
© 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 

for all other uses, in any current or future media, including reprinting/republishing this material 

for advertising or promotional purposes, creating new collective works, for resale or 

redistribution to servers or lists, or reuse of any copyrighted component of this work in other 

works. 

 

Citation: 

Kuang, Yongxiang, Bin Jiang, Xuerong Cui, Shibao Li, Yongxin Liu, and Houbing Song. “Flexible 

Differential Privacy for Internet of Medical Things Based On Evolutionary Learning.” IEEE 

Internet of Things Journal, 2024, 1–1. https://doi.org/10.1109/JIOT.2024.3366889. 

 

DOI: 

https://doi.org/10.1109/JIOT.2024.3366889 
 

 

 

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 

ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) 

platform.  

 

 

Please provide feedback 

Please support the ScholarWorks@UMBC repository by emailing scholarworks-

group@umbc.edu and telling us what having access to this work means to you and why it’s 

important to you. Thank you.  

 

https://doi.org/10.1109/JIOT.2024.3366889
https://doi.org/10.1109/JIOT.2024.3366889
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu


IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, XXXX 2023 1
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Abstract—With the development of Internet of Medical
Things(IOMT), a lot of medical data are stored and released
for both scientific research and practical applications. Accurate
medical data is very valuable, but it also brings a huge risk of
privacy leakage. Moreover, improving the privacy of data often
leads to the reduction of data validity. Privacy and effectiveness
are in conflict, and their balance is a typical multi-objective
optimization problem (MOP). In this paper, we try to use
differential privacy to disturb medical data to protect personal
privacy. We propose the Environment Switching Algorithm (ESA)
based on evolutionary learning to solve this MOP. ESA has
excellent performance, which can ensure convergence speed
and optimization performance at the same time. The result of
optimization is a pareto front (PF) of huge scale, which includes
solutions with different characteristics. We put forward a method
of double clustering to select the appropriate solution from PF.
Based on the above, we conclude the whole method as Flexible
Differential Privacy Algorithm based on Evolutionary Learning
(FDPEL). FDPEL can realize flexible differential privacy for
medical data, while ensuring data privacy and data validity.
FDPEL is suitable for privacy protection of medical data of
different scales, which makes it have a practical applications
value.

Index Terms—Internet of Medical Things, Differential priva-
cy, Multi objective optimization, Evolutionary learning, Pareto
frontier.

I. INTRODUCTION

W ITH the rapid development of information technology,
the Internet of Medical Things (IOMT) has been

developed rapidly [1], as shown in Fig.1. IOMT can collect
rich medical information by using various sensing, storage
and communication modules, and use the information for
online diagnosis and data analysis [2]. In the medical field, the
existing medical data is of great value for scientific research
and disease diagnosis [3]. For example, scholars can use
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machine learning (ML) and other technologies to analyze
patients’ basic information and daily life habits, and find out
their relationship with a certain disease, thus helping others to
screen the potential risk of diseases [4].

IOMT system is vulnerable to attack, and it will cause
privacy leakage when the patient’s personal information is
identified, which will affect personal life [5]. Therefore, the
privacy protection of IOMT has always been a challenging
topic. The privacy leakage of IOMT can occur at all stages [6].
This paper focuses on the privacy protection of data publish-
ing. Many medical institutions and official organizations will
try to publish the data generated by IOMT on the Internet for
scholars to conduct data analysis and scientific research. The
index that can directly identify individuals (such as names) will
be hidden when data is published, and K-anonymization and
other methods will be tried to protect privacy [7]. However,
there are also some malicious attacks, such as chain attacks,
which can identify individual users and seriously damage
people’s privacy [8]. In particular, differential privacy has been
widely used and become a privacy protection standard, because
it has strict mathematical proof [9]. In this paper, differential
privacy is used to protect the privacy of medical data in IOMT.

Fig. 1: Internet of Medical Things(IOMT)

In privacy protection, the privacy and validity of data often
conflict [10]. Generally speaking, the higher the degree of
privacy protection, the less valuable it is to scientific research,
that is, the less effective it is. Similarly, the more valuable the
data, the higher the risk of privacy leakage. Data publishers
must balance data privacy and effectiveness [11]. The method
of balance is often carried out according to subjective inten-
tion, and it will be ineffective when a large amount of data is
published frequently.
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The balance between validity and privacy is a typical Multi-
objective Optimization Problem (MOP), and evolutionary al-
gorithm (EA) is often used to solve MOP [12]. EA can find a
set of trade-off solutions, which are optimal when considering
all conflicting objectives. However, the scale of health topic
dataset is variable, and the number of decision variables has
expanded from a few to thousands. Traditional evolutionary al-
gorithms, such as Non-dominated Sorting Genetic Algorithm-
II (NSGA-II) and Particle Swarm Optimization (PSO), have
a sharp decline in performance and become very difficult to
converge when dealing with decision variables exceeding 100
[13]. Therefore, they are not applicable in the context of this
article. In order to accelerate the convergence, scholars try to
combine EA with ML to improve its performance in large-
scale multi-objective optimization, which is defined as evolu-
tionary learning. However, due to its emphasis on convergence
speed, when it reaches a certain degree of convergence, the
general evolutionary learning algorithms are easy to fall into
local optimum, which is also considered and Environment
Switching Algorithm (ESA) is proposed in this paper.

Like other EA, the population size of evolutionary learning
algorithms is usually set to a relatively large value, such
as 100-1000. The difficulty of filtering caused by unclear
user preferences needs to be solved. Considering it, a double
clustering method is proposed.

To sum up, we propose an automatic privacy protection
method, which we call Flexible Differential Privacy Algorithm
based on Evolutionary Learning (FDPEL).

We model the privacy-preserving of medical data as a MOP
and solve it with a multi-objective optimization algorithm
based on evolutionary learning. The contributions of this paper
are as follows:

1) To achieve excellent optimization on medical datasets of
different scale, we designed Environment Switching Algorithm
(ESA) based on evolutionary learning. ESA can solve MOP
well when facing medical datasets, so as to achieve flexible
differential privacy purpose. ESA focuses on both convergence
and optimization performance.

2) To evaluate the effect of differential privacy directly, we
put forward an evaluation system for disturbed medical dataset.
After using differential privacy to disturb the original data,
a series of objective functions are designed to evaluate the
privacy and validity of the disturbed data.

3) In order to help users filter out appropriate optimization
results and realize flexible differential privacy on medical
dataset, we propose a double clustering method. This method
is convenient for users to select the suitable solution vectors
from the large-scale solution sets. The solution set is divided
from two perspectives: one is the PF performance generated
from ESA, and the other is the privacy budget set of indexes.

