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Tracking Highly Maneuverable Targets With

Unknown Behavior

CHAD SCHELL, MEMBER, IEEE, STEPHEN P. LINDER, MEMBER, IEEE, AND

JAMES R. ZEIDLER, FELLOW, IEEE

Invited Paper

Tracking of highly maneuvering targets with unknown behavior
is a difficult problem in sequential state estimation. The perfor-
mance of predictive-model-based Bayesian state estimators dete-
riorates quickly when their models are no longer accurate or their
process noise is large. A data-driven approach to tracking, the seg-
menting track identifier (STI), is presented as an algorithm that op-
erates well in environments where the measurement system is well
understood but target motion is either or both highly unpredictable
or poorly characterized. The STI achieves improved state estimates
by the least-squares fitting of a motion model to a segment of data
that has been partitioned from the total track such that it repre-
sents a single maneuver. Real-world STI tracking performance is
demonstrated using sonar data collected from free-swimming fish,
where the STI is shown to be effective at tracking highly maneu-
vering targets while relatively insensitive to its tuning parameters.
Additionally, an extension of the STI to allow its use in the most
common multiple target and cluttered environment data association
frameworks is presented, and an STI-based joint probabilistic data
association filter (STIJPDAF) is derived as a specific example. The
STIJPDAF is shown by simulation to be effective at tracking a single
fish in clutter and through empirical results from video data to be
effective at simultaneously tracking multiple free-swimming fish.

Keywords—Probabilistic data association, state estimation,
tracking.

1. INTRODUCTION

A common application of sequential state estimation
is the tracking of targets as they move through a sensor’s
field of view. Many of the filters commonly used for target
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tracking, such as the Kalman filter and its relatives, are
predictive model-based Bayesian state estimators. These
filters achieve improved state estimates through the use of
a predictive model that describes the evolution of the target
state through time. The model consists of a state transition
function that describes the evolution of the state in the
absence of (unknown) external inputs, and a process noise
that represents unknown changes to the state not described
in the state transition function.

However, state evolution is often not easily modeled in a
predictive fashion. This can happen either when the system
being studied is not well understood, or when the random
changes in the state are large enough to dominate the pre-
dictable changes. In these situations predictive filters can
become ineffective and an alternative method is required,
one that does not rely on prediction. An alternative is to
use parameter estimation or curve fitting techniques to es-
timate the target state directly from the data. In order to use
this approach with a relatively simple state vector and fitting
function, the data must be broken into segments over which
the simple fitting function can adequately describe the data.
Thus, the problem now consists of two parts, segmenting the
data and then estimating the state, or the parameters, of the
individual segments.

This paper demonstrates the performance advantages of
one such data-driven approach to tracking highly maneuver-
able targets with unknown behavior: the segmenting track
identifier (STI), first introduced by Linder [1]. The STI’s ad-
vantages are demonstrated by comparison against Kalman
and extended Kalman filters (EKFs) for the tracking of free-
swimming fish. Additionally, an extension of the STI algo-
rithm is presented, which enables its use in the common
data association frameworks for multiple target tracking, and
an STI-based joint probabilistic data association filter (STI-
JPDAF) is developed as a specific example. The effective-
ness of the STIJPDAF is demonstrated using simulations and
empirical results from fish-tracking experiments.

0018-9219/04$20.00 © 2004 IEEE
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II. SEGMENTING TRACK IDENTIFIER

The STT is a data-driven tracking algorithm that achieves
improved state estimates by partitioning the track data into
segments which contain only a single maneuver and then
performing least-squares fitting of the motion model to each
track segment. It is similar in some ways to algorithms de-
signed to recognize curves and lines in images and freehand
drawings [2]-[4]. However, these image processing methods
generally rely on a high sampling density and relatively low
measurement noise as their purpose is to reconstruct or rec-
ognize elements of images which already look approximately
like lines or arcs, while the STI algorithm is designed to op-
erate not only in low-noise, high data rate situations, but also
in low-noise, low data rate and high-noise, high data rate sit-
uations.

As the STI is a data-driven rather than a predictive
algorithm, no process noise is required to handle target
maneuvers. Maneuvers are represented by a segmentation
of the data, and segmentation decisions are based only on
knowledge of the system measurement errors, a quantity
that is very likely known regardless of the type of target
being tracked. Additionally, segmentation also allows rapid
response to large abrupt maneuvers as it makes a clean
break from the previous segment, which is helpful in low
data rate environments where predictive filters may be slow
to respond to such maneuvers. However, one drawback to
the STT’s lack of prediction is that STI in its simplest form
cannot be easily used in the most common data association
frameworks for tracking in clutter or for tracking multiple
targets.

This section presents the original single-target STI algo-
rithm, and as a specific example details the development of
a motion model for a target performing constant speed co-
ordinated turns. After presenting the original single-target
version of the STI, an extension to the STI algorithm that
computes a measurement prediction and its covariance is pre-
sented. This extension allows the STI to now be used in many
of the common data association frameworks including as-
signment methods and multiple hypothesis tracking. Finally,
as an example, the STIJPDAF is developed in detail. A prob-
abilistic data association (PDA) algorithm was chosen as the
example because using the STI in a PDA algorithm requires
some additional consideration to support the two-way com-
munication required between the PDA algorithm and the STI.

A. STI Algorithm

The STI algorithm dynamically partitions a target track
into M segments, S1: Sy, where M is an index that starts
at one and grows as the algorithm determines new segments
are needed. The sequential target state is estimated by recur-
sively calculating the segment parameter vectors, Xi: Xz,
that minimize the pairwise sums of the segment least-squares
cost functions x1: xas. A recursive, pairwise minimization is
used in place of a global minimization to keep the problem
computationally tractable.

Create
segment

I

From Acquire Enough
recursive new data pointsto fit
optimization and add motion

model?

to Sy.

Terminate Fit motion

S Segmentation mc;%egor&v
place condition met? and store
Knot minimum
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Proceedto
recursive
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Stage.

Fig. 1. STI fit and segmentation stage flowchart.

From fit
and
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with N
segments,
S,.. Sy
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S, andS,,,.

Retum to
fit and
segmentation
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Fig. 2. STI recursive optimization stage flowchart.

Segments are the base element on which the STI algorithm
operates. Each segment represents a single maneuver within
a track, or more specifically a period in which the sequential
evolution of the target state can be described completely by
a state transition function f,, and an initial state (at the start
of the segment) x,,. A track’s measurements are subdivided
into overlapping subsets, such that each pair of consecutive
segments share a measurement as a common end point, re-
ferred to as a knot.

With the exception of a brief initialization procedure, the
STI is a recursive two-stage algorithm. The first stage per-
forms the initial fit and segmentation of the measurements
as each new measurement becomes available. The second
stage recursively optimizes the fit and segmentation of the
previously acquired measurements. The second stage is a
smoothing algorithm that uses future measurements to per-
form the optimization of past fits. The two stages are illus-
trated in flow charts in Figs. 1 and 2.

The STI algorithm is initialized by assigning the first mea-
surement to the start of the first segment, S7, and setting the
total number of segments M = 1. Associated with each seg-
ment S, are the following: Y;,,, the set of measurements as-
signed to the segment; L,,, a count of the number of assigned
measurements; X,,,, a parameter vector that describes the pa-
rameters at the start of the segment; and ., min, a record of
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the lowest root-mean-squared fitting error achieved for the
segment. Note that the values of x,,, and 1, min are unde-
fined until the segment has actually been fit to the motion
model, which occurs in the fit and segmentation stage.

