
IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 1

Privacy-Preserving Distributed Learning for
Residential Short-Term Load Forecasting

Yi Dong∗§, Yingjie Wang∗†, Mariana Gama‡, Mustafa A. Mustafa¶‡, Geert Deconinck†, and Xiaowei Huang§

Abstract—In the realm of power systems, the increasing
involvement of residential users in load forecasting applications
has heightened concerns about data privacy. Specifically, the load
data can inadvertently reveal the daily routines of residential
users, thereby posing a risk to their property security. While
federated learning (FL) has been employed to safeguard user
privacy by enabling model training without the exchange of raw
data, these FL models have shown vulnerabilities to emerging
attack techniques, such as Deep Leakage from Gradients and
poisoning attacks. To counteract these, we initially employ a
Secure-Aggregation (SecAgg) algorithm that leverages multiparty
computation cryptographic techniques to mitigate the risk of gra-
dient leakage. However, the introduction of SecAgg necessitates
the deployment of additional sub-center servers for executing
the multiparty computation protocol, thereby escalating compu-
tational complexity and reducing system robustness, especially
in scenarios where one or more sub-centers are unavailable. To
address these challenges, we introduce a Markovian Switching-
based distributed training framework, the convergence of which
is substantiated through rigorous theoretical analysis. The Dis-
tributed Markovian Switching (DMS) topology shows strong
robustness towards the poisoning attacks as well. Case studies
employing real-world power system load data validate the efficacy
of our proposed algorithm. It not only significantly minimizes
communication complexity but also maintains accuracy levels
comparable to traditional FL methods, thereby enhancing the
scalability of our load forecasting algorithm.

Index Terms—Load Forecasting, Data Privacy, Distributed
Learning, Federated Learning, Secure Aggregation, Collabora-
tive Work

I. INTRODUCTION

ELECTRIC load forecasting plays an essential role in
power scheduling, planning, operating and management

[1], [2]. The stability of the power system is under threat
due to the intermittence of renewable energy generations
and the complex nature of utility-customer interactions and
dynamic behaviors. To overcome this, residential Short-term

* Both authors contributed equally to this research.
§ Department of Computer Science, University of Liverpool, UK, {yi.dong,

xiaowei.huang}@liverpool.ac.uk
† Electa, Department of Electrical Engineering (ESAT), KU Leuven and

EnergyVille, Belgium, {tony.wang, geert.deconinck}@kuleuven.be
‡ COSIC, Department of Electrical Engineering (ESAT), KU Leuven,

Belgium, mariana.botelhodagama@kuleuven.be
¶ Department of Computer Science, The University of Manchester, UK,

mustafa.mustafa@manchester.ac.uk
This work is supported by the UK EPSRC (End-to-End Conceptual

Guarding of Neural Architectures [EP/T026995/1]) and the FWO SBO project
SNIPPET (Secure and Privacy-Friendly Peer-to-Peer Electricity Trading
[S007619N]). This project has received funding from the European Union’s
Horizon 2020 (FOCETA: grant agreement No 956123) and UKRI (SPACE:
project No 10046257).

Load Forecasting (STLF) has been widely studied to facilitate
the power system operations [3], [4]. However, it is evident
that residential-user privacy is at risk when residential-user
load data is collected and mined [5]. For example, the res-
idential user’s daily routines and presence at home can be
detected with a high probability from its electric load data,
which will directly affect the residential user’s property safety.
Therefore, how to accurately forecast residential power load
while ensuring data privacy becomes an open challenge.

The Federated Learning (FL) method has been introduced
in recent years to overcome the challenges of residential-user
privacy. It can decouple the data storage from the training
process [6], while reaching a desirable accuracy compared
to the centrally trained model [7], [8]. There are already
efforts to apply FL to power system forecasting to preserve the
sensitive individual consumption profiles [9]–[14]. Yang et al.
integrate variational mode decomposition, federated k-means
clustering algorithm, and SecureBoost together for STLF with
data privacy protection [9]. Jun et al. propose a novel method
for disaggregating community-level behind-the-meters solar
generation using a federated learning-based Bayesian neural
network, which can preserve the confidentiality of utilities’
data [11]. Yong et al. propose a verifiable and oblivious secure
aggregation for FL [15]. Their algorithm could tolerate the
high drop-up rate of clients during large-scale FL training.
Asad et al. highlight recent FL algorithms and evaluate their
communication efficiency in detailed comparisons. The exper-
imental results indicate that training data-driven models using
FL not only enhances security and privacy, but also reduces
communication costs [16].

The above-mentioned FL based algorithms claim the advan-
tage of privacy in terms of not sharing the original data. With
the gradual success of various privacy attack technologies in
different applications, the load data can also be reverted if the
attacker can access the gradients from agents [17]. Here, we
use a simple example to show the threat of the attack algorithm
to the artificial intelligence-based load forecasting algorithms,
shown in Fig. 1.

In Fig. 1, the two figures on the left are the original
consumption data and the original image after conversion.
The sub-figures on the right are the regenerated images from
the attacker after they obtained the original gradients. As we
can see, the attacker can accurately regenerate the original
data only after 10 iterations. Therefore, any leakage of the
gradient can cause a significant threat to customers’ data. To
prevent information leakage from agents’ gradients, Bonawitz

Copyright ©2024 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

ar
X

iv
:2

40
2.

01
54

6v
1

 [
cs

.L
G

]
 2

 F
eb

 2
02

4

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 2

0 5 10 15 20

0

5

10

15

20

24 hour load after conversion

1.0

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20

Comparison between Recovered and Real Load Deep Leakage from Gradient Attack Process

Iter = 0 Iter = 10

Iter = 20 Iter = 30

Fig. 1: Deep leakage from gradient attack.

et al. [18] proposed using Multi-Party Computation (MPC) to
aggregate the gradients privately. Multiparty computation is
a cryptographic technique that allows a group of mistrustful
parties to perform a computation over secret input data. By
using MPC, a group of agents can obtain the aggregated value
of all their gradients without ever revealing any individual
gradient. The ideas presented in [18] were extensively used
and developed in further work related to secure aggregation
for privacy-preserving federated learning, such as [19]–[24].
Since these works focus on the federated learning setting, the
secure aggregation mechanisms rely on the existence of at least
one central server. For the works using additive masking [18],
[22], [23], a single server is sufficient. In [21], [24], the central
aggregator is distributed, meaning that at least two servers are
required.

Multiparty computation achieves privacy by distributing
the computation between different parties, which then need
to communicate with each other according to the chosen
MPC protocol to obtain the result of the desired calculation
without compromising private input data. The parties running
the MPC protocol can either be the agents themselves, or
external servers that receive the data from the agents already
in encrypted form. However, there are two possible issues:

1) Scalability: performing computations over private data
leads to an increase in communication. Setting the MPC
parties as external servers helps diminish this overhead, but
still results in an expanded network, with each agent needing
to connect to every MPC party.

2) Single-point failures: if the central server in a federated
learning system experiences a single-point failure, then the
entire system may become unavailable until the server is
restored. The MPC protocol we use does not solve the issue,
as it needs all connected parties. However, due to the nature
of our proposed network topology, no single party (or server)
will need to remain online during the full training process.