The rest of this paper is organized as follows: In Section.II,
we introduce the related works. In Section.III, we describe
FDPEL in detail. In Section.IV, we evaluate the effectiveness
and universality of FDPEL through experiments. Finally, we
give a conclusion.

II. BACKGROUND AND RELATED WORK

In this section, we first discuss and analyze the model
and application of differential privacy. Then, we summarize
and discuss the multi-objective optimization problem and
evolutionary learning. Finally, we investigate the selection of
optimization results in practical problems.

A. Differential Privacy for Medical Data

Differential privacy is a privacy protection model with strict
theoretical proof. Assuming D is the dataset to be released, it
contains both numerical and non-numerical columns, and we
are attempting to add noise to it.

Assuming ε is a positive real number, and A is a random
algorithm that takes a dataset as input. S represents all the
outputs of algorithm A on dataset D and D

′
. If the random

algorithm A satisfies ε-differential privacy, then
Definition1 Differential Privacy

P [A (D ∈ S)] ≤ eε × P
[
A
(
D

′
∈ S

)]
(1)

ε represents the privacy budget, and the smaller ε is, the
higher the degree of privacy protection [14].

Differential privacy has been widely used in the protection
of various data, and achieved remarkable results [15]. In [16],
Jiang et al. propose a new federated edge learning framework
based on hybrid differential privacy and adaptive compression
for industrial data processing. In [17], Jiang et al. discuss
how differential privacy is applied to social network analysis,
and analyzes privacy attacks and differential privacy models in
social networks. A trie-based iterative statistic method, which
combines additive secret sharing and local differential privacy
technologies, was proposed in [18] to protect real-time location
information.

Many scholars try to use various methods to protect the
privacy of each module of IOMT [19]. In [20], a blockchain-
based two-stage federated learning approach is proposed,
which allows IOMT devices to cooperatively train the global
model without collecting data to the central server, thus
reducing the risk of privacy leakage. In [21], Jia et al. present
two privacy-preserving authentication protocols for IOMT
based on elliptic curve cryptography (ECC) and physically
unclonable functions (PUFs), respectively, in terms of the
capacity of involved entities. In [22], Zeng et al. propose
an efficient partially-policy-hidden and large universe ABE
scheme with public traceability to construct a practical IOMT
system. Differential privacy has been widely used to protect
medical data since it was put forward. In [23], Gupta et al.
propose a novel Differential and TriPhase adaptive learning-
based Privacy-Preserving Model (DT-PPM) for medical data
protection by enabling secure data storage, analysis, and
sharing in the cloud environment. In [8], Wang et al. pro-
pose a privacy-enhanced disease diagnosis mechanism using
federated learning(FL) based on differential privacy for the
IOMT.

B. Multi-Objective Optimization and Evolutionary Learning

Without loss of generality, a Multi-objective Optimization
Problem(MOP) without constraints can be modeled as:
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Minimize F (x) ∈ Y, x ∈ α (2)

where F (x) = (f1(X), f2(X), . . . , fm(X)) and and X =
(x1, x2, . . . , xn). Respectively, m represents the number of the
objective function in the objective space Y , and n represents
the number of the decision variable X in the search space α.
Large-Scale Multi-objective Optimization Problem(LMOP) is
MOP when n ≥ 1000 and m ≥ 2. Some scholars have applied
the multi-objective optimization method to medical problems.
Most optimization problems in the real world are MOP or
LMOP [24]. In [25], Zhou et al. propose a multi-objective
based feature selection (MO-FS) algorithm for Lesion Malig-
nancy Classification.

In the past decades, many classic multi-objective evolu-
tionary algorithms(MOEAs) such as NSGA-II and algorithms
based on them have been proposed and widely used to solve
practical problems [26]. For example, in [27], Ding et al.
use MOEAs to addresses a flexible job shop scheduling
problem under time-of-use electricity tariffs with the objective
of minimizing total energy consumption while considering a
predefined makespan constraint.

When dealing with LMOP, the effect of conventional
MOEAs will drop sharply [28]. In order to solve this kind of
problem, many advanced algorithms have been put forward.
These algorithms can be roughly divided into two categories
[29]. The first is to optimize decision variables by using
various methods such as grouping and clustering. For example,
in [30], Xu et al. propose a new metric called the optimization
degree of the convergence-related decision variable to each
objective to calculate the contribution objective of each deci-
sion variable. The second is to introduce the idea of machine
learning(ML) [31], which we call evolutionary learning.

However the generality of the algorithm is required in this
scenario. The number of decision variables in the data set of
health topics may be several or hundreds. Using conventional
MOEAs to solve it will lead to difficulty in convergence.
Using ML-based evolutionary learning algorithm will lead to
over-emphasis on accelerating convergence and decrease the
diversity of solutions. This is unacceptable to us. Therefore,
in this paper, we propose a more flexible algorithm based on
evolutionary learning.

C. Selection of Optimization Results

In the solution of MOPs, the population number is usually
set to 100 or more. The solution is not a function value, but
a target vector. Several objective functions considered at the
same time are often in conflict, and optimizing one objective
function alone will make other objective functions worse.
Therefore, the two solutions of multi-objective optimization
are often not directly comparable. A solution performs well on
one objective function, but poorly on other objective functions.
Therefore, we often use dominance relation to compare two
solutions.

Given the target vector F = (f1, f2, · · · , fm) : X → Rm,
where X is feasible solution space, Rm is target vector space,
for solution x and x

′ ∈ X , if fi(x) ≥ fi(x
′
) for any 1 ≤ i ≤

m, then x dominance x
′
.

Based on the dominance relation, the result of multi-
objective optimization is no longer unique, but a set of Pareto
optimal solutions. For a solution x, if there is no other solution
dominating x in X , then x is called Pareto optimal. The
set of objective vectors of all Pareto optimal solutions is
called Pareto Front(PF). PF can help us to select the solutions
preliminarily. But in practice, a solution vector is used. How
to select the appropriate solution vector from the huge solution
set? This requires additional processing of the solution set.

In [30], Zhang et al. use clustering method to process
the optimization results, but only divided the results into two
categories. In [32], Hua et al. choose a balance point in PF
as the best point for analysis according to the preference of
practical problems, this method is suitable for specific data
sets and problems, but not universal. In [33], Xie et al. use
fuzzy decision method to select the optimization results, but
the setting of weights often plays a decisive role, so it is
not universal. In [34], Xu et al. choose the point at the
inflection point of PF as the optimal solution. Most papers
only evaluate the PF curve, and then choose the optimization
result according to the weight of preference. We believe
that the solution users are seeking should be diverse and
comprehensive, so we think it is not universally applicable.

