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1. INTRODUCTION

Real-time systems differ from untimed systems in that
their behavioral correctness relies not only on the results of
their computations, but also on the clock times when the
results are produced. Formal verification means to rigor-
ously explore the correctness of system designs expressed
as mathematical models, most likely with the assistance of
modern computers. From our viewpoint, there have been
the following three motivations for the heated research on
the formal verification of real-time systems in the last two
decades.

» With the success of formal verification in the very large
scale integration (VLSI) industry [53], it is natural to
expect that similar success can be repeated in the
formal verification of real-time systems. In particular,
the achievement of binary decision diagram (BDD)
technology [52] has raised the hopes and confidence of
the industry for the verification of real-time systems.
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» With the readiness of concrete theoretical frameworks
for the verification of real-time systems [5], [11], [113],
[127]-[129], [133], [197], both programmers and the-
oreticians are eager to see how the theory adapts to
real-world projects.

» With the increasing scope and complexity of embedded
systems and resulting state-space explosion, it is be-
coming less and less likely that we can run a sufficient
number of simulation traces to gain both enough cov-
erage of the state spaces and enough confidence in the
systems with a project schedule. Further, even if it were
feasible to have extensive coverage of the system, the
potential of a single untested sequence of events that no
one thought of to cause system failure is also of con-
cern.

In the last two decades, many achievements in the formal
verification of real-time systems have been reported, from
various solid theory foundations to complex implementa-
tion techniques and formal verification of many real-world
projects [37], [189], [203], [206]. Still the intrinsic com-
plexity of various framework for real-time system verifica-
tion is forbiddingly high. The verification problems of timed
systems are usually exponentially more complex than their
untimed counterparts. For example, the model-checking
problem of computation tree logic (CTL) is in PTIME! [60],
[61], while that of timed CTL (TCTL) is in PSPACE? [5].
Thus, in the foreseeable future, it will be difficult to use
formal techniques alone for decisive answers to complex
verification tasks.

But this does not mean that we are pessimistic about the fu-
ture of formal verification. On the contrary, with most major
projects currently spending over 50% of their development
costs in verification and integration, there are tremendous op-
portunities for using formal verification to sizably reduce the

IPTIME problems can be solved with time complexity polynomials to the
input sizes in bit counts.

2PSPACE problems may incur memory consumption polynomials to the
input sizes in bit counts.
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explosive growth of verification and integration costs and to
enhance the quality of system designs in industry. On the one
hand, for complex real-time systems, formal verification will
likely be used to enhance the intelligence and performance
of simulation and testing. For example, coverage metrics can
be more precisely mapped to the functions to be verified. On
the other hand, for targets with clean modularity and inter-
face, formal verification can be used to rigorously check the
components and the interfaces and gradually could be ac-
cepted as standard methods in the automation of industrial
quality control. Actually it is claimed that this latter approach
has already had a dramatic effect on the SLAM project of
Microsoft, which plans to incorporate model-checking capa-
bility in its Windows driver development kit (DDK) [34].

In this paper, we give a review of these many achieve-
ments so that readers can use the paper as an index to the
literature. We organize the paper according to the various re-
search topics in formal verification, including models in Sec-
tion II, description and specification languages in Section III,
verification frameworks in Section IV, representation of state
space in Section V, constructions of state-space representa-
tions in Section VI, reduction techniques for representations
in Section VII, some tools in Section VIII, and some other
issues in Section IX, including symbolic simulation, para-
metric analysis, controller synthesis, probabilistic analysis,
and worst case execution time (WCET) analysis.

There are many frameworks to choose from to complete a
verification task. Each framework has its unique advantage
and may incur an intrinsic challenge. We feel it is better to
let the readers be informed of the challenges in the verifi-
cation frameworks of his/her choice. Thus we have cited
many complexity results of various verification problems in
the paper. Complexity of a verification problem means the
order of growth of required resources to solve the problem
with respect to the input sizes in bit counts. The resources
can be CPU times, memory space, message counts, power
consumption, etc. But in this paper, we are mainly concerned
with CPU times and memory space. Some jargon of the com-
plexity classes includes PTIME, NP-complete,® PSPACE,
EXPTIME,* EXPSPACE,S nonelementary complexities,b and
undecidability.?

Heitmeyer and Mandrioli have also written a handbook on
formal verification techniques for real-time computing [106].
Regarding techniques for untimed systems, a classic book is
one by Clarke et al. [65]. A previous survey paper in this
regard is by Ostroff [179].

3NP problems means that we can guess a solution in time complexity
polynomials to the input sizes. NP-complete problems are the hardest ones in
NP and are in general considered untamable problems in computer sciences.

4EXPTIME problems consume CPU times exponential to the sizes of in-
puts in bit counts.

SEXPSPACE is the set of problems that at most consume memory ca-
pacity exponential to the input sizes in bit counts. EXPSPACE-complete
problems are harder than EXPTIME problems.

%Nonelementary complexities are like 22 with the heights of the exponent
stacks at least proportional to the input sizes in bit counts.

TUndecidable problems do not guarantee termination. In general, it is not
possible to design algorithms (procedures that guarantee termination) for
undecidable problems.

1284

Before you go on, we remind you that the paper may show
the author’s intentional or unconscious bias toward each ap-
proach in formal verification. After all, the amount of space
needed to explain the details of each subfield is a subjective
decision.

II. MODELS

Formal verification grows from formal or mathematical
logics [41], in which we discuss the grammar (syntax) and
meaning (semantics) of logic formulas. It is possible to as-
sociate the same grammar with different styles of meaning.
The meaning of a logic formula is defined as a set of models.
A model in mathematical logic is a domain of values and
some functions on the domain. Without such formal defini-
tions, rigorous and mechanical verification of real-time sys-
tems will be impossible.

Intuitively, in the forum of specification and verification, a
model is a behavior of a system description (or specification).
According to the various frameworks we use, a model for a
real-time system can be a state set, a state sequence, an event
sequence, a state tree, or an infinite domain with relations.
Some other possibilities can also be found in [80].

A. Linear Time Versus Branching Time

We can view a computation either as a linear sequence
with only one future or as a tree with many possible futures.
The former is called linear-time semantics [185], while the
latter is called branching-time semantics [60], [61].

Linear-Time Temporal Logics: The research on auto-
matic verification of computer programs was initiated when
Pnueli proposed using linear-time propositional temporal
logic (LPTL) [185] to specify and compute the behaviors of
computer systems. LPTL is a subclass of modal logic [41]
with possible-world semantics and modal operators: L1 (for
all possible worlds) and ¢) (there exists a possible world). In
LPTL, [ is interpreted as “from now on, at all states” (or
henceforth, always), while ¢) is interpreted as “from now on,
there exists a state” (or eventually). For example, we may
have the model of a railroad crossing system. approaching
and down are two atomic propositions, and we want to
specify that whenever an approaching train is detected, from
that state on, eventually the gate is down. In LPTL, this can
be expressed as

O(approaching — ()down).

Two other commonly used modal operators are () (next) and
U (until). Op means that p is true in the next state. pldq
means that p is true until q is true.

In defining logics, people usually try to use minimal syntax
structures. Usually Qp and [lp can be defined as the short-
hands for truel{/p and = —p, respectively. On the other hand,
Kamp showed that pl{q cannot be modeled with modal op-
erators L1, ¢, and O [131].

In the late 1980s, people added the concept of “clock time”
to LPTL. That is, a global clock is assumed in the model such
that the global clock does not have to increment its reading

PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004



at every state. Initially, Ostroff [178] discussed issues in ex-
pressiveness and complexity with quantification and linear
constraints of clock readings in LPTL. For example, we may
write

(T = © A approaching) a
- O(T=yAy—x<300Adown)/

~

VxEIyD(

Here T is the special variable for the reading of the global
clock at the current state.

Alur and Henzinger proposed timed propositional tem-
poral logic (TPTL) [15]. TPTL has a clock-reading freezing
modal operator and uses binary difference constraints be-
tween frozen clock readings. The intuition is that quantifi-
cations on clock readings following [ are universal, while
the ones following ¢) are existential. For example, we may
write

Oz. (approaching — {Qy.(y — z < 300 A down)) (2)

which means that the gate will be down in 300 s from any
state in mode approaching. Note that this formula specifies
something different from (1). In (1), time y is independent of
the states quantified by the modal operator [, while in (2), it
is not.