1) Fit and Segmentation Stage: Each new measurement
is added to the current segment S, . If, after adding the mea-
surement, L; < Lyin, Where L, is the minimum number
of points required to perform a fit to the motion model, the
algorithm returns to the start of this stage. Otherwise, the pa-
rameter vector Xy is estimated to minimize the least-squares
cost function

xar = |le(xar, Yar, Sa—1)|l3 e))

where c(xps, Yar, Sar—1) is the vector valued function that
calculates both the continuity knot costs between Sy, and
Sar—1 and the measurement residuals for Y,, for a given
xps. The continuity knot costs maintain continuity of mo-
tion between two segments. For segment S7, the knot costs
are identically zero as there is no previous segment Sy. The
root-mean-squared error (RMSE), ¢n; = \/Xxar/7e 18 also
calculated, where ~. is the length of the vector ¢, which is
equal to the dimension of the measurement vector times L,
plus the dimension of the knot costs. Each time the segment
is fit, 1 a7 min 1S updated as

_ [¢M7 LM = Lmin
Y min = {min(z/;M,z/;M,min), otherwise © )

This add-and-fit procedure is repeated for each new mea-
surement until a segmentation condition is met. A segmenta-
tion condition occurs when any of the following are true:

Yar > KypPM,min
1/}1\/[ > KgOy
/l/)]\'[,‘l' > KgOy (3)

where o, is the measurement noise standard deviation, and
k. and k. are tuning parameters that determine the thresh-
olds used for segmentation. The value 157 - represents the
root-mean-squared measurement residual for the last 7 mea-
surements, and is helpful in detecting break conditions in
long segments, where the poor fit from new measurements
after a maneuver is obscured in 15 by the averaging across
the entire length of the segment. The value 7 is also a tuning
parameter of the algorithm, but it is restricted to integers be-
tween one and L ,;,,; otherwise, it would not exist for all fit
segments as the segments could be shorter than the tail.

Once a segmentation condition has occurred, the segment
Shs is terminated and the most recently added measurement
is removed from the segment. A new segment Sps4; is
started, and the last measurement of Sj; and the measure-
ment that caused the segmentation condition are assigned
as the first two measurements of Sys41. The shared mea-
surement is the location of the knot between segments Sy,
and Sjps41. The algorithm then proceeds to the recursive
optimization stage.

2) Recursive Optimization Stage: This stage recursively
optimizes the fit and segmentation of past segments, per-
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forming the optimization on a pair of segments at one time.
The optimization requires that the number of fitted segments
be M > 2 and begin with segment Sp, B = max[1, M —u],
where w is the optimization depth, the maximum number of
previous segments to reoptimize. If M < 2, no optimization
is performed, and the algorithm returns to the start of the fit
and segmentation stage with M = M + 1.

The optimization algorithm works as follows. Starting
with segment S,, = Spg, form Y, .41, the union of the
measurements from Y, and Y,,11. The set Yy, y,41 will
contain Ly, m+1 = Ly + L1 — 1 measurements, as the
knot will only appear once in the union. Define the notation
Y. m+1[a,b] as the subset of Y, ,,,+1 containing the ath
through bth measurements when listed in ascending time
order of arrival. The goal of the algorithm is to replace S,
and S, 41 by the optimal segmentation, SP* and SpP; ;, of
the combined data set Yy, ,,,+1 defined as the knot location
Loy, and the optimized segment parameter vectors, x,Pt
and xP} ;, such that the cost

Xopt = ”C (‘T?r};tv Ym,m+l[17 Lopt]7 Sm—l) ||;

+ “C (z(y)rll)j_hym,m—‘rl[[/ophLm,m+1]75$y5)t)“§ (4)

is minimized subject to the constraint that L, < Loy <
Ly m+1 — Lmin + 1, where c is the same as in (1). After
the optimal segmentation has been found, .S,,, and S,, 1 are
replaced by their optimal counter parts, and the algorithm
proceeds to optimize the next pair of segments, starting with
Sm = Sm+1 (one of the segments just replaced). This loop
continues up to S,, = Spr—1. After the optimization loop
is completed, the algorithm returns to the start of the fit and
segmentation stage with M = M + 1.

Because the STI optimization procedure operates only
on pairs of segments, it is expected that large optimization
depths will produce diminishing returns because the location
of the knots between pairs of segments will tend to settle
to constant values for segments that have been reoptimized
multiple times. Experience with the STI optimization
algorithm has shown that there is practically no change for
values of u > 4, so u = 4 is suggested as a constant and
was used in this study.

3) STI Motion Models and Knot Costs: This section
presents the format for STI motion models. They consist
of a measurement generating function, g(X,,, 7, ), and a
continuity knot cost function k(X,,,, Sy, —1). These functions
are used together to form the STI cost function

k(xar, Sn-1)
c(@ar, Yar, Sn—1) = yu(l) — g.(.X.M;nMO))
yar(Lar) — g(xar,nar(Lar))
)

where yys (a) is the ath measurement of the set Yy, and
nys (a) is the elapsed time of the same measurement relative
to the first measurement in Yj,. [For example, yps (1) = 0.]
As a specific example, the constant speed coordinated turn
model used in a study of fish behavior [5] is presented.

PROCEEDINGS OF THE IEEE, VOL. 92, NO. 3, MARCH 2004



The minimum number of measurements required to com-
pute a fit for this model is L,;, = 3, and the parameter
vector zpr = [g0 o 0o sn w] estimated for each segment
consists of the target’s position (g, 7o) and course (6y) at
the start of the segment, and the target’s speed (sj) and turn
rate (w), both constant throughout the segment. The mea-
surement generating function g(x, n) is given by

s = [0
[ ZLSCLLSIH((E)C?S?SJF:—T:)}’ w0
;

Mo + Sin
€0 + spncos(bp) _
60)] w=
(6)

—~

7o + Spnsin

which in the case of w # 0 is the time parameterized equa-
tion of an constant speed, constant turn rate arc, and in the
case of w = 0 is the time parameterized equation of a con-
stant speed straight line segment. The continuity knot cost
function k(xps, Spr—1) is

k(xar, Sp—1)
_ Iic(LM + L]\,[_l)[A€7n AQ]T M>1
[0], M=1

{lg(xn,0) — g(xrr—1,nrr—1(Lar—1)]7
R V™ [g8(xar,0) — g(xpr—1,nar—1(Lar—1)]}
Ag =0p — (Or—1 +nar—1(Lar—1)war—1) (7

where k¢ is the knot cost multiplier, a tuning factor that af-
fects how important continuity in position and heading at the
knots is relative to the fit between the motion model and the
measurements. The factor (L s+ Ly 1) insures that the pro-
portional weight of the knot cost remains relatively constant
even as the total length of the two segments increases. AEH7
is the distance between the positions at the start of Sy, and
the end of Sy;_1, and Ay is the difference in course, mea-
sured in radians and ranging from zero (same course) to 7
(directly opposite course) radians.

B. STI Data Association

The required modifications to the single-target STI tracker
for its use in the most common data association frameworks
are presented in this section. The first modification, the cal-
culation of the measurement prediction for the STI is trivial,
as the measurement generating function, g(xs, Njs), of the
STI model already serves this purpose. All that is required is
to extend the time of the final measurement in the segment
nar (Lar), which is measured relative to the time of the start
of the segment, to the time of the desired measurement pre-
diction, N. Then the predicted measurement is given by

y(N) = g(xum, N). ®)

The second modification, calculation of the measurement
prediction covariance, is more difficult, but with the assump-
tion that the STI is an unbiased estimator one can generate a

covariance for the STI state parameters for a given segment
using the Cramer—Rao lower bound (CRLB). The measure-
ment prediction covariance is then generated using the CRLB
and a process noise that characterizes the possible maneuvers
of the target.

The CRLB represents the lowest possible covariance
that can be obtained using any filter for a given set of
measurements. Although it is used here to generate the state
covariance for a segment, it is not meant to imply that the
STI algorithm actually obtains this lower bound. It is simply
used as a means of generating a state covariance that can be
compared relative to the state covariance of segments from
other tracks.

The process noise for the STI algorithm is added to
the measurement prediction covariance rather than the
state covariance, because the process noise represents the
uncertainty in a target’s predicted location that comes
from target behavior between the last measurement and the
prediction time. Without the process noise, the covariance
estimate would approach zero with increasing information
(increasing segment length), resulting in a zero-volume
search location for the next measurement. The use of the
process noise to model small unpredictable motions is not
important to the underlying STI algorithm as it does not use
the state covariance in fitting and segmentation.