III. FLEXIBLE DIFFERENTIAL PRIVACY ALGORITHM
BASED ON EVOLUTIONARY LEARNING

In this section, we describe the details of Flexible D-
ifferential Privacy Algorithm based on Evolutionary Learn-
ing(FDPEL). FDPEL provides privacy-preserving for the pub-
lish of medical data. The goal of publishing dataset on health
topics is to find a scientific way to accurately predict the
probability of getting sick. These dataset are typically made up
of n attribute columns such as some physical characteristics,
daily habits, and one decision column such as whether you
have a certain disease. FDPEL serves two primary purposes:
1) Safeguarding data privacy and prevent unauthorized identifi-
cation of individuals through methods such as linkage attacks.
2) Maintain the validity of data and prevent it from becoming
invalid due to disturbance because of differential privacy,
resulting in wrong scientific research results. This section
introduces our work from four aspects. Firstly, we describe
the differential privacy process for medical data. Secondly,
we design an evaluation system for differential privacy effect.
Thirdly, we propose ESA, an algorithm based on evolutionary
learning to improve the flexibility of differential privacy.
Finally, we design a double clustering method for users to
filter the appropriate optimization results.

A. Differential Privacy Process
Differential privacy is defined as Eq.1, where ε represents

the privacy budget, and the smaller ε is, the higher the degree
of privacy protection. The noise mechanism is the primary
technique for achieving differential privacy protection, with
commonly used noise addition mechanisms being the Laplace
mechanism and the exponential mechanism. The amount of
noise required for algorithms based on different noise mech-
anisms and satisfying differential privacy is closely related to
the Global Sensitivity.
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Definition2 Global Sensitive
For any function f : D → Rd, The global sensitivity of

function f is defined as

4f = max
D,D′

∥∥∥f(D)− f(D
′
)
∥∥∥
1

(3)

where D and D
′

differ by at most one record, R represents
the mapped real number space, d represents the query dimen-
sion of the function f , and p represents the L1 distance used
to measure 4f .

In this paper, we mainly use Laplace mechanism to add
noise, and the noise generated by Laplace distribution dis-
turbs the real value to realize differential privacy protection.
Consider the laplace distribution with a mean value of 0 and
a scale parameter of b as lap(x | b) = 1

2be
(− |x|

b ). When the
scale parameter b = f

ε , ε-differential privacy can be satisfied. ε
is called the privacy budget. When 4f is constant , the larger
the privacy budget, the smaller the scale parameter b and the
smaller the added noise. It can be found that the privacy budget
ε is a very sensitive value to the noise disturbance level. In this
work, we adjust the value of privacy budget of each attribute
column to achieve the different degree of noise disturbance
for different attribute.

In order to evaluate the noise-adding effect uniformly, it
is necessary to standardize each column first. The specific
implementation method is: for a certain column of data
X = {x1, x1 · · ·xn}, standardize X to get Xnorm, Xnorm =
{x1norm, x2norm · · ·xnnorm}, where

Xinorm = norm× xi − ximin
ximax − ximin

(4)

next, add noise to Xnorm to get Xnoisy .

Xnoisy =

{
x1norm + lap

(
∆f

ε1

)
, x2norm + lap

(
∆f

ε2

)
,

. . . , xnnorm + lap
(

∆f

εn

)} (5)

The published data is Xnoisy , and then the Xnoisy is
denormalized to get Xpub, which is the final published data.

Xnoisy =

{
x1pub, x2pub, . . . , xnpub |

xipub = xinorm(ximax − ximin) + ximin

} (6)

B. Evaluation System of Noise Adding Effect

After differential privacy noise, we try to design a series of
objective functions to evaluate the effect of differential privacy
noise, as shown in Fig.2. As mentioned at the beginning of
this chapter, we have two purposes: 1) to protect data privacy
and prevent intruders from identifying the real recorded person
according to vicious methods. 2) to maintain the validity of
data and prevent it from becoming invalid due to privacy
noise, resulting in wrong scientific research results. These two
purposes are designed as two objective functions. The first

one is called privacy function, which describes the degree of
privacy protection of published data. The second one, which
we call the validity function, describes the effectiveness of
scientific research in publishing data. It should be noted that
the smaller the values of the two objective functions, the higher
the performance. The specific function design is as follows.

1) : Regarding the privacy evaluation of published data, we
focus on the ε parameter of Laplace mechanism privacy budget
and the evaluation of information retention after disturbance.
These parameters need to directly reflect the degree of noise
disturbance. In addition, the lower the information retention,
and the higher the privacy of users is protected. This function
is mainly composed of three items, Parameter of ε, Individual
Item Retention and Overall Information Retention.

a) Parameter ε: The probability density function of
laplacian noise added in this paper is lap(x | b) = 1

2be
(− |x|

b ).
From the above analysis, it can be seen that the privacy budget
ε is a sensitive value, and the degree of noise disturbance can
be adjusted by ε. In this paper, each column has a separate
privacy budget. By adjusting ε value, we can add noise to
different attributes in different degrees.

For an attribute, the smaller the ε, the greater the disturbance
to the original data, and the privacy of users is well protected.
Therefore, we set the first item of the first function as

f11(X,Xpub) =

n∑
i=1

ε(i) (7)

where ε(i) represent the privacy budget for the i-th attribute
column. Because the data of each column has been standard-
ized before adding noise, the weight of each attribute is same,
and f11(X,Xpub) can well represent the total disturbance.

b) Column Information Retention: The second parameter
is set to Information Retention (single column), which is
to take out each column separately and evaluate the total
amount of information retained. In other words, when the
information in the same column has not changed, the most
information is retained, and the value of this function reaches
the maximum. When the information changes greatly, the
value of this function is 0. When the value of this parameter
becomes smaller, it indicates the improvement of privacy.

For Categorical and Integer columns, we define the single-
column information retention as

IIRC =

∑
i∈A

(
‖Xi‖max(Xi)−

∑‖Xi‖
j=1 |Xi(j)− xipub(j)|

)
k1 max(Xi)

(8)

IIRI =

∑
i∈B

(∑||Xi||
j=1 |Xi(j)−Xipub(j)| ≤ ρ

)
k2

(9)

where A represents the set of Categorical column numbers
and B represents the set of Integer column numbers. k1 and
k2 respectively represent two adjustment parameters, adjusting
the proportion of IIRC and IIRI in the evaluation.

