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Automatic understanding of events happening at a site is the
ultimate goal for many visual surveillance systems. Higher level
understanding of events requires that certain lower level computer
vision tasks be performed. These may include detection of unusual
motion, tracking targets, labeling body parts, and understanding
the interactions between people. To achieve many of these tasks,
it is necessary to build representations of the appearance of
objects in the scene. This paper focuses on two issues related to
this problem. First, we construct a statistical representation of
the scene background that supports sensitive detection of moving
objects in the scene, but is robust to clutter arising out of natural
scene variations. Second, we build statistical representations of
the foreground regions (moving objects) that support their tracking
and support occlusion reasoning. The probability density functions
(pdfs) associated with the background and foreground are likely
to vary from image to image and will not in general have a known
parametric form. We accordingly utilize general nonparametric
kernel density estimation techniques for building these statistical
representations of the background and the foreground. These
techniques estimate the pdf directly from the data without any
assumptions about the underlying distributions. Example results
from applications are presented.
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I. INTRODUCTION

In automated surveillance systems, cameras and other sen-
sors are typically used to monitor activities at a site with the
goal of automatically understanding events happening at the
site. Automatic event understanding would enable function-
alities such as detection of suspicious activities and site se-
curity. Current systems archive huge volumes of video for
eventual off-line human inspection. The automatic detection
of events in videos would facilitate efficient archiving and
automatic annotation. It could be used to direct the attention
of human operators to potential problems. The automatic de-
tection of events would also dramatically reduce the band-
width required for video transmission and storage as only in-
teresting pieces would need to be transmitted or stored.

Higher level understanding of events requires certain
lower level computer vision tasks to be performed such
as detection of unusual motion, tracking targets, labeling
body parts, and understanding the interactions between
people. For many of these tasks, it is necessary to build
representations of the appearance of objects in the scene. For
example, the detection of unusual motions can be achieved
by building a representation of the scene background and
comparing new frames with this representation. This process
is calledbackground subtraction. Building representations
for foreground objects (targets) is essential for tracking
them and maintaining their identities. This paper focuses
on two issues: how to construct a statistical representation
of the scene background that supports sensitive detection
of moving objects in the scene and how to build statistical
representations of the foreground (moving objects) that
support their tracking.

One useful tool for building such representations is sta-
tistical modeling, where a process is modeled as a random
variable in a feature space with an associated probability den-
sity function (pdf). The density function could be represented
parametrically using a specified statistical distribution, that
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is assumed to approximate the actual distribution, with the
associated parameters estimated from training data. Alterna-
tively, nonparametric approaches could be used. These esti-
mate the density function directly from the data without any
assumptions about the underlying distribution. This avoids
having to choose a model and estimating its distribution pa-
rameters.

A particular nonparametric technique that estimates the
underlying density, avoids having to store the complete data,
and is quite general is the kernel density estimation tech-
nique. In this technique, the underlying pdf is estimated as

(1)

where is a “kernel function” (typically a Gaussian) cen-
tered at the data points in feature space, , and

are weighting coefficients (typically uniform weights are
used, i.e., ). Kernel density estimators asymptoti-
cally converge to any density function [1], [2]. This property
makes these techniques quite general and applicable to many
vision problems where the underlying density is not known.

In this paper, kernel density estimation techniques are
utilized for building representations for both the background
and the foreground. We present an adaptive background
modeling and background subtraction technique that is able
to detect moving targets in challenging outdoor environ-
ments with moving trees and changing illumination. We also
present a technique for modeling foreground regions and
show how it can be used for segmenting major body parts of
a person and for segmenting groups of people.

II. K ERNEL DENSITY ESTIMATION TECHNIQUES

Given a sample from a distribution with
density function , an estimate of the density at

can be calculated using

(2)

where is a kernel function (sometimes called a “window”
function) with a bandwidth (scale) such that

. The kernel function should satisfy
and . We can think of (2) as estimating

the pdf by averaging the effect of a set of kernel functions
centered at each data point. Alternatively, since the kernel
function is symmetric, we can also regard this computation
as averaging the effect of a kernel function centered at the
estimation point and evaluated at each data point. Kernel
density estimators asymptotically converge to any density
function with sufficient samples [1], [2]. This property makes
the technique quite general for estimating the density of
any distribution. In fact, all other nonparametric density
estimation methods, e.g., histograms, can be shown to be
asymptotically kernel methods [1].

For higher dimensions, products of one-dimensional (1-D)
kernels [1] can be used as

(3)

where the same kernel function is used in each dimension
with a suitable bandwidth for each dimension. We can
avoid having to store the complete data set by weighting the
samples as

where the ’s are weighting coefficients that sum up to one.
A variety of kernel functions with different properties have

been used in the literature. Typically the Gaussian kernel is
used for its continuity, differentiability, and locality proper-
ties. Note that choosing the Gaussian as a kernel function
is different from fitting the distribution to a Gaussian model
(normal distribution). Here, the Gaussian is only used as a
function to weight the data points. Unlike parametric fitting
of a mixture of Gaussians, kernel density estimation is a more
general approach that does not assume any specific shape for
the density function. A good discussion of kernel estimation
techniques can be found in [1]. The major drawback of using
the nonparametric kernel density estimator is its computa-
tional cost. This becomes less of a problem as the available
computational power increases and as efficient computational
methods have become available recently [3], [4].

