follows: Sec-
tion II provides an overview of related works. Section III
analyzes channel behavior. Section IV explores two established
models for predicting channel behavior, and introduces the
innovative IGE model. Section V introduces ATPS and dis-
cusses the optimal deadline-constrained transmission schedul-
ing policy. Section VI evaluates the proposed channel model
and communication protocol. Section VII concludes this paper
and outlines potential future works.

II. RELATED WORKS

A. Channel prediction models

Pilot-based techniques have been widely used for estimat-
ing the communication channel characteristics between the
sending node and the gateway [13], [14]. In [13], where the
focus of the paper is on exploring the potential utilization
of optical wireless channels in WBANs, both the sending
node and the gateway periodically exchange pilot symbols.
This facilitates channel estimation at the gateway to obtain
channel characteristics accurately for the sensor-gateway link.
Notably, an optimal pilot-based channel estimation technique
is proposed in [14] specifically for EEG signal transmission,
aiming to mitigate channel-induced decoding errors at the
receiver. However, it is important to acknowledge that pilot
symbols necessitate the allocation of a dedicated portion of
the available bandwidth or time resources for transmission,
which might be less desirable in WBANs characterized by
highly time-varying channels.

According to [12], a practical channel estimator for WBANs
should be able to quickly adapt its estimations with sharp chan-
nel fluctuations and should be lightweight so that the resource-
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constrained sending nodes can perform it and estimate the
channel in a real-time manner. Lightweight linear estimators
such as linear least squares have been widely used to estimate
the channel quality in wireless networks [15], [16]. However,
they cannot predict the rapid channel dynamics in WBANs
because (1) they essentially behave like a filter that generates
a delayed version of the channel waveform [17], and (2) they
assume a linear relationship between the transmission signal
power and the Received Signal Strength Indicator (RSSI).
DPPI [18] avoids delay in channel prediction by utilizing a
built-in linear model. In DPPI, the gateway compares the RSSI
of the latest received packet with a predefined optimal RSSI
range ([RTL, RTH ]). If the measured RSSI falls in the optimal
range, the used transmission power is considered to be optimal;
otherwise, the optimal transmission power level is calculated
using the linear model and reported to the sending node. In
the same way, RL-TPC [19] uses a built-in linear model.
However, it first measures the Link Quality Indication (LQI)
of the received packet to make sure the received RSSI is not
increased by an interferer. If the LQI is low, RL-TPC switches
its channel frequency to avoid interference. Although DPPI
and RL-TPC can avoid delay in prediction, they cannot model
instant channel fluctuations. Besides that, due to the rapid
channel fluctuations in dynamic body postures, the assumption
of a linear relationship between transmission power and RSSI
degrades their performance. Moreover, by considering only
the RSSI of the last received packet, DPPI and RL-TPC may
encounter the ping-pong effect in which the sending node
iteratively alternates between two adjacent power levels i and
i+1 because the RSSI of power level i is less than RTL and
the RSSI of power level i+ 1 is higher than RTH [9].

To compensate for the drawbacks of the above methods
while keeping their advantages (e.g., low complexity), a lin-
ear prediction-based power-adaptive communication protocol
for WBAN is proposed in [17]. It combines the ability of
finite-state Markov chain models to describe the behavior of
a complex system with the simplicity of linear estimators.
This method benefits from the reciprocity of WBAN wireless
channels [20] and assumes the on-body channels are relatively
stable for a short period and the channel prediction is valid
for up to 1 second. Similarly, a lightweight linear channel
prediction algorithm is presented in [21] to enable a send-
ing node to track the channel quality variation. It combines
linear channel prediction with the Finite State Markov Chain
(FSMC) model so that a sending node can monitor the channel
history and extract the channel properties (i.e., the statistics
of the channel behavior). In this model, the states in the
Markov chain represent the RSSI sub-ranges and the transition
probabilities between different states are maintained using a
large-size Transition Matrix (TM). Although this method has
a very low computational complexity, its memory complexity
is extremely large in the order of O(ML+1), where M is the
number of RSSI sub-ranges and L is the length of history of
the latest channel observations. Moreover, it only predicts the
next channel state upon receiving a packet, and thereby cannot
be used for transmission scheduling to save energy and reduce
interference in delay-tolerant applications.

The GE model [22], [23] has been extensively used to

predict the behavior of a network link with a special focus
on burst error patterns. In [24] a centralized communication
protocol based on the GE model is proposed to provide a
reliable and energy-efficient TDMA-based communication. In
this method, the gateway estimates the channel fluctuations
of the wireless links and adjusts the transmission schedule
to minimize the energy consumption subject to desirable
network communication reliability and throughput constraints.
This method assumes that some channel parameters such
as the transition probability between different channel states
are constant as long as the body posture does not change.
However, in the GE model, the next state of the channel
depends only on the current state and the transit probabilities,
and not on the channel history. Hence, it cannot achieve
high accuracy in long-term channel prediction. The Extended
Gilbert-Elliott model (EGE) [25] extends the GE model to
remember the channel history by introducing internal sub-
states. The accuracy of EGE depends on the number of internal
sub-states. Its major drawback is the high memory complexity.

B. Power-adaptive communication
ExPerio [26], LPA [27], G-TPC [28], and M-TPC [29] uti-

lize the correlation between body motion pattern and channel
fluctuation. In these schemes, the sending node continuously
monitors the local acceleration signal to find a periodic motion.
Once the periodicity is detected, it measures the RSSI of the
received packets to find the RSSI peaks. By comparing the
acceleration peaks and RSSI peaks over the same period (e.g.
10 seconds), the sending node can approximate the time offset
between an acceleration peak and its corresponding RSSI
peak. Then, the transmissions are scheduled at the channel
peaks to achieve a high PDR using a low transmission power
level. However, these schemes suffer from high computation
overhead. For example, ExPerio has to perform about 100000
arithmetic operations to learn channel periodicity [26].

Chimp [9] also utilizes the correlation between body motion
pattern and channel fluctuation, but has low computation
complexity. Chimp feeds the locally measured angular velocity
data into a lightweight reinforcement learning algorithm. In
combination with the received ACK packets, it gradually
learns the optimal power level under each sub-range of angular
velocity. Although Chimp is lightweight, simple, and finds
the optimal transmit power level for a given channel quality,
its learning process is quite slow when the body posture is
changing (e.g., from standing to running). This problem is
avoided in Tuatara [30] by roughly estimating the real-time
location of the sending node relative to the gateway. Due to
the strong correlation between the location of a sending node
relative to the gateway and the channel quality, the sending
node can quickly adjust its power level before transmission,
when its current location is known. Although both Chimp and
particularly Tuatara achieve near-optimal results, they transmit
the packets as soon as they are generated without exploring
the advantage of dynamic transmission scheduling to further
reduce energy consumption and interference.