To sum up, we get the final value of this parameter

f12(X,Xpub) = IIRC + IIRI (10)
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Fig. 2: Evaluation System of Noise Adding Effect

c) Overall Information Retention: The third parameter
is to evaluate the total amount of information retained by
each row, namely information retention of one data record.
In practice, each data record represents all the information of
a person, so we evaluate the degree of change of rows. For
Categorical columns, there is no change after adding noise,
so we count them. For Integer columns, the change after
adding noise is less than a certain threshold, so we count them.
When the result of counting is greater than another threshold,
the total count is increased by one. To obtain the parameter
value, add up all the counts and divide the sum by a weight
parameter. Formulated as follows

f13(X,Xpub) =

|X1|∑
j=1

n∑
i=1

[(i ∈ A&&Xi(j)) == Xipub(j)

|| ((i ∈ B&&Xi(j))−Xipub(j) ≤ ρ) ≥ σ]
(11)

where A represents the set of Categorical column numbers
and B represents the set of Integer column numbers. X1 repre-
sents a representative column. ρ represents the threshold when
Integer column has not changed. σ represents the threshold of
information retention for the whole line.

Finally, the privacy function is expressed as the sum of three
parameters:

Fprivacy(X,Xpub) = f11 + f12 + f13 (12)

where f11, f12, f13 respectively represent parameter ε, col-
umn information retention and overall information retention.

2) Evaluation of Efficiency: Regarding the evaluation of
data validity, we focus on some probability functions and the
correlation of columns. In addition, data users often focus
on the correlation between different attribute, the correlation
between attributes and judgment results. Therefore, our func-
tion design is also based on this. The validity function is
mainly divided into three terms, Wasserstein Distance, Relative
Growth Rate and Attribute Covariance.

a) Wasserstein Distance: The first parameter of validity
is Wasserstein Distance. This is a probability statistical method
commonly used in the field of machine learning at present. It
describes the minimum cost required to transform from one
distribution to another. In our study, the smaller the Wasser-
stein Distance is, the closer the noise data is to the original
data, which is more beneficial to scientific research. For P and
Q distributions, the Wasserstein Distance is expressed as

W (P,Q) = inf
γ∈

∏
(P,Q)

E(||x− y||) (13)

where inf represents the largest lower boundary, and γ ∈∏
(P,Q) represents the joint distribution of P and Q. The

value of this parameter is as follows.

f21(X,Xpub) =

n∑
i=1

W (Xi, Xipub) (14)

where Xi, Xipub respectively represent the i-th attribute of
X , Xpub.

b) Relative Growth Rate: The second parameter of valid-
ity is Relative Growth Rate. In this parameter, we try to treat
each attribute as a unit and cross-count it with the judgment
column. We count the number of each value in the judgment
column corresponding to the attribute value. The smaller the
value of this number, the smaller the change of the number
of judgment values corresponding to each attribute value,
and the higher the effectiveness. For columns of Categorical
type, cross statistics can be performed directly. For integer
column, some mapping changes are needed first, and then
cross statistics are carried out. We take a mapping interval
Map = [0 : τ : upper], where τ represents the interval of
mapping, and the smaller the value of τ , the more sensitive
the result is to the change of Integer column. Next, we map X
to Xm = {X1 → X1m, X2 → X2m, . . . , Xn → Xnm}. Finally,
we carry out the following cross statistics to obtain the Ccross
matrix, that is, the result of cross statistics.
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Ccross =||Xim = M(1)&Xp = 0|| · · · ||Xim = M(1)&Xpre = m||

· · ·
. . . · · ·

||Xim = M(n)&Xp = 0|| · · · ||Xim = M(n)&Xp = m||


(15)

where Xp represents the decision column. Finally, we
subtract the values of two cross-statistical matrices to get
C = Ccross − Cpubcorss, and then find the Frobenius norm
of C to get the value of this parameter.

f22(X,Xpub) =

√∑
i

∑
j

|cij |2 (16)

c) Attribute Covariance: The third parameter of validity
is Attribute Column Covariance. In this parameter, we try to
analyze the correlation between the attribute column and the
judjement column. The covariance of two distributions can
well describe the correlation between two variables. Find the
covariance matrix of the original data and the data after noise,
and get Ccov and Cpubcov . After subtracting the corresponding
elements to get cij , find the Frobenius norm of the result C,
that is the value of this parameter.

Ccov =

Cov(X1, X1) · · · Cov(X1, Xn)

· · ·
. . . · · ·

Cov(Xn, X1) · · · Cov(Xn, Xn)

 (17)

Cpubcov =

Cov(X1pub, X1pub) · · · Cov(X1pub, Xnpub)

· · ·
. . . · · ·

Cov(Xnpub, X1pub) · · · Cov(Xnpub, Xnpub)


(18)

f23(X,Xpub) =

√∑
i

∑
j

|cij |2 (19)

Finally, the privacy function is expressed as the sum of three
parameters:

Fefficiency(X,Xpub) = f21 + f22 + f23 (20)

where f21, f22 and f23 respectively represent wasserstein
distance, relative growth rate and attribute covariance.

C. Environment Switching Algorithm Based on Evolutionary
Learning

Without loss of generality, a Multi-objective Optimization
Problem(MOP) without constraints can be modeled as Equ.2.
In this question, m is 2, which means two objective functions.
X contains a privacy budget of n attribute columns. Because
the number of attributes in the dataset is different, n in the
MOP is different. In some large dataset, when n is large, the
conventional multi-objective optimization algorithm is difficult
to converge quickly. However, some multi-objective optimiza-
tion algorithms with fast convergence have poor diversity and
it is difficult to achieve the best optimization effect. In order to

solve this optimization problem, we propose the Environment
Switching Algorithm Based on Evolutionary Learning (ESA),
as Algorithm.1.

ESA is based on the ALMOEA [31] evolutionary learning
framework, which is improved in this paper to make it more
suitable for this MOP. We will introduce ESA according
to the basic operating procedures. ESA is mainly divided
into two stages, namely accelerating convergence stage and
environmental switching and expanding diversity stage.