III. M ODELING THE BACKGROUND

A. Background Subtraction: A Review

1) The Concept:In video surveillance systems, sta-
tionary cameras are typically used to monitor activities at
outdoor or indoor sites. Since the cameras are stationary, the
detection of moving objects can be achieved by comparing
each new frame with a representation of the scene back-
ground. This process is called background subtraction and
the scene representation is called the background model.
Typically, background subtraction forms the first stage
in an automated visual surveillance system. Results from
background subtraction are used for further processing, such
as tracking targets and understanding events.

A central issue in building a representation for the scene
background is what features to use for this representation
or, in other words, what to model in the background. In
the literature, a variety of features have been used for
background modeling, including pixel-based features (pixel
intensity, edges, disparity) and region-based features (e.g.,
block correlation). The choice of the features affects how
the background model tolerates changes in the scene and the
granularity of the detected foreground objects.

In any indoor or outdoor scene, there are changes that
occur over time and may be classified as changes to the scene
background. It is important that the background model toler-
ates these kind of changes, either by being invariant to them
or by adapting to them. These changes can be local, affecting
only part of the background, or global, affecting the entire
background. The study of these changes is essential to un-
derstand the motivations behind different background sub-
traction techniques. We classify these changes according to
their source.
Illumination changes:

• gradual change in illumination, as might occur in out-
door scenes due to the change in the location of the sun;
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• sudden change in illumination as might occur in an in-
door environment by switching the lights on or off, or
in an outdoor environment by a change between cloudy
and sunny conditions;

• shadows cast on the background by objects in the back-
ground itself (e.g., buildings and trees) or by moving
foreground objects.

Motion changes:

• image changes due to small camera displacements
(these are common in outdoor situations due to wind
load or other sources of motion which causes global
motion in the images);

• motion in parts of the background, for example, tree
branches moving with the wind or rippling water.

Changes introduced to the background:These include any
change in the geometry or the appearance of the background
of the scene introduced by targets. Such changes typically
occur when something relatively permanent is introduced
into the scene background (for example, if somebody moves
(introduces) something from (to) the background, or if a car
is parked in the scene or moves out of the scene, or if a person
stays stationary in the scene for an extended period).

2) Practice: Many researchers have proposed methods to
address some of the issues regarding the background mod-
eling, and we provide a brief review of the relevant work here.

Pixel intensity is the most commonly used feature in back-
ground modeling. If we monitor the intensity value of a pixel
over time in a completely static scene, then the pixel in-
tensity can be reasonably modeled with a Gaussian distri-
bution , given that the image noise over time can
be modeled by a zero mean Gaussian distribution .
This Gaussian distribution model for the intensity value of a
pixel is the underlying model for many background subtrac-
tion techniques. For example, one of the simplest background
subtraction techniques is to calculate an average image of
the scene, subtract each new frame from this image, and
threshold the result. This basic Gaussian model can adapt to
slow changes in the scene (for example, gradual illumination
changes) by recursively updating the model using a simple
adaptive filter. This basic adaptive model is used in [5]; also,
Kalman filtering for adaptation is used in [6]–[8].

Typically, in outdoor environments with moving trees and
bushes, the scene background is not completely static. For
example, one pixel can be the image of the sky in one frame,
a tree leaf in another frame, a tree branch in a third frame,
and some mixture subsequently. In each situation, the pixel
will have a different intensity (color), so a single Gaussian
assumption for the pdf of the pixel intensity will not hold.
Instead, a generalization based on a mixture of Gaussians
has been used in [9]–[11] to model such variations. In [9]
and [10], the pixel intensity was modeled by a mixture of
Gaussian distributions ( is a small number from 3 to 5).
The mixture is weighted by the frequency with which each
of the Gaussians explains the background. In [11], a mixture
of three Gaussian distributions was used to model the pixel
value for traffic surveillance applications. The pixel inten-
sity was modeled as a weighted mixture of three Gaussian

distributions corresponding to road, shadow, and vehicle dis-
tribution. Adaptation of the Gaussian mixture models can be
achieved using an incremental version of the EM algorithm.

In [12], linear prediction using the Wiener filter is used to
predict pixel intensity given a recent history of values. The
prediction coefficients are recomputed each frame from the
sample covariance to achieve adaptivity. Linear prediction
using the Kalman filter was also used in [6]–[8].

All of the previously mentioned models are based on sta-
tistical modeling of pixel intensity with the ability to adapt
the model. While pixel intensity is not invariant to illumi-
nation changes, model adaptation makes it possible for such
techniques to adapt to gradual changes in illumination. On
the other hand, a sudden change in illumination presents a
challenge to such models.