C. Dynamic transmission scheduling
Transmission scheduling in WBANs has been investigated

generally from two different perspectives: (1) focusing on
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reducing energy usage (e.g., ExPerio [26]); and (2) focusing
on prioritizing the emergency packets (e.g., EEEA-MAC [31]).
EEEA-MAC is an emergency-first slot allocation scheme for
multip-hop WBANs, in which the emergency data is han-
dled by relay nodes according to different criteria. Besides,
several papers have investigated transmission scheduling for
general WSNs. Soldati et al. [32] developed a mathematical
programming framework for joint routing and link scheduling
of deadline-constrained traffic in wireless sensor networks with
linear network topology. In [33], a reliable, energy-efficient,
and deadline-constrained routing protocol is proposed for
multi-hop communication networks. In this paper, the lossy
channel is modeled using a simple Markov chain model. It is
shown that the probability that a packet is delivered within a
deadline is maximized under the proposed policy. It is also
shown that an increasing number of paths between source and
destination achieve high reliability when links become more
bursty. In [34] a two-stage transmission scheduling policy for
real-time heterogeneous periodic traffic in one-hop WSNs was
investigated. However, all the above schemes assume both
network topology and sensor positions are constant. Therefore,
these existing schemes do not apply to WBANs.

Unlike most of the aforementioned schemes, our scheme
ATPS is self-organized and needs neither information about
the current body posture nor the location of the sending node.
It can self-estimate the channel quality in both static and
dynamic postures even when the motion patterns (and con-
sequently the channel properties) of the subject are changed
during a single posture (e.g., when the subject increases
or decreases walking speed). The proposed model is highly
memory efficient and lightweight. Hence, it can be used by
the sending node for power-adaptive communication without
imposing a problematic overhead. It can provide a long-term
channel prediction that makes the use of scheduling policies
beneficial for delay-tolerant applications.

III. CHANNEL CHARACTERISING

The variation in WBAN’s channel quality can be char-
acterized using the RSSI, as detailed in [18] and [30].
Additionally, dividing the RSSI range into several coarse-
grained sub-ranges through RSSI thresholding is a practical
and commonly used method to classify channel quality into
distinct states [35]. Assuming that the channels in WBANs are
symmetric, there are two methods for informing the sending
node about channel quality, based on RSSI measurements:
(1) The gateway measures the RSSI of incoming packets and
includes this data in ACK packets. While feasible, this method
is complex due to varying transmission power levels of the
sending node, complicating the interpretation of RSSI values.
(2) The sending node measures the RSSI of ACK or beacon
packets from the gateway. As the gateway, often a mobile
phone, doesn’t have battery constraints and can maintain stable
transmission power, this method is simpler and more reliable,
avoiding the need to account for variable power levels. We
chose the second approach for its simplicity and elimination
of the need for extra data in ACK packets.

Guided by this assumption, this section begins with an
investigation into channel symmetry within WBANs. Fol-
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Figure 2: (a) Probability distribution of difference of RSSI at
sending node and gateway (b) Mean and standard deviation of
the differences.

lowing this, we proceed to delineate the channel’s behavior
during daily physical activities. Our investigations indicate that
channels in WBANs exhibit a significant degree of spatio-
temporal locality. That is, the channel tends to remain in
the same state for a long period before transitioning to a
different state. This characteristic can be leveraged to enhance
channel prediction and scheduling effectiveness. Ultimately,
we elucidate the process of mapping channel quality onto
channel states (represented by RSSI sub-ranges) using RSSI
thresholding. To this end, we carry out experiments to collect
RSSI samples across different static and dynamic postures
including standing, sitting, driving, walking, and running.
In these experiments, the same one-hop star topology as
presented in Fig. 1 is adapted with the sending node attached
to the wrist and the gateway mounted on the chest.

A. Validation on Channel Symmetry

To justify the symmetry of wireless channels in WBANs, the
gateway and the sending node periodically exchange packets.
For each packet received from the gateway, the sending node
measures the RSSI and promptly responds by incorporating
the measured RSSI value into its reply packet. Conversely, the
gateway measures the RSSI for each packet received from the
sending node, allowing it to determine the RSSI for the link
in both directions. Fig. 2(a) shows the probability distribution
of the difference between the measured RSSIs at the sending
node and the gateway for power level 7. According to the
three-sigma-rule of thumb (also called the 68–95–99.7 rule),
if at least 65%, 95%, and 99.7% of the samples lie in the
first, second, and third standard deviations of the sample set,
respectively, the distribution is normal with high certainty. By
analyzing the difference in RSSIs from and to the gateway,
we observe that their distribution follows the three-sigma rule
of thumb and thus it has a normal distribution in all postures.
The mean and the standard deviation of differences in RSSIs
between measured samples are depicted in Fig. 2(b). With
mean and standard deviation values below 1 dB for each
distribution, it can be inferred that the channel is symmetric
at power level 7. This observation holds for experiments
conducted at other power levels as well.

B. Channel behaviour analysis

Power adaptive communication is possible if the sending
node adjusts its transmission power to a low power when the
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LoS path to the gateway is available and switches to a high
power when the LoS path is blocked. However, due to the
topology instability, the LoS path is frequently disconnected.
To enhance analytical clarity, we have simplified our model of
channel behavior to encompass two distinct states, denoted as
Ω = {G,B}. Here, Ω represents the set of channel states. The
state ‘G’ signifies the presence of the LoS path, indicative of
a favorable channel condition, while ‘B’ indicates its absence,
corresponding to an unfavorable channel state.

To analyze the channel’s behavior, specifically the pattern of
LoS path availability, we conducted a series of measurement
campaigns. In our setup, time is divided into frames, and
the beginning of each frame is indicated by a beacon packet
transmitted by the gateway [1], [2]. The gateway adjusts
its power level to level 1 due to the higher sensitivity of
lower power levels to body blockage. Following the channel
symmetry in WBANs, the sending node can classify the
channel state based on the reception of the beacon packets.
That is if the beacon packet is received, the channel is
classified as being in the G state; otherwise, it is classified
as being in the B state. The sequence of channel states
observed over time is considered as a discrete-time time series
X = {xt}Nt=1 where N is the total number of frames (i.e.,
the total number of observations) and t is the frame number,
so xt is the tth observation. We introduce the term "state-
duration," which quantifies the duration for which the channel
remains in a particular state (state ‘i’) before transiting to
a different state. The observations are grouped in the form
of i-state-duration {icr}nr=1, where icr represents the rth time
that state i ∈ Ω = {G,B} is observed for exactly c (c ∈
{1, 2, 3, . . . , N}) consecutive times. For example, the obser-
vation set {GGBBGGBBBGGGBBBBBGGGBB . . . }
can be represented by {G2

1, B
2
1 , G

2
2, B

3
1 , G

3
1, B

5
1 , G

3
2, B

2
2 , . . . }.

This representation of channel state observations helps illus-
trate the high-level overview of channel behavior, specifically,
the transitions between channel states.

