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This paper outlines motivations and models underlying the
design of visual microprocessors based on the cellular neural
network universal machine. We also overview the state of the art
regarding the realization of these microprocessors in the form
of very large-scale integration chips. Examples corresponding to
measurements realized on these chips are enclosed for illustration
purposes.
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I. INTRODUCTION

For more than 100 years, the living visual system of mam-
mals has been intensively studied by neuroscientists and bio-
physicists alike. Recently, computer engineers have been ac-
tive creating machine vision systems. Still, although many
ideas have been proposed and implemented in silicon [1]–[3],
including resistive grid “silicon retinas,” programmable cel-
lular neural/nonlinear network (CNN)1 models of the visual
pathway, as well as many “smart optical sensors,” no com-
plete neuromorphic model of the topographic parts of the vi-
sual pathway has been made available. The reason is simple:
the lack of understanding of the detailed operation of many
key components located at the front-end of the visual system,
notably, the retina and the lateral geniculate nucleus (LGN).
Hence, the representation of the visual scene from the input
to the higher layers has been unknown. Of the many exciting
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1Cellular neural/nonlinear network (CNN) models were introduced by
Chua and Yang in 1988 [5], and then generalized and used as a model for
bionic eyes by Chua, Roska, and Werblin [6]–[8]. Their principles and ap-
plications for visual processing are covered in [9].

partial results related to the visual pathway, some recent find-
ings (see, for instance, [4]) suggest a few sound principles.

• Sensing and processing are interactive processes, and
the processing is mainly analog, combined with masks
of binary (yes/no) maps.

• The basic structure is composed of several stacks of
layers of neurons connected by local receptive field or-
ganizations with different spatial distributions and time
constants.

• The processing strategy is a kind of “multiscreen the-
ater”; namely, from a given visual scene, several par-
allel maps are generated and then further processed.
This is true even in the mammalian retina [4] where
about a dozen parallel channels are organized.

To implement neuromorphic visual models on silicon, we
have two ways:

• Pick up a specific task and its model and implement it
on silicon. This is the usual way, leading to very useful,
task-specific smart sensors.

• Make mixed-signal2 visual microprocessors. That is,
processors which combine optical sensing with analog
cellular spatial-temporal dynamics and some form of
logic (they are called analogic processors because they
combine analog and logic processing structures), which
have receptive fields like elementary instructions, and
the possibility of storing and executing user-selectable
sequences of instructions (programs).

Clearly, the second approach is more demanding in terms of
architecture, very large-scale integration (VLSI) chip design,
and computational infrastructure, leading to a new type of
hardware/software system design.

This paper focuses on the second approach. Namely, we
will briefly review the analogic cellular computer architec-
ture, some CMOS prototype chips related to that architecture,
and the accompanying computational infrastructure. Some
examples measured from the so-called ACE4K chip [10] and
the CACE1K chip [11] are included for illustration purposes.
The former has a one-layer architecture, while the latter has
a three-layer architecture inspired by the CNN model of the

2Mixed-signal means that analog and digital signal representations are
combined, and hence analog and digital signal processing.
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mammalian retina proposed in [12] based on the discoveries
about the functionality of the inner part of this retina as re-
ported in [4].

II. CNN-BASED VISUAL MICROPROCESSORS

Back in the 1960s, the building blocks for logic design
had been the various logic circuits (micromodules) imple-
menting different “smart” logic tasks. These had also been
used to make digital computers. The digital computer has
a key attribute due to J. Von Neumann, namely stored pro-
grammability. It means that the same core architecture, via
algorithms coded in software, can be used for a myriad of
tasks. Or, to put it in another way, the architecture is open to
the human intellect for millions of algorithmic innovations.
This is the functional secret behind the success of the digital
microprocessor, first made in the early 70s. Visual micropro-
cessors aim to mimic this functional secret. However, they
are mixed-signal devices which realize analog-and-logic spa-
tial/temporal processing tasks (wave processing), and hence
require quite different building blocks [3].