Another approach to model a wide range of variations
in the pixel intensity is to represent these variations as dis-
crete states corresponding to modes of the environment, e.g.,
lights on/off or cloudy/sunny skies. Hidden Markov models
(HMMs) have been used for this purpose in [13] and [14].
In [13], a three-state HMM has been used to model the in-
tensity of a pixel for a traffic-monitoring application where
the three states correspond to the background, shadow, and
foreground. The use of HMMs imposes a temporal continuity
constraint on the pixel intensity, i.e., if the pixel is detected as
a part of the foreground, then it is expected to remain part of
the foreground for a period of time before switching back to
be part of the background. In [14], the topology of the HMM
representing global image intensity is learned while learning
the background. At each global intensity state, the pixel in-
tensity is modeled using a single Gaussian. It was shown that
the model is able to learn simple scenarios like switching the
lights on and off.

Alternatively, edge features have also been used to model
the background. The use of edge features to model the back-
ground is motivated by the desire to have a representation
of the scene background that is invariant to illumination
changes. In [15], foreground edges are detected by com-
paring the edges in each new frame with an edge map of the
background which is called the background “primal sketch.”
The major drawback of using edge features to model the
background is that it would only be possible to detect edges
of foreground objects instead of the dense connected regions
that result from pixel-intensity-based approaches. A fusion
of intensity and edge information was used in [16].

Block-based approaches have been also used for modeling
the background. Block matching has been extensively used
for change detection between consecutive frames. In [17],
each image block is fit to a second-order bivariate polynomial
and the remaining variations are assumed to be noise. A sta-
tistical likelihood test is then used to detect blocks with sig-
nificant change. In [18], each block was represented with its
median template over the background learning period and its
block standard deviation. Subsequently, at each new frame,
each block is correlated with its corresponding template, and
blocks with too much deviation relative to the measured stan-
dard deviation are considered to be foreground. The major
drawback with block-based approaches is that the detection
unit is a whole image block and therefore they are only suit-
able for coarse detection.
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In order to monitor wide areas with sufficient resolution,
cameras with zoom lenses are often mounted on pan-tilt plat-
forms. This enables high-resolution imagery to be obtained
from any arbitrary viewing angle from the location where
the camera is mounted. The use of background subtraction
in such situations requires a representation of the scene
background for any arbitrary pan-tilt-zoom combination,
which is an extension to the original background subtraction
concept with a stationary camera. In [19], image mosaicing
techniques are used to build panoramic representations of
the scene background. Alternatively, in [20], a represen-
tation of the scene background as a finite set of images
on a virtual polyhedron is used to construct images of the
scene background at any arbitrary pan-tilt-zoom setting.
Both techniques assume that the camera rotation is around
its optical axis and so that there is no significant motion
parallax.

B. Nonparametric Background Modeling

In this section, we describe a background model and a
background subtraction process that we have developed,
based on nonparametric kernel density estimation. The
model uses pixel intensity (color) as the basic feature for
modeling the background. The model keeps a sample of
intensity values for each pixel in the image and uses this
sample to estimate the density function of the pixel intensity
distribution. Therefore, the model is able to estimate the
probability of any newly observed intensity value. The
model can handle situations where the background of the
scene is cluttered and not completely static but contains
small motions that are due to moving tree branches and
bushes. The model is updated continuously and therefore
adapts to changes in the scene background.

1) Background Subtraction:Let be a
sample of intensity values for a pixel. Given this sample,
we can obtain an estimate of the pixel intensity pdf at
any intensity value using kernel density estimation. Given
the observed intensity at time , we can estimate the
probability of this observation as

(4)

where is a kernel function with bandwidth. This esti-
mate can be generalized to use color features by using kernel
products as

(5)

where is a -dimensional color feature and is a kernel
function with bandwidth in the th color space dimension.
If we choose our kernel function to be Gaussian, then the
density can be estimated as

(6)

Fig. 1. Background Subtraction. (a) Original image. (b) Estimated
probability image.

Using this probability estimate, the pixel is considered to
be a foreground pixel if , where the threshold

is a global threshold over all the images that can be ad-
justed to achieve a desired percentage of false positives. Prac-
tically, the probability estimation in (6) can be calculated in a
very fast way using precalculated lookup tables for the kernel
function values given the intensity value difference
and the kernel function bandwidth. Moreover, a partial eval-
uation of the sum in (6) is usually sufficient to surpass the
threshold at most image pixels, since most of the image is
typically from the background. This allows us to construct a
very fast implementation.

Since kernel density estimation is a general approach, the
estimate of (4) can converge to any pixel intensity density
function. Here, the estimate is based on the most recent
samples used in the computation. Therefore, adaptation of
the model can be achieved simply by adding new samples and
ignoring older samples [21]. Fig. 1(b) shows the estimated
background probability where brighter pixels represent lower
background probability pixels.