Fig. 3 shows the distribution of the length of state-durations
(i.e., length of being in state G or B) during 5 minutes of
walking and running. By analyzing the state-durations, we
observe that the distribution of the length being in a state
follows the three-sigma rule of thumb and thus it has a normal
distribution. Following this observation and to analyze the
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long-term channel state transition more accurately, we propose
the following metric:

• P c
ij(t): assuming the channel moves to state i at frame

t, P c
ij(t) is defined as the probability of observing c− 1

consecutive channel states in the current state i after t
and observing the state j at frame t+ c, that is,

P c
ij(t) = P

(
xt+1 = xt+2 = · · · = xt+c−1 = i, ∧

xt+c = j | xt = i ∧ xt−1 ̸= i
) (1)

where i, j ∈ Ω and c stands for consecutive. We plot it
for different states using the collected channel observations
to show how P c

ij(t) can characterize channel behavior. For
scenarios with static body postures such as standing and
sitting, it is observed that the channel quality remains stable,
that is, P c

GG(t) is close to 1 when the LoS path is available,
and P c

BB(t) is close to 1 when the LoS path is blocked
by the human body. However, the channel quality during
dynamic postures is quite unstable. Fig. 4 shows P c

ij(t) during
walking and running. As can be seen from Fig. 4, P c

ij(t)
for the case j ̸= i (Fig. 4(b)) has the reverse trend to that
P c
ij(t) with j = i (Fig. 4(a)), however, this is the case

only for Markov models with two states. P c
ij(t) looks like

an S-shaped logistic function, which indicates the existence
of spatio-temporal locality among RSSI samples. That is, if
the channel moves to state i, the probability the channel
moves to another state j is low at the beginning but will
gradually increase. If each sending node knows P c

ij(t), it can
predict the long-term channel state transitions and adjust its
transmission power to save energy and reduce interference.
To acquire this information (i.e., P c

ij(t)), Section IV initially
scrutinizes two established channel models. Subsequently, it
introduces the proposed channel model, designed to provide
precise estimations of P c

ij(t). Before this, we elucidate the
process by which channel quality is translated into multiple
channel states through RSSI thresholding.

C. Classifying channel quality into multiple states

In our previous discussion, we classified channel quality
into two states: Good (G) and Bad (B). Moving forward, we
will outline a method for dividing channel quality into several
states. For this purpose, we partition the RSSI range of the
CC2420 radio chip, which spans from -90dBm to 0dBm, into
multiple sub-ranges. Each of these sub-ranges is termed as a
state i. In each state i, we configure a corresponding power
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Figure 5: Partitioning RSSI range into a few channel states
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Figure 6: (a) Reliability of different power levels under differ-
ent channel quality, (b) transmission cost of different power
levels under different channel quality, and (c) state transition
according to the RSSI range.

level, also labeled as i, to minimize transmission costs. We
will later explain this concept of reducing transmission costs
in more detail.

As discussed in Section I (also in [9]), power levels 1, 3, and
7 of the CC2420 radio chip are enough to provide short-range
reliable communications in WBANs. Therefore, the channel
quality can be classified into three states (Ω = {1, 3, 7}).
Fig. 5(a) shows the RSSI variation during running. Following
what was said, the RSSI range is partitioned into 3 sub-
ranges, each of which represents a channel state. Someone may
argue that since the RSSI is noisy, its irregular fluctuations
may influence the channel state transition pattern. Due to
the limited RSSI fluctuation, a coarse-grain classification of
RSSI range into a few channel states limits the effects of
noise, as demonstrated in Fig. 5(b) which shows filtered RSSI
(smoothed using a simple weighted averaging filter) and state
transition of the same period during running.

To find the boundaries of the corresponding RSSI range per
each channel state i, three rounds (called round-1, round-3,
and round-7) of experiments in different postures have been

carried out. In round i, the sending node periodically transmits
a packet using power level i. Given that the sending node and
the gateway are synchronized, the gateway sends back an ACK
or NACK packet with power level 7 depending on the delivery
status of the packet transmitted by the sending node. When the
sending node receives the ACK/NACK, its RSSI is measured.
By counting the number of ACK packets, the communication
reliability with power level i per each sub-range of RSSI can
be calculated. Fig. 6(a) shows the communication reliability of
different power levels. As is expected, the communication re-
liability of all power levels is increased as the RSSI increases.
By knowing the communication reliability of each power level
i at each state, the transmission cost of the power level is
calculated according to the following cost function introduced
in [9]:

costi =
P i
tx

ri
(2)

where P i
tx is the transmission signal power of power level i

and ri is its corresponding reliability. Fig. 6(b) shows how the
transmission cost of different power levels is changed with
the increase in RSSI (i.e., with the increase in reliability). By
comparing the transmission cost of each power level, the RSSI
boundaries for each state i are defined as follows: the RSSI
boundaries for state i are a range of RSSIs within which the
transmission cost using power level i is lower than that of
other power levels. For example, as can be seen in Fig. 6(b),
the transmission cost of power level 3 in the RSSI range of -67
dBm to -39 dBm is lower than the transmission cost of other
power levels. Fig. 6(c) shows the state transition machine with
RSSI boundaries (i.e., the optimal RSSI range), where each
link is labeled with the channel state transition criteria. Hence,
a transition from any state to state i occurs if the measured
RSSI falls in the RSSI boundaries of state i.

IV. CHANNEL MODELING

In this section, we first describe two well-established
Markov models for channel prediction. Following this, our
proposed model is introduced and examined in detail. The
third subsection provides an extensive analysis of each model,
highlighting its strengths and weaknesses. We also present ex-
perimental results using collected channel data to demonstrate
the superior performance of our proposed model. To simplify
our explanation, we assume the channel alternates between
two states: G and B.

A. Gilbert-Elliott (GE) Model and Its Extended Version

The GE model has been widely used to model burst error
patterns of communication links. As illustrated in Fig. 7, it
is a simple Markov chain with two states G and B. The
link transits between two states with probability PGB from
G to B and PBG from B to G, and remains in G state with
probability PGG and in B state with probability PBB . These
probabilities are commonly represented using the Transition
Matrix (TM). Based on the collected channel observations,
the TMs for walking and running are calculated, as shown in
Fig. 7. It can be seen that, for both walking and running, PBB

and PGG are close to 1, indicating the existence of high state
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Figure 7: The state diagram and transition matrices of GE
model during walking and running

persistence. That is, the channel tends to remain in the same
state for longer periods before transitioning to a different state.
To estimate P c

ij(t) (i, j ∈ Ω = {G,B}), GE uses the equation
below:

P c
ij = Pii × Pii × Pii × . . . Pii︸ ︷︷ ︸

c-1 times

×Pij (3)

where Pii and Pij are obtained from TM.
GE model is unable to remember history and, thus, is not

reliable in long-term channel prediction. This is elaborated
upon in Section IV-C. Hence, the Extended GE model (EGE)
was proposed in [25] to remember the channel history. As
illustrated in Fig. 8, the major difference between GE and
EGE is that EGE has internal sub-states. Therefore, EGE has
two types of transitions: intra-transitions and inter-transitions.
For instance, if the channel transits to the G state from the
B state, it transits to the first sub-state in the G state (i.e.,
G1). If the next channel state is G, an intra-transition occurs,
and the channel transits to the second sub-state in the G state
(G2). After observing the G state for n consecutive times, if
a B state is observed, the channel transits from the nth sub-
state in the G state to the first sub-state in the B state, i.e.,
transits from Gn to B1. In other words, assuming each state
i has m internal sub-states, the sub-state ir represents the rth

successive observation in state i. Hence, EGE can represent
different state-durations given a sufficient number of internal
sub-states. EGE estimates P c

ij(t) using the equation below:

P c
ij = Pi1i2 × Pi2i3 × Pi3i4 × . . . Pic−1ic × Picj1 (4)

As it will be discussed in Section IV-C EGE compensates
the inaccuracy of GE in long-term channel prediction by
leveraging a considerable amount of sub-states which imposes
unaffordable memory complexity.