Besides the Deep Leakage from Gradients (DLG) attacks,
the poisoning attack is another common threat towards FL
models. A poisoning attack involves one or a few malicious
clients injecting extreme outliers or tailored data into the
training dataset or model updates to undermine or mislead the
global model performance [25]. Some researchers developed

a Byzantine-robust federated learning model against the poi-
soning attacks in various ways, such as detecting malicious
clients based on their impact on the model performance
and constructing new loss functions [26]–[29]. However,
the common Byzantine-robust models cannot always defend
the poisoning attacks, particularly when some of the clients
conspire together [30]. Among the more advanced defenses,
there are two significant approaches. “Romoa” is a robust
model aggregation solution to both solo and collusive attacks.
With a hybrid similarity measurement method, it can detect
the attacks precisely whether it is targeted or untargeted
attacks [31]. “FLTrust” reserved a small clean dataset as a
reference at the server. By cross-validation, the central server
gives a trust score to each collected update. It provides a
more precise and less computationally costly way to detect
malicious clients [32].

To overcome the above-mentioned challenges, we borrow
the idea from consensus-based distributed optimization [33]–
[35], which has flexibility in connected network graphs and
initialization-free advantages. In this paper, we propose a fully
decentralized Markovian Switching short-term residential-user
load forecasting algorithm. The proposed distributed algorithm
employs Markovian Switching topologies [36], which can
randomly select sets of agents to co-train the model, and
therefore reduce the communication complexity in theory
and accelerate encryption speed. Furthermore, the Distributed
Markovian Switching (DMS) topology is instinct-resilient
against poisoning attacks. In the centralized FL training, the
central server updates the global model with the average
updates across the whole client group each round. Even though
the malicious clients take a small part of the whole group, the
accumulated strewing effect can significantly undermine the
global model over multiple rounds. Unlike the centralized FL
setting, the DMS takes a random set of clients each round,
which reduces the chance of malicious clients poisoning attack
for every round. The above-mentioned cumulative effect will
not happen in the DMS setting.

The major contributions of this work are summarized as
follows:

1) A secure and safe distributed algorithm is proposed for
short-term load forecasting and its convergence has been
theoretically proved. Different from most existing studies,
e.g., [5], [9] and references therein, which are extensively
concentrated on federated algorithms, the proposed algo-
rithm in this paper is based on fully Peer-to-Peer (P2P)
distributed consensus learning without a central server.

2) The DMS is developed for the proposed framework.
Different from the traditional FL, the DMS has inherited
robustness towards both poisoning attacks and DLG at-
tacks. Besides that, the DMS topology shows advantages
in efficiency compared with other distributed learning
topologies.

3) We apply the Secure Aggregation (SecAgg) to the
proposed distributed learning topologies. The SecAgg
ensures no original gradients are shared. Therefore it
guarantees data privacy from DLG attacks by design.
Additionally, we analyzed its impact on the original
complexity as an extra add-up layer.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 3

4) The proposed algorithm has been successfully validated
on a real power system load forecasting dataset. Further-
more, the reproducibility and replicability of our work are
guaranteed since all source code is available on GitHub
for open access1.

The rest of this paper is organized as follows. The mathe-
matical preliminaries used in this paper are summarized and
the researched problem is formulated in Section II. A secure-
aggregated and Markovian switching distributed framework
for STLF is proposed and analyzed in Section III. Simulation
results and corresponding analysis are presented in Section IV.
Finally, Section V concludes this paper.

II. PRELIMINARIES

In this section, we recall some basic concepts (federated
learning and distributed learning) and preliminaries related to
the proposed STLF model, including graph theory and secure
aggregation.

A. Federated Learning

FL is a distributed training framework for neural networks.
It decouples the training process and the requirement for
centralized data storage. Instead of collecting raw data from
the individual agent, the raw data stays locally with agents.
The agents use their own data to train the global model,
Mj . Then, the central server collects the weights updates
from the agents. Based on the selected algorithm, for example
the Federated Average (FedAvg), the server will average the
submitted weights and use them to update the global model to
Mj+1. In this way, agents can participate in the model training
without revealing their raw data. Figure 2 shows the procedure
of FL.

Update with
collected Weights

Convergent?

Ready to use

Weightsn

Weights1

Private datan

Private data1

Agentn

Agent1

Yes

No
Broadcast

Local
train

Extract

Average

Global model
Mj

Central server

Initialize

Global model
Mj+1

Fig. 2: Training procedure of federated learning.

In the FL framework, the submitted local model update can
be “gradients” or “weights”. It depends on the communication
bandwidth, but they are practically the same. In the privacy
analysis, we use the term “weights” for consistency.

B. Graph Theory

In this paper, it is assumed that the information can be
communicated between different computing agents. Therefore,

1https://github.com/YingjieWangTony/FL-DL.git

the distributed load forecasting conforms to the characteristics
of the undirected graph, which can enhance the stability of
communicated graphs and reduce the convergence time [37].

Let V = {1, ..., N} be a set of N local agents. Assume that,
at any time t, the agents constitute a graph Gt = (V t, Et),
where V t ⊆ V is a set of agents and Et ⊆ V t×V t is a set of
edges. Whenever (i, j) ∈ Et, we say that they are neighbors.
We write Lt as the Laplace matrix of Gt.

Lt
ij =

{
−aij , i ̸= j∑

i̸=j aij , i = j
(1)

To enhance privacy and safety during the training process,
the communication graph in this paper is considered as a
time-variance topology, called Markovian switching network
topology, which means that the graph Gt might change over
time due to the addition and deletion of agents, which forms
a temporal graph G = {Gt}t=0,1,.... The Markovian switching
network has q substructures. The transition probability matrix
is T = [Tij] ∈ Rq×q , where Tij = P{Gt+1 = j|Gt =
i},∀i, j ∈ Q with Q being the graph structure topology set.

C. Distributed Learning

Different from the FL framework, the distributed learning
algorithm in this paper is designed in a fully decentralized
setting, where the agents can only communicate with their
adjacent neighbors.

From [38], the training process of the distributed learning
algorithm can be summarized as:

ϕi(k) = θi(k)− γ∇θiL(Di,MPF,i(θi(k))) (2)

θi(k + 1) = α
∑
j∈N

aijϕj(k) (3)

where θi(k) and ϕi(k) denote the weights of the neural
network before and after the kth training iteration, γ, α > 0
are the learning rate, and ∇(·) is the gradient term regarding
empirical risk L, which is a measure of how well a machine
learning model performs on a given dataset. It is defined as
the average of the loss function (i.e., the discrepancy between
predicted values and actual values) over the entire dataset. Di

and MPF,i denote the dataset and local model of ith agent,
respectively.

Notice that the equations (2) and (3) are also called an
Learning-Then-Consensus (LTC) algorithm, where we can
easily swap the equations (2) and (3) to get the twinned
Consensus-Then-Learning (CTL) algorithm.

D. Secure Aggregation

Secure aggregation is achieved through a cryptographic
technique, called MPC, which allows us to perform calcu-
lations over encrypted data. There are different types of MPC
protocols, with different security guarantees. In this work,
we use SCALE-MAMBA [39], a software framework that
implements MPC protocols based on secret sharing which have
active security, meaning that the protocol remains secure even
if up to a certain percentage of the parties performing the
computation behaves maliciously and deviates arbitrarily from

https://github.com/YingjieWangTony/FL-DL.git

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 4

the protocol. Additionally, the protocols in SCALE-MAMBA
are in the preprocessing model. In this model, there is an
offline phase, where input-independent data is generated. This
can be done at any time, including before the inputs for
the desired computation are even available. Later, during the
online phase, we can perform our computation faster by using
the preprocessed data.

In this paper, we consider an MPC protocol based on the
Shamir secret sharing scheme. In this scheme, in order to share
a secret value s with a set of ν parties, the person holding s
must generate a secret polynomial f(X) of degree h such
that f(0) = s. By randomly generating the other polynomial
coefficients f1, ..., fh, the following polynomial is obtained:

f(X) = s+ f1 ·X + ...+ fh ·Xh.