One major issue that needs to be addressed when using
kernel density estimation technique is the choice of suitable
kernel bandwidth (scale). Theoretically, as the number of
samples reaches infinity, the choice of the bandwidth is
insignificant and the estimate will approach the actual
density. Practically, since only a finite number of samples
are used and the computation must be performed in real
time, the choice of suitable bandwidth is essential. Too
small a bandwidth will lead to a ragged density estimate,
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while too wide a bandwidth will lead to an over-smoothed
density estimate [2]. Since the expected variations in pixel
intensity over time are different from one location to another
in the image, a different kernel bandwidth is used for each
pixel. Also, a different kernel bandwidth is used for each
color channel.

To estimate the kernel bandwidth for the th color
channel for a given pixel, we compute the median absolute
deviation over the sample for consecutive intensity values
of the pixel. That is, the median of for each
consecutive pair in the sample is calculated inde-
pendently for each color channel. The motivation behind the
use of median of absolute deviation is that pixel intensities
over time are expected to have jumps because different
objects (e.g., sky, branch, leaf, and mixtures when an edge
passes through the pixel) are projected onto the same pixel at
different times. Since we are measuring deviations between
two consecutive intensity values, the pair usually
comes from the same local-in-time distribution, and only
a few pairs are expected to come from cross distributions
(intensity jumps). The median is a robust estimate and
should not be affected by few jumps.

If we assume that this local-in-time distribution is
Gaussian , then the distribution for the deviation

is also Gaussian . Since this distri-
bution is symmetric, the median of the absolute deviations

is equivalent to the quarter percentile of the deviation
distribution. That is,

and therefore the standard deviation of the first distribution
can be estimated as

Since the deviations are integer gray scale (color) values,
linear interpolation is used to obtain more accurate median
values.

2) Probabilistic Suppression of False Detection:In out-
door environments with fluctuating backgrounds, there are
two sources of false detections. First, there are false detec-
tions due to random noise which are expected to be homo-
geneous over the entire image. Second, there are false detec-
tions due to small movements in the scene background that
are not represented by the background model. This can occur
locally, for example, if a tree branch moves further than it
did during model generation. This can also occur globally in
the image as a result of small camera displacements caused
by wind load, which is common in outdoor surveillance and
causes many false detections. These kinds of false detections
are usually spatially clustered in the image, and they are not
easy to eliminate using morphological techniques or noise
filtering because these operations might also affect detection
of small and/or occluded targets.

If a part of the background (a tree branch, for example)
moves to occupy a new pixel, but it was not part of the model

for that pixel, then it will be detected as a foreground object.
However, this object will have a high probability of being
a part of the background distribution corresponding to its
original pixel. Assuming that only a small displacement can
occur between consecutive frames, we decide if a detected
pixel is caused by a background object that has moved by
considering the background distributions of a small neigh-
borhood of the detection location.

Let be the observed value of a pixeldetected as a
foreground pixel at time. We define the pixel displacement
probability to be the maximum probability that the
observed value, , belongs to the background distribution of
some point in the neighborhood of

where is the background sample for pixel, and the prob-
ability estimation is calculated using the kernel
function estimation as in (6). By thresholding for de-
tected pixels, we can eliminate many false detections due
to small motions in the background scene. To avoid losing
true detections that might accidentally be similar to the back-
ground of some nearby pixel (e.g., camouflaged targets), a
constraint is added that the whole detected foreground ob-
ject must have moved from a nearby location, and not only
some of its pixels. The component displacement probability

is defined to be the probability that a detected connected
component has been displaced from a nearby location. This
probability is estimated by

For a connected component corresponding to a real target,
the probability that this component has displaced from the
background will be very small. So, a detected pixelwill be
considered to be a part of the background only if

.
Fig. 2 illustrates the effect of the second stage of detec-

tion. The result after the first stage is shown in Fig. 2(b).
In this example, the background has not been updated for
several seconds, and the camera has been slightly displaced
during this time interval, so we see many false detections
along high-contrast edges. Fig. 2(c) shows the result after
suppressing the detected pixels with high displacement prob-
ability. Most false detections due to displacement were elim-
inated, and only random noise that is uncorrelated with the
scene remains as false detections. However, some true de-
tected pixels were also lost. The final result of the second
stage of the detection is shown in Fig. 2(d), where the com-
ponent displacement probability constraint was added. Fig.
3(b) shows results for a case where as a result of the wind load
the camera is shaking slightly, resulting in a lot of clustered
false detections, especially on the edges. After probabilistic
suppression of false detection [Fig. 3(c)], most of these clus-
tered false detection are suppressed, while the small target on
the left side of the image remains.
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Fig. 2. Effect of the second stage of detection on suppressing false
detections. (a) Original image. (b) First stage detection result. (c)
Suppressing pixels with high displacement probabilities. (d) Result
using component displacement probability constraint.

Fig. 3. (a) Original image. (b) Result after the first stage of
detection. (c) Result after the second stage.

Fig. 4. (a) Original image. (b) Detection using(R;G;B) color
space. (c) Detection using chromaticity coordinates(r; g).