B. Improved GE (IGE) Model

To sustain the advantage of EGE on prediction accuracy
but overcome its drawback on complexity, we propose a
new channel model that takes the normal distribution of
state-durations into account for better channel prediction.
As demonstrated earlier in Fig. 4, the behavior of P c

ij(t)

𝑃𝐺1𝐵1

𝑃𝐵1𝐺1𝐺2

𝑃𝐺1𝐺2

.  .  .

𝑃𝐺2𝐺3𝑃𝐺3𝐺4𝑃𝐺𝑛𝐺𝑛

𝑃𝐺𝑛𝐵1

𝑃𝐺3𝐵1

𝑃𝐺𝑛−1𝐺𝑛

𝐺

𝐺𝑛 𝐺3 𝐺2 𝐺1 .  .  .

𝑃𝐵1𝐵2
𝑃𝐵𝑚−1𝐵𝑚

𝑃𝐵𝑚𝐵𝑚
𝑃𝐵𝑚𝐺1

𝑃𝐵2𝐵3 𝑃𝐵3𝐵4

𝐵1 𝐵2 𝐵3 𝐵𝑚

𝐵

Figure 8: Extended GE model.
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Figure 9: IGE model: (a) P c
ii variation trend; (b) IGE diagram.

exhibits an "S-shaped" pattern. Drawing inspiration from this
observation, we can partition P c

ij(t) for cases where j = i
into three distinct segments, as shown in Fig. 9(a). These
segments are determined based on the values of µi and σi,
where µi and σi denote the mean and standard deviation of
the i-state-durations, respectively. P c

ii(t) is approximately 1 in
Part I and almost 0 in Part III. The transition occurs in Part
II, in which P c

ii(t) is decreased exponentially before µi and
logarithmically after µi. This observation also reveals that the
trend of P c

ij(t) for the case j = i has the reverse trend to that
of the Cumulative Distribution Function (CDF) of the length
of i-state-durations. The trend of CDF of a normal distribution
can be described by its mean and its standard deviation. Thus,
to predict the trend of P c

ij(t), the GE model is extended by
associating the following three parameters with each state i:
µi, σi, and counteri (Fig. 9(b)). counteri represents the length
of the current i-state-duration, which is similar to the sub-
states in EGE and is reset to zero after each inter-transition.
For example, if the channel moves to state i from state j,
couterj is reset to zero but counteri is set to 1. If the next
channel state is i, counteri is increased by 1. After each inter-
transition, µi and σi are updated as follows:

µi = ω × counteri + (1− ω)× µi, (5)

σi = ω × |counteri − µi|+ (1− ω)× σi, (6)

where ω is a weighting factor. Please note, since these vari-
ables are not included in the TM, adding them to the model
does not add memory to the process and thus does not make
the random process non-Markovian. Fig. 9(b) gives an example
of IGE with 3 states (for 3 favorable power levels: 1, 3, and
7). In what follows, we develop a new function to estimate
P c
ij(t) using the IGE model.
Considering that the trend of P c

ij(t) for the case j = i
has the reverse trend to that of CDF of the length of i-state-
duration and following the formula for the CDF of the normal
distribution, we model P c

ii(t) as follows:

P c
ii(t) = 1− CDF (µi, σi, c+ counteri) =

1− 1

σi

√
2π

c−1∑
k=0

exp− (k + counteri − µi)

2σ2
i

.
(7)

Accordingly, P c
ij(t) with j ̸= i can be rewritten based on
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the chain rule of conditional probability as below:

P c
ij(t) = P c−1

ii (t)︸ ︷︷ ︸
A

×

P (xt+c = j|xt = · · · = xt+c−1 = i ∧ xt−1 ̸= i)︸ ︷︷ ︸
B

(8)

where part A calculates the probability of being in state i from
frame t to frame t+ c−1. It is determined using Eq. (7). Part
B computes the transition probability from state i to state j at
frame t+ c. In what follows, we discuss how to calculate part
B. We first rewrite P c

ii based on the chain rule of conditional
probability:

P c
ii(t) = P c−1

ii (t)×
P (xt+c = i|xt = · · · = xt+c−1 = i ∧ xt−1 ̸= i).

Thus:

P (xt+c = i|xt = · · · = xt+c−1 = i ∧ xt−1 ̸= i) =
P c
ii(t)

P c−1
ii (t)

.

On the other side, the probability of leaving state i at t+ c
given that the channel has been in the state i from t to t+c−1
can be calculated as below:∑

j∈Ω
j ̸=i

P (xt+c = j|xt = · · · = xt+c−1 = i ∧ xt−1 ̸= i)

= 1− P (xt+c = i|xt = · · · = xt+c−1 = i ∧ xt−1 ̸= i)

= 1− P c
ii(t)

P c−1
ii (t)

.

Therefore, the probability of transiting to a specific new
state j ̸= i (i.e., part B) can be calculated as follows:

P (xt+c =j|xt = · · · = xt+c−1 = i ∧ xt−1 ̸= i) =(
1− P c

ii(t)

P c−1
ii (t)

)
× Pij

1− Pii

(9)

where both Pij and Pii are derived from the transition matrix
and represent the transition probability from state i to the state
j, and the probability of a self-transition at state i, respectively.
Based on Eq. (9), Eq. (8) can be written as

P c
ij(t) = P c−1

ii (t)×
(
1− P c

ii(t)

P c−1
ii (t)

)
× Pij

1− Pii

=
(
P c−1
ii − P c

ii

)
× Pij

1− Pii
.

(10)

C. Comparative Analysis of GE, EGE, and IGE

In this section, we present a comparative analysis of the
established GE and EGE models, alongside our proposed IGE
model. To facilitate this comparison, we conducted a series of
simulations using collected RSSI samples. These simulations
help us to better understand how each model performs in
predicting channel quality over an extended period. Fig. 10
illustrates the GE model’s estimations for P c

ij(t) in scenarios
of walking and running, specifically for the case where j = i
(denoted as P c

ii(t)). P c
ij(t) for j ̸= i has not been shown

as it has the reverse trend to that P c
ii(t), as demonstrated in

Fig. 4(b). By comparing with Fig. 4(a), it can be seen that
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Figure 10: Estimated P c
GG and P c

BB by GE model.

there is a big difference between the P c
ii predicted by the

GE model and that calculated based on the real observations.
That is, the GE model can effectively predict the probability
of channel state transitions for the next one or two frames,
but its long-term predictions are highly inaccurate. The key
reason is that the length of the state-duartions does not match
an exponential distribution. In other words, in the GE model,
the state of the channel at the next frame depends only on
the state at the current frame and the transit probabilities,
and not on the channel history. For example, the TMs of
the following two sample blocks ‘GGBBBBGGGGGGBBBB’
and ‘GGGGBBGGGGBBBBBB’ are the same but their pattern
(i.e., their state-duration) are different. Due to this memoryless
property, P c

ij(t) estimated by the GE model doesn’t match with
the one presented in Fig. 4(a).

The EGE model was developed to address the lack of a
memory component in the GE model, while still preserving
its essential Markovian property. Since the channel fluctuation
in the periodic dynamic postures (e.g., in the walking) behaves
like a periodic random process, the sufficient number of sub-
states in EGE depends not only on the frame rate but also
on the fluctuation period (in terms of the number of channel
observations). In other words, if the number of sub-states in
EGE is not smaller than the largest state-duration, EGE can
model the behavior of the periodic random process.