Using the definition of the CRLB, the minimum state
covariance for the latest segment, Sj;, with estimated
parameter vector X, representing the state at the start of
the segment is

Ky = E{[xar — xmo][xar —xar0]” } > 371 (9)

where X0 is the true target parameter vector (unknown for
real data sets). J is the Fisher information matrix (FIM) given
by

J= E{[VX In A(Xﬂh YJ\’I)][VX In A<X1\/[7 Y]W)]T} |XM:€MO
=E{[VxA(xar, Yar)| [V A(Xar, Yar)]" Harsmxaro (10)

with the expectation carried out over Y}, the set of mea-
surements associated with the segment. A (x,/, Yas) is the
likelihood function of x,,, defined as

A(xar, Yar) = p[Yar|xar]

=ply(1),y(2),...,

= Hp )| X ] (1)

y(Lar) | xar)

where p[a | b] is the probability of a given b. A (xr,Yar) =
—InA (xpr,Yr) is the log likelihood of x ;.

Given a measurement noise vector, v (n,/), assumed to be
a zero-mean Gaussian white sequence with known covari-
ance matrix X, (nas), represent the actual noisy measure-
ment as

v(nam) = g(xar0, Yar) + v(nar). (12)
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The likelihood function is then

A@n)
Lm
— H 06_0'5{[}’("’" Y—g(xn,ma)]) 2 () [y (nar ) —g (X )]}
n1u:1

13)

and the log likelihood of x,;, dropping the unnecessary nor-
malization constants represented by c in (13), is

)\(SE]\,[, Y]\,[)

x[y(nar) — g(@ar, nar)]}
(14)

Inserting (14) into (10) and using the whiteness of the mea-
surement errors v (1,7 ), one reaches the formula for the FIM
as shown in (15), at the bottom of the page.

Taking the inverse of (15) evaluated at xp; = Xz pro-
vides the absolute minimum state covariance for x; given
the set of measurements Y. Despite the fact that this bound
is practically unrealizable for any filter operating on a real
data set, computing this bound at the estimated state x,; pro-
vides a relative estimate of the covariance of the segment’s
state vector. Consequently, in the implementation of data as-
sociation algorithms using STI, the estimated state covari-
ance of xs at time N is given by K3 (N) = J=1, where J
is calculated according to (15).

With the state covariance calculated, the measurement pre-
diction covariance at time N, 3;(N), can be calculated as

33(N) = {Valg(xar, N)" 1Y Kar (N)nar(Lar)
X {V.[g(xar, N)TT} + 2,(N) 4+ Za(N)  (16)

where

a(N) = E{[g'(xa(Lar), d, An) — g(xar(Lar), An)]
X [g/(X]u(L]\,[),d, AN) — g(X]\,[(LM)7 AN)]T} (17)

is the measurement prediction process noise, which repre-
sents the uncertainty in the measurement prediction resulting
from possible changes in the target motion parameters be-
tween the last measurement time nps (Las) and the time of
the predicted measurement N. x; (Lpy) is the target state
at the end of the segment (rather than the beginning). Ay =
N — nyps (Lpy) is the elapsed time between the last mea-
surement and the time of the desired prediction. The expec-
tation in (17) is taken over the elements of the process noise
vector d, which are random variables that characterize the

possible changes in the target state motion parameters during
the interval A y. The function g’(xy (L), d, Ay) is the be-
havior modified measurement generating equation that cal-
culates the predicted measurement for a given value of d, or
in other words it is the function that expresses the effects of
the change in state on the predicted measurements.

Calculation of X4 (N) can be difficult for nonlinear mo-
tion models, often requiring the evaluation of complicated in-
tegrals with no closed form solution. However, if the changes
in target state are limited to entering only as additive impulse
functions added at the last measurement time ks (L), such
as an instantaneous change in turn rate or speed, and the ele-
ments of d are assumed to be zero-mean Gaussian variables
with known covariance matrix 344, 34 (N) can be calcu-
lated simply as

S4(N) = {Vyilg(xa (Lar), Ax)*]}H
X Taa{ Vxlgxa(Lar), Ax)T]}. (18)

As the process noise is a design parameter to keep the pre-
diction window large enough to cover target maneuvers (and
not an exact representation of knowledge about the target’s
motion), the simplified computation of (18) is reasonable in
many cases.

This completes the evaluation of the measurement
prediction and its covariance, but there is still one more
small change required to the STI in order to use it in data
association frameworks. The STI normally waits until there
are enough measurements in a segment to fit the desired
motion model before estimating the segment’s parameters.
Thus, when the current segment has too few points to fit the
motion model, no measurement prediction or covariance
would be available. To compensate for this, a simpler motion
model must be fit for segments that do not have enough
measurements to fit the ultimate desired motion model. A
good model for this purpose is a simple straight line constant
velocity model, in whatever dimensions is appropriate for
the data set (one-dimensional, two-dimensional, etc.), as this
model can be fit for two measurements, and there are always
at least two measurements in a segment after the track has
been initialized.

With this modification, the STT algorithm can now be used
in data association algorithms that only require one-way
communication from the tracking filter to the association
algorithm, such as most assignment methods and multiple
hypothesis tracking [6]. Additional work is required to use
the STI algorithm in PDA algorithms because storing the
measurement uncertainty in a way that will be recognized
by the STI is required. A method for accomplishing this is
presented in the following section.

Lm

J=025 Z

ny=1

562

x[y(nar) — g(xars mar)]})
X(Va{[y(nar) — g(xar, nar)]" B, (nar)
X[y (nar) — g(xar, nar)]})]

E[(Vaily(nar) — g(xar, nar)]" 2, ()

15)
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C. STI Probabilistic Data Association

Implementation of a PDA algorithm using the STI
requires some special consideration. Typically, PDA algo-
rithms using model-based Bayesian state estimators as their
tracking filters generate a synthetic innovation and associ-
ated covariance from a track’s predicted measurement and
all the measurements possibly associated with the track, and
then return this to the tracking algorithm for use in its update
procedure [6]. As the synthetic innovation has a higher
covariance than that of a single, unambiguously assigned
measurement, its use in the update process increases the
covariance of the Bayesian state estimate.

As the STI algorithm does not use or store a state covari-
ance matrix, the uncertainty cannot be passed back to the
STI in this fashion. This section presents a method to repre-
sent the increased uncertainty from multiple measurements
and less than unity probability of detection (data associa-
tion uncertainty) in an STI-based PDA algorithm. The syn-
thetic innovation is replaced by a synthetic measurement and
its covariance, essentially the effective measurement covari-
ance. This effective measurement covariance is stored with
the measurement for use in computing the measurement pre-
diction covariance.

This procedure is illustrated by presenting the derivation
of the STIJPDAF in its entirety. This presentation closely
parallels the presentation of the Kalman filter-based JPDAF
algorithm of Bar-Shalom and Li [6]. The STIJPDAF makes
the following assumptions.

1) There are a known number of targets currently under
track.

2) The past is summarized by the information in the STI
filters for the active tracks, including the associated
effective measurement covariances.

3) The true measurements are Gaussian distributed
around the measurement predictions with known
covariance matrix R.

4) The underlying model of the current STI segment for
each target is true and correct.

The STIJPDAF computes the measurement to target asso-
ciation probabilities jointly for all targets, and does so only
for the current measurement time N. The joint association
probabilities are generated by computing the probabilities for
all feasible joint association events. A feasible joint associa-
tion event is one where the following conditions are met.

1) Each measurement is associated with at most one

track.

2) Each track has at most one measurement associated

with it.

3) The measurement associated with each track lies

within that track’s validation gate.

The last assumption exists to eliminate the evaluation of
highly unlikely tracks. Given a track with predicted measure-
ment y and measurement prediction covariance X;, a mea-
surement y falls inside the track validation gate when

y-9)"3'(y-39) <0 (19)

for a given O chosen such that the probability of a target lying
in the gate is a desired value.