3) Working With Color: The detection of shadows as part
of the foreground regions is a source of confusion for subse-
quent phases of analysis. It is desirable to discriminate be-
tween targets and their shadows. Color information is useful
for suppressing shadows from the detection by separating
color information from lightness information. Given three
color variables, and , the chromaticity coordinates
are and

, where [22]. Using chro-
maticity coordinates for detection has the advantage of being
more insensitive to small changes in illumination that arise
due to shadows. Fig. 4 shows the results of detection using
both space and space. The figure shows that
using the chromaticity coordinates allows detection of the
target without detecting its shadow. It must be noticed that
the background subtraction technique we describe in Section
III-B can be used with any color space (e.g., HSV, YUV, etc.).

Fig. 5. (a) Original image. (b) Detection using(R;G;B) color
space. (c) detection using chromaticity coordinates(r; g) and the
lightness variable,s.

Although using chromaticity coordinates helps in the sup-
pression of shadows, they have the disadvantage of losing
lightness information. Lightness is related to the differences
in whiteness, blackness, and grayness between different ob-
jects [23]. For example, consider the case where the target
wears a white shirt and walks against a gray background. In
this case, there is no color information. Since both white and
gray have the same chromaticity coordinates, the target may
not be detected.

To address this problem, we also need to use a measure
of lightness at each pixel. We use as a
lightness measure. Consider the case where the background
is completely static, and let the expected value for a pixel
be . Assume that this pixel is covered by shadow in
frame and let be the observed value for this pixel
at this frame. Then, it is expected that . That
is, it is expected that the observed valuewill be darker
than the normal valueup to a certain limit, , which
corresponds to the intuition that at most a fraction
of the light coming to this pixel can be reduced by a target
shadow. A similar effect is expected for highlighted back-
ground, where the observed value can be brighter than the
expected value up to a certain limit. Similar reasoning was
used by [24].

In our case, where the background is not static, there is
no single expected value for each pixel. Letbe the sample
values representing the background for a certain pixel, each
represented as , and let be
the observed value at frame. Then, we can select a subset

of sample values that are relevant to the observed
lightness . By relevant, we mean those values from the
sample which, if affected by shadows, can produce the ob-
served lightness of the pixel. That is,

Using this relevant sample subset, we carry out our kernel
calculation, as described in Section III-B, based on the two-
dimensional (2-D) color space. The parametersand
are fixed over all the image. Fig. 5 shows the detection results
for an indoor scene using both the color space and
the color space after using the lightness variableto
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Fig. 6. Example of detection results.

Fig. 7. Top: detection result from an omnidirectional camera.
Bottom: detection result for a rainy day.

restrict the sample set to relevant values only. We illustrate
the algorithm on an indoor sequence because the effect of
shadows is more severe than in outdoor environments. The
target in the figure wears black pants and the background
is gray, so there is no color information. However, we still
detect the target very well and suppress the shadows as seen
in the rightmost parts of the figure.

4) Example Detection Results:The technique has been
tested for a wide variety of challenging background subtrac-
tion problems in a variety of setups and was found to be ro-
bust and adaptive. In this section, we show some more ex-
ample results. Fig. 6 shows two detection results for targets
in a wooded area where the tree branches move heavily and
the target is highly occluded. The technique is pixel-based
and can work directly with raw images provided by omni-
direction cameras [25]. Fig. 7 (top) shows the detection re-
sults using an omnidirectional camera. The targets are cam-
ouflaged and walking through the woods. Fig. 7 (bottom)
shows the detection result for a rainy day where the back-
ground model adapts to account for different rain and lighting
conditions.1

1Video clips showing these results and others can be downloaded from
ftp://www.umiacs.umd.edu/pub/elgammal/video/index.htm

IV. M ODELING THE FOREGROUND

A. Modeling Color Blobs

Modeling the color distribution of a homogeneous region
has a variety of applications for object tracking and recogni-
tion. The color distribution of an object represents a feature
that is robust to partial occlusion, scaling, and object defor-
mation. It is also relatively stable under rotation in depth in
certain applications. Therefore, color distributions have been
used successfully to track nonrigid bodies [5], [26]–[28],
e.g., for tracking heads [29], [28], [30], [27], hands [31],
and other body parts against cluttered backgrounds from sta-
tionary or moving platforms. Color distributions have also
been used for object recognition.

A variety of parametric and nonparametric statistical tech-
niques have been used to model the color distribution of
homogeneous colored regions. In [5], the color distribution
of a region (blob) was modeled using a single Gaussian in
the three-dimensional (3-D)YUVspace. The use of a single
Gaussian to model the color of a blob restricts it to be of a
single color which is not a sufficiently general assumption to
model regions with mixtures of colors. For example, people’s
clothing and surfaces with texture usually contain patterns
and mixtures of colors. Fitting a mixture of Gaussians using
the EM algorithm provides a way to model color blobs with
a mixture of colors. This technique was used in [30] and [27]
for color-based tracking of a single blob and was applied
to tracking faces. The mixture of Gaussian techniques faces
the problem of choosing the right number of Gaussians for
the assumed model (model selection). Nonparametric tech-
niques using histograms have been widely used for modeling
the color of objects for different applications to overcome
the previously mentioned problems with parametric models.
Color histograms have been used in [32] for people tracking.
Color histograms have also been used in [31] for tracking
hands, in [26] for color region tracking and in [33] for skin
detection. The major drawback with color histograms is the
lack of convergence to the right density function if the data
set is small. Another major drawback with histograms, in
general, is that they are not suitable for higher dimensional
features.