Alur and Henzinger also defined metric temporal logic
(MTL), which allows the specification of timing distances be-
tween states quantified by adjacent modal operators [16]. For
example, we may write

O(approaching — {(<sppdown)

to specify the same property as (2). A nice exploration of
various discrete-time extensions of LPTL is [16].

In 1992, Wang et al. extended TPTL to Asynchronous
PTL (APTL) for distributed systems with clock jitters [228].
Specifically, they redefine the semantics of clock differences
in distributed systems with a timing precedence relation.
The idea is that instead of comparing the values of clock
readings, we now compare the temporal precedence of clock
readings. For example, we may write O[z, y]z + 2<y + 1,
which means that we have two distributed clocks such that
at every state, if the reading of the two clocks are x and y,
respectively, then every second tick of the first clock must
precede the next tick of the second clock. Putting it another
way, for every tick of clock 2, clock 1 will tick at least twice.

Branching-Time Temporal Logics: The intuition behind
linear-time logics is that there is only one future. With
branching-time logics, the possibility of many futures is
assumed, and modal operators 3, V are provided to specify
the relation among different futures. Path quantifier 3 means
“there exists a run from now on” and V means that “for all
runs from now on.” For example, in CTL [60], [61]

VO(approaching — V{)down)

means that whenever the monitor is in mode approaching,
along all runs henceforth, the gate will eventually be closed.
Note that in CTL and its extensions, linear-time modal oper-
ators (.J, O, U, O) must immediately follow a path quantifier

Fig. 1. Two behaviors that CTL can differentiate.

(3, V). In the literature of CTL, modal operators 3, V, [, {,
U, and Q) are written as F, A, G, F, U, and X, respectively.
In semantics, an LPTL formula defines a set of linear state
sequences, while a CTL formula defines a set of computation
trees. CTL and LPTL are not comparable in expressiveness.
For example, the LPTL formula CI(p says p states happen
infinitely many times. Also, the nonZeno requirement [113]
in TPTL is Oz.Qx > 1. These properties are known to be
inexpressible in the timed extensions of CTL. On the other
hand, CTL allows for the reasoning of properties between
possible future behaviors. For example, the CTL formula

VO —= (3O A30O9))

can differentiate the two behaviors in Fig. 1, while no LPTL
formula can.

Emerson et al. proposed real-time CTL (RTCTL) [83],
which uses formulas like 3—plf <Fp to specify the existence
of a state sequence along which p becomes true within the
next k states. This type of property is suitable for cycle-based
systems like VLSI, in which the discrete global clock ticks
at every discrete state change [83].

Harel et al. [104] discussed the expressiveness and com-
plexity of the CTL extension with universally quantified
clock variables and arbitrary linear clock constraints.

The most used branching-time temporal logic for real-time
systems is TCTL [5], which supports modal operators like
e, AO~e, WU, VO, VO, and VU.... Here c is a nat-
ural number and ~ is one of <, <, =, >, or >. For example

VO(approaching — V{)<39odown)

means that whenever the monitor is in mode approaching,
along all runs henceforth, the gate will be closed in 300 s.

Beside its modality, TCTL also differs from TPTL and the
like in that TCTL is defined with dense-time clock models.
Thus, there is no modal operator involving Q).

Integration of Linear Time and Branching Time: Emerson
and Halpern defined a unified specification language, called
CTL*,forboth LPTL and CTL [81]. Remember that in CTL,
we require that linear-time modal operators must immedi-
ately follow path quantifiers. If this restriction is lifted in
CTL, then we get CTL". Regarding LPTL, each LPTL for-
mula specifies the set of linear sequences satisfying it. Thus,
intuitively, LPTL is a subclass of CTL* because every LPTL
formula implicitly carries a universal quantifier on all com-
putation sequences. That is, an LPTL formula ¢ characterizes
the same set of state sequences as the CTL* formula V.
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It is also natural to extend CTL* to TCTL*. Méller dis-
cussed how to model check a subclass of TCTL* [167]. Wang
carried out experiments using model-checking algorithms on
the subclass of TCTL* which contains fairness assumptions
[220].

B. Discrete Time Versus Dense Time

In the definition of real-time system models, we can
require that all time readings are integers and all clocks in-
crement their readings at the same time. This is discrete-time
semantics [15], [127]. The other choice is dense-time se-
mantics [11], [78], which means that time readings can be
rationals or reals and all clocks increment their readings at a
uniform rate.

Discrete-time models are suitable for synchronous sys-
tems where all concurrent processes share the same global
clock. Example languages are TPTL and MTL [16]. Dense-
time models are better for distributed systems with multiple
clocks and timers, which can be tested, set, and reset inde-
pendently. Examples include TCTL [5].

Note that in our explanation of discrete-time models, we
require that there is a single global clock. It may seem that
such a requirement is inappropriate for distributed systems
with digital clocks. In fact, after the sampling or detection of
an event in an embedded system, the occurrence time of the
event is still stored in a digital format. Thus, philosophically,
discrete-time semantics with distributed clocks seems a plau-
sible choice. But in general, if the clocks are distributed and
do not increment their readings at the same time, then we still
have to implicitly record the ticking order of the clocks so
that the clocks still increment their readings at the same rate.
The information pieces of ticking orders are of factorial com-
plexity, which is the same as that of region graph construction
for dense-time models [5], and do not save any computation
resources. Henzinger et al. discussed the relation between
systems with distributed digital clocks and those with dis-
tributed dense clocks [112].

Clock-reading models can also affect the verification com-
plexity. For example, the satisfiability problem of TPTL is in
EXPSPACE, while its dense-time version is undecidable. In-
tuitively, discrete-time models may lead to lower complexity
in verification and analysis, since there are many fewer states.
But in practice, the impact on complexity is tricky. Specif-
ically, with the symbolic techniques for timed and hybrid
systems [18], [113], state spaces are represented as Boolean
combinations of linear constraints of state variables. An im-
portant operation is checking the emptiness of state-space
representations. However, the emptiness problem of linear
constraints is in PTIME for reals (in dense-time models) and
NP-complete for integers (in discrete-time models).

C. State Based Versus Event Driven

A state is a snapshot of a system at a moment in time. In
the sense of control, it is everything that we need to know
about the system at that moment in order to determine the
future for all future input sequences. Mathematically, it con-
sists of the recording of the values of all variables and con-
trol locations. For instance, at a railroad crossing, the vari-
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able gate can be used for the gate position of the present
state. State-based real-time temporal logics are usually de-
rived from their untimed counterparts [60], [61], [185]. Ex-
amples include TCTL [5], RTCTL [83], TPTL, MTL [16],
and APTL [228].

An event represents an instantaneous change of states
and may trigger a series of responses in a system. For
example, the detection of an approaching train at a railroad
crossing is an event that will hopefully cause the gate to
close. Event-driven system descriptions are very natural in
the world of embedded system engineering. One pioneering
work that incorporates timed events into the linear-time
model is real-time logic (RTL) by Jahanian and Mok [127].
RTL is a linear-time event-driven logic with event occur-
rence-time functions. For example, we may write

Vi (approaching(s) + 300 > down(s))

which means that after the sth train approaching event has
occurred, the ¢th gate down event must happen in 300 s. RTL
is a subclass of first-order integer arithmetic with monadic
functions. Yang et al. [233] have also designed a temporal
logic, synchronous real-time event logic (SREL), based on
event countings along state sequences in a discrete-time
domain.

One thing to note is that in synchronous cycle-based sys-
tems, e.g., VLSI circuits, people usually treat state and event
as the same thing, since variables change values only at the
beginning of each clock cycle and then remain steady in the
cycle. But for distributed real-time systems, this treatment
may lead to imprecise modeling, since there is no common
clock among the many distributed sites.

It also has long been argued that neither pure state-based
nor pure event-based languages quite support the natural
expressiveness desirable for the specification of real-world
systems [57], [122], [134], [137], [174]. Recently, Wang
has proposed an extension to TCTL for the specification
and model checking of behaviors involving both states and
events with fairness assumptions [220]. For example, in the
railroad crossing system, we may want to say that when
the monitor signals the controller to lower the gate, then
the gate must be down in 300 s. This can be specified as
‘v’DlWeerV(}Sggodown. Here [0°2°p means that whenever
c events of type € happen, p must immediately be true.