Then, each party i is given a secret share si = f(i). Note that
each secret share by itself looks random, but when at least
h+1 parties combine their shares then the original secret value
can be retrieved via Lagrange interpolation. The choice of
degree h will determine how many dishonest parties we allow
without compromising the secret since any set of h or fewer
parties cannot reconstruct the polynomial. However, to be able
to perform all the operations correctly with this scheme, it is
also required that a majority of parties is honest.

We write ⟨x⟩ when we refer to a secret shared value x, and
each secret share i is represented as ⟨x⟩i. All these values are
elements of a finite field Fp, where p is a prime number, and
operations between secret shared values also take place in Fp.

⟨!⟩2

⟨!⟩1

⟨!⟩3

⟨!⟩5

⟨!⟩4

Agents/MPC parties

(a) MPC parties played by the agents.

⟨!⟩2

⟨!⟩1

⟨!⟩3…

Agents MPC parties

(b) MPC parties played by external servers.

Fig. 3: Agent secret sharing a gradient ϕ with the MPC parties.

To perform linear operations, i.e., adding two secret shared
values or multiplying a secret shared value by a public scalar
in Fp, it is enough for each party to locally perform these oper-
ations on their own shares. E.g., to calculate ⟨z⟩ = ⟨x⟩+a·⟨y⟩,
each party i should compute ⟨z⟩i = ⟨x⟩i+a·⟨y⟩i. Multiplying
two secret shared values or performing more complex opera-
tions such as comparisons requires communication between
the parties running the MPC protocol so that the correct

secret shared result can be reached without revealing the
inputs. Indeed, communication is generally the bottleneck for
computations with MPC. However, for secure aggregation only
addition is needed, and so communication is only required for
the secret sharing of the inputs and reconstructing the final
aggregated results.

As illustrated in Fig. 3, it is possible to have agents also act
as an MPC party, in which case each agent needs to secretly
share its own gradients with the other agents (who are also
acting as MPC parties). In order to improve scalability, we can
instead have external servers play the role of MPC parties. In
this case, we can have as few as three MPC parties, to whom
the agents will send secret shares of their gradients. These
external servers should be run by entities with conflicting
interests, in order to avoid collusion and therefore maintain the
privacy of the gradients. Note that we should always aggregate
more than two gradients in each round, since otherwise the two
agents whose weights were aggregated will be able to derive
each other’s gradients from the revealed aggregated value.

Remark 1: We note that our use of Secure Aggregation is
not intended to be an improvement upon previous work in the
federated learning setting. Indeed, this work is in a fundamen-
tally different setting due to our proposed network topology.
Although some existing papers already analyze the use of
different topologies for improving the efficiency of secure
aggregation [22], [23], they always assume the existence of
a central aggregation server. Additionally, Differential Privacy
(DP) has also been considered in previous works to ensure that
even the final aggregated result does not leak any information
[19], [20]. We do not analyze the use DP since it is not directly
affected by the choice of topology. Nonetheless, it would be
relatively straightforward to adapt previous techniques [40] for
combining MPC and DP to our use case.

III. DISTRIBUTED MARKOVIAN SWITCHING ALGORITHM

A. Problem Formulation

In this paper, we focus on the privacy-preserving residential
short-term load forecasting problem, where every agent i holds
a private dataset Di, and we define D = D1∪ ...∪DN . The N
agents will communicate and train a model MDL where DL
stands for distributed learning. This will be compared with a
federated learning model MFL (i.e., the server collects and
modifies the weights from all local agents during the training)
and a model MC trained by centralized learning (i.e., the
server collects all raw data from the agents before training).

B. DMS Learning

The proposed short-term load forecasting algorithm is to
utilize decentralized distributed learning to collectively aggre-
gate the local gradients. In a fully decentralized setting, the
agents can only send/collect messages to/from their neighbors
but have a collective objective of training a global model
MDL, which is required to be high-performing and privacy-
preserving.

Every distributed agent is regarded as a self-training agent
and cooperates with each other using distributed neural net-
works with a neurodynamic consensus-based approach, as

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 5

!1
!2!n !1 !3 !2!i
!j

… …

User 1 User 2

User 3User n

Input Layer

Neural Network Model

Hidden Layer Output Layer

Fig. 4: An illustrative framework of distributed learning.

shown in Fig. 4. The framework consists of a group of neural
networks distributed over a connected graph, where the update
of coefficients includes two stages: in the first stage, the
ith agent trains its neural network locally using the dataset
Di, and in the second stage, the consensus of their locally
trained weights is performed. With this setting, all the agents
are able to obtain the same neural network if every sub-
dataset is available to at least one local agent, which will be
demonstrated by the convergence analysis.

Minimizing the empirical risk allows the model to gen-
eralize well to new, unseen data. The idea is that if the
model is trained on a dataset that is representative of the real-
world data it will encounter in the future, then minimizing
the empirical risk should result in a model that can make
accurate predictions on new data. Therefore, the objective of
the network is to minimize the empirical risk over the entire
dataset, given by

minL(D,MPF (θ)) =

N∑
i=1

L(Di,MPF,i(θi)) (4)

where D and Di denote the entire dataset and the sub-dataset
of agent i, respectively; θ and θi are the weights of the
global and local neural networks; MPF and MPF,i represent
the models of the global neural network and the local ones,
respectively. It is worth noting that the local learning process,
i.e.,

minL(Di,MPF,i(θi)) (5)

does not necessarily yield the minimization of the global
empirical risk in (4), since the models MPF,i are different.
Consequently, this necessitates the employment of consensus
tools in cooperation with the training process.

Note that the sub-dataset of each agent is assumed to be
stationary. For the ith agent with ni samples in Di, the gradient
can be calculated by

∇θiL(Di,MPF,i(θi)) =
1

ni

ni∑
k=1

∇θiℓ(s
k, θi) (6)

where sk represents the kth data sample in Di, and ℓ(sk, θi)
is the empirical risk of sample sk on a model with weights
θi. Similarly, the global gradient is given by

∇θL(D,MPF (θ)) =
1

n

n∑
k=1

∇θℓ(s
k, θ) (7)

where n =
∑N

i=1 ni is the total number of samples in D.
Gradient-based methods have been widely used in training

neural networks, due to their high efficiency and flexibility

[41]–[43]. In this paper, a gradient descent algorithm for agent
i is formulated as

ϕi(k) = θi(k)− γ∇θiL(Di,MPF,i(θi(k))) (8)

⟨θi(k + 1)⟩ = α
∑
j∈N

aij⟨ϕj(k)⟩ (9)

where 0 ≤ α ≤ 1 is positive constant; aij denotes the
communication link between agent i and agent j; aij > 0
if they can communicate, otherwise, aij = 0. Note that
for each agent i, the consensus only requires the updated
weights ϕj from its adjacent neighbors j ∈ Ni with Ni

denoting the neighbors of agent i. Recall also that we add
the updated weights using secure aggregation, hence the secret
share notation used in Equation 9. The shares of ⟨θi(k + 1)⟩
will then be sent by the MPC parties to agent i, who can
finally reconstruct the value θi(k + 1).

Based on the above discussion, the overall structure of the
fully decentralized distributed algorithm for a region can be
summarized in Algorithm 1.

Algorithm 1 Distributed Markovian Switching (DMS)
Initialization:
for each agent i ∈ V:
1. initialize the weights of local neural network θi;
2. set the required consensus speed by changing the coeffi-
cients in Equation (9).
Iteration:
3. set k := k + 1, for i ∈ V
4. train the local neural network using the gradient descent
method (8) with locally stored dataset Di to obtain ϕi(k);
5. apply secure aggregation to encrypt original weights
⟨ϕi(k)⟩;
6. run the consensus operation (9) to drive the globally aver-
aged weights θi(k + 1) by communicating with its neighbors
Ni;
Termination: termination condition is satisfied or iteration
budget is reached.