Given a sample taken from an image region,
where and is a -dimensional vector repre-
senting the color, we can estimate the density function at any
point of the color space directly from using the product
of one-dimensional (1-D) kernels [1] as

(7)

where the same kernel function is used in each dimension
with a different bandwidth for each dimension of the color
space. Usually in color modeling 2-D or 3-D color spaces
are used. Two-dimensional chromaticity spaces, e.g.,

and from theLab
color space, are used when it is desired to make the model
invariant to illumination geometry for reasons discussed in
Section III-B3. Three-dimensional color spaces are widely
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used because of their better discrimination since brightness
information is preserved. The use of different bandwidths for
kernels in different color dimensions is desirable since the
variances in each color dimension are different. For example,
the luminance variable usually has more variance than the
chromaticity variables, and therefore wider kernels should
be used in that dimension.

Using kernel density estimation for color modeling has
many motivations. Unlike histograms, even with a small
number of samples, kernel density estimation leads to a
smooth, continuous, and differentiable density estimate.
Since kernel density estimation does not assume any specific
underlying distribution and the estimate can converge to any
density shape with enough samples, this approach is suitable
to model the color distribution of regions with patterns
and mixture of colors. If the underlying distribution is a
mixture of Gaussians, kernel density estimation converges
to the right density with a small number of samples. Unlike
parametric fitting of a mixture of Gaussians, kernel density
estimation is a more general approach that does not require
the selection of the number of Gaussians to be fitted. One
other important advantage of using kernel density estimation
is that the adaptation of the model is trivial and can be
achieved by adding new samples. Since color spaces are low
in dimensionality, efficient computation of kernel density
estimation for color pdfs can be achieved using the Fast
Gauss Transform algorithm [34], [35].

B. Color-Based Body Part Segmentation

In this section, we use the color modeling approach
described in Section IV-A to segment foreground regions,
corresponding to tracked people in upright poses, into major
body parts. The foreground regions are detected using the
background subtraction technique described earlier. People
can be dressed in many different ways but generally are
dressed in a way that leads to a set of major color regions
aligned vertically for people in upright poses (e.g., shirt,
T-shirt, jacket on the top and pants, shorts, skirts on the
bottom). We consider the case where people are dressed in
a top–bottom manner which yields a segmentation of the
person into a head, torso, and bottom. Generally, a person in
an upright pose is modeled as a set of vertically aligned blobs

where a blob models a major color region
along the vertical axis of the person representing a major
part of the body as the torso, bottom, or head. Each blob
is represented by its color distribution as well as its spatial
location with respect to the whole body. Since each blob has
the same color distribution everywhere inside the blob, and
since the vertical location of the blob is independent of the
horizontal axis, the joint distribution of pixel (the
probability of observing color at location given blob

) is a multiplication of three independent density functions

where is the color density of blob and the densities
represent the vertical and horizontal location

of the blob, respectively.

Fig. 8. (a) Blob separator histogram from training data. (b)
Confidence bands. (c) Blob segmentation. (d) Detected blob
separators.

Estimates for the color density can be calculated
using kernel density estimation. We represent the color of
each pixel as a 3-D vector where

are two chromaticity variables
and is a lightness variable. The three
variables are scaled to be in the range 0 to 1. Given a sample
of pixels from blob , an estimate

for the color density can be calculated as

Given a set of samples corresponding to each
blob, and initial estimates for the position of each blob,
each pixel is classified into one of the three blobs based on
maximum-likelihood classification assuming that all blobs
have the same prior probabilities

s.t.

(8)

where the vertical density is assumed to have a
Gaussian distribution . Since the
blobs are assumed to be vertically above each other, the
horizontal density is irrelevant to the classification.

A horizontal blob separator is detected between each
two consecutive blobs by finding the horizontal line that
minimizes the classification error. Given the detected blob
separators, the color model is recaptured by sampling pixels
from each blob. Blob segmentation is performed, and blob
separators are detected in each new frame as long as the
target is isolated and tracked. Adaptation of the color model
is achieved by updating the sample (adding new samples
and ignoring old samples) for each blob model.