Given a set Y of H measurements at time N, the proba-
bility of a particular event F (1) is

. 9! e
p(EG)|Y) = —ur@)Va! [ ()

i=1

J
Ko
< [T Po" (1 = Pp) ™ (20)
t=1

where Kt is the number of tracks, V,, is the sensor obser-
vation volume, and Pp, is the probability of detection for
track ¢. The quantity § (¢) is a binary track detection indi-
cator, whose value is one if track ¢ is detected in E (), and
zero otherwise, and

Kr

¢=Kp—> 1) Q1)
t=1

is the number of measurements not originating from a track.

The probability mass function p 5 (¢) describes the proba-
bility of observing a given number of clutter (non-target-orig-
inated) measurements. Typical distributions for up (¢) are
either the Poisson distribution

e AVer (AVope)?
¢!

which is characterized by the clutter density level A, or the
diffuse prior distribution of [7], pr(¢p) = v, where v is an
unimportant constant that cancels out when the diffuse prior
is used. The diffuse prior represents a situation where the
clutter density is unknown; it is also referred to as the un-
informative prior.

The function a(y) is the likelihood function of the mea-
surement defined by (23), assuming that false alarm mea-
surements are uniformly distributed within the observation
volume

pr(¢) = (22)

a(y;) = N(y;: ¥+, 2g,)s
track ¢ in event E(4)
.

obs?

y; is associated with

y; is a false alarm in event E(7) (23)

where N (y, m, P) is the probability of observing value y
from a Gaussian distribution with mean m and covariance
matrix P.

The normalization constant ¢ in (20) is chosen such that
the probabilities of the feasible joint events, representing a
mutually exclusive and exhaustive set of the possible data
associations, sum to one

=2 p(E@Y). (24)

With the calculation of the probabilities of the joint events
completed, for each track ¢ calculate a set of weights 3;;
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which represent the probability that measurement j is asso-
ciated with the track ¢. Also calculate (3, the probability the
track ¢ was not detected at time N. These weights are calcu-
lated as

H
for = S p(E@) 1Y) | 1= 3wl
e = 30 pEG) [Y (i) es)

where the value w;; (¢) is a binary track to data association
indicator equal to one if measurement j is associated with
track ¢ in event F (7), and zero otherwise.

Up to this point, the STIJPDAF is exactly the same as
the Kalman filter-based joint PDA filter (JPDAF), but now
instead of calculating a synthetic innovation and its covari-
ance for each track, and then performing the Kalman filter
update procedure, the STIJPDAF will calculate a synthetic
measurement and the effective measurement covariance for
each track. It will then call the STI algorithm to perform the
fit and segmentation stage with the synthetic measurement as
the latest measurement. For each track ¢, calculate the syn-
thetic measurement ys, and its covariance X, _.g as follows:

H
ys: = Botyt + Z Bty (26)
=1
H
Ey_oﬂ = /BOtth + Z /Bjtzv
7=1
H
+ Biyiy) — ysiyst. 27)
j=0

The synthetic measurement and its covariance are stored
with the track, and are used as y(nys) and 3, (nys) in (15)
when n; = N for purposes of computing the segment state
covariance. Otherwise, the original implementation of the
STI algorithm remains unaltered, with ys, used as the mea-
surement and X, .g ignored.

Although it is possible to use X, ¢ as a weighting coef-
ficient during the STI least-squares fitting operation, effec-
tively reducing the importance given to measurements that
have a high degree of uncertainty, there are drawbacks to
such an option. When target maneuvers are large, weighting
the synthetic measurement will reduce the STI’s ability to
respond to changes in target motion, as measurements after
initial maneuver onset will likely have a large effective mea-
surement covariance as the spread of the means between the
predicted and actual measurement will be large. This large
covariance will reduce the effect the measurement has on in-
creasing the model fitting residual and possibly prevent the
STI algorithm from properly detecting the need for segmen-
tation, as the segmentation criteria rely on the increase in fit-
ting residual caused by target maneuvers. Essentially, using
the effective measurement covariance in this way eliminates
the STI’s independence from a process noise. Additionally,
scaling the measurement residuals makes it more difficult to
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compensate for the scaling of knot costs versus measurement
fitting costs because of the ever-changing weights of the mea-
surement residuals.

III. SINGLE FISH-TRACKING PERFORMANCE EVALUATION
WITH PERFECT DATA ASSOCIATION

In this section the performance of the STI at tracking free-
swimming fish is compared against the performance of a
Kalman filter, a Kalman smoother, and an EKF. First some
background on the particulars of the fish-tracking problem
and the performance metrics used in the evaluation are pre-
sented. Next the experimental setup that generated the data
sets and the data sets themselves are described, followed by
a description of the algorithms tested and the tuning parame-
ters of each algorithm. Finally, the results of the comparison
are presented and discussed.

A. Fish-Tracking Background and Performance Metrics

Tracking fish for the purposes of ecological studies pro-
vides an example of a difficult tracking problem with char-
acteristics not commonly encountered when tracking man-
made systems or objects. The goal in these ecological studies
is to develop increased understanding of fish behavior and to
represent that behavior in a simple fashion that lends itself
to behavior classification, statistical analysis, and insertion
into forward models of fish behavior and energetics. Unfor-
tunately, the behavior that one wishes to learn, such as fish
swimming patterns and maneuver levels, is generally an im-
portant input into the models used in sequential state esti-
mation algorithms, and its lack of availability requires us to
track targets with unknown behavior. This means that any
algorithms that are used must be able to function without
using a priori information of target behavior (such as ma-
neuver-based process noise levels).

The tracking problem is further complicated by the ex-
treme maneuverability of free-swimming fish, and the need
for very accurate swimming speed and acceleration estimates
to accurately estimate fish energy expenditure. As an ex-
ample of fish maneuvering capabilities, Fig. 3 illustrates the
fish horizontal swimming speed and turn rate cumulative dis-
tribution functions for the data used in the study presented
in this section. It shows that fish are capable of turn rates
exceeding 100%s. To put this number in perspective, con-
sider the turn capabilities of aircraft, which are limited by the
forces involved in maneuvering at high velocities. An aircraft
moving at 300 m/s, a value commonly used in aircraft sim-
ulations [8], [9], experiences a force of three times the pull
of gravity (3 g’s) when turning at only 5.9%s. Even at 10 g’s,
pushing the limits of aircraft and their pilots, the turn rate at
300 m/s is only 19%s. Additionally, fish are capable of bursts
of very high linear acceleration, several times their average
swimming speed, and they can come to a dead stop or swim
backward. Very highly maneuvering targets such as these can
present problems for predictive-model-based algorithms be-
cause high process noise levels are required to represent the
high uncertainty in motion created by the maneuverability,
and a large process noise places most of the emphasis on
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Fig. 3. Cumulative distribution of: (a) swimming speed and
(b) turn rates for 100 fish tracks as estimated using the stereo
video-camera system.

the measurement in the algorithm’s update process, effec-
tively rendering the filter inoperative and creating unnec-
essarily large errors during periods when the target is not
maneuvering.

Very accurate swimming speed estimates are required to
estimate fish energy expenditure because the energetic cost
of fish swimming increases exponentially with increasing
speed due to the nonlinear effects of drag [10], [11]. Thus,
small errors in estimating speeds, such as a failure to cap-
ture a brief high-speed period or a bias in the distribution of
swimming speeds over time, can lead to large errors in esti-
mating fish energy expenditure. Recent work [12]-[14] has
also shown that turns and accelerations play a large role in
fish energetics, with swimming patterns consisting of several
turns or accelerations having an energetic cost several times
higher than that of a swimming pattern with steady course
and speed.