C. Correctness Analysis on Performance/Convergence

We need to show that Algorithm 1 is able to converge with
all agents having the same model. Considering the generality,
we choose Mean Squared Error (MSE) as the loss function.

MSE is a widely used measure in statistics and machine
learning for quantifying the difference between estimated
values and the actual values [44]. It is calculated as the average
of the squares of the errors or deviations, that is, the difference
between the estimator and what is estimated. Mathematically,
MSE is defined as

MSE =
1

ns

ns∑
i=1

(yi − ŷ)2 (10)

where ns is the number of samples, yi and ŷi are the true and
predicted values, respectively.

First of all, two assumptions are needed. With these two
assumptions and the mean value theorem, we can obtain the

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 6

closed-loop MSE dynamics, and therefore the convergence of
the MSE can be proved with a designed learning rate.

Assumption 1: The Hessian matrix of local empirical risk
is bounded, i.e.,:

p
i
In ≤ ∇2L(Di,MPF,i(θi)) ≤ piIn (11)

where 0 ≤ p
i
≤ pi are non-negative constants.

Assumption 2: The gradient noise, wi, satisfies the follow-
ing properties i.e.,:

E[wi] = 0 (12)

E[∥wi∥2] ≤ ξ2i (13)

where ξi is non-negative constant, ∥ · ∥ denotes the L2-norm
of the argument.

Remark 2: Assumption 1 indicates that the network ob-
jective,

∑N
i=1 L(Di,MPF,i(θi)), is strongly convex, which

means that the neural network has a unique and optimal so-
lution/weights θ∗. In distributed optimization problems, some
assumptions have been made, including the use of bounded
Hessian matrices for convergence analysis. Other works [45]–
[47] have used bounded gradients with set constraints, which
is not feasible for unconstrained problems. Our assumption is
less restrictive because we can solve problems with unbounded
gradients.
Assumption 2 implies that the noise, wi, is unbiased and
has uniformly bounded variance ξ2i , which is a stronger
assumption and has been considered in many studies [42],
[48].

Theorem 1: Under Assumptions 1 and 2, if the learning
rates satisfy 0 ≤ γi ≤ 2

pi
, the worst MSE, ∥N∥∞ in the

distributed learning network converges to

lim
k→∞

∥N(k)∥∞ ⪯ αΞ (14)

where γi is the local learning rate for ith agent. pi is the local
upper bound of the Hessian matrix as shown in equation (11).
N is the MSE vectors of the distributed neural networks, which
is defined later in equation (25). Ξ = diag(ξ21 , · · · , ξ2N) is the
matrix format of the uniformly bounded variances.

Remark 3: In Theorem 1, 0 ≤ γi ≤ 2
pi

provides an
upper bound for designing the learning rates, based on which
we can prove the convergence of the proposed algorithms.
Equation (14) reveals how the learning rates, the bounds of
the Hessian matrix, and the noise variance will affect the
performance of the algorithms. It means that minimizing the
learning rates can lead to a reduction in the optimality error.
The designer can balance between the convergence speed
and the optimality error according to the real applications by
adjusting the heterogeneous learning rates. In other words, this
theorem serves as a reference to select learning rates during
our training process in both DL and FL frameworks. In (14),
we have 3 parameters, pi, α and ξi. pi can be obtained from the
loss function, α ≤ 1 is a fixed parameter, and the coefficient
of gradient noises ξi should be approximated according to the
practical applications.

Proof:

To simplify the notations in the analysis process below,
we rewrite the weights in a compact form by integrating all
weights into a vector form as:

Φ(k) = col(ϕ1(k), · · · , ϕN (k)) (15)
Θ(k) = col(θ1(k), · · · , θN (k)) (16)

Then, we can rewrite the proposed distributed algorithm (8)
and (9) in the following form:

Φ(k) = Θ(k)− (Γ⊗ In)∇L(Θ(k)) +Ω(k) (17)
Θ(k + 1) = α(A⊗ In)Φ(k) (18)

where Γ = diag(η1, · · · , ηN), ∇L(Θ) =
col(∇L1(Θ), · · · ,∇LN (Θ)), Ω = col(ω1, · · · , ωN). A
is the Laplacian matrix, which is defined as A = [aij]N×N .
aij > 0 if the agent i is communicating with agent j. Note
that each row of the A sums to 1, which is also called
row-stochastic matrix [37].

To confirm that the MSE converges, we transfer the weights
to an error recursion formation:

Φ̂(k) = Φ(k)− θ∗1N (19)

Θ̂(k) = Θ(k)− θ∗1N (20)

Furthermore, to relate the gradient term ∇L(Θ(k)) with
error term Θ̂(k), we have the mean value theorem from [49]:

∇zg(y) = ∇zg(x)+ [

∫ 1

0

∇2
zg[x+ τ(y−x)]dτ](y−x) (21)

Substituting the Θ(k) and θ∗1N into equation (21) as y and
x:

∇θL(Θ(k)) = ∇θL(θ∗1N) + [

∫ 1

0
∇θ∇L[θ∗1N + τ(Θ̂(k))]dτ](Θ̂(k))

(22)

Since ∇θL(θ∗1N) = 0, and we let P (k) =∫ 1

0
∇θ∇L[θ∗1N + τ(Θ̂(k))]dτ . The equation (17) can be

rewritten as:

Φ̂(k) = Θ̂(k)− (Γ⊗ IN)P (k)Θ̂(k) +Ω(k) (23)

Combining (18) and (23) together, we can get the error term
update law as:

Θ̂(k+1) = α(A⊗In)[InN−(Γ⊗IN)P (k)]Θ̂(k)+α(A⊗In)Ω(k)
(24)

We define the MSE vectors of the distributed neural net-
works as:

M(k) =col(E∥ϕ̂1(k)∥2, · · · ,E∥ϕ̂N (k)∥2) (25)

N(k) =col(E∥θ̂1(k)∥2, · · · ,E∥θ̂N (k)∥2) (26)

By taking the Euclidean norm for each agent’s error dy-
namics, we have:

∥θ̂i(k + 1)∥2 = ∥α
∑
j∈N

aijϕ̂j(k)∥2 (27)

Since the norm function ∥ · ∥ is a convex function, applying
Jensen’s inequality to (27):

∥θ̂i(k + 1)∥2 ≤ α
∑
j∈N

aij∥ϕ̂j(k)∥2 (28)

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 7

Taking the expectation of both sides of (28), we can obtain:

N(k + 1) ⪯ αAM(k) (29)

Taking the Euclidean norm and expectation of Φ̂i(k) leads
to:

M(k) = E∥[InN − (Γ⊗ IN)P (k)]Θ̂(k)∥2 +E∥Ω(k)∥2 (30)

Based on Assumption 1, the bound of the symmetrical
matrix P (k) could be obtained:

p
i
In ≤ P (k) ≤ piIn (31)

and therefore:

0 ≤ [InN − (Γ⊗ IN)P (k)] ≤ λ
2

i In (32)

where λi = max (1− γipi)
2, (1− γipi)

2.
Based on Assumption 2, we have:

E∥Ω(k)∥2 ≤ Ξ2 (33)

Until now, the closed-loop MSE error can be derived as:

N(k + 1) ⪯ αAΛN(k) + αAΞ (34)

where Λ = diag(λ1, · · · , λi)
Considering the worst case MSE, ∥N(k + 1)∥∞,

∥N(k + 1)∥∞ ⪯ α∥AΛ∥∞∥N(k)∥∞ + α∥AΞ∥∞ (35)

To guarantee the convergence of (35), we must have
∥AΛ∥∞ ≤ 1. We also have ∥A∥∞ = 1 and α ≤ 1, so we
have

λi ≤ 1 (36)

which means:

(1− γipi)
2 ≤ 1 (37)

(1− γipi)
2 ≤ 1 (38)

Because of p
i
≤ pi, we should choose the learning rate be-

tween the range to guarantee the convergence of the proposed
distributed learning algorithm:

0 ≤ γi ≤
2

pi
(39)

■
After the convergence analysis, we also provide a theoretical

analysis of the proposed algorithm due to the complexity
of the algorithm is not easy to visualize. We evaluate the
complexity based on the communicated components’ size with
a normalized factor, O(n|E|). The algorithm is a gradient-
based algorithm, which is a widespread technique in ma-
chine learning and optimization. Gradient-based algorithms
are efficient in terms of computation, as they only require
the calculation of the gradient of the objective function, which
can be done using simple mathematical operations. This makes
the algorithm easy to implement and computationally efficient,
which is a desirable feature in many real-world applications.