Algorithm 1 ESA

1: Input: m, n, FEmax

2: Output: the final population P
3: Initialize P , MLP ;
4: while FE ≤ FEmax do
5: Judge whether the evolution of P is stagnant;
6: if P is evolving rapidly. then
7: MLP ⇐ Training(MLP,P );
8: Q⇐ Reproduction(MLP,P );
9: P ⇐ environment selection(P,Q);

10: else
11: (Stagnation for successive generations)
12: Q ⇐ Reproduction(P ); (Expand crossover and mu-

tation)
13: P ⇐ environment selection(P,Q); (Keep the promis-

ing P )
14: end if
15: FE = FE +N ;
16: end while
17: return P ;

1) Accelerated convergence stage: ESA is accelerated
based on ALMOEA framework. In the initial stage, the
population P and a multi layer perceptron(MLP) are generated
by initialization. MLP is a strategy driven by Feedforward
Artificial Neural Network to speed up the search in large-scale
solution space. Feedforward neural network is a basic neural
network structure, and the input of each layer directly comes
from the output of the previous layer. The parameter optimiza-
tion of MLP is updated by training the backward propagation
of the gradient descent of the previous generation population
P. When each generation of population P is generated, the
algorithm will divide the population into Poor individuals and
Elite individuals according to the evaluation of the objective
function. Among them, Poor individual is the input of BP
neural network, while Elite individual is the output of neural
network. The training of MLP can be used to obtain the GDV
of the input population P, so as to guide the population P to
accelerate the convergence in the iteration. In the traditional
evolutionary algorithm, the offspring population usually comes
from the cross-recombination of the parents. This does not
represent the fastest convergence direction of the population,
so the convergence is slow. In the framework of ALMOEA,
the new solution xnew can be obtained in the following ways:

xnew = x+ r1(x− xgdv) + r2(xd1 − xd2) (21)

where xgdv is the learned GDV of x, which can be computed
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by inputting x into the trained MLP. Besides, d1 and d2 are
two randomly selected solutions from the current population
P. r1 and r2 are both random numbers ranging from 0 to 1. We
apply the ALMOEA framework to the algorithm acceleration
part of the evolutionary learning algorithm in this paper, so the
r1 value is usually set to be relatively large, and the solution
set X can be accelerated by the learned GDV.

2) Environmental switching and expanding diversity stage:
When the population develops to a certain stage, it will
inevitably fall into convergence. At this time, it is difficult
to distinguish the offspring population into Poor individuals
and Elite individuals in the MLP training process under the
framework of ALMOEA, and the original way of obtaining
new solutions through GDV is also unsatisfactory. Therefore,
it is necessary to judge whether the population has fallen into
convergence at any time and reasonably change the way of
generating offspring population. We judge the convergence by
evaluating the inverted generative distance (IGD) of two Pareto
surfaces.

IGD(Xpre, Xnew) =
1

|Xpre|

√√√√|Xpre|∑
i=1

(d2i ) (22)

Among them, Xpre represents the previous generation pop-
ulation, and Xnew represents the new population. The smaller
the value of IGD, the higher the similarity between the two
populations. When the new population is exactly the same as
the original population, the value of IGD is 0. We can set
a threshold value k, and the value of k can be determined
according to the set number of populations produced in each
generation. When the value of IGD is less than k, it can be
judged that the new population is convergent at this time.

In order to avoid misjudgment, we set a counter count in the
algorithm to record the number of generations that meet the
condition IGD ≤ k. When the condition IGD ≤ k is met,
count = count + 1 is executed. When the condition is not
met, execute count = max {count− 1, 0}. When the value
of count reaches a certain threshold k

′
, it can be judged that

the population has reached the convergence state.
At this point, the function of the acceleration part of the

algorithm is completed, and we try to switch the way of
generating offspring population of the algorithm to expand
population diversity. The method we adopt is to simulate
binary crossover and polynomial mutation. By modulating the
ratio of crossover and mutation, the diversity of solutions in
future generations is improved.

The description of simulate binary crossover is as follows.
Let P1 and P2 be two parent individuals, and C1 and C2 be
crossed offspring individuals. We use binary codes to represent
P1, P2, C1 and C2 respectively, and define β = |C1−C2|

|P1−P2| ,
which represents the ratio of direct distance between children
and parents. Then the offspring can be represented as C1 =
1
2 (P1 + P2)− 1

2 (P2 − P1), C1 = 1
2 (P1 + P2) + 1

2 (P2 − P1).
It can be seen that β is a sensitive value for the generation

of offspring, and the generation of β is derived from a
probability distribution. When β < 1, the probability density
c(β) = 1

2 (n+ 1)βn, When β > 1, c(β) = 1
2 (n+ 1)βn+2. The

distribution function is u =
∫ β
0
c(β) dβ. Then

β =

{
(2u)

1
n+1 , if u ≤ 0.5

( 1
2−2u )

1
n+1 , if u > 0.5

(23)

The larger n is, the closer C1 and C2 are to P1 and P2.
Therefore, by setting a smaller value of n, we can produce
diverse solutions. However, when the value of n is set too
small, the quality of the solution generated by the offspring
will also decrease. Therefore, the value of n needs to be set
in a reasonable range. Polynomial variation is described as
follows. New solution Xnew = Xpre + δ ·∆max.

δ =

{
[2u+ (1− 2u)(1− δ1)ηm+1]

1
ηm+1−1, u ≤ 0.5

1− [2− 2u+ 2(u− 0.5)(1− δ2)ηm+1]
1

ηm+1 , u > 0.5
(24)

where δ1 = (vk − lk)/(uk − lk), δ2 = (uk − vk)/(uk −
lk), u is a random number in an interval [0, 1], and ηm is a
distribution index selected by the user.

D. Double clustering evaluation method to select the results.

In general multi-objective work, the algorithm generates
PF, means the optimization results is produced, where users
can take one point from PF as final result according to
their preferences. However, in the problems raised in this
paper, it is difficult to divide privacy and effectiveness by a
certain proportion. Therefore, we propose a method of double
clustering, which is convenient for users to screen and produce
the final desired results. There are two ranges: one is the PF
performance generated by ESA, and the other is the set of
privacy budget for each attribute.

1) Cluster based on PF performance: In this paper, there
are two objective functions, which evaluate the privacy and
validity of the noisy data set respectively, and finally generate
PF. But on the same PF, the performance of individuals is
also very different. Therefore, we try to divide individuals into
k clusters according to their performance on two functions.
For example, when k is set to 5, the original individuals can
be classified into five categories: privacy-first, efficiency-first,
privacy-focused, efficiency-focused and balance. The specific
classification methods are as follows:

Among them, the distance is calculated by Euclidean dis-
tance, that is, d(x, µ) =

√∑n
i=1(xi − µi)2, then the sum of

squares of the distances from all sample points to the center of
mass in a cluster is TI =

∑m
j=0

∑n
i=1(xi−µi)2. The smaller

the value of TI , the more similar the individuals in each
cluster are, the better the clustering effect is. In the process of
loop iteration, the value of TI is always getting smaller. This
is actually an optimization problem. The value of k can be
determined according to the division standard, and the larger
the value of k, the finer the division. But when k is set too
large, the purpose of clustering-to classify populations more
clearly and clearly, will not be reflected. Generally, we suggest
that the value of k be set to 3-7.
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2) Cluster based on privacy budget set: According to the
above work, we can know that each solution set X contains
M solutions, where M is the population number of each gen-
eration set when running ESA. Among them, the i-th solution
Mi is a collection of privacy budgets, Mi = {ε1, ε2, · · · , εn},
where n is the number of attributes. We consider that users
may have a preference for the noise level of a column when
using the noisy dataset. In dataset with similar performance of
privacy and efficiency, there may be different privacy budget
preferences. For example, when the data user is sensitive to age
information, they will tend to choose the solution with lower
privacy budget of the age column to strengthen the protection
of age while the overall privacy is the same.