The front-end “devices” encountered in natural vision sys-
tems are capable of acquiring and processing images in a con-
current manner. The retina contains photoreceptors and dy-
namically coupled processing cells of different types. Among
many other tasks, the early processing realized at the retina
serves to extract important features from the raw sensory data
and, thus, to reduce the amount of information transmitted
for subsequent processing. In contrast to that, image acqui-
sition and processing are usually separated in conventional
artificial vision systems. One key aspect of visual micropro-
cessors is the integration of sensing and stored programmable
processing (SPP) at the analog signal array level—the inte-
grated SPP principle. Among many other things, this allows
us to tune the sensors dynamically, pixel by pixel, depending
on the content and even on the context of the changing scene.
Some of the key architectural aspects have been discussed in
[13].

Some features which make the visual microprocessors ad-
dressed in this paper different from other topographic smart
sensors [1], [2] include the following.

• They use a core analog processing array (a CNN
[5]–[7]) with tunable interaction weight patterns and
embedded pixel-wise data memories.

• This programmable and reconfigurable array is em-
bedded in a computer architecture resulting in the
so-called CNN univesal machine (CNN-UM).

• The CNN-UM is stored programmable and capable
of implementing analogic spatial–temporal algorithms
through the smart synergy of hardware and software.

All the signal variables are continuous, except for the dis-
creteness in space (pixels or voxels). At the same time, visual
microprocessors retain the extraordinary strength of digital
computers, their unconstrained variability via programming
or software. Obviously, such software and related algorithms
are different from conventional ones.

Below we summarize the main architectural and
algorithmic ideas underlying CNN-based visual micropro-
cessors. It is worth mentioning that although most of their
present-day applications are related to vision, many other

Fig. 1. A typical simple CNN structure.

Fig. 2. The standard output nonlinearity.

topographic problems (tactile and auditory), including topo-
graphic optimization, are among the emerging applications.

A. CNN Dynamics

CNNs can be either single-layer or multilayer. Consider
first a single layer consisting of a two-dimensional (2-D),
regular grid of cells , where and are the row and
column coordinates. The topography of such a structure is
shown in Fig. 1.

Assume each cell hosts a processor with its real-valued
input, state(s), and output signals, , and ,
respectively. In such a 2-D layer, each cell processor is con-
nected to its neighbors (in a 33 or 5 5, etc., neighbor-
hood or sphere of influence), denoted by . The sim-
plest first-order cell state dynamics is given by3

(1)

where is called the threshold of the cell
and are called the feedback and feed-

forward synaptic operators or templates; in case of a 33
neighborhood of radius 1, they are 33 matrices.

The state and the output signals of each cell are typically
related through the following nonlinear output equation:

(2)

depicted in Fig. 2. However, the nonlinearity could be of
several types and it could also be included in a simpler
dynamic equation form. Namely, the standard nonlinearity

3The time is scaled in the relative time unit� which is the time con-
stant of the simple first-order cell dyanmics.
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Fig. 3. The initial picture and the diffused picture using a
diffusion template defined by geneG .

in (2) and the cell-state dynamics represented by (1), the
so-called Chua–Yang model, could be replaced by the
full-range model which means that , and that
the first term in (1) is replaced by a nonlinear function
whose shape is the inverse of that used for the standard
nonlinearity [14].

Once the cell dynamics is fixed, the interaction patterns
and and the offset value define the functionality of

the CNN layer. Given an input signal array for
, defined as a picture with pixel values ,

the set of values determines the outcome of the
CNN dynamic process. This set is called a cloning template
or a gene. In the space-invariant case, the templates are 33
(or 5 5 or 7 7) matrices. This means that a CNN array
can be defined by the cell dynamics and the 19 (or 51 or 99)
numbers of the templates and the offset. The input
image could be either static or dynamic; hence, a CNN layer
plays the role of an image processor.

The peculiar property of controlling the functionality of a
whole array of interconnected cells by means of just a few
interconnection weights (e.g., 19 numbers) is very familiar
to neurobiologists. Indeed, the cloning template is no more
than a receptive field organization in the retinotopic part of
the visual pathway [8]. On the other hand, the CNN para-
digm is well suited for representing many topographic sen-
sory modalities via their receptive field organizations. The
first attempts [15] have been followed by many other useful
results.