In terms of communication complexity, the proposed al-
gorithm only requires the agents to communicate with their
immediate neighbors. In other words, each agent only needs

to exchange information with the agents that are in its direct
vicinity. This limited communication requirement is beneficial
as it reduces the overall complexity of the algorithm and makes
it more suitable for distributed implementation. Moreover, the
proposed algorithm removes the requirement of the central
server, which can be a bottleneck in some systems.

In this setting, the communication complexity for each agent
is O(n|E|), where E is the set of communication edges and
n is the number of iterations, because in every iteration the
agent only needs to send one message to their neighbors and
every message is of constant size O(1). The computational
complexity for every agent is also O(n|E|), since every
iteration the agent can process the received messages and
update the local state in a linear way. It is noticed that due to
the randomly connected characteristic of Markovian switching
topology, the communication edges in each round are not a
constant value, e.g. E ∈ [1, 30] , n = 30.

IV. CASE STUDIES

In our study, we propose a new training strategy called
DMS learning, which utilizes a dynamic switching mechanism
between different topologies during the learning process. To
evaluate the performance of DMS, we compare it with four
other popular training strategies: Centralized Learning, Fe-
dAvg, Distributed Learning with Fully-Connected (DFC), and
Distributed Learning with Ring Topology (DRING). Here, we
use Fig. 5 to illustrate the communication differences between
different learning strategies. These five training strategies are
implemented on four state-of-the-art deep learning neural
network models: DNN [50], CNN [51], Wavenet [52], and
LSTM [3]. The experiments are conducted on a dataset with a
large number of samples, and the results are evaluated based
on the accuracy, convergence rate, and communication cost of
the trained models.

12

3

4 5

6

Ring Topology (DRING) Fully Connected
Topology (DFC)

12

3

4 5

6

12

3

4 5

6

t = 0

12

3

4 5

6

t = 1

12

3

4 5

6

t = 2

12

3

4 5

6

t = n

…

Markovian Switching Topologies (DMS)

12

3

4 5

6

Federated Averaging
Topology (FedAvg)

S

S Central Server 1 Clients2 3 4 5 6 …

Fig. 5: Communication topologies of different strategies.

A. Data Sources

The Smart Metering Electricity Customer Behavior Trials
are used as our case study [53]. It contains over 5000 Irish
home and business participants during 2009 and 2010. Their
electricity consumption is recorded by smart meters with 30
minutes intervals. The longest record is from January 1st, 2009
to June 30th, 2010. After data cleaning and clustering, we
selected 30 households to present a virtual energy community.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 8

The selection was made among 30 houses that were clustered
together with all methods and obtained a high score in each.

More specifically, in this case, we use a typical non-
Independently Identically Distributed (non-IID) dataset with
a large group of agents. It is not realistic and practical to
directly apply FL to the raw dataset. Therefore, we performed
the K-means algorithm to cluster the dataset into small groups
[54]. The clustering result can be seen as Fig. 6.

1600
1400
1200
1000

800
600
400
200

0

Si
ze

1 2 3 4 5 6 7 8
Clusters

Cluster Distribution for K-Means

Fig. 6: The clustering result with K-means.

As we can see from Fig. 6, Cluster1 contains most of
the agents. It indicates this cluster represents the most com-
mon consumption behavior. Therefore, we randomly select 30
agents from Cluster1 to perform our further study in this
paper.

B. Experiment Setup

The evaluation is based on simulations. We programmed
the forecasting code in Python and based on the machine
learning framework provided by FLOWER2(flwr), where the
neural network models are written in PyTorch3.

For the secure aggregation experiments, we use four ma-
chines with an Intel i-9900 CPU and 128GB of RAM, and
four machines with an Intel Core i7-770 CPU and 32GB of
RAM. For experiments with up to 4 MPC parties, only the
first group of machines is used (one machine per MPC party).
For experiments with more than 8 parties, each machine runs
more than one party. The ping time between the machines is
1.003 ms.

C. Experiment Results and Analysis

In this section, we evaluate the performance of the proposed
algorithm by assessing it against four key aspects: scalability,
privacy, accuracy, and complexity. By evaluating the algorithm
from these four key perspectives, we can ensure that it meets
the standards required for practical use.

a) Scalability: We measure the algorithm’s ability to
handle increasing amounts of data and agents, ensuring that
it can scale to meet the needs of large-scale applications. The
evaluation method for scalability is the convergence speed.
The proposed algorithm can handle a large number of agents
with a relatively small number of neighbors. This allows for

2https://flower.dev/
3https://pytorch.org/

more efficient use of resources and makes it possible to use the
algorithm in a distributed setting, where the number of agents
can be large. To demonstrate the scalability of the proposed
algorithm, we first analyze the converge steps in the slowest
Distributed Learning with Ring Topology (DRING). Then, we
conducted an experiment to work with up to 200 distributed
learning agents and 3 different communication topologies
(DMS, DFC [38] and DRING [55]). The experimental results
are shown in Fig. 7.

25000
20000
15000
10000

5000
0

10 20 30 40 50
Number of Agents

St
ep

s (
D

R
IN

G
) 0.60

0.55
0.50
0.45
0.40O

pt
im

al
 W

ei
gh

ts

0 10 20 30Consensus Steps

DMS

0.60
0.55
0.50
0.45
0.40O

pt
im

al
 W

ei
gh

ts
Consensus Steps0 10 20 30

DFC

O
pt

im
al

 W
ei

gh
ts

0 1000 2000 3000
Consensus Steps

DRING0.8
0.7
0.6
0.5
0.4
0.3
0.2

(a) Convergence Performance. (b) DMS Performance.

(c) DFC Performance. (d) DRING Performance.

Fig. 7: Scalability of different decentralized learning topologies.

The experiment was designed to evaluate the effect of
increasing the number of agents on the algorithm’s conver-
gence performance. Figure 7(a) shows that the convergence
performance increases almost linearly with the number of
agents under the DRING topology, while the other three
figures show the convergence of a 200-agent system with dif-
ferent topologies. This indicates that the proposed algorithm is
scalable and can easily adapt to large-scale federated learning
systems. Actually, both the communication and computational
complexity of an agent do not depend on the set of agents,
but rather the set of neighbors. This means that as long as
the number of neighbors is kept unchanged, the algorithm
can scale to as many agents as possible. This is a significant
advantage over other federated learning algorithms that have
a high computational and communication complexity with
respect to the number of agents. From the simulation results,
it can be observed that due to the random communication
approach, the DMS topology significantly improves conver-
gence speed compared to the DRING topology, and achieves
convergence speed almost equivalent to that of the DFC
topology. Theoretically, the DMS topology reduces 50% of
the communication edges compared to the DFC topology.

b) Privacy: For secure aggregation, we used an MPC
protocol based on Shamir secret sharing which remains secure
as long as the majority of the parties are honest (i.e., when
there are three parties, at most one can be malicious). If this
is satisfied and a dishonest party deviates from the protocol,
the honest parties will detect it and abort the protocol with
probability 1 − 1/p, where p is the order of the field. We
choose p such that log2 p = 128, so that dishonest behavior is
caught with overwhelming probability.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 9

We implemented secure aggregation using SCALE-
MAMBA and performed experiments for different commu-
nication topologies. For the FedAvg topology, we consider 3
external MPC parties, receiving secret shared gradients from
the 30 agents in every round. For the DRING topology, each
agent acts as an MPC party and performs the secure aggrega-
tion protocol together with the two connected neighbors. For
the DFC topology, there are 30 MPC parties played by the
agents themselves, who secretly share their gradients with all
other 29 agents in every round. In the DMS topology, the MPC
parties are played by the subset of agents chosen to aggregate
their gradients in that round.