The number of attributes in the privacy dataset is uncertain,
which makes the cluster based on privacy budget maybe a
high-dimensional clustering. If we continue to use the above
clustering method, there are three shortcomings: (1) It is
impossible to predict the number of clusters in advance, and
when the value of k is set unreasonably, the reference value
of the result is very small. (2) Clusters with arbitrary shapes
can be identified, not just circles. (3) Some solutions with no
common law can be identified as noise points. Therefore, we
try to use a new density-based clustering method.

All the data in the dataset can be divided into three cate-
gories according to the density: core points, boundary points
and noise points. They are distinguished by two parameters:
the clustering radius E and the minimum number of points
MinPts. The core store means that there are more than points
in the radius E. A boundary point represents a point that falls
within the Eps neighborhood of the core point, but is not the
core point. Other points are as noise points.

The pseudo-code of the clustering algorithm is as Algorith-
m.2. In the loop iteration, all the uncollections are clustered.
The number of clusters is not set in advance, but determined
according to the density of solution distribution. By setting the
parameters Eps and MinPts reasonably, all solutions can be
well classified according to the privacy budget.

3) Application of double clustering: The double clustering
methods described above classify all the solutions by different
methods and standards. The first one is clustering according to
the value of the objective function, which reflects the privacy
and effectiveness of the solution. The second is clustering
according to the value of the solution, which reflects different
privacy budget preferences. The remaining work is to combine
the results of the two clustering methods and present them to
users of FDPAEL. For example, in the first cluster, when the
value of k is set to 5, it is divided into 5 categories, privacy-
first, efficiency-first, privacy-focused, efficiency-focused and
balance. In the second clustering, according to the different
distribution of privacy budget, the algorithm divides the results
into n1− n8 and some single points.

As shown in Table.I, users can observe the result charac-
teristics of the first cluster and the second cluster, find the
corresponding population serial number, and add noise to their
own datasets. Users can choose the solution they need from a
huge population according to their own needs. This not only
ensures the balance between effectiveness and privacy, but also
ensures different privacy budget preferences.

Algorithm 2 Cluster based on privacy budget set

1: Input: solutions X , Eps, Minimum clustering points M
2: Output: A collection of clusters P
3: Initialize;
4: Mark all objects in X as unvisited.;
5: for Each object p in X do
6: if p has been classified into a cluster or marked as noise.

then
7: Continue;
8: else
9: Check the Eps neighborhood Nrp(p) of p;

10: if Nrp(p) ≤M then
11: Marks p as a boundary point or a noise point;
12: else
13: Mark p as the core point, establish a new cluster

C, and add all points in Nrp(p) to C.
14: for All unvisited objects in Nrp(p) do
15: Check its Eps neighborhood Nrp(p), and if

Nrp(p) contains at least MinPts objects, add
the objects Nrp(p) that do not belong to any
cluster;

16: end for
17: end if
18: end if
19: end for
20: return P ;

TABLE I: Application of double clustering

ID First clustering Second clustering

1 privacy-focused n1

2 privacy-first n5

3 balanced single point
4 efficiency-focused n8

· · · · · · · · ·

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this paper, FDPEL conducts flexible differential privacy
on data, aiming at achieving the purpose of privacy protection
while maintaining data validity.

In this section, we carried out experiments to verify the
effectiveness of this method. This section starts from the
following aspects: First, we run FDPEL through the whole
process and show all the data in it. Secondly, we analyse the
performance of FDPEL. Thirdly, we design a comparative ex-
periment for multi-objective optimization algorithm ESA, and
show the superiority of the ESA. Finally, we extend FDPEL
to datasets of other medical topics to prove its applicability.

A. Presentation of Applied Datasets

There are three datasets applied in Experiment. The first
one is used for Subsection.IV-B, and the other two are used
for Subsection.IV-E.

The first dataset comes from the Mother’s Significant
Feature (MSF) dataset in IEEEDataPort [35]. MSF contains
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450 records with a total of 130 attributes, including mother
characteristics, father characteristics and health outcomes. The
detailed dataset is created to understand the characteristics
of mothers in three stages of reproductive age (adolescence,
marriage and pregnancy). The dataset covers all possible
complications related to children’s health, mother’s health and
pregnancy outcome.

The second dataset comes from Heart Disease stored in UC
Irvine Machine Learning Repository, a set of public datasets
for scientific research [36]. The datasets contains 13 attribute
columns and one column of the predicted attribute to judge
the prevalence of Heart Disease. The third dataset comes from
diabetes-related data set published by NHANES [37] in 2015-
2016. The purpose of this dataset is to develop a method
to calculate the risk of diabetes mellitus, which contains 11
attribute columns and a judgment column.

B. Presentation of FDPEL

In the first part, the dataset we use is the Mother’s Signifi-
cant Feature (MSF) dataset. After screening and data cleaning,
we selected 89 attribute columns and one decision column, and
digitized them for data processing.

Different from other MOPs, differential privacy is a noise-
adding algorithm based on probability distribution, which is
random. Even if the same privacy budget is set, the evaluation
of the privacy and validity of the data set will be slightly
biased. There is a special case: the same set of parameters
will also produce a dominant relationship. With the increase
of population generations, this situation will occur with great
probability. Therefore, for privacy budget sets E1 and E2, if
there is a dominant relationship, we can not simply describe it
as that E1’s performance is completely superior to E2’s, but
as “ E1’s potential to generate a better solution set is superior
to E2’s ”.

Fig. 3: All Solutions Obtained by ESA

Fig.3 and Fig.4 respectively show all solutions and PFs
obtained by running ESA. We set a generation to produce 100
populations and show the results when the total population

Fig. 4: PFs obtained by ESA

changes from 500 to 50000. The x axis represents the privacy
performance of the dataset after differential privacy, and the
smaller the value, the better the privacy protection effect.
The y axis represents the validity performance of the dataset
after differential privacy, and the smaller the data, the smaller
the influence of differential privacy on the effectiveness. We
can see the superior performance of ESA. At the initial
stage of the algorithm’s operation, it achieved accelerated
convergence based on ALMOEA framework, and achieved
superior performance in 2500 generations. By comparing PFs
when total population changes from 500 to 50000, we can find
that the diversity of the population has also been expanded and
maintained.