A gait cycle usually takes about 1 second because the
average number of steps in walking is about 116 steps per
minute [36]. Since the availability of the LoS path is changed
during one gait cycle (see Fig. 1), at the rate of 20 frames
per second, EGE requires at least 20 sub-states per each
state. To demonstrate the influence of sub-state quantity on
EGE performance, we have employed EGE to model channel
behavior during both walking and running activities using

c
10 20 30 40 50

P
ro

b
ai

li
ty

0

0.2

0.4

0.6

0.8

1
P

GG

c
 (walking)

P
BB

c
 (walking)

P
GG

c
 (running)

P
BB

c
 (running)

(a)
c

10 20 30 40 50

P
ro

b
ai

li
ty

0

0.2

0.4

0.6

0.8

1
P

GG

c
 (walking)

P
BB

c
 (walking)

P
GG

c
 (running)

P
BB

c
 (running)

(b)

Figure 11: P c
GG and P c

BB with EGE: (a) m = 10, and (b)
m = 50.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3355702

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, 1 JULY 2023 9

two distinct sub-state configurations: (a) 10 sub-states, falling
below the minimum required quantity, and (b) 50 sub-states,
ensuring an ample sub-state count.

Fig. 11 shows the P c
GG and P c

BB estimated by EGE with
10 and 50 sub-states. As anticipated, the accuracy of EGE
is contingent upon the number of sub-states. Specifically, a
greater number of states leads to enhanced estimation accu-
racy. However, EGE’s major drawback is the high memory
complexity, O(|Ω|2m2), where |Ω| and m are the number of
general states and sub-states per general state, respectively.
In contrast to EGE, IGE exhibits reduced memory complex-
ity, falling within the same order of magnitude as the GE
model. Specifically, the memory complexity of IGE is now at
O(|Ω|2 + 3× |Ω|).

Following the preceding discussion, we carried out simula-
tions to assess the accuracy of the proposed model. Fig. 12
illustrates that the predicted trend of P c

ii(t) using the proposed
model is very similar to its real trend. Hence, the proposed
model can estimate the long-term channel transition accurately.
Section VI-B further examines the influence of the models
under discussion on the performance of the proposed commu-
nication protocol.
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Figure 12: Estimated P c
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BB by IGE model compared
with real measurements (a) walking (b) running.

V. THE PROTOCOL DESIGN OF ATPS
In this section, we present the development of the proposed

ATPS protocol. Initially, we provide an overview of the
system setup specific to WBANs, adhering to IEEE standards.
Based on this standard, we investigate the intricacies of the
ATPS protocol, focusing particularly on the methodology
for adjusting transmission power levels according to channel
predictions. The section then progresses to introduce a novel
scheduling algorithm designed to optimize transmission costs.
That is, instead of immediate transmission, the sending node
considers the option of postponing its transmission if the
channel quality is predicted to become better. This is achieved
by strategically selecting the most suitable time frame for
transmitting packets. Central to this algorithm is its ability
to adapt to channel variations and accurately predict the
likelihood of being in a specific channel state at a given
future moment. In what follows, we explain different steps
of building the ATPS communication protocol.

A. Communication Setup

Consider a WBAN composed of several sending nodes and
a gateway where the sending nodes communicate with the

CFP CAP

Superframe
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𝑡0
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1 2 . . . n 1 2 . . . m
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Data Packet Scheduled Packet at 𝑡⋆ Deadline

Figure 13: Illustration of packet scheduling

gateway directly in a one-hop star topology. Fig. 13 shows
a TDMA-based MAC setup for WBANs following IEEE
standards [1], [2]. In this setup, time is divided into frames,
and the start of each frame is announced using a beacon
packet transmitted by the gateway. Each frame includes a CFP
(contention-free period) and a CAP (contention access period).
The CFP includes n time slots (where n is the number of
sending nodes) and each time slot is pre-allocated to a specific
sending node in WBAN through which intra-WBAN collisions
are avoided. CFP’s objective is to provide each node with an
exclusive opportunity to transmit at least one packet within
a frame without contending with others. However, a node
may choose not to utilize this opportunity due to unfavorable
channel conditions, resulting in packet buffering.

The CAP consists of m time slots. In these slots, those
sending nodes that have extra packets compete with each other
to access the channel following a slotted CSMA/CA algorithm.
Since bursty transmission is permitted, any sending node with
packets in its buffer will compete for every available time
slot in CAP. This continues until either its buffer is empty or
there are no more time slots unless the channel conditions are
unfavorable. Note that each time slot is assumed to be long
enough to allow transmitting a data packet and receiving its
corresponding ACK packet.

ALGORITHM 1: Proposed ATPS
Input : RSSI of beacon packet and channel model

properties at t0 (I(t0))
1 p← packet generated at t0;
2 retrans_count← 0;
3 do
4 i← channel(t0);/* select power based on

the estimated channel state */

5 send(p, i);/* send packet p using power

level i */

6 if ACK is received then
7 rssi← RSSI(ACK);
8 find the real channel state based on the

measured rssi;
9 update channel model properties;

10 break;

11 retrans_count = retrans_count+ 1
12 update channel model properties;
13 while retrans_count < retrans_threshold;
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B. Adaptive Transmission Power Selection (ATPS)

Algorithm 1 shows the procedure of the proposed ATPS at
each sending node. When the beacon packet is received, the
sending node measures its RSSI and checks the channel state
following the channel symmetry and using the current channel
state information provided by the channel model (e.g., GE,
EGE, or IGE). Since each state i (i ∈ {1, 3, 7}) represents a
channel state for which power level i is the best power level for
communication, the sending node can select the corresponding
power level based on the channel estimation (line 4). Once
the channel state is estimated and the power level is selected,
the packet is transmitted using the selected power level (line
5). Since the time difference between sending a packet and
receiving its ACK packet is short, it is reasonable to assume
that the channel does not change during a time slot. Due to
channel symmetry, the ACK packet can be sent back to the
sending node using the same power level. To this end, the
sending node should include its transmit power level in the
packet. However, the focus of this paper is on reducing the
battery usage of the sending node, and we assume the battery
of the gateway can be easily replaced or recharged. Hence,
to avoid complexity and overhead, we assume ACK packets
are always transmitted by power level 7. After measuring
the RSSI of the received ACK packet, following the Markov
models described in Section III, the transition probabilities are
updated for future channel estimation. In case the ACK packet
is not received, the sending node assumes the channel quality
is worse than its estimation. Thus, it makes another estimation
among the states related to the lower channel quality. If
retransmission is enabled, the sending node repeats all steps
mentioned above.

Since channel quality in WBANs changes over time due to
body movements, it just wastes energy to transmit packets
when the channel quality is bad. In many applications of
WBANs, packet transmission can tolerate some delay. Hence,
energy can be saved by postponing the packet transmission
until the channel becomes good. Motivated by this, we present
a transmission scheduling policy to save energy, reduce in-
terference, and improve communication reliability. To learn
the channel variation pattern, the sending nodes benefit from
the discussed channel prediction models (GE, EGE, or IGE).
Since the channel does not drastically vary in a few tens of
milliseconds even when the subject is running, it is assumed
that the channel is stable during a frame.