The runtimes obtained for one round of the different
topologies are summarized in Table I. DFC clearly results

TABLE I: Runtimes in seconds for computing secure aggregation of
gradients for one round of training.

FedAvg DRING DFC DMS
3 parties 4 parties 5 parties

1.08s 0.16s 488.41s 0.16s 0.25s 0.39s

in the most expensive secure aggregation computation, taking
488.41s (≈ 8min). This was to be expected, since using more
MPC parties quickly increases the communication overhead.
On the other hand, for this experiment, we ran more than one
party on a single machine, with some machines running up
to six parties, which also contributed to the slow runtime. In
FedAvg, the fact that there are only 3 MPC parties significantly
improves the performance. However, DRING and DMS allow
even faster computation times. In DRING, each group of three
neighboring agents is aggregating 3 gradients in each round
(instead of the 3 MPC parties aggregating 30 gradients in Fe-
dAvg). If all the groups of 3 agents perform their computations
in parallel, a runtime of 0.16s is achieved. Regarding DMS,
the number of agents aggregating their gradients in each round
can be adjusted according to the desired runtimes. Naturally,
increasing this number will also result in a slower aggregation,
especially since the number of MPC parties running the
protocol will increase. Nonetheless, aggregation with 5 parties
in DMS still achieves runtimes more than twice as fast as
FedAvg.

Remark 4: Due to a limitation of the SCALE-MAMBA
software, each gradient to be aggregated must initially be
entered as three separate values (one for the sign and two for
the value itself). These values are then put together to obtain
the original gradient value before performing the aggregation
itself. However, this means that we need to secret share 3 times
as many values, resulting in runtimes 2 to 3 times slower than
if only the value itself was secretly shared. The runtimes in
Table I assume that the gradients can be read as one single
secret value.

Due to the use of different network topologies, models and
experimental setups, comparing the numerical benchmarks in
Table I with those of previous related work is not straightfor-
ward. Instead, we look at the computation and communication
complexities for performing secure aggregation for the com-
munication topologies considered in this work. We compare
them to corresponding complexities for the protocol in [21],

which in turn presents lower complexities than other previous
works (as is shown in [24, Table 2]).

TABLE II: Computation and communication complexity per training
iteration of the different topologies compared with SAFELearn [21].
m is the length of the model updates and n is the number of clients.

Approach
Computation Communication

Server Client Server Client

SAFELearn [21] O(mn) O(m) O(mn) O(m)

FedAvg O(mn) O(m) O(mn) O(m)

DRING - O(m) - O(m)

DFC - O(mn) - O(mn)

DMS - O(m) - O(m)

The setting of the protocol in [21] is similar to the FedAvg
topology, hence the identical complexities. With the DFC
topology, the absence of a distributed central server results
in high communication and computation complexities for the
clients, which can become unpractical as the number of clients
increases. The DRING and DMS topology allow removing
the central server while maintaining low complexities on the
clients’ side. Note that the number of MPC parties also
influences the complexities but is not considered in this table.
This is because in [21], FedAvg and DRING the number of
parties is small and constant throughout the protocol. In the
DMS topology, as the complexity analysis in Section III-C,
the worst-case scenario for DMS involves the number of
interacting clients in each round equal to the total number
of clients. When using DFC, the MPC parties are the clients,
and hence their impact is already accounted for.

c) Robustness to attacks: In this section, we conducted
experiments to evaluate the robustness of our proposed
method, DMS, to two different attack algorithms, poisoning
attacks, and DLG. With the poisoning attack scenario, we
arbitrarily and randomly attacked 10% of the agents (3 out of
30) and attackers introduced a poisoning attack by injecting a
deliberate malicious perturbation of 0.2 into their broadcasted
model weights during each training round. We monitored the
resulting mismatch between the model’s parameters and the
optimal value throughout the training process. The outcomes
of these experiments are presented in Fig. 8, which illustrates
a comprehensive comparison between our DMS approach and
FedAvg.

From the observations in Fig. 8, it is evident that our
DMS exhibits superior robustness compared to the FedAvg
algorithm under poisoning attacks. Even under a sustained
onslaught of over 1000 rounds of attacks, our method dis-
played only a 9% increase in error, unlike FedAvg. This
robustness, which refers to maintaining accuracy under at-
tack, can be attributed to our novel approach that adapts to
changing communication topologies. In our implementation of
the Markovian switching mechanism, only a subset of agents
participate in weight updates each round, hindering attackers
from consistently propagating their malicious weights. This
inconsistency significantly enhances the system’s robustness
against adversarial influences. These results underscore the ef-
fectiveness of our DMS method in defending against poisoning

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 10

Fig. 8: Weights update under attacks.

Fig. 9: Recovered data from DLG attack.

attacks, suggesting its potential to significantly enhance the
security of learning systems.

The second scenario is under the attack of DLG. DLG is
a strong attack against gradients-sharing-based NN training.
Once it hijacks the real gradients, the attacker can recover the
original training set. In this experiment, an attacker randomly
selects a communication line and gains continuous access to
the transmitted information. By doing so, the attacker can
obtain the change in weights between two communications,
effectively capturing gradient information. This data is then
used to recover load data. For benchmarking purposes, we
compare our results against the FedAvg algorithm in this
experiment. The experiment results are shown in Fig. 9.

Fig. 9 shows the recovered data by employing the DLG
algorithm. It can be seen that our DMS algorithm performs
better than the FedAvg algorithm in terms of protecting the
information leakage from the gradient. In FedAvg, the central
server initializes and broadcasts the global model to clients.
Therefore, each client holds an identical NN model with
the same randomly initialized weights. Meanwhile, for every
round of training, each client needs to share their updates with
the central server. In this case, the attacker can succeed if
they have access to different stages of weights, for example,
the initialized weights and any weights from later updates.
The comparison of recovered data under FedAvg setting can
be clearly seen as 10. By contrast, the attacker faces more
difficulties in the DMS setting. First, the clients’ models are

Fig. 10: Comparison between recovered and real converted Load
under FedAvg setting.

not unified initialized. Second, the communicating clients in
each round of training are randomly selected. Therefore, it
is way more difficult for the attacker to hijack weights in
different stages for a specific client.

d) Accuracy: Here, we measure the accuracy of the al-
gorithm’s predictions. The evaluation metric we used is MSE.
We conduct an experiment to forecast short-term residential
load using four different state-of-the-art models: DNN, CNN,
LSTM, and WaveNet. For each model, we implement four
different algorithms: FedAvg, DRING, DFC and DMS. Firstly,
the forecasting results of three randomly selected residentials
are shown in Fig. 11, for the full forecasting results, please
refer to our GitHub4.

Fig. 11: Forecasting performance of different algorithms on DNN
models.