III. DESCRIPTION AND SPECIFICATION LANGUAGES
A. Timed Automata

The model of timed automata was first proposed by Alur
and Dill [11]. A timed automaton is a finite-state automaton
equipped with a finite set of clocks which can hold non-
negative real values. It is structured as a directed graph
whose nodes are modes (control locations) and whose arcs
are transitions. The example of a monitor process for trains
approaching a railroad crossing is in Fig. 2. The monitor is in
mode far when all trains are far from the crossing, or in mode
approaching when a train will arrive at the crossing within
300 s, or in mode crossing when a train is at the crossing, or
in mode passed when trains have just left the crossing within
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Fig. 2. The model of gate—monitor.

the last 100 s. The ovals represent modes, while the arcs
represent transitions. The modes are labeled inside the ovals
with invariance conditions which are Boolean conjunctions.
All states in a mode must satisfy the corresponding invari-
ance condition. At any moment, the timed automaton can
reside in only one mode. The transitions are labeled with
triggering conditions and a set of clocks to be reset during
the transitions. A timed automaton can make a transition
only if it satisfies the corresponding triggering condition.
The invariance conditions and triggering conditions are
Boolean combinations of clock (difference) inequalities. In
a timed automaton’s operation, one of the transitions can
be triggered when the corresponding triggering condition
is satisfied. Upon being triggered, the automaton instanta-
neously transits from one mode to another and resets some
clocks to zero. In between transitions, all clocks increase
their readings at a uniform rate.

A state of a timed automaton is a recording of its present
mode and the readings of all clocks. With discrete-time
models, all clocks will have integer readings and increment
their readings at the same instant. With dense-time models,
clock readings are reals (or rationals). A computation of
a timed automaton can be defined as an infinite sequence
of time-state pairs such that the time components form a
nondecreasing and divergent real number sequence.

A timed automaton is a nondeterministic machine and
does not have to make transitions as long as the invariance
condition is satisfied. One usual way to force transitions is
by using an invariance condition. For example, in Fig. 2, in
the “approaching” mode, we require that z < 300 to force
the transition out of the mode in 300 time units.

In practice, a real-time system is usually described as a set
of process timed automata, each representing the behavior
of an autonomous process. Such a decomposition is natural
in the description and construction of concurrent and dis-
tributed systems. By decomposing a timed automaton to a
set of process automata, engineers can greatly simplify their
tasks in the modeling of complex, concurrent behaviors.
The timed automaton can be constructed as the product
automaton of the process timed automata. The mode set of
the product automaton is now the Cartesian product of the
mode sets of the process timed automata. The invariance
condition is defined by the conjunction of the invariance
conditions of the modes of the process timed automata. The
behavior of the product timed automaton is an interleaving
of transitions of the process timed automata.

What makes timed automata interesting is that their
model-checking problem is in PSPACE [5]. Moreover,

MONITOR

Fig. 3. The model of gate—-monitor—controller.

under certain conditions, symbolic manipulation techniques
for timed automata have performed well enough to verify
many industrial systems [113].

B. Communicating Timed Automata

Complex state transitions may require cooperation among
processes to construct. For example, in the railroad crossing
example, at the time when an approaching train is detected,
the monitor sends a ‘““signal” to the gate controller to move
the gate down. Conceptually we can decompose the system
into two processes: the train monitor and the gate controller.
The sending and receiving of the signal can best naturally
be modeled by the interaction between the monitor and the
controller. There are also two process transitions involved in
the behavior, i.e., the detection of the approaching train and
the starting of the gate’s moving down.

The first language device designed to “glue” process tran-
sitions into a (global) transition is the channel concept for
binary synchronization in Hoare’s Communicating Sequen-
tial Processes (CSP) [115]. Such a device can greatly help to
improve the modularity of model descriptions. For example,
in the embedded control system for a railroad crossing, we
may have a channel called lower for the communication of
the command to move the gate down. The language device
lower represents the sending (or output) event through the
channel, while 7lower represents the receiving (or input)
event through the same channel. Two process transitions
labeled, respectively, with the sending event and receiving
event through the same channel must happen at the same
instant to make a legitimate global transition. The inter-
active synchronization between a train monitor and a gate
controller can be modeled with the communicating timed
automaton in Fig. 3. When the monitor detects that a train
is approaching the railroad crossing, it sends out a signal
through channel lower to the controller to move the gate
down. A process transition with an input event that cannot
find a peer process transition with matching output event
simply cannot be executed.

CSP-style synchronization channels were incorporated in
communicating real-time state machines (CRSM) [198] in
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1992. Such devices are now supported in real-time system
model-checkers like I/O automata [90], [133], [157], UP-
PAAL [39], [183], SGM [120], [222], [223], and the region-
encoding diagram (RED) [213], [216], [217], [219].

A similar synchronization device is used in HyTech [18]
and Kronos [75], [237] with no distinction between senders
and receivers. Each process is declared with the set of syn-
chronizers to respond to. Then when a synchronizer happens,
all processes declared to respond to it will have to make a
process transition. Such a device is handy in modeling broad-
casting, multicasting, and other multiparty synchronizations.
For example, to model the bus collision behavior in carrier
sense multiple access with collision detection (CSMA/CD)
protocol [175], the bus process may execute a transition la-
beled with the event Collision_Detected, which will
force every sender process to respond to a transition with the
same event. It is also possible to combine basic CSP-style bi-
nary synchronizations to construct such complex multiparty
synchronizations. For example, in RED [219], to model the
bus collision event in CSMA with n senders, the bus
needs to execute a transition with n !Collision_De-
tected labels, and, thus, forces each of the n senders to
respectively respond with a transition with one ?Col1i-
sion_Detected label.

C. Hybrid Automata

Hybrid automata [18], [108] are used to model embedded
systems with continuous variables, whose values may incre-
ment/decrement at various rates. Arbitrary linear constraints
are allowed for invariance conditions and triggering condi-
tions. Timed automata [11] are a special subclass of hybrid
automata in which all continuous variables increment their
values at a uniform rate and only upper-bound and lower-
bound inequalities of clocks are allowed. A hybrid automaton
shares the same structure as timed automata, except that in
each mode, the increment rate of each continuous variable is
independently specified.

In general, hybrid automata are not subject to algorithmic
verification, but there are subclasses which are [109].

D. Logics

Logic formulas can also be used to describe system
behavior. In such frameworks, the system descriptions (in-
cluding the models for systems and environments) and the
specifications are all put down in the same language. In
its operation, a logic theory is defined by a set of axioms
and inference rules. Every formula that can be constructed
through repetitive applications of the inference rules is called
a theorem. Two key issues are soundness and completeness.
Soundness means that the theorems in the theory are con-
sistent, i.e., do not contradict one another. Completeness
means that every theorem can be proved in a finite number
of steps of inference rule applications. When we use logics
for verification, we usually put down the system description
as axioms and inference rules and the specification formulas
as a theorem. A proof plan may also involve several lemmas
and corollaries as intermediate steps to the establishment of
the goal theorem.
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To know when to stop inferencing in case the specifica-
tion formula is actually not a theorem, we need to prove a
small model theorem to establish the maximum number of
inference steps for the proof of the specification formula. The
complexity of the verification procedure depends on the com-
plexity of the small models.

Propositional temporal logics, linear time and branching
time, have been discussed in Section II-A. The advantage of
such frameworks is that they usually come with small model
theorems and algorithms to check whether a formula is a the-
orem or not. The disadvantage is that they are usually not
expressive enough to model complex behaviors with, for in-
stance, queues, stacks, counters, range-unbounded variables,
polynomial constraints, etc.

First-order and higher order logics have also been used
[127], [197] for specification and verification. The advan-
tage is that such logics are very expressive for modeling com-
plex behaviors. The disadvantage is that in general, it is not
possible to design algorithms to check whether a formula is
a theorem or not.® First-order logics seem a good compro-
mise between expressiveness and computability, since they
are complete in general. That is, we still have semidecision
procedures that are guaranteed to construct proofs if the spec-
ification formulas are indeed theorems.

On the other hand, higher order logics [96], [181] are in
general incomplete. Interested readers are refered to [176] for
atutorial on Isabelle/HOL. Mattolini and Nesi presented fem-
poral-interval logic with compositional operators (TILCO)
[161] with formal proof support from Isabelle/HOL.

E. Timed Process Algebras

Timed CSP was first designed by Reed and Roscoe [188]
and later modified by Davies and Schneider [74]. It supports
the following three grammar rules with timing constraints:

1
Waitt|P1éP2|P1tP2.

“Wait ¢” means to wait for ¢ time units.