C. Scheduling-Enabled ATPS

Algorithm 2 shows the pseudo-code of the proposed
scheduling-enabled ATPS. Note that the scheduling algorithm
is independently executed by every single sending node.
Consider a sending node where a newly generated packet at
frame t0 should be transmitted within the next D frames, as
illustrated in Fig. 13. The idea of scheduling is to find the
best frame t⋆ (t0 ≤ t⋆ ≤ t0 +D) where the transmission cost
is minimum (lines 3-12). To this end, the following function
is defined to explore the average transmission cost at frame
t0 + t (where 0 < t ≤ D):

ALGORITHM 2: Scheduling enabled ATPS
Input : channel model properties at frame t0 (I(t0))

1 p← packet generated at t0;
2 retrans_count← 0;
3 t⋆ = t0 + 1;
4 for t = 1, . . . , D do
5 C(t0 + t, I(t0)) = 0;
6 for j = 1, . . . , |Ω| do
7 C(t0+ t, I(t0))+ = P (t0, i, t0+ t, j, c)× costj ;

8 if C(t0 + t, I(t0)) < C(t⋆, I(t0)) then
9 t⋆ = t0 + t;

10 schedule p to be sent at t⋆;
11 channel(t0)← estimated channel state at frame t0;
12 if packet is available to be sent at t0 then
13 p← packet scheduled to be sent at t0;
14 do
15 i← channel(t0);/* select power level

*/

16 send(p, i);/* send with power level i

*/

17 if ACK is received then
18 ri = ω × ri + (1− ω);
19 rssi← RSSI(ACK);
20 channel(t0)← real channel state at t0 that

is determined based on rssi;
21 break;

22 ri = ω × ri;
23 retrans_count = retrans_count+ 1
24 updatemodel properties;
25 channel(t0)← estimated channel state at t0;
26 while retrans_count < retrans_threshold;

C(t0 + t, I(t0)) =
∑
j∈Ω

P (t0, i, t0 + t, j, c)× costj (11)

where costj represents the transmission cost using power level
j and is calculated using Eq. (2). I(t0) is the information
about the channel variation pattern at frame t0, including the
mean and the variance of state-duration of each state i (i.e., µi

and σi). c represents the length of the current state-duration
in the current channel state i. P (t0, i, t0 + t, j, c) shows the
probability of being in state j at t0+ t, given that the channel
state at t0 is i and c consecutive samples in this state has been
observed. To calculate the transmission cost at each channel
state j, the PDR of communication at this channel state is
needed. rj is defined as the average PDR at channel state
j. Since each sending node doesn’t know the communication
reliability of different power levels at the beginning, rj is set
to 1. Then, rj is updated after each transmission in state j as
below (lines 18 and 22):

rj = ω × rj + (1− ω)×ACK (12)

where 0 ≤ ω ≤ 1 is the weighting factor and ACK is 1 if
the packet is delivered and 0 if the packet is lost. Once the
transmission cost at each frame is calculated, the packet is
scheduled to be sent at the best frame (t⋆) which is the frame
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with the minimum expected transmission cost. The minimum
expected transmission cost and the corresponding transmission
time (t⋆) are defined as below:

C(t⋆, I(t0)) = minDt=0C(t0 + t, I(t0)) (13)
To calculate Eq. (11) at each frame t, P (t0, i, t0 + t, j, c)

needs to be calculated using the equation below:

P (t0, i, t0 + t, j, c) =∑
k∈Ω

P (t0, i, t0 + 1, k, c)× P (t0 + 1, k, t0 + t, j, c′) (14)

where P (t0, i, t0+1, k, c) is equal to P c
ik, which is calculated

using Eq. (7) or (10). c′ is the length of state-duration in the
channel state at the next frame. Therefore, it is 1 if the next
channel state is new (i ̸= k); otherwise, it is c + 1. As soon
as t⋆ is calculated, the packet is buffered until its scheduled
release frame. In each frame, the sending node checks the
buffer for any scheduled packet to be sent (line 12). If there is
a packet, the sending node transmits the packet and listens to
the channel for the ACK packet. If the ACK packet is received,
its RSSI is measured, the reliability of communication using
the selected power level is updated, and the real channel state
is determined (lines 17-21). Otherwise, if the packet(s) is
lost, the sending node finds it has overestimated the channel
quality, and thus, it updates the current channel state to a
new higher level. In case there is no packet to send, the
sending node evaluates its internal channel model to make
predictions. Therefore, it updates the channel states based on
its estimation as it is impossible to get the real channel state
without communication.

D. Efficient calculation of channel transition probabilities
using dynamic programming

As can be seen from Eq. (14), P (t0, i, t0 + t, j, c) is
calculated on a recursive basis that takes t− 1 steps. At each
step t′, |Ω|t′ new components are generated. The total number
of components to be calculated is:

|Ω|+ |Ω|2+ |Ω|3+ · · ·+ |Ω|t−2+ |Ω|t−1 =
|Ω|t − 1

|Ω| − 1
−1 (15)

According to Eq. (15), the time complexity of recursively
calculating P (t0, i, t0 + t, j, c) is O(|Ω|t). Many of the re-
cursive components have the same results which indicate a
potential to calculate each component only once and then reuse
the results. Motivated by this, instead of using a recursive
approach, a dynamic programming solution is designed to
remember intermediate results and reuse them through which,
the time complexity of calculating P (t0, i, t0 + t, j, c) is
extremely reduced. It can be seen that in each step only half
of the components (generally, only |Ω|× t0 components) need
to be calculated. Therefore, generally, the total number of the
required components to be calculated to find P (t0, i, t0+t, j, c)
using dynamic programming is:

|Ω|+2×|Ω|+3×|Ω|+ · · ·+(t−1)×|Ω| = t× (t− 1)× |Ω|
2

(16)
Thus, the time complexity of calculating P (t0, i, t0 +

t, j, c) using the dynamic programming solution is reduced to
O(|Ω| × t2). Algorithm 3 gives the pseudocode of calculating

ALGORITHM 3: Calculation of P (t0, i, t0 + t, j, c)
using dynamic programming

1 Function: P(t0, i, t0 + t, j, c)
2 for τ = t− 1, . . . , 0 do
3 for k = 1, . . . , |Ω| do
4 if τ == t− 1 then
5 if k == i then
6 for c′ = 1, . . . , τ − 1, c+ τ do
7 P (t0 + τ, k, t0 + t, j, c′) = P c′

kj ;

8 else
9 for c′ = 1, . . . , τ do

10 P (t0 + τ, k, t0 + t, j, c′) = P c′

kj ;

11 else
12 if k == i then
13 for c′ = 1, . . . , τ − 1, c+ τ do
14 P (t0 + τ, k, t0 + t, j, c′) =

P (t0 + τ + 1, k, t0 + t, j, c′ + 1);
15 for kk = 1, . . . , k− 1, k+1, . . . , |Ω|

do
16 P (t0 + τ, k, t0 + t, j, c′)+ =

P (t0 + τ + 1, kk, t0 + t, j, 1);

17 else
18 for c′ = 1, . . . , τ do
19 P (t0 + τ, k, t0 + t, j, c′) =

P (t0 + τ + 1, k, t0 + t, j, c′ + 1);
20 for kk = 1, . . . , k− 1, k+1, . . . , |Ω|

do
21 P (t0 + τ, k, t0 + t, j, c′)+ =

P (t0 + τ + 1, kk, t0 + t, j, 1);

P (t0, i, t0 + t, j, c) using dynamic programming. As can be
seen, the first loop (line 2-21) calculates the components
from the last step (t − 1) where the components can be
directly calculated by Eqs. (7) and (10). Using this loop, the
components in the higher step are available at the beginning
of each step. In each step represented by τ , there is another
loop (line 3-21) where the probability of transition from each
channel state k ∈ {1, . . . , |Ω|} to state j within the next
t − τ frames is considered. In this loop, different transition
probabilities are calculated depending on the current and the
next channel state, and the length of state-duration (lines 6-
7, 9-10, 12-16, and 18-21) are stored for further reuse. Note
that, since D and |Ω| are usually very small, finding t⋆ will
not incur a large overhead to the sending node.