Given these characteristics of the fish-tracking problem,
a set of performance metrics to evaluate the use of tracking
algorithms to process fish motion were chosen. The
performance metrics stress accurate estimation of the
state elements that directly represent behavior (speeds and
accelerations) over accurate estimates of fish positions.
Additionally, they seek to verify that an algorithm’s esti-
mates are accurate not only at individual samples, but also
at capturing the overall distribution of values over time, as
an error at either level would lead to inaccurate estimates of
energy expenditure. Finally, each algorithm’s sensitivity to
its tuning parameters was tested by evaluating the perfor-
mance metrics over a wide range of tuning parameter values.
This final criterion represents the effects of unknown target
behavior on algorithm performance. Given the lack of a
priori knowledge to use for tuning, algorithms must perform
well over a wide range of tuning parameters that might be
reasonably chosen based on a rough understanding of target
behavior. Otherwise, the value of the filtered state estimates
would be in question and the processed data would be of
little practical use.

A few final notes before the specific performance metrics
are presented. In the desire to keep the data extracted from
the study as simple as possible for ready use in ecological
models, state estimates were limited to fish position, heading,
swimming speed, and turn rate. An emphasis on constant
speed, constant angular acceleration (coordinated turn) mo-
tions was stressed in an attempt to allow the motion to be
described as a set of maneuvers whose length could be de-
termined (again due to the exponential relationship between
speed and energy expenditure) and whose motion could be
easily classified. Although estimates of tangential accelera-
tions (in the direction of travel) were also desirable, it has
been demonstrated [15] that due to the extreme burst accel-
erations of fish, accurate estimates of fish tangential accel-
erations from position only measurements require very high
frame rates (hundreds of frames per second) and very high
accuracy, neither of which is provided by the sonar used
in this study. Also, this paper only addresses the study of
fish motion in the horizontal plane, as fish physiology [13]
often restricts vertical motion to more or less constant speed
maneuvers confined to a narrow horizontal plane. This lim-
ited vertical motion is effectively tracked using a Kalman
smoother and a piecewise constant white acceleration motion
model [7]. For details of the vertical motion analysis, see [5].

Five performance metrics were used to evaluate algorithm
performance: RMSE for position and speed estimates,
median absolute deviation (MAD) for turn rate, and the
two-sample Kolmogorov—Smirnov (KS) test probabilities
that the estimated speed and turn rate distributions were
statistically similar to the ground truth distributions. The
RMSE and MAD metrics evaluate the performance of an
algorithm on individual samples, with lower values being
better. MAD was used in place of RMSE for turn rate as it is
more robust to the outliers often created when an algorithm
leads or lags a sharp change in turn rate. These outliers
can create a high RMSE for an algorithm that performs
well other than a small lead or lag on sharp turns. The KS
probability evaluates the algorithm’s ability to capture the
overall distribution of speed and turn rate, with higher values
being better and any value over 0.01 considered acceptable.

B. Experimental Setup and Data

A laboratory study was conducted to generate a data set
that was used to evaluate the performance of tracking algo-
rithms for sonar-based fish studies. Full details and results
of the experiment are given in [5]. The experiment provided
a data set of 100 fish tracks simultaneously recorded using a
multibeam sonar and a stereo video-camera system in a cylin-
drical tank 5 m in diameter and 3 m deep. All tracks were se-
lected such that no data association ambiguity existed. The
video data, with its higher frame-rate and accuracy, was used
as the “ground truth” against which the output of the tracking
algorithms processing the sonar data was compared.

Sonar data was recorded at a frame rate of 4 Hz, and the
sonar polar measurement errors were calculated empirically
as the sample standard deviations of the error between the
ground truth estimates and sonar measurements for all mea-
surements for all 100 tracks. The resulting sample means
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and standard deviations ¢ are ur = 0.35 cm, op = 2.05 cm
for range, up = —0.61°,05 = 0.39° for bearing angle,
and ugp = 0.04°,0p = 0.56° for elevation angle. Sonar
measurements were converted to Cartesian coordinates using
the unbiased conversion technique of [16], which also calcu-
lates an appropriate Cartesian measurement error covariance
matrix given the above polar measurement standard devia-
tions. These converted measurements and associated covari-
ance matrices were supplied to the tracking algorithms.

The video data was recorded at a 29.97-Hz frame rate,
and had a mean spherical distance error of 1.08 cm with
a standard deviation of 0.70 cm. “Ground truth” reference
values were obtained by smoothing the video position
measurements along each Cartesian axis with a fifth order
Savitzky—Golay filter [17] over 29 data points, and then
calculating velocities along each Cartesian axis by differen-
tiating the smoothed video positions. Horizontal speed was
calculated as the absolute vector sum of the two Cartesian
velocities. Target course was calculated as the arctangent of
the two Cartesian velocities, and these course estimates were
again smoothed with a fifth-order Savitzky—Golay filter then
differentiated to produce the turn rate estimates. Finally, all
estimates were down-sampled to 4 Hz to correspond to the
sonar measurements.

C. Algorithms and Tuning Parameters

This section provides a brief description of the models
used in the Kalman filter algorithms used in this comparison,
as well as a description of the tuning parameters associated
with these algorithms and the STI. For full details on the al-
gorithms and models, see [5].

The Kalman filter and smoother both used the piecewise
constant white acceleration model of [7]. This model filters
motion along each Cartesian axis independently and as-
sumes that the motion is constant velocity motion perturbed
by small random accelerations which are piecewise constant
during each sampling period. The accelerations enter by
way of the process noise, which is assumed to be zero-mean,
white, Gaussian distributed with known covariance. The
smoother was implemented following the presentation of
[18], and the smoothing was performed over the entire
length of the track. The Kalman filter and smoother both
have only one tuning parameter, the standard deviation of
the process noise acceleration for each Cartesian axis, set
identically equal in this analysis. It was varied from 1 cm/s?
to 100 cm/s? in 1-cm/s? increments.

The EKF used a variation of the polar constant speed co-
ordinated turn model of [19]. The original model of [19] as-
sumed the target did not change speed and, thus, supplied a
process noise only for angular acceleration, while our model
used two independent process noise accelerations, tangen-
tial and angular, to allow for changes in both speed and turn
rate. The standard deviations of these two process noise ac-
celerations are the tuning parameters of the EKF. The an-
gular acceleration process noise was swept from 10%s? to
100%s2 in 10%s2 increments, and the tangential acceleration
process noise was swept from 1 cm/s? to 50 cm/s? in 1-cm/s?
increments.
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The STI used the constant speed coordinated turn model
described in Section II. A special consideration for the STI
algorithm was the choice of the noise standard deviation o,
used in the STI break condition computations of (3), given
that o,, was not actually constant because the base sonar mea-
surements were in spherical coordinates. The value used was
that generated by a measurement which lies at the middle
range value of the field of view, 337 cm, and at the middle
of the angular limits, 4° in both bearing and elevation, on
the basis that this represents approximately the midpoint of
the Cartesian errors. Specifically, the Cartesian measurement
error covariance for a measurement at this position was cal-
culated using the unbiased spherical to Cartesian coordinated
conversion algorithm [16], and the diagonals of the covari-
ance matrix were then used as the measurement variances for
each Cartesian axis. The radial measurement standard devi-
ation was used, o, = (02 + 072))1 ? =3.09 cm.

The STI was evaluated against the four tuning parameters
mentioned in Section II. As these tuning parameters do not
have physical analogs like the Kalman tuning parameters,
the reasoning behind the selection of their values will be dis-
cussed. The first tuning parameter is the noise threshold «,;
it should typically be near one so that the segmentation oc-
curs when the fitting cost is worse than expected according
to the measurement noise standard deviation o,. Varying it
gives an idea of the sensitivity to errors in the choice of noise
threshold. x, was varied from 0.6 to 2 in increments of 0.2.

Next is the RMSE ratio k., which is used to tune track
segmentation based on the ratio of the current fit to the best
previous fit (when the segment had fewer data points asso-
ciated with it). If s, is chosen too large, most segmentation
will occur because of the x, break condition. If x,; is close
to one (it must be greater than or equal to one or else seg-
mentation will occur for situations where the current fit is
better than past fits), segmentation will occur too frequently
as slightly better previous fits will result in a new segment.
k., was tested for values of two, three, and four.