P; > P> models the timeout in communication. It behaves
as P; until, at time ¢, when no synchronization has happened
yet, the control is transfered to Ps.

P, % P, models the interrupt in embedded systems. It
behaves as P; until at time ¢, regardless of synchronizations,
when control is transfered to Ps.

The time value domain in timed CSP is dense. A variety
of semantics has been defined. The simplest one associates a
program with a set of timed traces. Schneider wrote a book
in this regard [194]. In the book, manual proofs are illus-
trated and a refinement relation from untimed CSP programs
to timed CSP programs is presented. With the introduction of
the event fock, which advances time by one unit, Schneider
also showed how to translate timed CSP programs to untimed
CSP programs with tock events.

Baeten et al. have done substantial work in extending the
process algebra known as the algebra of communicating

81n the jargon of computer science, the decision problems of such logics
are said to be undecidable or incomputable.
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processes (ACP) to the real-time domain [30]-[32]. The
time models can be dense or discrete. Both absolute time
and relative times can be specified. Time-stamped actions
can be used to combine actions with the passage of time.
The integration operator jv cv P allows composition over a
continuum of alternatives. The initial abstraction operator
/v.F(v) defines a mapping from a parametric initial setting
of real variable v to a set of processes, whose behaviors
depend on the value of v.

Work on the calculus of communicating systems (CCS)
with timing can be found in [59], [170], and [234].

Another timed extension of process algebra is PACSR
[152], [184], which supports resource-awareness and proba-
bility reasoning in embedded system design.

LOTOS is an ISO standard specification language based
on process algebra [43], [123]. Its real-time extension is
called Enhanced Timed-LOTOS (ET-LOTOS) [124], [150],
[151].

F. Timed Petri Nets

Petri nets [87], [130] are convenient for modeling con-
current systems. In a Petri net, we have places, which may
hold tokens, and transitions, which may consume some to-
kens from the places and produce some other tokens in other
places. A state of a Petri net is called a marking, which as-
signs a number of tokens to each place. Since each place
can hold an unbounded number of tokens, Petri nets are infi-
nite-state systems. One special thing about Petri nets is that
they lack the capability to test the nonexistence of tokens.
Specifically, a transition may happen if all its input places
have tokens. But no action can be taken when there is no
token in some input place. Theoretically, Petri nets are equiv-
alent to counter machines without zero-test capability [97]
and vector addition systems (VAS) [118], [132].

Several classes of timed extensions of Petri nets have been
proposed [3], [42], [47], [93], [163], [187]. For example,
Merlin and Faber defined time Petri nets, in which each tran-
sition is associated with a clock that records the time lapse
since it was last enabled [163]. Clock readings can be natural
numbers in discrete-time models or dense numbers in contin-
uous-time models. State may change due to transitions and
time passage. Each transition also has two attributes: earliest
firing time (Eft) and latest firing time (Lft). An enabled tran-
sition can only fire when its clock reading is no less than
its Eft, and if continuously enabled, it must be fired before
its Lft. Thus, time may not increment beyond the minimum
deadlines set by the Lft of all enabled transitions. This se-
mantics that “some enabled transition must fire” is different
from the nondeterministic semantics of timed automata, in
which a continuously enabled transition does not have to be
fired before the Lft.

Ghezzi et al. proposed another Petri net extension, called
Time Environment/Relation (ER) nets, for timed systems
[93]. Each token, instead of each transition, is associated
with a time stamp. Transitions can be triggered only when
the earliest time and latest time requirements are met with
respect to the token time stamps. They also presented three

axioms which must be satisfied in each action to maintain
the natural concepts of time stamps.

Adbulla and Nylen defined timed Petri nets [3], in which
each token is associated with a clock which can be reset at
the time of transition. This resembles the clock reset opera-
tions of timed automata. There is also no obligation to fire an
enabled transition before the Lft expires.

Serugendo et al. extended Merlin and Faber’s time Petri
net to real-time synchronized Petri nets with synchroniza-
tions between a set of objects, modeled with real-time Petri
nets [195].

Girault and Valk editted a handbook on formal methods
based on Petri nets [94]. Cerone and Maggiolo-Schettini
wrote a survey paper on various approaches to extending
Petri nets to specification and verification of timed systems
[56].

G. Graphical Languages

Statecharts [103] were introduced to help users describe
behavioral hierarchies of untimed concurrent systems in a
graphical style. System operations can be hierarchically de-
composed to parallel and serial modes. Such behavioral hi-
erarchy has inspired various compositional frameworks for
verification and analysis, e.g., assume—guarantee reasoning
[1], [17], [99], [162], [205], and state refinement verification
[9], [232].

Modecharts [128] were the first timed extension of state-
charts. Their semantics was defined with RTL [127] in dis-
crete time-domain. Timing intervals and discrete events can
be used as triggering conditions for transitions.

Statecharts support many powerful primitives, like excep-
tions, group transitions, and history. As a result, their se-
mantics is complex. Hierarchic reactive module (HRM) is a
model description language for timed systems with restric-
tions on transitions to simplify the semantics [14]. Syntac-
tically, transitions in HRM can only connect to entry/exit
points of structural modules. Transitions are forbidden from
jumping directly to inner modules.

Timed unified modeling language (UML) is the real-time
extension of UML [72], which is in turn a variation of state-
charts. Translation schemes from timed UML to various ver-
ification tool languages have been studied and implemented
[73], [88], [136], [146], [172].

IV. VERIFICATION FRAMEWORK

There are the following four major approaches to compu-
tationally verifying timed systems.

A. Satisfiability Checking

In this framework, we write both the system behavior de-
scription B and specification S as logic formulas and try to
prove that B — S is a theorem (i.e., tautology) of the un-
derlying axioms. In reality, we usually check if B A =S is a
contradiction, or equivalently B A —S is unsatisfiable. In the
implementation, we can use the fableau method to construct
an untimed Kripke structure and check if B A =S is satis-
fied at the initial nodes in the structure. A tableau is a small

WANG: FORMAL VERIFICATION OF TIMED SYSTEMS: A SURVEY AND PERSPECTIVE 1289



model that can be used to check the existence of a model for
B A =S. Conceptually it is a directed graph (V, E') such that
V is the set of possible worlds (or states) and £ is the set of
transitions from world to world.

In the following, we illustrate the tableau construction for
TPTL satisfiability checking [15]. Assume that we are given
a TPTL formula ¢ such that negations only appear in front of
atomic constraints like p and x + ¢ ~ y + d. This is possible
because of deMorgan’s law and —=L¢p; = O—¢1, 7O =
O=¢1, and = (1l dz) = (O=g2) V ((m2)U=(d1 A ¢2)).
Given a TPTL formula ¢, closure(¢) is a set of TPTL for-
mulas constructed with the following induction rules.

* ¢ € closure(¢) and true € closure(¢).

o If 1 V 2 € closure(d) or ¢1 A o € closure(o),
then ¢; € closure(¢) and ¢y € closure(¢).

o If p1Ups € closure(¢), then ¢1, ¢2, Od1lds €

closure(¢).

o If gy € closure(¢), then ¢, OO¢; €
closure(¢).

o If O¢1 € closure(¢), then ¢, OOp1 €
closure(¢).

o If O¢1 € closure(¢), then ¢y € closure(q).

o If z.¢1 € closure(¢), then ¢1[z = T] €

closure(¢) where T is the symbol for current time
and ¢1[x := ¢ is identical to ¢; except that every
occurrence x is replaced by e.

eIfz+c¢~ T+ d € closure(¢) where ¢, d € N
and ~€ {<,<,=, >, >hthenz+c~T+d-1E¢€
closure(¢). The case for T+ d ~ x + ¢ is symmetric.

Here, for convenience, we assume only inequalities like = +
¢ ~ y+d, where x and y are clock variablesand candd € N
are used.

AnodewvinV for ¢ is a subset of closure(¢) that satisfies
the following node consistency conditions.

* true € v.

IfT+ ¢~ T+ d e v, the truth value of ¢ ~ d is in v.
e If =¢y € v, then ¢1 & v.

If 1 V ¢p2 € v, then ¢1 € v or ¢o € v.

e If $1 A g € v, then ¢ € v and ¢5 € v.

If $1Upo € v, then either ¢ € v or both ¢; € v and
Ob1lUps € v.

o If ¢y € v, then both ¢; € v and QU € v.

e If 0¢p1 € v, then either ¢ € v or OP¢p1 € v.

o If z.¢1 € v, then ¢1[x :=T] € v.