Model initialization is done automatically by taking three
samples of pixels from three confidence
bands corresponding to the head, torso, and bottom. The lo-
cations of these confidence bands are learned offline as fol-
lows. A set of training data with different people in upright
pose (from both genders and in different orientations) is used
to learn the location of blob separators (head-torso, torso-
bottom) with respect to the body where these separators are
manually marked. Fig. 8(a) shows a histogram of the loca-
tions of head-torso (left peak) and torso-bottom (right peak)
in the training data. Based on these separator location esti-
mates, we can determine the confidence bands proportional
to the height where we are confident that they belong to the
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Fig. 9. Example results for blob segmentation.

head, torso, or bottom and use them to capture initial sam-
ples . Fig. 8(b) shows initial bands used
for initialization where the segmentation result is shown in
8(c), and the detected separators are shown in 8(d).

Fig. 9 illustrates some blob segmentation examples for
various people. The segmentation and separator detection is
robust even under partial occlusion of the target as in the
rightmost result. Also, in some of these examples, the clothes
are not of a uniform color.

C. Segmentation of Multiple People

Visual surveillance systems are required to keep track of
targets as they move through the scene even when they are
occluded by or interacting with other people in the scene. It
is highly undesirable to lose track of the targets when they
are in a group. It is even more important to track the targets
when they are interacting than when they are isolated. This
problem is important not only for visual surveillance but also
for other video analysis applications such as video indexing
and video archival and retrieval.

In this section, we show how to segment foreground re-
gions corresponding to a group of people into individuals
given the representation for isolated people presented in Sec-
tion IV-B. One drawback of this representation is its inability
to model highly articulated parts such as hands. However,
since our main objective is to segment people under occlu-
sion, we are principally concerned with the mass of the body.
Correctly locating the major blobs of the body will provide
constraints on the location of the hands which could then be
used to locate and segment them. The assumption we make
about the scenario is that the targets are visually isolated be-
fore occlusion so that we can initialize their models.

Given a foreground region corresponding to a group of
people, we search for the arrangement that maximizes the
likelihood of the appearance of this region given the models
that we have built for the individuals. As a result, we obtain
a segmentation of the region. The segmentation result is then
used to determine the relative depth of each individual by
evaluating different hypothesis about the arrangement of the
people. This allows us to construct a model for occlusion.

The problem of tracking groups of people has been ad-
dressed recently in the literature. The Hydra system [36]
tracks people in groups by tracking their heads based on

the silhouette of the foreground regions corresponding to the
group. It is able to count the number of people in the groups
as long as their heads appear as part of the outer silhouette of
the group; it fails otherwise. The Hydra system was not in-
tended to accurately segment the group into individuals nor
does it recover depth information. In [32], groups of people
were segmented based on the individuals’ color distribution
where the color distribution of the whole person was rep-
resented by a histogram. The color features are represented
globally and are not spatially localized; therefore, this ap-
proach loses spatial information about the color distributions
which is an essential discriminant.

1) Segmentation Using Likelihood Maximization:For
simplicity and without loss of generality, we focus on the the
two-person case. Given a person model where

, the probability of observing color at location
given blob is

Since our blobs are aligned vertically, we can assume that all
the blobs share the same horizontal density function .
Therefore, given a person model , the
probability of is

(9)

where is a normalization factor such that
. The location and the spatial densities

are defined relative to an origin. If the origin
moves to , we can shift the previous probability as

This defines the conditional density as a function of the
model origin , i.e., is a parameter for the
density, and it is the only degree of freedom allowed.

Given two people occluding each other with models
and is a

four-dimensional (4-D) hypothesis for their origins. We will
call an arrangement hypothesis. For a foreground region

representing those two people, each
foreground pixel can be classified into one
of the two classes using maximum-likelihood classification
(assuming the same prior probability for each person). This
defines a segmentation
that minimizes Bayes error, where

s.t.

Notice that the segmentation is a function of the
origin hypothesis for the two models, i.e., each choice for
the targets’ origins defines a different segmentation of the
foreground region. The best choice for the targets’ origins is
the one that maximizes the likelihood of the data over the
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entire foreground region. Therefore, the optimal choice for
can be defined in terms of a log-likelihood function

For each new frame at time, searching for the optimal
solves both the foreground segmentation as

well as person tracking problems simultaneously. This for-
malization extends in a straightforward way to the case of
people in a group. In this case, we havediffererent classes
and an arrangement hypothesis is a-dimensional vector

.
Finding the optimal hypothesis for people is a search

problem in dimension space, and an exhaustive search
for this solution would require tests, where is
a 1-D window for each parameter (i.e., the diameter of the
search region in pixels). Thus, finding the optimal solution
in this way is exponential in the number of people in the
group, which is impractical. Instead, since we are tracking
the targets and the targets are not expected to move much
between consecutive frames, we can develop a practical
solution based on direct detection of an approximate solu-
tion at frame given the solution at frame .
Let us choose a model origin that is expected to be visible
throughout the occlusion and can be detected in a robust
way. For example, if we assume that the tops of the heads
are visible throughout the occlusion, we can use these
as origins for the spatial densities. Moreover, the top of
the head is a shape feature that can be detected robustly
given our segmentation. Given the model origin location

at frame , we can use this origin
to classify each foreground pixel at frame using the
maximum likelihood of . Since the
targets are not expected to have significant translations
between frames, we expect that the segmentation based on

would be good in frame, except possibly at
the boundaries. Using this segmentation, we can detect new
origin locations (top of the head), i.e., . We can
summarize this in the following steps.