In a nontrivial case, the CNN dynamics is a wave acting
for a finite time . For example, for a diffusion template or
gene we have

(3)

Fig. 3 shows the initial state and the output image (at
elapsed time). There exists a very wide catalog of templates
covering a myriad of applications. Also, because these tem-
plates are programmable by definition, learning can be incor-
porated to adapt the templates either globally, for example,
using a genetic algorithm [16], or locally. Thus, not only
associative memories can be constructed, e.g., [17], but the
plasticity of the brain might be directly modeled [13].

Fig. 4. The extended cell of the CNN-UM.

B. The CNN-Universal Machine (CNN-UM) [7]

If we furnish each CNN cell processor with local memo-
ries [local analog memory (LAM) and local logic memory
(LLM)] and a local communication and control unit (LCCU)
to send/receive information to/from the global analogic pro-
gramming unit (GAPU), we get the extended CNN cell of the
CNN-UM architecture. For practical reasons, in each cell we
add a local logic unit (LLU) and a local analog output unit
(LAOU) which take inputs and send outputs from/to their
local memories, LLM and LAM, respectively. Fig. 4 shows
the extended cell schematically.

The GAPU is the conductor of the extended cell array,
communicating with each cell via the LCCUs of each cell.
The GAPU contains three registers and a global analogic
control unit (GACU), the latter of which is the host of the
stored program and controls the whole array computer. The
three registers store the cloning templates [analog program-
ming-instruction register (APR)], the local logic instructions
[logic program-instruction register (LPR)], and the switch
configuration codes [switch configuration register (SCR)],
respectively.

The CNN-UM can be viewed as an array computer de-
fined on flows [18]. Algorithms can be constructed where
the elementary instruction is the solution of a partial differ-
ential equation (PDE). This correspondence was highlighted
already in the seminal paper [5] for the heat equation; also,
in [19], a mechanical system was modeled by a CNN. Later,
systematic methods have been devised to convert PDEs de-
fined in continuous space into CNN dynamics [20]. Recent
advances in complex image processing show that PDE-based
techniques seem to be superior in many respects (e.g., [21]).
The drawback is their high computational complexity when
implemented in digital processors. Here, using a CNN, solu-
tion of a nonlinear PDE is the basic task.

The next example shows a complex analogic spatial/tem-
poral algorithm used for the calculation of the inner bound-
aries of the left ventricle in an echo-cardiogram [22]. Active
waves [23] are used as algorithmic steps. For reference, we
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Fig. 5. The bold arrows represent different cloning templates. Some of them are performing the
solution of complex nonlinear PDEs as elementary instructions; these are written on the left-hand
side of the figure with their execution times on the right-hand side. In addition, several simpler
instructions and templates are used, for instance, local logic operations.

also show the execution times of the algorithmic steps on the
so-called ACE4k chip [10].

C. Example 1

A flow diagram is depicted in Fig. 5 of the analogic CNN
algorithm with some typical intermediate results. Observe
that it can be interpreted as a combination of three image
flows merging and branching during the processing stage of
a single frame. Here the third flow stands for the information
calculated from the current frame, the second one for the in-
termediate results obtained from the previous frame, while
the first one represents the binary masks generated from the
previous result. The core of the three main processing stages
of the algorithm can also be described by PDEs (left): 1)
image filtering and reconstruction derived from nonlinear
diffusion PDEs; 2) motion estimation derived from optical
flow PDEs; and 3) trigger wave-type active contour-based
boundary tracking derived from reaction-diffusion nonlinear
PDEs. These PDE approximations, executed on the ACE4K
chip, can be completed within a millisecond, allowing the
processing system to reach its peak performance around four
thousand frame/sec (right).

D. Multilayer and Complex Cell CNN-UM

The multilayer CNN structure was already introduced in
[5]. It is used when several 2-D CNN layers are necessary

Fig. 6. Fig. 3 shows the initial state and the output image (at
T = 2 elapsed time). There exists a very wide catalog of templates
covering a myriad of applications. Also, because these templates
are programmable by definition, learning can be incorporated to
adapt the templates. Either globally, for example, using a genetic
algorithm [16], or locally. Thus, not only associative memories can
be constructed, e.g., [17], but the plasticity of the brain might be
directly modeled [13].

to describe the spatial-temporal dynamics. In many cases,
the layers are just cascaded, and the consecutive instruc-
tions of the CNN-UM are adequate to model the same
process. However, in those cases where interlayer feedback
does exist, we need the multilayer CNN structure. Such a
multilayer CNN is useful for modeling the vertebrate retina
[12].