TABLE II: Partial data before differential privacy

ε 1.53 1.28 1.85 1.09

ID Age of
Mother

Weight
before Preg

Wt before
Delivery

Yrs of
Marriage

1 29 59→58 156 0
2 24 54 145 0
3 28 62→61 151 0
4 25 49 151 0
5 21→22 39 151 0
6 32→31 56 156 0
7 23 40 141 0
8 23 52 159→160 0
9 29 59→58 149 0

10 28 69 156 0
11 25 51 145 0
12 30 75 156 1
13 22 40 142 0→1
14 26 57 154 0
15 25 50 144 0
16 27 60 151 0
17 29 62 150 1
18 24 45 131 0
19 37 82 171 0
20 33 69 169 0

Table.II shows the partial data before and after applying
differential privacy, along with the corresponding privacy
budgets. Because of the large amount of data, we selected
some representative columns, which contain some continuous
values, such as Age of Mother etc., and a discrete values,
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Yrs of Marriage. It can be seen that due to the different
privacy budgets, the data is disturbed differently. Our privacy
and effectiveness evaluation is also based on changes of
datasets. According to the Sec.III-A, we standardized the orig-
inal information before differential privacy, ensuring that all
indicators carry equal weight in the evaluation. For example,
for the Weight before Pregnant attribute and Years of Marriage
attribute in the Table.II, even if the privacy budget is the
same, it seems that the data in the previous column has caused
greater disturbance. However, the latter column only has two
values of 0 and 1, so the information change degree from
0 to 1 is higher than that from 59 to 58 in the previous
column. Therefore, the privacy budget directly reflects the
change degree of information, rather than the absolute change
value of disturbance.

In this experiment, we choose the population number of
each generation as 100. The number of population produced
in each generation can also be set to 50, 200 and other values.
When the population number of each generation is set small,
the iterative base of the population becomes smaller, and the
diversity of the generated solution set decreases, resulting
in poor performance. Therefore, in general, the number of
populations will be set at a larger value. However, this will
also lead to a problem: it is difficult to choose which solutions
are more suitable through people’s subjective judgment. We
designed the method of double clustering to facilitate people
to select the solution set.

The process and effect of double clustering are also impor-
tant for results. Fig.5 shows the effect of the first reunion class.
Based on the evaluation of privacy and validity, all solutions
are divided into five clustering clusters, which are privacy-
first, efficiency-first, privacy-focused, efficiency-focused and
balance. The original huge solution set is divided into smaller
populations for users to filter.

Fig. 5: Clustering Based on Two Performance Functions

Fig.6 shows the effect of the second clustering. The second
clustering is based on the solution (privacy budget), so that
users can filter according to their preferences. The x axis
represents 89 attributes, and the y axis represents the value
of privacy budget. Each line represents the average value of

the divided clusters, and the characteristics of each cluster can
be clearly observed through the image.

Table.III shows the results of double clustering. For exam-
ple, we prefer to choose the population with Privacy-focused
characteristics, and we only need to screen it separately, and
at the same time, the results of the second clustering will be
displayed on the right, as the bold part in the Table.III. Users
can combine Fig.5 and Fig.6 to make more accurate choices
and conduct differential privacy treatment on their own data.

C. Performance Analysis of FDPEL

In this section, we analyze the computational complexity
and cost, and conduct ablation experiments to verify the
effectiveness of the evaluation index.

We analyze the computational complexity and overhead
of FDPEL. Obviously, it can be analyzed from four aspect-
s: differential privacy, evaluation system, ESA and double
clustering. In the process of differential privacy, the compu-
tational complexity O(mN) of adding noise separately for
each column of size m and O(mNn) for n columns, N
is the population size in one round. In evaluation system,
the computational complexity of f11, f12, f13 of privacy
evaluation is O(Nn), O(mNn) and O(mNn) respectively,
and the computational complexity of f21, f22, f23 of validity
evaluation is O(mNn + fmN), O(mNn) and O(mNn)
respectively, where f is the number of discrete values in the
judgment column. Since f ≤ n, O(fmN) can be ignored. In
ESA, it should be analyzed separately from two stages. The
computational complexity of the accelerated convergence stage
includes three aspects: the process of training to generate mlp
is O(aN2 + Nnk), the process of reproduction is O(Nnk),
and the process of environment selection is O(aN2), where a
is the target number, N is the population size, n is the number
of variables, and k is the number of hidden neurons, which
is generally set to 10. The stage of expanding diversity is
relatively simple, and the time complexity is O(aN2). In the
dual clustering stage, the time complexity of the first reunion
class is O(tpaN), t is the number of iterations, p is the number
of clusters, N is the population size, and a is the target number.
The time complexity of the second clustering depends on the
distribution of points, and the worst case is O(N2), where N
is the population size. Based on the above analysis, the worst
computational complexity and runtime of FDPEL are shown
in Table.IV. The specific parameters are set as m = 450, n =
89, N = 100, f = 2, a = 2, k = 10, t = 100 and p = 5. The
runtime of the first three parts in the table is one round, while
the runtime of double clustering is once after the optimization
is completed. All the solvers were run on a personal computer
having a AMD Ryzen5 5600H CPU, 3.30GHz (processor),
and 16 GB(RAM).

TABLE IV: The worst computational complexity of FDPEL

DP
Evaluation

Metrics
ESA

Double Clustering

first second

O(mNn) O(mNn) O(mN2 +Nnk) O(tkmn) O(N2)

0.38s 6.81s 6.91s 0.07s 0.13s
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Fig. 6: Clustering Based on Privacy Budget

TABLE III: All Results of Double Clustering

ID First clustering Second clustering ID First clustering Second clustering ID First clustering Second clustering
1 Efficiency-first single point 21 Efficiency-first class3 41 Privacy-first single point
2 Privacy-focused class1 22 Balance class1 42 Efficiency-focused class1
3 Efficiency-first single point 23 Balance class1 43 Efficiency-first single point
4 Efficiency-first single point 24 Efficiency-first single point 44 Efficiency-first single point
5 Privacy-focused class1 25 Privacy-focused class1 45 Privacy-first class5
6 Efficiency-first single point 26 Efficiency-first class3 46 Balance single point
7 Efficiency-first single point 27 Privacy-first class4 47 Efficiency-first class5
8 Efficiency-first single point 28 Efficiency-focused class1 48 Privacy-first single point
9 Privacy-focused class1 29 Balance single point 49 Balance single point