1)
2) Segmentation: Classify each foreground pixel

based on .
3) Detection: Detect new origins (top of heads)

2) Modeling Occlusion:By occlusion modeling, we
mean assigning a relative depth to each person in the group
based on the segmentation result. Several approaches have
been suggested in the literature to solve this problem. In
[37], a ground plane constraint was used to reason about
occlusion between cars. The assumption that object motion
is constrained to the ground plane is valid for people and
cars but would fail if the contact point on the ground plane
is not visible because of partial occlusion by other objects
or because contact points are out of the field of view (for ex-
ample, see Fig. 10). In [32], the visibility index was defined
to be the ratio between the number of pixels visible for each
person during occlusion to the expected number of pixels
for that person when isolated. This visibility index was used

Fig. 10. (a) Original image. (b) Foreground region. (c)
Segmentation result. (d), (e) Occlusion model hypotheses.

to measure the depth (higher visibility index indicates that
the person is in front). While this can be used to identify the
person in front, this approach does not generalize to more
than two people. The solution we present here does not use
the ground plane constraint and generalizes to the case of
people in a group.

Given a hypothesis about the 3-D arrangement of people
along with their projected locations in the image plane and
a model of their shape, we can construct an occlusion model

that maps each pixel to one of the tracked targets
or the scene background. Let us consider the case of two tar-
gets as shown in Fig. 10. The foreground region is segmented
as in Section IV-C1, which yields a labeling for each
pixel [Fig. 10(c)] as well as the most probable location for
the model origins. There are two possible hypotheses about
the depth arrangement of these two people, and the corre-
sponding occlusion models are shown in Fig. 10(d) and (e),
assuming an ellipse as a shape model for the targets. We can
evaluate these two hypotheses (or generallyhypotheses)
by minimizing the error in the labeling between and

over the foreground pixels, i.e.,

error

for all foreground pixels.2 We use an ellipse with major
and minor axes set to the expected height and width of each
person estimated before the occlusion. Figs. 11 and 12 show
some examples of the constructed occlusion model for some
occlusion situations.

Fig. 11 shows results for segmenting two people in dif-
ferent occlusion situations. The foreground segmentation be-
tween the two people is shown as well as part segmentation.
Pixels with low likelihood probabilities are not labeled. In
most of the cases, hands and feet are not labeled or are mis-
classified because they are not modeled by the part represen-
tation. The constructed occlusion model for each case is also
shown. Notice that, in the third and fourth examples, the two
people are dressed in similarly colored pants. Therefore, only
the torso blobs are discriminating in color. This was sufficient
to locate each person’s spatial model parameters and there-
fore similarly colored blobs (head and bottom) were seg-
mented correctly based mainly on their spatial densities. Still,
some misclassification can be noticed around the boundaries
between the two pants, which is very hard even for a human
to segment accurately. Fig. 12 illustrates several frames from

2In the two-person case, an efficient implementation for this error formula
can be achieved by considering only the intersection region and finding the
target which appears most in this region as being the one in front.
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Fig. 11. Example results. Top left: original image. Top right:
people segmentation. Bottom left: blob segmentation. Bottom right:
constructed occlusion model.

a sequence for two targets being tracked throughout occlu-
sion. The part segmentation results are shown as well as the
constructed occlusion model. More details and more experi-
mental results can be found in [38].

V. CONCLUSION

In this paper, we presented nonparametric kernel density
estimation techniques as a tool for constructing statistical
representations for the scene background and foreground re-
gions in video surveillance. Since the pdf associated with the

Fig. 12. Example results. Top: original image. Middle: blob
segmentation. Bottom: occlusion model.

background or the foreground does not necessarily follow
a known parametric form, kernel estimation methods are a
more suitable approach to use in these applications.

A background model and background subtraction tech-
nique was introduced. The model is based on estimating the
pdf of pixel intensity directly from a set of recent intensity
values. The model achieves sensitive detection of moving
targets against cluttered backgrounds. The model can handle
situations where the scene background is not completely
static but contains small motions such as moving tree
branches and bushes. The model is also adaptive to changes
in the scene illumination. The model is able to suppress false
detections that arise due to small camera displacements. We
also showed how the model can use color information to
suppress detection of the shadows of the targets.

We also used kernel estimation techniques for modeling
the appearance of foreground regions. We showed that this
technique is a general approach for modeling homogeneous
color regions. We introduced a representation of people that
spatially localizes color properties in a way that corresponds
to their clothing. Based on this representation, we presented
a general probabilistic framework that uses maximum-likeli-
hood estimation to estimate the best arrangement for people
in a group in order to segment the foreground regions cor-
responding to this group. A method to reason about occlu-
sion was presented. The method constructs and maintains a
model of the occlusion that is utilized in the same segmenta-
tion framework.
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