VI. EXPERIMENTAL EVALUATION

This section evaluates the performance of ATPS under the
use of the discussed channel models first. Then, we compare
IGE-enabled ATPS with the state-of-the-art schemes through
several experiments based on the following three metrics:

• Power level usage: the number of transmissions under
each power level is measured, by which the distribution
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of power level used for all implemented schemes can be
compared. Since it is impossible to perform quantitative
measurement of the real interference produced by the
packet transmissions, this metric allows a comparison
of the interference generated by different schemes in a
relative way since the more the number of transmissions
using a high transmission power, the larger the probability
to produce more interference.

• Energy consumption: since the gateway is generally a
device such as a smartphone that is commonly recharged
regularly, the total energy spent on packet transmission
is measured at the sending node side.

• Packet loss rate: the ratio of the number of lost packets
to the total number of transmitted packets.

A. Experiment Setup

We adopt the same setup as presented in Fig. 1 with
the sending node attached to the wrist and the gateway
mounted on the chest. However, since the proposed scheme
is executed locally by the sending node, extra nodes can be
added to the network without sacrificing the performance of
the communication scheme. This setup has also been adopted
in much other research works [30], [9], [37], [26] because (1)
in many applications, body sensors tend to be embedded into
the user’s wrist watch or fancy wrist bands; (2) the shoulder
joint is the most mobile joint and can provide a wide range of
movements for the wrist in combination with the elbow joint.
Hence, the location of the sending node and consequently the
channel to the gateway is highly unstable, making the channel
estimation very challenging. Without loss of generality, we
limit the transmit power levels to levels 1, 3, and 7 as they are
enough for reliable and energy-efficient communication [9].
The size of data packets and ACK packets is set to 41 bytes
and 13 bytes, respectively. The packets are generated at a
constant rate of 0.1 pkt/s for low data rate applications (e.g.,
monitoring blood pressure) and 20 pkt/s for high data rate
applications (e.g., EMG monitoring), respectively, and then
can be transmitted to the gateway according to a predefined
TDMA schedule. However, burst transmission is allowed. That
is, the sending node can transmit a couple of buffered packets
in a single superframe. Three participants were asked to stay in
the following postures, with each one lasting for 30 minutes:

• Sitting with folded hand: the distance between the
sending node and the gateway is only a few centimeters.
This covers postures where the hand is close to the chest,
e.g., eating, drinking, brushing teeth, etc.

• Standing upright: the thumb is parallel to the trousers
so that the sending node is close to the side pocket and
the LoS path to the gateway is blocked.

• Walking: in this posture, the LoS path between
transceivers is regularly connected/disconnected. It is a
good scenario to consider how different channel models
can predict quick channel fluctuations.

• Running: in this scenario, the channel quality varies very
fast. It can be used to test the performance limits of
different models.

In static postures such as sitting and standing, the channel
quality is constant over time, and postponing the transmission
has no impact on communication performance. In dynamic
postures (e.g., walking and running), due to the frequent
channel fluctuation, the LoS is blocked during part of a gait
cycle and is available for the rest of the cycle. Since the
average number of steps in walking is about 116 steps per
minute [36], a one-second transmission deadline provides a
significant potential for the sending node to reduce the trans-
mission cost by postponing the transmissions. Note that, since
the channel is changing periodically, taking the deadline more
than 1 second does not significantly influence the performance
of the transmission schemes.

In the first set of experiments, the performance of the pro-
posed IGE model is compared with the GE and EGE models.
To this end, three separate versions of the ATPS protocol are
developed, each of which uses one of the discussed channel
models. For the sake of simplicity, each version of the ATPS
protocol is named based on the channel model it uses. All
models (GE, EGE, and IGE) have 3 channel states. Each state
in the EGE model contains 20 internal states. Hence, the size
of the transition matrix in the GE, IGE, and EGE models is
limited to 18 bytes, 36 bytes, and 7.2 kilobytes, respectively.
In the second set of experiments, the performance of IGE-
enabled ATPS is compared with the state-of-the-art schemes
such as Experio [26], Chimp [9], and Tuatara [30]. To provide
reliable communication, retransmission at the MAC sub-layer
is enabled. Hence, the sending node retransmits lost packets
up to 15 and 3 times at the low and high data rate scenarios,
respectively. To ensure fair comparison among all schemes, it
is essential to repeat the simulations under identical conditions.
To this end, a two-phase RSSI collection method is utilized [9].

B. ATPS Under Different Channel Models

In this section, the performance of ATPS under the use
of three channel prediction models (GE, EGE, and IGE)
is evaluated. The transition matrix is created based on the
collected RSSI traces and is updated following the aging
method [38]. The simulation results show that ATPS delivers
all packets under all models in all scenarios (sometimes after
multiple retransmissions). Hence, results on packet loss rate
are not included. To simplify the explanation, we discuss the
results in two groups: static and dynamic postures.

1) Static Postures: In static postures, the channel state is
mainly constant over time and accurate long-term channel pre-
diction is not much of importance. Hence, as is also illustrated
in Fig. 14, the performance of all models is relatively similar.
For example in sitting and at the packet rate of 0.1 pkt/s,
the GE, IGE, and EGE models use power level 1 for more
than 90%, 96%, and 97% of the transmissions, respectively.
Increasing the packet rate to 20 pkt/s further reduces the
difference between schemes since more channel feedback is
provided for all models. Due to the similar trend in the usage
of power levels, they consume roughly the same amount of
energy.

In standing, the LoS path to the gateway is blocked by the
body trunk and the channel is mainly in state 3. In a low packet
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(a) Power level usage

(b) Energy consumption

Figure 14: Experiments for static postures under packet rate
of 0.1 pkt/s and 20 pkt/s.

(a) Power level usage

(b) Energy consumption

Figure 15: Experiments for dynamic postures under packet rate
of 0.1 pkt/s and 20 pkt/s.

rate scenario, GE, IGE, and EGE use power level 3 for more
than 80%, 85%, and 87% of transmissions, respectively. As is
expected, at the rate of 20 pk/s the usage of power level 3 is
reached to 92% in GE and more than 99% in IGE and EGE.
Accordingly, the per packet energy consumption of the GE
model is only 3% and 6.3% more than that of the EGE model,

in low and high packet rate scenarios, respectively, while the
IGE and EGE models consume almost the same amount of
energy. In all models, most of the packets are delivered at their
first transmission. Hence, there are not many retransmissions.