The third tuning parameter is the tail length 7. 7 deter-
mines the sensitivity to new maneuvers when the current seg-
ment is long. As 7 is limited to being an integer between one
and the minimum number of measurements required to fit the
model, it was natural to sweep 7 over the allowable values,
T =123

Finally, there is the knot cost tuning parameter x¢. k¢ de-
termines the relative importance of knot continuity versus the
fitting of the measurements within each segment. Choosing
very small values implies that continuity is of little impor-
tance, whereas choosing very large values is impractical, as it
forces all segments to be continuous and essentially ignores
the measurements to fit a continuous curve. Kc was swept
from O to 2 in increments of 0.2.

D. Single Fish-Tracking Performance Evaluation Results

The results of the performance evaluation are presented
as a collection of sensitivity plots for the four algorithms,
shown in Figs. 4 through 6, and a table of worst case perfor-
mance values for each algorithm for each metric shown in
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Fig. 4. STI performance and tuning sensitivity plots. The

five plots show the STI’s performance and sensitivity to five
performance metrics. (a) Speed RMSE. (b) Speed KS probability.
(c) Turn rate MAD. (d) Turn rate KS probability. (e) Position
RMSE. The horizontal bars represent the baseline performance:
values obtained without filtering for (a), (c), and (e), and the desired
0.01 probability level for (b) and (d). Lower values are better for
(a), (c), and (e), while higher values are better for (b) and (d).
Tuning parameters were iteratively varied using nested for-loops,
first k¢, then 7, K., and finally &, .

Table 1. The sensitivity plots for each algorithm were gener-
ated by calculating the performance metrics for all 100 tracks
for a given set of tuning parameters, and then plotting those
metrics against the tuning parameter values such that the ab-
scissa of each plot represents the Cartesian product of that
algorithm’s tuning parameters. The Cartesian product is ex-
pressed by varying the individual tuning parameters along
the abscissa in nested for-loops. The plot for an ideal algo-
rithm that is completely insensitive to its tuning parameters
would consist of a flat horizontal line for all performance
metrics. This format provides an easy way to visually eval-
uate the overall sensitivity of an algorithm to its tuning pa-
rameters, although in the case of the STI with its four tuning
parameters, it is admittedly somewhat difficult to evaluate the
effects of each individual parameter.

Baseline reference values are provided as horizontal lines
in the sensitivity plots. For the RMSE and MAD statistics,
the reference values shown are the results obtained by pro-
cessing the sonar data equivalently to how the video data was
processed to obtain the ground truth, but with no smoothing.
This is equivalent to no filtering at all, and a good algorithm
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Fig. 5. Kalman filter and smoother performance and tuning
sensitivity plots. Format is the same as Fig. 4. Their only tuning
parameter, the process noise acceleration standard deviation, was
varied from 1 to 100 cm/s?.

should provide errors whose values are below these reference
values. The reference value for the KS probabilities is 0.01,
a commonly accepted level for a good match when using the
KS test. A good algorithm would provide probabilities that
are higher than 0.01.

Examining Figs. 4 through 6, it can be seen that no algo-
rithm completely meets the desired goal of being insensitive
over the entire tuning parameter space while outperforming
the baseline. The STI performs best, achieving the lowest
speed RMSE and presenting remarkable insensitivity to the
choice of tuning parameters for all but the turn rate KS test.
The STI algorithm’s turn rate MAD performance is second
to that of the Kalman smoother, and, as shown in Table 1, the
STI algorithm is the only algorithm that always outperforms
the baseline in all speed and turn rate performance metrics,
regardless of the choice of tuning parameters. As expected,
very high knot continuity costs (emphasizing smoothness
over fit of the measurements) result in position RMSEs that
slightly exceeds the RMSE of the unfiltered sonar measure-
ments (Maximum STI RMSE of 3.10 cm versus 3.04 cm for
the measurements.)

Only for the turn rate KS test is the STI especially sen-
sitive to tuning parameters. From the turn rate KS plot in
Fig. 4, it is obvious that the knot continuity cost k¢ can
have a large effect on turn rate performance, with values at
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Fig. 6. EKF performance and sensitivity tuning sensitivity

plots. Format is the same as Fig. 4. Tuning parameters were
iteratively varied using nested for-loops, first process noise angular
acceleration, and then process noise tangential acceleration.

or slightly below one being the best choice. An alternate
view of what is happening with the turn rate KS probabili-
ties for the STI algorithm is shown in Fig. 7, which presents
the variation in turn rate KS probability versus the noise seg-
mentation threshold parameter «, for all three values of the
RMSE ratio break level tuning parameter ;. When the noise
segmentation level is set correctly, k, = 1 (correct because
the measurement standard deviation is known and supplied
correctly), performance is generally good regardless of the
value of . If K is too low, performance is always poor, as
segmentation occurs too often. As x, goes higher, the lower
values of k., improve results because the lower break ratio
allows proper segmentation despite the noise segmentation
threshold being set too high. When both values are high, per-
formance is again poor. The dependence on k¢ can still be
seen, with values near one being the most consistent per-
formers, as low values of k- tend to be best when k. is
small, and higher values of k¢ are best when k, is larger.
The tail length tuning parameter 7 plays very little role, as
can be seen by the repeating triples of performance on each
graph between the major grid lines. These triples are created
by the variation of 7 from one to three.

Although the STI’s KS turn rate probability performance
varies considerably with changing tuning parameters, it is not
quite as bad as it seems from the graphs; for reasonable per-
formance, one needs only either knowledge of the sensor’s
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Table 1 Single Fish-Tracking Worst Case Results—Lower Values
Are Better for RMSE and MAD, Higher Values Are Better for KS
Probabilities

Speed | Speed ﬁu:n £u:‘n Position
Algorithm RMSE | KS ate | cave RMSE
(cm/s) | Prob MAD | KS (cm/s)
) (°/s) | Prob.
No Filtering 10.58 | 6.58e-8 |63.29 | 2.93e-18 |3.04
STI 6.25 1.20e-2 | 32.24 | 3.40e-15 |3.10
Kalman Filter 12.90 |4.23e-13 | 52.49 | 4.59¢-51 |9.31
Kalman Smoother | 9.56 2.62e-11 | 28.16 | 2.92e-142 | 9.04
EKF 12.63 | 3.05e-8 |41.78 | 6.67e-20 |4.49
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Fig. 7. STI turn rate KS probability performance and tuning
parameter sensitivity for: (a) Ky = 2; (b) Ky = 3;(c) Ky = 4
is shown as a function of the remaining three tuning parameters
which were iteratively varied using nested for-loops, first ., then
7, and finally . The horizontal bars represent the desired 0.01
probability level. These plots present an alternative view to that
of Fig. 4(d) to more readily illustrate the sensitivity to individual
tuning parameters.

measurement error characteristics (represented by x, = 1),
or proper selection of the knot continuity cost, with values
of knot continuity cost at or slightly below one being good
choices. If either of these conditions is met, the variance with
the remaining three tuning parameters is relatively small.
All the Kalman algorithms are sensitive to the choice of
tuning parameters and have difficulties achieving simultane-
ously good performance on each of the five performance met-
rics. The constant velocity Kalman filter and smoother both
suffer from the problems that the process noise acceleration
levels that produce the best results on the speed performance
metrics produce poor position results, and similarly there is
little overlap between the process noise levels that provide
good KS probabilities for the speed and turn rate distribu-
tions. The smoother clearly outperforms the filter, demon-
strating the performance gains available through smoothing.
The smoother also achieves the lowest turn rate MAD of all
algorithms, and its peak horizontal speed RMSE is second
only to the STT algorithm. Why the smoother outperforms the
STI in turn rate MAD is uncertain, but it may indicate that
the more restrictive constant speed, constant turn rate model
of the STI limits its ability to estimate the fine structure of the
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Fig. 8. Simulated fish track 1 of a fish performing a sharp U-turn.
The graph axes are camera pixel coordinates. () represents a
measurement, and * represents the start of the track.

fish turn rate compared to the independent two-axis motion
used for the Kalman smoother. However, it should be noted
that the independent two-axis motion model makes breaking
fish motion down into easily classified individual maneuvers
more difficult, and the ability to achieve such a breakdown
was one of the goals of the study. Additionally, the inability
of the Kalman smoother to simultaneously provide quality
estimates of both swimming speed and turn rate tends to di-
minish the usefulness of the gains it provides in turn rate
MAD.