If (v,v") € E, then the following transition consistency con-
ditions must also be maintained in F, i.e., exactly one of the
following two is true.

1) For all O¢1 € v, then ¢; € v'.

2) Forall O¢; € v, then ¢ € v', where ¢T is identical
to ¢ except that every constraint like © + ¢ ~ T'+ d with
¢, d € N isrespectively replaced withx +c ~ T +d — 1.
(The case for T' 4+ d ~ x + ¢ is symmetric.)

Case 1 models the passage of zero time units, while case 2
models the passage of one time unit. Also note that when a
constraint like x + ¢ ~ T' — 1 is generated, we will no longer
ask for the decrements from 7" — 1. Thus, 7" — 1 serves as a
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flag, since no matter when we freeze 7' to z, the truth value
of z 4+ c ~ T — 1 is already determined at the moment when
T — 1 is generated.

The small model theorem of TPTL says that if there is a
model for ¢, then there is such a model:

» whose nodes are in the powerset of closure(¢) and
satisfy the node consistency condition; and
* whose transitions satisfy the transition consistency
condition; and
* that contains a cycle such that
—  thecycle is reachable from an initial state node; and
— if Q¢ is labeled in some node in the cycle, there is
another node labeled with ¢; in the cycle; and
— if p1U o is labeled in some node in the cycle, there
is another node labeled with ¢, in the cycle.

The satisfiability problem of linear-time temporal logics
TPTL [15], TETL, MTL [16], and APTL [228] are EX-
PSPACE-complete.

It is also possible to use temporal logics with dense-time
semantics to do satisfiability checking. However, the satis-
fiability problems of TPTL with dense-time semantics and
TCTL are all undecidable [5], [16]

B. Model Checking

The framework of model checking [60], [61] means that
the system descriptions are given as automata, the specifica-
tion formulas are given as temporal logic formulas, and we
want to check if all models of a given system description sat-
isfy a given specification formula. One popular framework
in this category is the TCTL model-checking problem [5]
in which the system descriptions are timed automata, while
the specifications are TCTL formulas. The TCTL model-
checking problem is PSPACE-complete. Note that the frame-
work in [5] only permits atomic constraints like z ~ ¢ with
~e {<,<,=,>,>}. For about one decade, people have
straightforwardly extended the framework with constraints
like x — y ~ ¢ [113]. Recently, Bouyer [46] showed that
the model-checking algorithms in [5], [113] is not correct for
such an extension.

An important subclass in the model-checking framework
is safety checking, i.e., the model checking of formulas
like VU7 where 7 is a propositional formula for the safety
property of a system. In implementation, the safety analysis
problem is usually translated to the negation of the reach-
ability problem, i.e., whether ()—n is true or not. Most of
the implementations in model checking have focused on
the efficiency enhancement of safety checking. The major
reason for this may be that fully model checking complex
timed systems is indeed too difficult.

It is also possible to model check linear-time temporal
logics like TPTL [15] or MTL [16]. In this framework, we
want to verify that every computation of the timed automata
is also a state sequence of the linear-time property.

Model checking has also been applied to frameworks other
than automata. FDR is a commercial model-checker for CSP
but does not quite support real-time system modeling [89].

PROCEEDINGS OF THE IEEE, VOL. 92, NO. 8, AUGUST 2004



The idea is to check whether, by hiding some internal vari-
ables, a behavior description in CSP can be identified as a
refinement of another specification in CSP.

There is also model-checking research for Petri nets. One
common approach is to put in restrictions to reduce Petri
nets to finite-state systems, which are then subject to algo-
rithmic model checking. In general, the reachability (of a
specification marking) problem of Petri nets is decidable but
without known elementary complexity. Another commonly
accepted framework for verification with Petri nets is called
the coverability problem, in which we are given a specifica-
tion marking v and want to see if there is a reachable marking
v" such that v is no less than v place by place.

C. Simulation

It is also possible to use state-transition systems (au-
tomata) for both system behavior descriptions and specifi-
cations. This framework can be useful when a specification
is too complex to put down in temporal logics. After all, a
picture is worth a thousand words. Given a behavior model
description A and a specification B, intuitively, we want to
check whether A simulates B, i.e., every behavior of A is
also a behavior of B with respect to the input and output
events (i.e., observable events) and the times at which those
events occur. However, we need to define behavior more
clearly.

In linear time, a behavior is an (infinite or finite) sequence
of events and the occurrence times of those events. Such a
sequence together with the event occurrence times is called
a timed trace. The framework of trace inclusion verifies
whether A implements B, i.e., the timed traces of A are also
timed traces of B. This framework may not have the power
to discern certain behaviors. For example, in Fig. 1, although
the two systems have the same set of traces, the choices at
p states are not the same. In addition, Alur and Dill showed
that the inclusion problem of timed traces is undecidable
[12].

An alternative framework is simulation [158], [159],
[209], which, in formal verification literature, does not mean
that we build a mathematical model in the programming
language C, execute the model with an inference engine,
and then observe the trace [66], [224]. Instead, simulation
is a relation between states of two model descriptions at
an abstraction level (regarding the same set of observable
inputs and outputs). Given a behavior model description A
and a specification B, intuitively, we want to check if there
is a simulation relation from A to B (i.e., A simulates B).
For convenience, we write v e, 4 V' iff in A, we can transit
from v to v/’ by first letting time progress by 6 (a nonnegative
real) and then executing a transition labeled with event e. A
relation -y between the state sets of A and B is a simulation
iff for every (v1,12) € 7:

* 1 and v» are the same, predicate by predicate, at the
abstraction level;
. b,e , ’ 8,e ,

* if 1y —— 4 v; for some vy, then v» —— p v for some
v of B such that (vq, %) € v; and

« for every initial state v of A, there is an initial state v
of B such that (v1,v5) € 7.

Timed simulation has been used extensively for systems
modeled with various extensions of I/O automata [44],
[105], [141], [154]-[156], [160]. Since I/O automata [133]
have first-in-first-out (FIFO) queues and their verification
problem is in general undecidable, a lot of the work was car-
ried out using theorem provers (see Section IV-D). Tasiran
et al. showed that the simulation checking problem for timed
automata is EXPTIME [209].

The third alternative is timed bisimulation, which is also
a relation between states of two (timed) automata at an ab-
straction level. For convenience, given a relation v, we let
¥ = {(b,a)|(a,b) € ~v}. Given two model descriptions A
and B, a relation ~y is a timed bisimulation between A and
B iff 7 is a timed simulation from A to B and + is a timed
simulation from B to A. Cerans showed that timed bisimu-
lation checking is decidable [55]. Lasota showed that timed
bisimulation checking is also decidable for timed basic par-
allel processes (BPPs)? [145]. Bisimulation-based verifica-
tion of timed automata can be found in [71], [153]. Work on
discrete-time models can be found in [147]-[149].

D. Theorem Proving

This approach stems from very early research in artificial
intelligence [58]. In this framework, verification engineers
manually design a verification plan (proof sketch) and then
use theorem provers to mechanically check the correctness
of the reasoning steps in the plan. Since many of the theorem
provers accept undecidable classes of logic formulas, the
approach usually does not guarantee the termination of
individual mechanical verification tasks. If a user feels that
a prover cannot finish a task, he/she may have to either
intervene with expertise (formalized as axioms or proof
strategies) or change the verification plan. Fulfillment of
a verification plan depends heavily on the users’ profound
knowledge of the underlying logics and proficiency in using
the tools.

Various algorithms were developed to check subclasses of
first-order logics. Shostak [202] and Nelson and Oppen [173]
presented algorithms to decide unquantified combinations of
some fragments of first-order logics. Shostak also presented
algorithms (congruence closure) to decide equality with un-
interpreted functions [200] and methods, like loop residue
[201] and SUP-INF [199], to decide linear arithmetic. Oppen
presented algorithms for checking Presburger arithmetic for-
mulas!® [177]. Techniques from propositional calculus [52],
[98] can also be employed to check propositional fragments
of first-order or high-order logics.

There is also an extensive library of term rewriting tech-
niques for first-order and higher order logics [77], [135]. Re-
search has shown that controlled heuristics on term-rewriting
rules are important.

9BPPs are systems constructed with rules P ::= p| Py || P,|1 > Py, where
p is an atomic process and 1 > P is the process of the passage of one time
unit followed by process P .