2) Dynamic Postures: Analyzing the RSSI traces during
walking and running shows that the channel commonly transits
between states 1 and 3. Due to the rapid channel fluctuation in
dynamic postures, predicting the channel state is challenging.
Hence, there are situations where the channel is predicted to
be in state 1 while it is in state 3, and vice versa. This is a
common problem with the GE model, while IGE and EGE
can accurately predict the channel state, particularly in the
high packet rate scenarios. This is because the GE model is
memoryless and cannot remember for how many frames the
channel has been in one state before transiting.

As is shown in Fig. 15(a), unlike the GE model, the
distribution of usage of power levels in IGE and EGE are
almost the same. They use power level 1 for most of their
transmissions, particularly when the packet rate is high. For
example, at 20 pkt/s, the IGE and EGE models use power
level 1 for more than 82% and 87% of their transmissions in
the walking, 20% more than that of the GE model. On the
other hand, in the same scenario, the GE model uses power
level 7 for 6.2% of its transmission, while the figures for IGE
and EGE are 1.4% and 0.7%, respectively. Accordingly, GE
consumes more energy than EGE and IGE, between 11% in
the running to up to 17% in the walking (see Fig. 15(b)).
The simulation results confirm that the proposed IGE model
outperforms the GE model and nearly performs as well as the
EGE model while using less memory.

C. Comparing ATPS with other Schemes

To evaluate the performance of the proposed IGE-enabled
ATPS, it is compared with state-of-the-art schemes, including:

• DPPI [18], Experio [26], Chimp [9], and Tuatara [30]:
these schemes have been described in detail in Section II.

• FLP (Fixed Low Power) and FHP (Fixed High Power):
regardless of the channel state FLP always uses the lowest
power level (level 1), whereas FHP always uses the
highest power level (level 7).

• Optimal: it is simulated over the collected RSSI samples.
In this scheme, the sending node knows the instant and
the long-term RSSI value before transmitting a packet.
Hence, it can always select the best transmission time.
Since this scheme provides the best performance, we use
it as a baseline to assess the other schemes.

Fig. 16 shows the results of the experiments. Since re-
transmission is enabled, transmission schemes differ in the
total number of transmissions. It turns out that the obtained
experimental data is highly skewed with many small values
and a few large values. To display the small values, the large
values are allowed to cut through the plot area and then, they
are labeled with the real values.

1) Static Postures: In sitting scenarios, power level 1 is
the optimal choice for the majority of transmissions. This is
supported by simulation results, where the Optimal scheme
predominantly utilizes power level 1. ATPS, FLP, Chimp, and
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(a) power level usage (b) energy consumption (c) packet loss rate

(d) power level usage (e) energy consumption (f) packet loss rate

Figure 16: Experiments under different data rates: (a), (b) and (c) show the results for static postures; (d), (e) and (f) show the
results for dynamic postures.

Tuatara exhibit similar performance to the Optimal scheme,
especially in high packet rate scenarios. These schemes deliver
most of the packets at their first transmission, resulting in com-
parable energy consumption. DPPI uses power level 1 for more
than 90% and power level 3 for about 7% of its transmissions
on average. While not efficient, DPPI outperforms FHP and
ExPerio significantly.

ATPS performs similarly to the Optimal scheme in standing
scenarios, especially at high data rates, with power level 3 used
for over 99% of its transmissions and only a 0.5% increase
in energy consumption compared to the Optimal scheme.
Similarly, Tuatara and Chimp exhibit performance closely
aligned with the Optimal scheme, with improved performance
at higher packet rates. They achieve full packet delivery while
minimizing the use of power level 7, even at low packet
rates. FLP’s approach of retransmitting lost packets with power
level 1 leads to numerous transmissions and significant energy
overhead, delivering only a small fraction of packets. DPPI
suffers from the ping-pong effect [9], resulting in a high
number of retransmissions and substantial energy usage.

When there is no periodicity in the movement pattern of
the subject (e.g., in static postures), ExPerio behaves the same
as FHP. That is, regardless of the packet rate (and the body
posture), they use power level 7 for all transmissions. Hence,
they produce the highest potential interference and consume
up to 25% more energy than ATPS.

D. Dynamic Postures

As already mentioned, during walking and running the
channel mainly alternates between states 1 and 3. Hence, ATPS
buffers the packets when the channel is at state 3 and transmits
them when the channel transits to state 1. For example in
walking and running, as is shown in Fig. 16, ATPS uses power
level 1 for about 85% and 75% of transmissions, respectively,

when the packet rate is high. Except for the Optimal scheme,
ATPS is the most and the second most energy-efficient scheme
for walking and running, respectively. However, at a low
packet rate, due to the lack of initial information about the
channel pattern and the low rate of channel feedback, power
level 1 is used for only 50% of the transmissions. Chimp
behaves like ATPS at low packet rate scenarios and has a
similar trend on power level usage. Tuatara rarely uses power
level 7, particularly because of its knowledge of the real-
time location of the sending node relative to the gateway.
Its total number of transmissions is 10% less than that of
ATPS, so it can save more energy, however, at the cost of extra
hardware (i.e., accelerometer, gyroscope, and magnetometer),
and more computation overhead. At the high packet rate
scenarios, ATPS gets enough feedback to learn the channel
dynamic and properly schedule the transmissions. Hence, it
outperforms both Chimp and Tuatara.

The number of transmissions in DPPI is between 16%
to 27% more than that of ATPS. It consumes more energy
and potentially produces more interference. FLP performs the
worst, dropping up to 66% of the packets. Compared to ATPS
it consumes between 20% to 130% more energy.

In a low packet rate scenario, ExPerio cannot detect the
periodicity in the channel pattern and sends all packets using
power level 7, similar to FHP. Hence, they both achieve
the lowest number of transmissions, however, at the expense
of the highest potential interference. At a high packet rate,
ExPerio detects the periodicity after a while, thus, it schedules
the packets to be transmitted using power level 1 at the
channel peaks through which it saves energy slightly more
than ATPS. However, detecting the channel periodicity and its
peaks requires a lot of transmissions with the maximum power
level and imposes an unaffordable computation overhead [9].

In summary, ATPS learns channel state transition probabili-
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ties through channel monitoring and feedback analysis. Unlike
ExPerio, which has high computation overhead and is designed
for periodic body postures, ATPS supports both static and
dynamic postures without significant computation and memory
burdens. Moreover, ATPS outperforms Tuatara and Chimp in
high packet rate scenarios for dynamic postures.

VII. CONCLUSION

This paper presents IGE, a memory-efficient Markov chain
that accurately predicts the channel behavior in WBANs.
Motivated by the high accuracy of IGE for long-term channel
prediction, ATPS, an adaptive transmission power selection
scheme for reliable, low-energy, and low-interference com-
munication in WBANs is developed. ATPS enables the send-
ing node to benefit from the channel prediction model for
scheduling packet transmissions. ATPS monitors the channel
fluctuations and learns the channel pattern. Then, it buffers
the packets when the channel is bad and schedules them to
be transmitted when the channel is expected to become good
within a deadline. The experimental results in many scenarios
demonstrate that this scheme can self-adapt to changes in
channel fluctuation patterns and choose the most appropriate
power level to reduce energy consumption and interference
and improve communication reliability when the packet rate
is high. ATPS decreases the usage of high transmission signal
power and accordingly reduces energy usage significantly,
without any remarkable packet loss overhead.
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