From Fig. 11, we can see that the proposed DMS algorithm
performs well and is able to capture the trends and fluctuations
in the actual electricity consumption values quite well. It is
slightly better than other algorithms in most time slots. It is

4https://github.com/YingjieWangTony/FL-DL.git

https://github.com/YingjieWangTony/FL-DL.git

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 11

noticed that there are some deviations between the actual and
every predicted peak value in Fig. 11. That is largely due to
the loss function, MSE. Using MSE in regression problems
is common, but it has some limitations when the data is
imbalanced. First, MSE treats all errors equally, regardless if
their values are high or low. In other words, MSE will not
prioritize peak value accuracy. It leads to an underestimation
of peak values. Second, when the data is imbalanced, the peak
values are often considered as outliers during optimization.
While MSE is sensitive to outliers, it aims to minimize the
error across all samples uniformly. This can be problematic
when peaks are outliers but are very important. Thirdly, global
optimization could be a reason, too. The optimization process
aims to minimize the global error. Peak values are rare in
normal consumption profiles, the optimization process may
choose to “sacrifice” accuracy on these points in favor of
better global accuracy. We propose the following solutions to
this situation, custom loss function, data resampling, feature
engineering, and ensemble methods. These solutions could be
a good help towards peak value prediction. However, this is
beyond the current scope of the paper.

Fig. 12: Training performance of different algorithms on DNN
models.

In Fig. 12, we show the training performance among four
different algorithms. Mean squared error is applied to eval-
uate the performance of the models. To further illustrate the
comparison results among different models and algorithms, we
summarize the overall mean square error values for each model
and algorithm on the testing dataset, as shown in Table. III.

TABLE III: Mean square error (kWh) of different algorithms and
models.

DNN CNN LSTM WAVENET
FedAvg 0.05263 0.06495 0.0537 0.4965
DRING 0.05289 0.06498 0.0556 0.3659

DFC 0.05305 0.06493 0.0552 0.5043
DMS 0.05236 0.06388 0.0550 0.5156

From the results given in Fig. 12 and Table III, the
proposed DMS algorithm meets the requirements and has
better accuracy than other models. For the dataset used in
this case, the DMS algorithm proposed obtains better per-
formance and fewer prediction errors in most cases. It is
noticed that some fluctuations during the training process,

even after 100 training epochs. These fluctuations are primarily
caused by the heterogeneity in local data distributions. Each
node trains on a distinct dataset, leading to models that
are finely tuned to their specific data characteristics. When
these models are aggregated, as in Federated Learning, the
process attempts to reconcile these divergent updates, caus-
ing fluctuations in the global model. This phenomenon is
exacerbated in environments where the local datasets are not
independently and identically distributed. While theoretically,
a centralized training approach using a powerful computing
center and all available data would yield an optimal model,
practical constraints like geographical limitations and privacy
concerns make this approach infeasible. Thus, distributed
training, despite its inherent fluctuations, becomes a necessary
compromise, offering a balance between model performance
and adherence to logistical and privacy constraints. Over time,
as more rounds of aggregation occur, the global model tends to
stabilize, gradually adapting to the diversity of local updates.

V. CONCLUSION

In this paper, we developed a Markovian Switching dis-
tributed learning framework for residential short-term load
forecasting. Moreover, a secure aggregation approach, MPC
has been employed to address the threat of deep leakage from
the gradient. We analyzed DMS from several perspectives,
such as accuracy, scalability, complexity and privacy. The
DMS is compared with traditional centralized, FL, DRING and
DFC models. The simulation shows that the DMS model not
only secures residential-user privacy but also shows equivalent
or even superior accuracy than the other models. Particularly, it
significantly reduces computational complexity and enhances
scalability compared to FL models.

REFERENCES

[1] O. Abedinia, N. Amjady, and H. Zareipour, “A new feature selection
technique for load and price forecast of electrical power systems,” IEEE
Trans. Power Syst., vol. 32, no. 1, pp. 62–74, 2016.

[2] M. Ali, M. Adnan, and M. Tariq, “Optimum control strategies for short
term load forecasting in smart grids,” Int. J. Electr. Power Energy Syst.,
vol. 113, pp. 792–806, 2019.

[3] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on LSTM recurrent neural network,”
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 841–851, 2017.

[4] W. Lin, D. Wu, and B. Boulet, “Spatial-temporal residential short-term
load forecasting via graph neural networks,” IEEE Trans. Smart Grid,
vol. 12, no. 6, pp. 5373–5384, 2021.

[5] J. S. Nightingale, Y. Wang, F. Zobiri, and M. A. Mustafa, “Effect
of clustering in federated learning on non-iid electricity consumption
prediction,” in 2022 IEEE PES Innov. Smart Grid Technol. Conf. Eur.,
2022.

[6] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE signal process. mag.,
vol. 37, no. 3, pp. 50–60, 2020.

[7] N. Gholizadeh and P. Musilek, “Federated learning with hyperparameter-
based clustering for electrical load forecasting,” Internet Things, vol. 17,
p. 100470, 2022.

[8] J. D. Fernández, S. P. Menci, C. M. Lee, A. Rieger, and G. Fridgen,
“Privacy-preserving federated learning for residential short-term load
forecasting,” Appl. Energy, vol. 326, p. 119915, 2022.

[9] Y. Yang, Z. Wang, S. Zhao, and J. Wu, “An integrated federated learning
algorithm for short-term load forecasting,” Electr. Power Syst. Res., vol.
214, p. 108830, 2023.

[10] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning,” IEEE Trans. Neural Netw. Learn. Syst., 2022.

IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. X, FEBRUARY 2024 12

[11] J. Lin, J. Ma, and J. Zhu, “A privacy-preserving federated learning
method for probabilistic community-level behind-the-meter solar gen-
eration disaggregation,” IEEE Trans. Smart Grid, vol. 13, no. 1, pp.
268–279, 2021.

[12] J. Gao, W. Wang, Z. Liu, M. F. R. M. Billah, and B. Campbell,
“Decentralized federated learning framework for the neighborhood: a
case study on residential building load forecasting,” in Proc. 19th ACM
conf. embed. networked sens. syst., 2021, pp. 453–459.

[13] M. Savi and F. Olivadese, “Short-term energy consumption forecasting
at the edge: A federated learning approach,” IEEE Access, vol. 9, pp.
95 949–95 969, 2021.

[14] M. N. Fekri, K. Grolinger, and S. Mir, “Distributed load forecasting
using smart meter data: Federated learning with Recurrent Neural
Networks,” Int. J. Electr. Power Energy Syst., vol. 137, p. 107669, 2022.

[15] Y. Wang, A. Zhang, S. Wu, and S. Yu, “VOSA: Verifiable and oblivious
secure aggregation for privacy-preserving federated learning,” IEEE
Trans. Dependable Secure Comput., pp. 1–17, 2022.

[16] M. Asad, A. Moustafa, T. Ito, and M. Aslam, “Evaluating the commu-
nication efficiency in federated learning algorithms,” in 2021 IEEE 24th
int. conf. comput. support. coop. work des., 2021, pp. 552–557.

[17] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Adv. neural
inf. process. syst., vol. 32, 2019.

[18] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proc. 2017 ACM SIGSAC
conf. comput. commun. secur., ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 1175–1191.

[19] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and
Y. Zhou, “A hybrid approach to privacy-preserving federated learning,”
in Proc. 12th ACM workshop artif. intell. secur., ser. AISec’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 1–11.

[20] D. Byrd and A. Polychroniadou, “Differentially private secure multi-
party computation for federated learning in financial applications,” in
Proc. first ACM int. conf. AI finance, ser. ICAIF ’20. New York, NY,
USA: Association for Computing Machinery, 2021.