10Presburger arithmetic is the theory of linear constraints like c; 1 4. . .+
¢, x, ~ d,Boolean operators, and quantification on variables x1, ..., x,.
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Shankar designed an operator |P| (read “since” P) in a
state-based model in the well-documented theorem prover
Prototype Verification System (PVS) [197]. The operator
measures the time that has elapsed since P last held. It is
implemented with three axioms in PVS. The first specifies
the initial value of each |P|. The second and third respec-
tively define when |P| should remain the same and when it
should increment in an action. Users can also define their
own axioms in PVS for convenience. Work along this line
can be found in [24], [25], [117], and [193].

V. REPRESENTATIONS OF STATE SPACES

Many verification frameworks rely on the analysis of
reachable state spaces. The efficient manipulation of rep-
resentations of reachable state spaces is fundamental to
efficient verification of real-time systems. One important
work in this regard is [5], in which Alur et al. presented
a finite representation, called the region graph, for the
dense-time state space of timed automata, and then proved
the PSPACE-completeness of the TCTL model-checking
problem. A region graph is a directed graph whose nodes are
called regions and whose arcs represent either time progress
or discrete transitions between regions. A region is a state
subspace with three characteristics. The first is the control
location of the states, the second is the integer parts of clock
readings in the states up to the biggest timing constants used
in the automata and the TCTL formula, and the third is the
ordering among the fractional parts of clock readings in the
states.

Region graphs are important in establishing complexity.
For practical verification, symbolic data structures can usu-
ally yield more compact representations. In the following
sections, we discuss some work in this regard.

A. Difference-Bounded Matrices

Since Dill proposed to use the difference-bounded matrix
(DBM) to record the time space of real-time systems [78],
the DBM has been adopted by two major model checkers:
Kronos [75], [237] and UPPAAL [39] and has become the
most popular data structure for such a purpose.

A DBM is a two-dimensional array. Each entry in a DBM
records the difference between two clocks’ readings of a state
in the space characterized by the DBM. Zero is also treated
as a special clock. Conceptually, given a set X of clocks, a
DBM D is a mapping from ({0} U X)? to a set of elements
like (~, ¢) such that:

e ~ is either < or <;
ec e {-C,...,—1,0,1,...,C,CT} where C is the
biggest timing constant used in the real-time systems or
in the specification and C* means any constant greater
than C'; and
cc=Ct =~=<.
Foreach two x, 2’ € {0} UX, D(z,1") = (~, c) means that
2 —1x’ ~ c. A time space characterizable by a DBM is called
a zone.
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A DBM can represent a convex state space in the time
space. Efficient operations like intersection and normaliza-
tion to all-pair shortest-path form, can be performed. But a
DBM cannot represent a concave state space.

Annichini ef al. [21] have extended DBM with parame-
ters for the semialgorithmic analysis of counter and clock
systems.

B. BDD-Like Data Structures

BDD [52] is a minimum canonical form for propositional
logic and has become an indispensible technology in hard-
ware verification. Topologically, a BDD is an acyclic directed
graph with a single source and two sinks (for FALSE and TRUE,
respectively). It can represent both disjunctions and conjunc-
tions. Each node is labeled with a decision atom, and the out-
going arcs are labeled with the values of the corresponding
decision atom. It is minimum because BDD has the least rep-
resentation size for any state space with respect to a given
variable ordering. It is canonical because there is exactly
one BDD for any given state space. This canonicality feature
also implies that equality checking between state spaces and
emptiness checking of a state space can be done efficiently.

The first paper to discuss how to use BDD to encode zones
(actually for asynchronous systems with clock jitters) was
by Wang et al. in 1993 [227]. They discussed how to use
BDD with decision atoms like z; + ¢ < z; + d to model
check timed automata. Here, ¢ and d are timing constants
with magnitude no greater than the biggest constant used in
the behavior model and specification. Each decision atom
can assume a Boolean truth value. The approach may suffer
from bad performance, since the size of the decision atom
domain is already proportional to the timing constants and,
thus, exponential to the input size. However, they did not
report implementation or experiments. In 1996, Balarin im-
plemented the same scheme and reported experiments with
approximation techniques [33]. In 1999, Mgller et al. used
the same idea to devise a data structure called a difference
decision diagram (DDD) and discussed many manipulation
techniques [168], [169].

The numerical decision diagram (NDD) [26] uses binary
encoding for clock readings, and its performance is very sen-
sitive to timing-constant magnitude.

The clock-difference diagram (CDD) [36] uses decision
atoms like x—y and labels arcs with disjoint intervals. For ex-
ample, a node label = —y together with an arc label (3,5] con-
stitute the constraint 3 < z — y < 5. CDDs were only used
in UPPAAL [36] as recording devices of zones constructed
with DBMs. No model-checking and reachability algorithms
were implemented with CDDs in [36].

RED [213], [214] encodes the ordering of fractional parts
of clock readings in the variable ordering and has achieved
very high space efficiency for symmetric systems with large
numbers of clocks and small timing constants. RED is a
canonical representation of timed automata state subspaces.
But for large timing constants, REDs performance degrades
rapidly.

Then in 2001, Wang proposed the clock-restriction di-
agram (CRD) [216]-[218], which has a structure similar
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(a) CRD

Fig. 4. Comparison among CRD, CDD, and DDD.

to CDD. The major difference between CRDs and CDDs
is that the arcs from a node in CDDs are labeled with
“DISJOINT” intervals, while those from a node in CRDs
are labeled with upperbounds, which are structurally over-
lapping. Due to this minor difference, CRDs may avoid the
representation fragmentation problem which are observed
in CDDs with respect to some benchmarks. A complete set
of symbolic manipulation algorithms with CRDs, including
weakest precondition constructions, strongest postcondition
constructions, and normalizations, has been developed and
reported in [219]. According to the experience reported
in [219], CRDs lead to clearer algorithm structures in the
manipulation of dense-time state-space representations than
CDDs. It was also reported that with careful programming,
CRD technology outperforms DBM [216], [217], [219].
Similar experiments can be found in [196].

The size of a BDD can be reduced by only recording those
paths to sink TRUE. The CRD, CDD, and DDD for the state
space (0—.171 < 3Axo—x1 < —4AT1—23 < 6)\/(0—.172 <
—1 Az — 3 < 6) is in Fig. 4.

C. Sets of Constraints

For linear hybrid systems, whose timing constraints may
not be pairwise differences of clock readings, the state spaces
can then be represented as unions of convex polyhedra [8],
[102], each of which is bounded by a set of linear constraints.
Early work in this regard is the linear relation analysis [69],
[101] in the forum of abstract interpretation [67], [68].

Wang proposed a BDD-like data structure, called the Ay-
brid-restriction diagram (HRD), for the representation and
manipulation of hybrid automata state spaces and reported
experiments [221].

VI. CONSTRUCTION OF TIME-SPACE REPRESENTATIONS

Since verification problems are highly complex for
real-time systems, only with tight integration between data
structures and algorithms can we effectly verify real-world
system designs. The computation of real-time systems can
be viewed as the interleaving of time progresses and discrete
transitions [111]. Technically, given a state-space represen-
tation, we need to implement two procedures: time(7) and
xtion(n, e) that construct the state-space representations of
time progress and state transition e, respectively, from states
in 7. Then we apply these two procedures to iteratively
construct the state-space representations reachable from the

initial states. Specifically, given the set of transition £ and
the representations for the initial condition I and the invari-
ance constraint ® of a system, we execute the following
loop, until n = 7':

for (n=IA®, n =false; n#n';){
n=n; n=nVeA time(® A\ _,xtion(n,e))
}

After the loop, 7 is the representation for the state space
reachable from the initial condition.

The transitions in timed systems are usually presented as
rules (or guarded commands) in the form “r — z = €;,”
which means that when the triggering condition T is satisfied,
the assignment of € (an expression) to x can be executed.
Computationally

xtion(n, “vr — w:=¢") =z =€eAJx(nAT).

The existentially quantified =z can be removed with a
Fourier—Motzkin elimination.