Fig. 6 shows the conceptual architecture of a second-order
dynamics, three-layer cell which has been prototyped in the
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Fig. 7. Using the CACE1K chip, programming the layer time constants and theA-templates on the
two dynamic layers, a double wave propagation can be programmed. The resulting sequence of
snaphots shows the different speed and the different types of waves on the two layers.

chip called CACE1K [11]. The dynamic operation is given
according to the following expressions:

(4)
where represents the built-in difference arithmetic.
The operation of this prototype is hence controlled by the
23 parameters involved in (4), given as

(5)

plus the relative values of the time constants of Layers 1 and
2, totaling 25 different parameters. Many types of nonlinear
waves (trigger-, traveling-, auto-, and spiral-waves) can be
obtained by properly controlling these parameters [23].

E. Example 2

This example illustrates the generation of double-wave
propagation using the CACE1K chip [11]. The template ele-
ment values for this operation are

(6)

and the ratio between the time constants of the two layers is
. Using the same chip, very recently we have

been able to implement some of the key inner retinal effects,
impossible to realize on first-order layers. More detailed re-
sults are reported elsewhere [24].

Our quest to make a programmable prototype spatial-tem-
poral computer which could also serve as a visual micropro-

cessor could be justified in two ways. On the one hand, we
have proven earlier that the CNN-UM is universal. In a sense,
it is equivalent to the Turing machine. The proof was real-
ized by implementing the game of life. On the other hand,
in each cell, with not more than four layers, we can imple-
ment any nonlinear multi-input single-output operator with
fading memory. This is only one side of the story. On the
other side, which is similar to the digital computers or Turing
machines in which the-recursive functions are the formal
descriptions of the algorithms with proven capabilities, we
have also determined the equivalent formal notion of algo-
rithms as the -recursive functions with similar properties
[18]. Hence, we have all the theoretical background to es-
tablish our new type of computer for topographic operations,
in particular for vision. Moreover, it has turned out that the
neuromorphic constructs for most of the topographic senses
with accompanying processing are quite similar to those of
CNN models [9].

III. A NALOGIC VISUAL MICROPROCESSOR INSILICON

CNN-based analogic visual microprocessors have simi-
larities with the so-called single instruction multiple data
(SIMD) systems [25], although they work directly on analog
signal representations obtained through embedded optical
sensors and hence do need neither a front-end sensory plane
nor analog-to-digital converters. The architecture of these
visual microprocessors is illustrated in Fig. 8 through two
prototype chips, namely, ACE4K [10] and ACE16K [26].
In both cases, as in other related chips [11], [27]–[29], the
architecture includes a core array of interconnected elemen-
tary processing units, surrounded by a global circuitry. This
latter circuitry is intended for:

• control and timing;
• adressing and buffering of the core cells;
• input/output;
• storage of user-selectable instructions (programs) to

control the sequence of operations of the processing
core;

• storage of user-selectable analogic programming pa-
rameter configurations (templates).
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Fig. 8. Architectures of analogic visual microprocessor chips: (a) ACE4K [10] and (b) ACE16K
[26].

On the other hand, the core of interconnected processing
units embeds different functions on a common silicon sub-
strate (see Fig. 9 for illustration purposes), namely:

• 2-D sensing;
• 2-D analog/digital array processing concurrent with the

signal sensing;
• 2-D spatio-temporal processing determined by local,

receptive-field-like programmable interconnections;

• 2-D memory banks for concurrent online uploading
and downloading of short-term analog and digital
data.

Several analogic visual microprocessor chips in different
CMOS technologies have been reported during the last few
years. Particularly, [10], [11], and [26]–[29] report those im-
plementations with at least 2020 pixels. Table 1 presents a
summary of some of their most relevant data. Some columns
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Fig. 9. llustrating the embedding of different functional features at the core processing array
of visual microprocessors. (a) Microphotograph of the ACE4K chip (left) and conceptual
representation of the distributed functions embedded in the core array (right). (b) Layout of a
processing unit of the ACE16K showing the areas occupied by the different functions realized
concurrently by the core array.

correspond to chips intended for black and white input im-
ages, while others are for chips which accept gray-scale input
images. As with any other analog processing circuit, figures
of merit about performance must contemplate accuracy and
area occupation in addition to speed and power consump-
tion. The speed measure here is proportional to the number
of cells, the inverse of the time constant, and a weighted
number of multipliers per cell. Any comparison must refer
to the number of operations per second and to the accuracy.
The data in the table highlights the following.