The EKF never achieves the low levels of speed RMSE
obtained by the STI and constant velocity Kalman smoother,
and is very dependent on proper selection of the tangential
acceleration process noise level for accurate speed estima-
tion. Additionally, it often performs worse than the baseline
achieved without filtering on the speed and position RMSE
tests.

The worst case results in Table 1 provide an idea of the
level of confidence one could have in the filtered output in a
blind study, one without a baseline data set to validate the re-
sults or to use to tune the algorithm. This table clearly demon-
strates how an improperly tuned predictive filter can provide
results far worse than no filter at all, essentially destroying
the utility of a data set. Here is where the advantage of a
data-driven algorithm such as the STI becomes clearly ev-
ident when tracking targets with unknown behavior. The STI
outperforms the no filtering option on every parameter except
position RMSE for the entire broad range of tuning parame-
ters over which it was tested. And even in position RMSE, the
worst case penalty imposed is only 0.06 cm, a rather small
error compared to the typical sensor measurement error of
3.09 cm.

IV. VERIFICATION OF THE STIJPDAF

This section presents results obtained using the STI-
JPDAF algorithm developed in Section II. These results
are only meant to demonstrate that the STIJPDAF filter
performs essentially as one would expect any JPDAF al-
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Fig. 9. Simulated fish track 2 of a fish performing three relatively
slow consecutive linked turns. The graph axes are camera pixel
coordinates. () represents a measurement, while * represents the
start of the track.

gorithm to operate, thus demonstrating the ability to install
the extended STI algorithm into existing data association
frameworks in situations where it may be more suitable to
the underlying single-target tracking problem than other
filters. Data association problems are generally complicated
and require specific solutions tailored to specific problems.
The authors are aware that a more complex data association
algorithm, such as one that accounted for limited sensor
resolution and merged targets, would likely perform better,
especially in the case of the tracking of actual fish video
data.

A. Single Fish in Clutter Tracking

The effectiveness of the STIJPDAF at tracking a single fish
in clutter is compared against a standard JPDAF [6] using an
EKF tracking filter, termed the EKFJPDAF. The comparison
is performed using Monte Carlo simulations of two repre-
sentative fish tracks in clutter. The fish tracks were extracted
from video data, and then preprocessed by fitting to a coor-
dinated turn model and modifying them so that there were
no discontinuities in target course between segments, elim-
inating the discontinuities that give the EKF difficulty. The
resulting tracks are shown in Figs. 8 and 9.

A set of simulations were run for each simulated track,
with the following parameters varied for each simulation:
measurement noise variance 05; Poisson clutter density
parameter \; and target probability of detection PD. Specif-
ically, simulations for each track were performed for all
combinations of the parameters as follows:

02={2,5,10}
PD={1,0.9,0.8}
A={1x10775x1077,1x107%5x 1075 ..., 1x107%}.

Noisy Cartesian coordinate measurements were generated
by adding mutually independent white Gaussian noise
of variance o2 to each axis of the simulated track posi-
tions. Missing measurements were simulated by randomly
removing measurements according to the probability of
detection. The amount of clutter (non-target-originated
measurements) generated for each sampling time was
determined according to a Poisson distribution model
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Fig. 10. Percentage of 100 Monte Carlo simulations of track 1
(Fig. 8) where the target was successfully tracked from start to
finish for various levels of Poisson clutter density parameter A,
probability of detection (PD), and measurement noise variance
o2 (in pixels?). Solid line is the STIJPDAF; dashed line is the
EKFIPDAF. (a) PD = 1,02 = 2. (b) PD = 0.9,02 = 2.(¢c)
PD=0.8,02=2.(dPD=1,02 =5.(e)PD =0.9,02 = 3.
() PD = 0.8,02 = 5.(g) PD = 1,02 = 10. (h)
PD =0.9,02 =10. (i) PD = 0.8,02 = 10.

with density parameter A. The clutter measurements were
distributed uniformly throughout out the entire observation
volume (720 x 480 pixels).

Both JPDAF algorithms used the diffuse prior distribution
for their clutter density mass function, and both were sup-
plied with the correct measurement noise variance and prob-
ability of detection for each simulation. The validation gate
for each algorithm was a four-sigma gate [© = 16 in (19)].
Each algorithm was initialized using the first three measure-
ments, which were always detected and supplied clutter and
noise free (perfect initialization).

The STI motion model is the constant speed coordinated
turn model described previously, with tuning parameters
ke = lL,ky = 3,k = 1,7 = 3. The measurement
prediction process noise for the STIJPDAF was generated
using (18) with the process noise covariance matrix

Q.. =diagl0 0 0 &, 6]
=diagl0 0 0 65 0.17] (28)

where diag[-] represents a square matrix whose values are
zero except on the diagonal, where the values are as provided
inside the brackets in order from the upper left corner to the
bottom right corner of the matrix, d is the linear acceleration
impulse change and 6,, is the impulse change in turn rate.
The EKF used the coordinated turn model discussed in the
previous section. However, the process noise was expanded
to include process noise in all state parameters not just in the
speed and turn rate, as performance was greatly improved on
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track 1 with the additional process noise. The total additive
process noise used in the EKF state covariance prediction
equation is

Q =diagls. 6, 6s b6s Ou)
= diag[l5 15 20 0.027 0.057]. (29)

The process noise for each filter was selected by tuning the
filters to achieve good performance on both tracks in the ab-
sence of clutter.

The performance metric used to compare the two algo-
rithms was the percentage of runs in which the target was
successfully tracked from start to finish. A track was declared
successful using the criterion of [20] and [21]; a track was
successful if at no point along the track did the estimated
position error exceed 10\/§ov. The results for the simula-
tions are shown in Figs. 10 and 11 for tracks 1 and 2, re-
spectively. The plots show that the STIJPDAF was at least as
effective as the EKFJPDAF in these simulations. The STI-
JPDAF performed better for track 1 because of the STI’s
overall better ability to respond to the sharp turn compared
to that of the EKF. Both algorithms performed very similarly
on the smoother second track.

As mentioned at the beginning of this section, the point
of the simulations is to show that the STIJPDAF has similar
abilities to the EKFJPDAF, not to make a claim as to which
is better in general. It is likely that a set of tracks that are rela-
tively smooth but with high measurement noise could be cre-
ated to show the EKFIPDAF outperforming the STIJPDAF.
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B. Multiple Fish Tracking

Approximately 1 h of video from the top camera was pro-
cessed using the STIJPDAF to test its ability to track multiple
targets in a low-clutter, low-noise environment. We used the
video data instead of the sonar data because in our experi-
mental setup the sonar was unable to resolve individual fish
in schools, resulting in an intractable multiple target tracking
scenario. Instead the sonar data rates were simulated by ex-
tracting data from every 8th video frame for a sampling rate
of 29.97/8 =~ 3.75 Hz.

Fish were detected in each video frame by first sub-
tracting a frame with no fish (subtracting the background)
from the current frame, converting the remaining video
red—green—blue (RGB) values to black and white by thresh-
olding, dilating and eroding the black and white data to
group points close together, and then accepting as a target
any group of white pixels with an area greater than 10 pixels.
The centroid of the pixel group was used as the location the
measurement.

The measurements supplied to the STIJPDAF algorithm
were Cartesian coordinate measurements in camera pixel co-
ordinates, with the estimated measurement noise variance
along each axis used by the STIJPDAF equal to 5 pixels. The
distributed prior distribution was used for the clutter density
mass function. The STI motion model was the same coor-
dinated turn model as described previously, with tuning pa-
rameters kg = 0.5,ky = 3,k, = 1,7 = 3. A low value
of k¢ was used so that the measurement prediction would be
strongly based on the new measurements rather than unduly
guided by continuity in heading from the previous segment.
Continuity and quality fitting in the completed tracks was
maintained by using k¢ = 1 for the recursive optimization
stage. As all segments were ultimately fit using recursive op-
timization, using two different values of ¢ allowed for good
prediction after sudden sharp turns, without any degradation
in the final track estimate from too low of a knot continuity
cost factor.