[21] H. Fereidooni, S. Marchal, M. Miettinen, A. Mirhoseini, H. Mol-
lering, T. Nguyen, P. Rieger, A. Sadeghi, T. Schneider, H. Yalame,
and S. Zeitouni, “Safelearn: Secure aggregation for private federated
learning,” in 2021 IEEE secur. priv. workshops. Los Alamitos, CA,
USA: IEEE Computer Society, may 2021, pp. 56–62.

[22] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly)logarithmic overhead,” in
Proc. 2020 ACM SIGSAC conf. comput. commun. secur., ser. CCS ’20.
New York, NY, USA: Association for Computing Machinery, 2020,
p. 1253–1269. [Online]. Available: https://doi.org/10.1145/3372297.
3417885

[23] J. So, B. Guler, and A. Avestimehr, “Turbo-aggregate: Breaking the
quadratic aggregation barrier in secure federated learning,” IEEE J. Sel.
Areas Inf. Theory, vol. PP, pp. 1–1, Jan. 2021.

[24] T. Gehlhar, F. Marx, T. Schneider, A. Suresh, T. Wehrle, and
H. Yalame, “Safefl: Mpc-friendly framework for private and robust
federated learning,” in 2023 IEEE secur. priv. workshops. Los
Alamitos, CA, USA: IEEE Computer Society, may 2023, pp.
69–76. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
SPW59333.2023.00012

[25] V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks
against federated learning systems,” in 25th eur. symp. res. comput. secur.
Springer, 2020, pp. 480–501.

[26] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis,
“Casting out demons: Sanitizing training data for anomaly sensors,” in
2008 IEEE Symp. Secur. Priv. IEEE, 2008, pp. 81–95.

[27] J. Feng, H. Xu, S. Mannor, and S. Yan, “Robust logistic regression and
classification,” Adv. neural inf. process. syst., vol. 27, 2014.

[28] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,” in 2018 IEEE symp. secur. priv. IEEE, 2018,
pp. 19–35.

[29] J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for data
poisoning attacks,” Adv. neural inf. process. syst., vol. 30, 2017.

[30] M. Fang, X. Cao, J. Jia, and N. Gong, “Local model poisoning attacks to
{Byzantine-Robust} federated learning,” in 29th USENIX secur. symp.,
2020, pp. 1605–1622.

[31] Y. Mao, X. Yuan, X. Zhao, and S. Zhong, “Romoa: Ro bust mo del a
ggregation for the resistance of federated learning to model poisoning
attacks,” in 26th eur. symp. res. comput. secur. Springer, 2021, pp.
476–496.

[32] X. Cao, M. Fang, J. Liu, and N. Z. Gong, “Fltrust: Byzantine-robust fed-
erated learning via trust bootstrapping,” arXiv prepr. arXiv:2012,13995,
2020.

[33] Z. Ding, “Consensus output regulation of a class of heterogeneous
nonlinear systems,” IEEE Trans. Autom. Control, vol. 58, no. 10, pp.
2648–2653, 2013.

[34] T. Zhao and Z. Ding, “Distributed initialization-free cost-optimal charg-
ing control of plug-in electric vehicles for demand management,” IEEE
Trans. Ind. Inform., vol. 13, no. 6, pp. 2791–2801, 2017.

[35] Y. Dong, T. Zhao, and Z. Ding, “Demand-side management using a
distributed initialisation-free optimisation in a smart grid,” IET renew.
power gener., vol. 13, no. 9, pp. 1533–1543, 2019.

[36] Y. Wang, L. Cheng, W. Ren, Z.-G. Hou, and M. Tan, “Seeking consensus
in networks of linear agents: Communication noises and Markovian
switching topologies,” IEEE Trans. Autom. Control, vol. 60, no. 5, pp.
1374–1379, 2014.

[37] W. Ren and R. W. Beard, Distributed Consensus in Multi-Vehicle
Cooperative Control. Springer, 2008, vol. 27.

[38] Z. Li, B. Liu, and Z. Ding, “Consensus-based cooperative algorithms
for training over distributed data sets using stochastic gradients,” IEEE
Trans. Neural Netw. Learn. Syst., 2021.

[39] A. Aly, M. Keller, E. Orsini, D. Rotaru, P. Scholl, N. P. Smart, and
T. Wood, “SCALE and MAMBA documentation,” 2018.

[40] J. Böhler and F. Kerschbaum, “Secure multi-party computation of
differentially private heavy hitters,” in Proc. 2021 ACM SIGSAC
conf. comput. commun. secur., ser. CCS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 2361–2377. [Online].
Available: https://doi.org/10.1145/3460120.3484557

[41] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” Adv.
neural inf. process. syst., vol. 20, 2007.

[42] H. Tang, X. Lian, M. Yan, C. Zhang, and J. Liu, “d2: Decentralized
training over decentralized data,” in Int. Conf. Mach. Learn., 2018, pp.
4848–4856.

[43] D. Saad, “Online algorithms and stochastic approximations,” Online
Learn., vol. 5, no. 3, p. 6, 1998.

[44] P. J. Bickel and K. A. Doksum, Mathematical statistics: basic ideas and
selected topics, volumes I-II package. CRC Press, 2015.

[45] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.
48–61, 2009.

[46] Z. Deng, S. Liang, and Y. Hong, “Distributed continuous-time algorithms
for resource allocation problems over weight-balanced digraphs,” IEEE
trans. cybern., vol. 48, no. 11, pp. 3116–3125, 2017.

[47] Y. Zhu, W. Yu, G. Wen, G. Chen, and W. Ren, “Continuous-time
distributed subgradient algorithm for convex optimization with general
constraints,” IEEE Trans. Autom. Control, vol. 64, no. 4, pp. 1694–1701,
2018.

[48] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Trans. Autom. control, vol. 57, no. 3, pp. 592–606, 2011.

[49] W. Rudin et al., Principles of Mathematical Analysis. McGraw-hill
New York, 1976, vol. 3.

[50] H. S. Hippert, C. E. Pedreira, and R. C. Souza, “Neural networks
for short-term load forecasting: A review and evaluation,” IEEE Trans.
power syst., vol. 16, no. 1, pp. 44–55, 2001.

[51] C.-L. Liu, W.-H. Hsaio, and Y.-C. Tu, “Time series classification with
multivariate convolutional neural network,” IEEE Trans. ind. electron.,
vol. 66, no. 6, pp. 4788–4797, 2018.

[52] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet:
A generative model for raw audio,” arXiv prepr. arXiv:1609,03499,
2016.

[53] I. Commission for Energy Regulation (CER), “CER smart metering
project - gas customer behaviour Trial,2009-2010,” 2012.

[54] Y. Mansour, M. Mohri, J. Ro, and A. T. Suresh, “Three approaches
for personalization with applications to federated learning,” arXiv prepr.
arXiv:2002,10619, 2020.

[55] T. Zhao, Z. Li, and Z. Ding, “Consensus-based distributed optimal
energy management with less communication in a microgrid,” IEEE
Trans, Ind. Inform., vol. 15, no. 6, pp. 3356–3367, 2018.

https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://doi.ieeecomputersociety.org/10.1109/SPW59333.2023.00012
https://doi.ieeecomputersociety.org/10.1109/SPW59333.2023.00012
https://doi.org/10.1145/3460120.3484557

	Introduction
	Preliminaries
	Federated Learning
	Graph Theory
	Distributed Learning
	Secure Aggregation

	Distributed Markovian Switching Algorithm
	Problem Formulation
	DMS Learning
	Correctness Analysis on Performance/Convergence

	Case Studies
	Data Sources
	Experiment Setup
	Experiment Results and Analysis

	Conclusion
	References