• There is a tradeoff between area occupation (cell den-
sity) and accuracy, on the one hand, and speed of opera-
tion and power consumption, on the other. This tradeoff
is typical of analog integrated circuits [33].

• The evolution toward scaled-down technologies reports
advantages in terms of speed and cell density. Actu-
ally, the ACE16K chip has 128 128 resolution and

is capable of realizing sequences of 64 instructions;
using up to 32 different templates (each template con-
sisting of 24 8-bit-coded analog programming values)
during a sequence; loading and downloading full-size
gray-scale images to and from the cache memory, and
having always eight full-size images available for usage
during the flow; with an internal processing time of
160 ns, and providing digitally coded output images
(obtained with a battery of internal converters) with a
downloading time of 0.128 ms.

The capability to design cells with maximum density,
speed and accuracy, and minimum area and power consump-
tion relies basically on the exploitation of all functional
features offered by the MOS transistor. This is very different
from digital design, in which only the switching capability
of the MOS transistor is exploited. The design of the entities
which interconnect the cells (synapses) defines one of the
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Table 1
Summary and Comparison of Chip Implementations

major issues. In order to do this, different possibilities may
be chosena priori, as illustrated in Fig. 10. In all cases,
electrical controllability is provided by default. However, the
different strategies exhibit quite a different performance in
the presence of systematic and random error sources, as well
as a different incidence of the global signal transmission
errors. Hence, careful analysis and optimization is needed
to select the best approach. Such analysis and optimization

are needed to achieve the cell density and accuracy levels
featured by last generation chips. The background for such
procedures can be found in [3], [10], [11], [26], and [28].

IV. A BOUT SCALING DOWN

It is expected that the performance figures featured for
these chips can be further enhanced as technology scales
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Fig. 10. Using a single NMOST for voltage-to-current transformation. Only first-order terms are
included in the displayed behavioral equations.

down. However, one problem arises due to the necessity of
maintaining analog accuracy, and hence the quality of the
analog design, as transistor sizes decrease. Below we first
identify mismatch as the main limit for the analog accu-
racy and then explore different tradeoffs associated with the
analog design in the presence of mismatch.

A. Mismatch Versus Noise as a Limiting Factor

Mismatch makes two nominally identical devices behave
differently when they are used in a real integrated circuit.
Based on the formulation of mismatch as a function of device
geometries in [30], the variance of the large-signal transcon-
ductance parameter, the threshold voltage , and the
slope factor4 as function of the device area and aspect
ratio can be represented as

(7)

where is the transistor channel area andis the transistor
aspect ratio.

Another accuracy limiting factor is noise. The equivalent
noise current for an MOS transistor can be expressed as [31]

(8)

where and vary between 1 and 2,
within the ohmic region and of this quan-

tity in saturation, and is the small-signal
transconductance parameter.

4In the original model, the variance was formulated for the body effect
factor � � (n ) can be obtained as a function of� (V ) and� (�).

Let us consider that the only significant mismatch error
is that of the large-signal transconductance parameter—as
it actually happens in many practical circuits used for es-
tablishing interconnections in analog array processors [32],
[33]. In terms of the transistor areaand aspect , this error
is expressed as

(9)

Under similar assumptions, the noise contribution can be ap-
proximated by

(10)

Using typical parameters for CMOS 0.5-m technologies
( V, V, V,

cm V s , m ,
V F) and considering a bandwidth of 1–5 MHz, we conclude
that, for devices with channel areas of about 50m , the
matching level sets an accuracy slightly above 8 b while for
this same area and a channel aspect ratio of 0.1 the noise
poses a limit in the resolution of 10.48 bit, far beyond from
that posed by mismatching phenomena.

B. The Effect of the Scaling Process

Let us assume that lateral dimensions scale as

(11)

Thus, the gate oxide thickness, which approximately evolves
in current technologies as , scales as

(12)
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Fig. 11. (a) Historical trend of parameterA . (b) Historical trend of parameterA [34].