In order to implement the STIJPDAF on real data,
additional logic for track initiation and track drop was
required. For this study, track initiation and drop logic
were designed to be conservative, with missed tracks
being more acceptable than false alarms. The reason for
this choice is that in a biological study aimed at deter-
mining animal behavior, it is better to have a smaller but
correct data set than a larger data set with a lot of false
information.

Tracks were initiated using a “two out of three” detection
logic. Valid points for starting new tracks were those that
were not associated with an existing track in the most likely
joint event. Any single-point track initiator that did not have
a second point in its search window at the proceeding sam-
pling time was dropped. Once a two-point preliminary track
was established the “two out of three” detection logic was
activated. A two-point preliminary track was promoted to a
valid track if at least two detections occurred in its validation
gate within the next three sampling times. Thus, a minimum
of four samples was required to initiate a track.

Preliminary tracks were able to share points with other
preliminary tracks, but not with confirmed tracks. When a
preliminary track was promoted to a confirmed track, all pre-
liminary tracks that shared points with the new confirmed
track were eliminated. If two preliminary tracks that shared
points were both promoted to confirmed tracks in the same
sampling period, the track with the smallest STI fitting cost
was confirmed and the other track eliminated.

Track drop logic was an augmented “three out of five”
system. Tracks were dropped if there were no measurements
inside their validation gate during three out of the last five
sampling times, with situations where the track’s probability
of a missed detection was greater than 95% counted as
missed detections for purposes of track drop logic. Addi-
tionally, tracks were dropped if their predicted location was
outside the field of view. This condition was the primary
means of dropping tracks as all fish eventually swam out of
the field of view.

The STIJPDAF-generated tracks were validated by
overlaying them onto their corresponding video frames and
viewing the results frame by frame to determine if each track
was valid or not. Valid tracks were taken as those tracks
which followed only a single fish from the start of the track
to end of the track, but it was not required that the fish be
tracked over the entire time it was in the field of view.

The performance metrics are the probability of detection
and the false alarm rate. The probability of detection is
defined as the number of true tracks that were detected (true
positives) divided by the total number of true tracks. The
false alarm rate is the percentage of detected tracks that
were false, or the number of false tracks divided by the total
number of detected tracks.

A total of 710 valid fish tracks were detected, with 37 in-
stances of a fish swimming through the field of view going
undetected (missed tracks), for a probability of detection of
95%. A large portion of the undetected tracks consisted of
tracks where the fish swam across a corner of the field of
view and was only detected for fewer samples than the track
detection logic would accept. The total number of false tracks
was 126, with seven of them resulting from nonfish objects
(shadows, surface debris), and 54 of them representing tracks
that were made up of partial or complete tracks from two dif-
ferent fish, in other words tracks that swapped from one fish
to another once, but were otherwise valid. With 126 out of
836 (710 + 126) tracks being false tracks, the false alarm
rate is 15%.

These statistics are considered to be quite good, as this data
set presents a very difficult multiple target tracking scenario.
The difficulty comes from the fish’s tendency to alter their
motion when approaching another fish, performing such ac-
tions as slowing, stopping, changing direction, or some com-
bination of the above. While it is not surprising that fish alter
their behavior in response to approaching another fish, this is
a problem for position-only measurements data association
where the only information available to make the association
decision is prediction based on previous motion. The need
for predictable motion is most critical when two fish cross
paths, as this is when the association decisions are difficult,
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Fig. 12. Composite video image showing 14 fish tracks recorded
at ~3.75 Hz during a 25-s sequence of video data. All tracks were
successfully tracked using the STIJPDAF.

but this is also the time when the fish are least likely to be-
have in a predictable fashion.

An example of the complexity presented in this data set is
shown in Fig. 12, which shows the 14 fish tracks that were
present in approximately 25 s of video data (94 frames at
~3.75 Hz). All 14 tracks were tracked successfully by the
STIJPDAF during this sequence.

V. CONCLUSION

It is well known that tracking highly maneuverable
targets with unknown behavior presents difficulties for
predictive-model-based Bayesian state estimators. There are
essentially two main problems in using these estimators in
this situation. The first problem concerns the inability to
properly tune the filter due to a lack of knowledge about the
system process noise. The fish-tracking experiments in this
paper clearly demonstrated the poor results these filters can
provide when the process noise is selected improperly.

The second problem comes from the high maneuver-
ability of the targets, because high process noise levels are
required to represent the high uncertainty in motion created
by the maneuverability. A large process noise places most
of the emphasis on the measurement in the algorithm’s
update process, effectively rendering the filter inoperative
and creating unnecessarily large errors during periods when
the target is not maneuvering. Although this paper has
focused on the use of a data-driven method to track maneu-
vering targets, a wealth of literature exists that addresses
the problem of tracking maneuvering targets with predic-
tive-model-based Bayesian state estimators. Bar-Shalom and
Li [7] discuss various adaptive solutions including adaptive
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noise levels, least-squares input estimation, and variable
state dimension filters, although they do not rate their perfor-
mance very highly. More popular are the switching multiple
model approaches, such as the interacting multiple model
(IMM) approach [22], very powerful for its computational
complexity, and the Gaussian wavelet estimator (GWE) [23],
[24], which becomes especially useful at low sampling rates
[25], as well as particle filter-based multiple model methods
[26], [27] helpful in cases where some of the models are
nonlinear or the Gaussian distributed merged estimates of
filters like the IMM and GWE are inappropriate. One caveat
on multiple model methods is that Li [28] has shown them
to be very sensitive to proper model selection. This indicates
that the use of multiple model methods to attack the problem
of unknown behavior is likely to prove difficult.

Another alternative are the various variable structure
multiple model (VSMM) filters [8], [9], [28]-[32]. These
VSMM models may be more suitable to covering the wide
range of motion presented by highly maneuvering targets,
although to achieve stability their adaptation rates must be
limited. This may limit their effectiveness for problems with
low sampling rates, such as the sonar fish-tracking problem.

The use of data-driven methods for target tracking has
not received as much attention in the tracking literature as
the predictive Bayesian methods. This paper has demon-
strated the potential advantages to data-driven methods
for tracking highly maneuvering targets with unknown
behavior, focusing specifically on a curve segmentation and
fitting approach. This approach relies more on knowledge
of the system measurement errors than on knowledge of
the process noise. Its use of segmentation to represent
maneuvers frees it from the need to select a process noise to
represent maneuvers not directly accounted for in the state
transition function, and also provides an ability to respond
very rapidly to abrupt changes in target motion while still
achieving accurate results during the quiescent periods of
target motion. Additionally, model selection for algorithms
based on this approach is reduced to simply choosing the
parameter space on which fitting is performed.

One algorithm that follows this approach, the STI, was
discussed in this paper. It works by partitioning a track into
segments that each represent a single maneuver and then
performing a least-squares fit of a motion model-based cost
function to the data in that segment to estimate the target
state. The STI algorithm was shown to be very effective at
tracking free-swimming fish. It produced accurate estimates
of swimming speeds and turns rates while maintaining insen-
sitivity to the choice of its tuning parameters. This insensi-
tivity is a critical aspect of any algorithm that must provide
reliable data for scientific purposes when little or no a priori
information is available for use in tuning. The tuning param-
eter sensitivity was especially low when the sensor measure-
ment error characteristics were modeled correctly.

An extension to the STI to generate a measurement predic-
tion and its covariance was presented for use in data associ-
ation frameworks, and an STI-based JPDAF algorithm using
this extension was developed. The derived STIJDPAF was
shown through simulations to be effective at tracking single
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fish in clutter and through the use of real-world video data to
be effective at tracking multiple free-swimming fish.
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