On the other hand, the basic symbolic manipulation to de-
rive constraints after time progress from a zone, i.e., proce-
dure time() in Section IV-B, is in [113]. For simplicity, we
assume that we are given a zone with only operator < as fol-
lows:

/\:viSci/\/\—ngdj/\/\xk—ykgek.
i j k

Here, z;, y;, 1, and y;, are clock variables, and ¢;, d;, and e,
are integer constants in {—C, —C'+1,...,0,...,C} withC
as the biggest timing constant used in the behavior descrip-
tion and specification. In practice, both < and < can be used.
‘We want to determine the postcondition of time progress, i.e.,
what the zone becomes after the progress of time § > 0, with
0 € R. If we use the symbol z to represent the reading of
clock z after time progress of 6, then the reading of clock x
before the time progress can be symbolically represented as
x — 6. Prior to the time progress, the above zone constraint
must be satisfied; we have

35(520/\/\iwi_6Sci/\/\j_(yj_(s)de)

ANp(@e = 6) = (yr — 8) < ek
_36<—6SO/\/\ixi—(SSCi/\/\j—yj-i-(Sde)
- AN — Ui < ek
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The new existentially quantified variable ¢ can be eliminated
by deriving inequalities like

ri—0—yj+0<cit+dj=wi—y; <c¢i+d;

for each pair of z; — 6 < ¢; and —y; + 6 < d; (including
—6 < 0). Thus, we have

—6§0A/\iazi—6gci/\/\j—yj—i-égdj
36| ANpze —yr < e
AN =yj < ci+di AN —y; < d;
:</\kwk—ykéek )

/\/\i,jxi_yjfci-i-dj/\/\j—yjde

again with a Fourier—-Motzkin elimination of §. Since new
constraints like z; — y; < ¢; + d; can be generated itera-
tively, it seems that we may not be able to converge to a fix-
point in the process of symbolic state-space representation
construction. Fortunately, according to [78], when ¢; + d;
is bigger than the biggest timing constant (i.e., C') used in
the model description and the specification formula, then we
can discard the corresponding inequality. And when ¢; + d;
is smaller than —C, we can replace the inequality with z; —
y; < —C'. The replacements do not change the results of ver-
ification, since they are region equivalent.

A more efficient formulation for calculating the time
progress postcondition is used in [196] and [219] and does
not need to introduce the variable ¢. This is done in two steps
by first deducing transitivity constraints x; — y; < ¢+ d
through each pair of constraints like z; < c and —y; < d,
and then removing all upperbound constraints like z; < c.

With the capability to derive zones after discrete transi-
tions and time progresses, we can (explicitly or implicitly)
construct a zone graph whose nodes are zones and whose
arcs represent time progresses and discrete transitions. How-
ever, such a framework can still be enhanced in efficiency. In
the following, we survey various techniques used in the con-
struction of state-space representations for real-time systems.

A. Backward Versus Forward Analysis

The time progress operation in the previous section rea-
sons into the future. Forward reachability analysis uses such
a basic step (together with operations for forward discrete
transitions) to iteratively construct the representation for the
state spaces forwardly reachable from the initial state.

We can also define a basic manipulation step for backward
time progress. This can be achieved by substituting each x
for z + ¢ instead of = — §. Backward reachability analysis
uses such a basic step (together with operations for backward
discrete transitions) to iteratively construct the representation
for the state spaces backwardly reachable from the goal state.

For the widely used framework of safety checking,
backward and forward analyses can both perform well. But
backward analysis is almost mandatory for model checking
because the modalities of strong “until” U/, U, U, or
EU) and strong “eventually” (), 30, F, or EF) can only be
efficiently handled with backward fixpoint computation.
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B. Compositional Approach

Engineers usually describe their systems as a set of con-
current modules and design each module to work correctly
with respect to uncertainty in the environment. Thus, it is
natural to expect that such defensive designs can signifi-
cantly reduce verification complexity. Various compositional
verification strategies have been proposed to implement such
expectations. Laroussinie et al. [142], [144] proposed a pro-
cedure to iteratively refine the specification formulas in a
timed modal logic which accepts formulas like (e)7 (eventu-
ally, after event e, 1) is satisfied), [6]n (for every time passage
by 6 > 0, n is always true), and (§)n (eventually, there is a
time passage by ¢ > 0 such that 7 is true). Given concurrent
timed automata Aq,...,A,, and such a formula ¢, the
model-checking task is to prove A;]|...|A, E ¢, where
Aq|...|A, is the composition of the concurrent modules.
Then we can refine the specification as ¢/ A,, and inductively
prove Aq|...|An—1 E ¢/A,. Here ¢/A,, is a refinement
of ¢ with respect to A,,. Intuitively, ¢/A,, is obtained by
restricting ¢ with transition relations of A,, encoded in the
timed modal logic. This process is then repeated until we
can prove or disprove true = (... (¢/A,) ...)/A1.

In [223], Wang and Hsiung proposed a compositional
framework, called state-graph manipulators (SGM), to
construct the global state graphs. SGM takes advantage
of compositional verification to support a user-friendly
interface. They use state graphs of concurrent modules as
high-level data objects and package various verification
techniques into SGMs to help users manipulate state graphs
without the prerequisite deep knowledge of verification
technology. They have also shown that by applying various
reduction SGMs to the intermediate state graphs produced
after each binary composition, significant enhancement can
be obtained in verification performance.

In [114], compositionality is utilized in the framework of
refinement of reactive modules [17]. Intuitively, module P
is a refinement of (), in symbols P <X (@, if each observ-
able behavior of P is also a behavior of (). We want to prove
Pi||P; < Q by proving P; < @ and P» < Q. However,
this is usually impossible. The techique in [114] relies on the
derivation of assumptions A; and A, from P; and P, re-
spectively. Then in the framework of assumption—guarantee,
we can prove the guarantee by instead proving P; |42 < A,
A1||P2 j AQ, and A1||A2 j Q

C. On-the-Fly Approach

In some early verification tools [53], the global state-space
representations are constructed without regard to whether
the states are reachable or not. In reality, if we have better
knowledge which allows us to not represent unreachable
states, then significant representation and manipulation com-
plexity can be reduced. This is the basic idea of on-the-fly
construction of state-space representations [45], [110].
Global state-space representations are constructed in a min-
imal way. Intuitively, we do not generate anything that is not
used to answer the verification problem.
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D. Normalizations

One challenge in real-time system verification arises in
the fact that there is not an efficient and canonical (unique)
representation of state spaces. Regions [5] and RED [213]
are canonical but are also of high complexity. Zones, convex
polyhedra [69], [101], DBM [78], CDD [36], DDD [168],
[169], and CRD [216], [217] are not canonical and incur
complexity both in the need to check equality/containment
between representations and in the possibility of repre-
senting/manipulating the same state spaces many times.

The purpose of normalization is to reduce the number of
possible representations for the same state space. A normal
form has to be defined first. The most popular one is closure
form (or tight form) of zones, which means all constraints
are tight [78]. Closure form zones can be obtained with an
all-pair shortest-path algorithm in the style of Kleene’s clo-
sure. In [143], reduced form is defined to have the minimum
number of constraints for each zone and it also exhibits space
efficiency. In [216], [217], [219], the performance of various
normal form possibilities of CRDs are investigated.

Recently, people have also researched using a satisfia-
bility-checking procedure (SAT procedure) to efficiently
decide the emptiness of real-time state space [207]. In this
way, normalization is traded for the efficiency of many
off-the-shelf SAT solvers [171], [238], [239].

VII. REDUCTION TECHNIQUES

Reduction techniques are used to simplify state-space
representations and promote verification efficiency. The the-
oretical foundation is bisimulation equivalence [165], which
characterizes states that can be distinguished by TCTL
models. If we find that two state-space representations ¢
and ¢» describe bisimilarly equivalent states and ¢» has
lower space complexity than ¢q, then we can replace ¢,
with ¢o.

Approximation is another reduction approach, which may
not preserve bisimulation equivalence.

In the following, we briefly discuss several reduction tech-
niques for timed systems.

A. Inactive Variable Elimination

A variable is inactive in a state if along all computations
from the state, the variable will not be read again before being
written to. Two states are bisimilarly equivalent iff all vari-
ables other than those inactive ones have the same contents
in the two states. In [76], Daws and Yovine presented a tech-
nique to detect inactive clocks in timed concurrent systems
with synchronizations. They also presented techniques to de-
tect clocks with equal readings and only represent one of
them in the state-space representation.

Wang and Hsiung presented techniques to detect the in-
activeness of variables in local state graphs considering the
read—write behaviors in concurrent systems [223].