Assume that the synapse size defines the achievable cell
density

(13)

where and are the synapse width and length. As tech-
nologies scale down,Densitymight hence evolve as

(14)

Another important parameter is the time constant which
can be expressed as

(15)

In the case that one transistor is employed to realize the
synapse [32], [33], the transconductance parameter is ap-
proximately given by

(16)

where is the weight control signal.
On the other hand, assuming that the capacitor is imple-

mented by using the gate capacitance of an MOS transistor,
the capacitance value neglecting border effects is approxi-
mately given by

(17)

From (16) and (17), the time constant becomes

(18)

Hence, it might ideally scale as

(19)

Unfortunately, the density and speed enhancements re-
ported by (14) and (19) cannot be realized in practice due to
the necessity of keeping the analog accuracy. The question
is, what happens with the technological parameters related
to the accuracy when the technology scales down? Do they
also scale down? The answer is that not all of them scale
as feature size does. The historical trend shows [34] that

scaling down produces a reduction of the main parameter
related to mismatching, namely the parameter,
[see Fig. 11(a)]. However, as already mentioned, accuracy in
the behavior of the one transistor synapse is mainly affected
by random fluctuations on the parameter[32], [33]. Errors
of the synapse current are approximately given by

(20)

Fig. 11(b) shows that the parameter has remained prac-
tically unchanged as feature size was scaled down. Hence,
synapse errors evolve as

(21)

Consequently, if transistors are designed such that their
channel areas are scaled down by, then, the relative error

will grow according to

(22)

Accuracy can only be kept by maintaining approximately
the same absolute channel area. Of course this statement is
valid provided that the empirical trend depicted in Fig. 11(b)
remains.

C. Design Tradeoffs

Among many other things, analog design art consists
mainly in the combination of many design equations in-
volving area occupation, power consumption, speed, and
accuracy. Typically, the objective is to meet the design
requirements by minimizing (or maximizing) a certain
figure of merit (FOM), using the channel areas and aspect
ratios of the transistors as design variables.

Unfortunately, as already highlighted in previous section,
it is not possible to optimize all figures simultaneously;
instead, tradeoffs among the different figures must be
considered.

1) Accuracy Versus Density:The dependence of mis-
match on the channel aspect ratio is low for moderately
large values of the channel areas. Due to this, the channel
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area is constrained by the required accuracy and it may
therefore be said that the precisionsatisfies

(23)

where is defined as

(24)

On the other hand, the density of synapses, that is, the
number of synapses per area unit, can be basically expressed
as

(25)

where is a constant which includes the influence of the
routing lines and diffusion regions on the achievable density.

Hence, a first tradeoff can be formulated as

(26)

Accordingly, maximum achievable accuracy and cell density
cannot be optimized separately since the greater the accuracy,
the smaller the density and vice versa.

2) Speed Versus Power:The maximum power consump-
tion of a synapse is expressed as

(27)

while the minimum time constant, corresponding to the max-
imum weight value, is given by

(28)

Therefore,

(29)

Consequently, it seems that the only way to minimize this
figure, i.e., reduce the power consumption and increase the
speed, is by reducing the synapse area. Nevertheless, this au-
tomatically leads to a reduction of the achievable accuracy.
On the other hand, reducing the signal ranges, or ,
will directly degrade the signal-to-noise ratio (SNR) and thus
the accuracy.

A global FOM involving speed accuracy and tradeoff can
be formulated in the following way:

(30)

Since does not show any evolution as technology is scaled
down, this FOM only depends on the technology scaling
process as does. Therefore, since , it is ex-
pected that the FOM will worsen in the future.

V. COMPUTATIONAL INFRASTRUCTURE FORTERAOPS
OPERATION

A. Computational Infrastructure

Practical stored programmability requires a standard
computational infrastructure and a high-level language,
operating system, and software library for the analogic soft-
ware. Moreover, the computational infrastructure should rely
on the existing PC culture and should be transparent to dig-
ital systems. The details of the computational infrastructure
and the chip set architecture have been published elsewhere
[35]. Presently, analogic CNN visual microprocessors are
supporting TeraOPS equivalent digital computing speed,
and rates of more than 10 000 frames/s have been tested.