10 Efficiency-first single point 30 Efficiency-focused class1 50 Efficiency-first single point
11 Efficiency-first single point 31 Efficiency-focused class1 51 Privacy-first single point
12 Efficiency-focused class1 32 Balance class1 52 Privacy-first class2
13 Efficiency-first single point 33 Privacy-first class4 53 Privacy-first class5
14 Balance class1 34 Balance class1 54 Efficiency-first single point
15 Efficiency-first single point 35 Efficiency-focused class1 55 Efficiency-focused class1
16 Privacy-first class2 36 Balance class1 56 Efficiency-focused class1
17 Efficiency-focused class1 37 Efficiency-first single point 57 Privacy-first class2
18 Efficiency-focused class1 38 Efficiency-first single point 58 Efficiency-first single point
19 Privacy-first single point 39 Privacy-first class4 59 Privacy-first single point
20 Efficiency-focused class1 40 Privacy-first single point 60 Balance class4

We conducted ablation experiments on FDPEL to verify the
effectiveness of the evaluation index. Under the condition of
the same parameters, each index is removed in turn, and the
optimization results are evaluated to evaluate the performance
of the generated PFs. We use two indicators IGD and HV, and
the experimental results are shown in Table.V and Fig.ablation,
where base refers to the case without ablation, and from f11
to f13 represent the first item of privacy function to the third
item of validity function, as used in Subsection.III-B. It can
be clearly seen that removing each index has great influence
on the evaluation system.

TABLE V: Ablation experiments of FDPEL

Base -f11 -f12 -f13 −f21 -f22 -f23

IGD(e2) 1.04 2.35 2.17 2.24 2.24 2.23 2.24

HV(e5) 4.61 1.34 1.80 1.81 1.78 1.79 1.82
Fig. 7: PFs in Ablation Experiment
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D. Contrast Experiment of ESA

In this section, we compare ESA with other multi-objective
optimization algorithms to show the superiority of our de-
signed algorithm. When the algorithms is running, the param-
eters are set as follows: population size is 100 and maxFE
is 10000, which are the most widely used in multi-objective
algorithm effect verification. Fig.8 shows the final generated
PF, in which the non-dominant solution is excluded. It can
be clearly seen that the performance and diversity of ESA is
better than other MOEA.

Fig. 8: PFs with Different Algorithms

We compared the evaluation methods commonly used in
MOEA, such as IGD, HV and Set Coverage, and found that
ESA performed very well, as shown in Fig.10.

Fig.10a shows the IGD performance of different MOEA
algorithms. It can also be clearly observed that the IGD of
ESA drops rapidly and finally reaches a better value balance.
It should be noted here that because the pareto optimal frontier
of this problem is unknown, we construct a simulated pareto
optimal frontier [38]. The concrete construction method is to
draw a right-angled polyline according to the optimal solution
of single-objective optimization of four algorithms. The x axis
of the point with the smallest privacy evaluation in Pareto
curve represents the optimal solution of single-objective opti-
mization for the first objective function. Similarly, the y axis of
the point with the smallest effectiveness evaluation indicates
the optimal solution for the single-objective optimization of
the second objective function, as shown in Fig.9.

Fig.10b shows the HV performance of different algorithms.
The comparison of HV is a commonly used evaluation method
without finding pareto optimal frontier. It can be observed
that the HV value of ESA rises rapidly and tends to be
stable gradually. It can be verified that the diversity and
comprehensive performance of PF generated by ESA are
higher than other algorithms.

Fig.10c shows the Set Coverage(SC) performance of PF
produced by ESA compared with PF generated by other
algorithms. Set Coverage is used to evaluate the dominance
of two PFs. Assuming that A and B are two PF, then SC(A,B)
can be expressed as

Fig. 9: Simulated Pareto Optimal Frontier

SC(A,B) =
|{b ∈ B|∃a ∈ A : a � b}|

|B|
(25)

|B| indicates the number of solutions in B, and C(A,B)
indicates the percentage that the solution in B is dominated
by a solution of A. The greater the value of C(A,B), the
better the performance of A,B. It can be easily seen that the
PF solution set generated by ESA dominates PF generated by
other algorithms to some extent, and the value of SC is close
to the maximum value of 1.

E. General Applicability of FDPEL

FDPEL has strong versatility and adaptability in health-
related datasets, and users can easily apply FDPEL to the
datasets they want to publish. It is not only suitable for privacy
protection of larger-scale medical datasets, but also suitable for
smaller datasets.

In this subsection, we try to apply FDPEL to datasets of
other health topics to test its universality. It mainly shows its
performance on two datasets.

The first data set comes from Heart Disease stored in UC
Irvine Machine Learning Repository, which is mentioned in
SubsectionIV-A. The generated PF and the result of double
clustering are shown in Fig.11 and Fig.12.

The second dataset is diabetes-related, which is mentioned
in SubsectionIV-A. The pareto curve generated by it and the
result of double clustering are shown in Fig.13 and Fig.14.

F. Discussion

In the experiment, we verified the superior performance
and versatility of FDPEL. First of all, we showed FDPEL
and analysed its performance. Secondly, we compare ESA
algorithm with other evolutionary algorithms, and show its op-
timization performance through some performance indicators.
Thirdly, we extend FDPEL to the other two dataset, showing
its universality. Of course, there are still some shortcomings in
the design of the experiment. We have not applied FDPEL to
large-scale data sets (the number of attributes is greater than
1000), which will be our next research direction.
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(a) IGD Values for Different Algorithms (b) HV Values for Different Algorithms (c) The Value of Set Coverage(ESA, other
algorithm)

Fig. 10: Contrast Experiment of ESA

Fig. 11: FDPEL on the Heater Disease Dataset(1)

Fig. 12: FDPEL on the Heater Disease Dataset(2)

V. CONCLUSION

With the rapid development of Internet of Medical Things
(IOMT), lots of valuable and private medical data need to be
protected. We propose Flexible Differential Privacy Algorithm
based on Evolutionary Learning (FDPEL), which realizes
the privacy protection of medical data of different scales.

Fig. 13: FDPEL on the Diabetes Dataset(1)

Fig. 14: FDPEL on the Diabetes Dataset(2)

FDPEL consists of three parts: Firstly, noise disturbance of
medical data using differential privacy. Secondly, Environment
Switching Algorithm (ESA) based on evolutionary learning
is used to adjust privacy budgets of different attributes and
balance data privacy and data validity. ESA has excellent
performance, which can ensure convergence speed and op-
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timization performance at the same time. Thirdly, A double
clustering method is used to select the appropriate solution
from the huge PF. Finally, we verify the superior performance
and versatility of FDPEL through simulation experiments.
FDPEL can be easily migrated to IMOT of various scales for
privacy protection.
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