B. Programmable Neuromorphic Vision Models

Many parts of the visual pathway, in different animals and
in humans, have been recently studied in detail. As to the
retina, see, e.g., [36] and the recent breakthrough in [4]. As
with the retinotopic neuromorphic vision models, the three
basic structures of the spatial–temporal models are as fol-
lows:

• layers with given receptive fields combined in a cas-
cade structure;

• allowing interlayer feedback (e.g., in the prototype
complex cell structure);

• the combination of anON andOFFpathway (or an exci-
tatory and an inhibitory flow).

Recognize that in these models there is no discretization in
time.

These structures are implementable on CNN (see, e.g.,
the first results in [15]). On the other hand, it is impractical
to build special chips for each visual effect (e.g., for edge
detection, histogram equalization, motion detection, length
tuning, directional sensitivity, and detecting a typical mor-
phology). Moreover, if we want to make a visual prosthesis,
programmability might be mandatory.

In the next example, we show a typical channel of a mul-
tilayer CNN retina model reflecting the basic new concepts
of mammalian retinal operation [4]. Observe that in the cas-
cade structure there are many interlayer feedback parts. In
addition, the two paths of signals represent theON andOFF

visual pathway.

C. Example 3

The flow diagram of a typical vertebrate retina model is
shown in Fig. 12. Snapshots of a moving head are also pre-
sented. Based on [4], it is known that in a mammalian retina
there are about a dozen parallel channels embedded in the
inner part of the retina. Here we show one typical and simple
channel. The interested reader can consult [24] and its refer-
ence publications.

VI. COMPUTATIONAL COMPLEXITY

Classical computational complexity studies are based on
the digital computer, in particular the Turing Machine. Re-
cently, a first step in the direction of breaking this powerful
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Fig. 12. Retina modeling. The left side, showing also a drawing of the interacting general neuron
types in the retina, presents the multilayer CNN structural elements of theON–OFFretina model.
The neurons in the retina are organized into 2-D layers modeled with CNN layer(s). A neuron in
a given layer interacts with another neuron in another layer through synapses, which have their
own dynamics and temporal characteristics. The layers are depicted by horizontal lines and the
interlayer synapses by vertical arrows. The circle represents the intralayer coupling, which is a
space-constant-dependent diffusion. The dashed lines stand for nonlinear transfer functions. The
right side is a sequence of the sample frames from a processed natural scene video in one particular
(local edge detector) model. The topmost picture is the input and the others are the responses in some
computed layers. The green color indicates the inhibition, the red regions correspond to the excitation
and the white spots stand for the spiking, to the output of the retina.

but rigid framework has been made by introducing a still iter-
ative computational complexity theory based on real values
[37]. The CNN-UM defines a computing platform one step
further: it is a machine based on flows, or real-valued image
flows [18].

Computing is a physical process. While the classical com-
plexity theory was basically good for logic operations and for
dealing with the combinatorial complexity, as well as a part
of the number-crunching tasks (but still missing the semantic

aspects), it cannot even capture the problem of chaotic sig-
nals or nonlinear waves. The latter, as we have seen, is com-
pletely common in visual models. The principal question is
practical: how long does it take to solve a problem on a given
piece of silicon within a given power dissipation? The an-
swer is not only dependent on the size of the problem, but
more importantly on the parameters of the operator. Recent
results show some possible answers in this direction [18]. As
a part of this endeavor, the notion of an analogic cellular algo-
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rithm has been developed via the-recursive functions. As
the -recursive function is the basis for digital algorithms
(they are basic components of the C language as well), the

-recursive function is the basis for analogic cellular soft-
ware and the Alpha language used for it [35]. It has been
proven that the CNN-UM is a minimal implementation for
the -recursive functions.

VII. CONCLUSION

We have shown some basic notions, architectures, CMOS
implementations, computational infrastructures as well
as the biological plausibility for a visual microprocessor.
Operating focal plane visual microprocessors and its accom-
panying computational infrastructure with analogic visual
software are available. It has been shown that the integrated
sensing and stored programmable processing principle is
crucial in any complex vision-related tasks, including the
whole process from sensors to visual understanding.
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