B. Partial-Order Reduction

A major cause for state-space explosion in verification is
that we have to enumerate all the sequences (i.e., total or-

dering) of events in concurrent systems, like the ordering
among the clock readings, clock resets, etc. But in reality, en-
gineers rarely rely on the exact ordering of such sequences to
assure the correctness of their system designs. Partial-order
reduction has been realized in various strategies for untimed
systems [92], [95], [116], [138], [182] and has been proven
to be a valuable technique for untimed system verification.

For timed systems, Pagani presented a notion of indepen-
dence between transitions based on global-time semantics
of timed automata [180]. Yoneda et al. proposed a partial-
order technique for model checking timed linear-time tem-
poral logic on time Petri nets [38], [235], [236]. Bengtsson et
al. used a definition of independence similar to [235], [236]
and let clocks run without synchronization until communica-
tion time in a partial-order semantics. Minea [166] extended
further the work of Bengtsson et al. [38].

C. Internal Transition Bypassing

A transition is internal if it is not observable from the out-
side. By eliminating state information related to internal tran-
sitions, significant reduction in the complexity of state graphs
can usually be achieved. Similar concepts date back to the
internal actions of process algebrae [115], [165]. A recent
similar concept is the invisible transition by Miller and Katz
[164]. Wang and Hsiung extended the technique to timed sys-
tems with concurrent read/write operations [223]. In [148]
and [149], related work by Lawford ef al. on discrete-time
systems can be found.

D. Symmetry Reduction

In a concurrent system with symmetric processes running
different copies of the same program, we can permute the
roles of processes to transform state-space representations
to normalized representations [84]. Symmetry reduction can
be viewed as a special case of static partial-order reduction
[138]. Wang presented a BDD-like data structure and a sym-
metry reduction technique [213]. The technique is quite ef-
ficient for fully symmetric systems with small timing con-
stants. Wang also presented a symmetry reduction method
for general timed systems based on an analysis of zone con-
straints and reported his experiments [218].

E. Approximation

The most general theory of abstract interpretation for
the analysis of computer systems was invented by Cousot
et al. [67], [68]. There are two strategies for approxima-
tion: underapproximations and overapproximations. With
underapproximations (or overapproximations) of state-space
representations, we approximate a reachable state space with
a representation for its subset (or superset respectively) in
the hopes of reducing representation and manipulation
complexity. In [231], Wong-Toi presented a powerful over-
approximation technique called convex-hull approximation.
The idea is to represent a union of convex hulls with a min-
imal convex hull encompassing all convex hulls in the union.
The technique has been proven very useful in checking
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safety properties and has been used in many tools [39], [48],
[75], [183], [237].

However, for BDD-like data structures, convex-hull
approximation is difficult to implement if we consider vari-
able-ordering interleaving between discrete variables and
clock constraint variables. Special approximation techniques
in this regard can be found in [33], [224].

In [210], Tripakis and Yovine developed various methods
to approximate timed systems with untimed automata. The
expectation was to exploit the existing rich infrastructure in
algorithms and tools for the verification of untimed systems.

An interesting technique was developed in the last several
years to automatically generate abstract predicates for the
discretization of timed and hybrid systems [63]. The idea was
to use the counterexample (a computation that invalidates the
specification) capability available in most model checkers.
Initially, we start verification with a very abstract behavior
model. If the model checker at hand says the specification is
satisfied, then we stop. Otherwise, a counterexample is gen-
erated and an abstract predicate is constructed to break the
computation of the counterexample. The process continues
until we either find no more counterexamples or find a coun-
terexample that cannot be broken. Applications of this tech-
nique to hybrid systems can be found in [10], [62].

VIII. TooLs

There are many verification tools for timed systems. In the
following, we discuss some of them based on their popularity
and technical achievements.

A. Modechart Toolset

The modechart toolset (MT) [66], [190] is a joint effort
between the University of Texas, Austin, and the Naval Re-
search Laboratory, Washington, DC. It accepts modecharts
[126], [128], a timed extension of statecharts, and allows nat-
ural description of behavior hierarchy. It includes a graphical
user interface for creating, modifying, and browsing mod-
echarts. It also supports three types of analysis. First, mod-
echarts can be converted to a first-order logic, RTL [127], and
from there, we can use a theorem prover to analyze proper-
ties. Second, MT supports simulation with flexible interfaces
so that users can have vivid visual effects through various
computer animations and virtual reality displays [51]. Fi-
nally, MT also has a model checker for RTL formulas [129],
[208].

B. PVS

PVS [191], [197] is one of the well-known general-pur-
pose specification and verification environments for higher-
order logics. It is based on Shostak’s satisfiability-checking
methods for first-order logics [70]. Intelligent case analysis
is employed to take advantage of efficient techniques for
deciding propositional formulas [98]. Term rewriting tech-
niques are used with heuristics [77], [135]. Also, PVS uses
higher order logics to support type checking, as in traditional
programming languages [192]. The tool can be downloaded
at http://pvs.csl.sri.com/.
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C. Hytech

HyTech [108] is a model checker for linear hybrid
systems [18]. Its specification is written in integrator
CTL (ICTL). Users can describe synchronizations be-
tween processes, specify the urgency of transitions, and
ask for diagnostic error-trace generation. The feature
of parametric analysis, although it is not guaranteed to
halt, may provide extensive power to provide informative
feedback to the users. The tool can be downloaded at
http://www-cad.eecs.berkeley.edu/~tah/HyTec/. A graphical
user interface is provided by the UPPAAL team.

D. Kronos

Kronos is a TCTL model checker for timed automata
[48], [75], [237]. Its timed automata model does not allow
variables and can be cumbersome in the description of
data operations. It supports rendezvous among processes.
It starts verification with on-the-fly construction of the
product automata. Backward and forward analysis are both
supported, but model checking must be executed with back-
ward analysis. The data structure for clock constraints is
DBM. Counterexamples can also be generated. The tool
can be downloaded at http://www-verimag.imag.fr/TEM-
PORISE/kronos/.

E. UPPAAL

UPPAAL [39], [183] has now grown into an integrated
tool environment for modeling, validation, and verification
of real-time systems modeled by a network of automata with
high-level data objects like range-bounded integers and ar-
rays. The project is now a collaboration between Uppsala
University, Uppsala, Sweden, and Aalborg University, Aal-
borg, Denmark. It is basically a forward reachability analyzer
of timed systems. The data structure for clock constraints is
DBM. Users can describe systems with automata templates,
with mode urgency, and with synchronizations. The uniform
graphical user interface allows editing, symbolic simulation,
and verification. Moreover, the simulator allows the users to
configure the level of details of the simulated systems to be
displayed.

Various options are provided for bit-state hashing, inactive
clock reduction, compact memory management, convex-hull
approximation, and counterexample generation. The tool
is available at http://www.docs.uu.se/docs/rtmv/uppaal/.
Recently, Moller did research on extending UPPAAL with
restricted inevitability analysis of the specification proper-
ties like VO <qmn, where d is the deadline for inevitability and
7 is a propositional formula [167]. Hendriks and Larsen in-
vestigated taking advantage of time granularities at different
control locations for verification efficiency [107]. Behrmann
et al. proposed a static analysis technique on triggering
condition [35].

F. PARAGON

PARAGON stands for Process-algebraic Analysis of
Real-time Applications with Graphics-Oriented Notations.
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It was developed at the University of Pennsylvania, Philadel-
phia. Its basic system description language is algebra of
communicating shared resources (ACSR) [152], [184],
which is designed to model time delays created in a priority
scheduling environment. A graphical version of ACSR
is graphical communicating shared resources (GCSR). In
addition to the visual simulator of GCSR, ACSR also has a
verification tool called the VERSA toolkit, which is capable
of rewriting rules to ACSR and exploring of state spaces
of the constructed state machines. It can be obtained at
http://www.cis.upenn.edu/~lee/paragon.html. ACSR has
subsequently been extended with probability for process
failure. A model checker against p-calculus, called LCSR,
is also available.

G. SGM

SGM is a compositional model checker for communi-
cating timed automata [223]. It is designed to provide a
user-friendly verification environment to users who are
nonexperts in verification technology. The framework of
SGM allows users to view process state graphs as high-level
data-objects and package various verification techniques
(e.g., on-the-fly binary composition in forward analysis,
inactive clock elimination, symmetry reduction, etc.) so
that users can manage verification complexity at an abstract
level. Through applying reduction SGMs in between appli-
cation of binary composition SGMs, significant reduction
in representation complexity can be obtained. The tool was
developed as a joint project between Academia Sinica and
National Chung-Chen University, Taiwan, R.O.C. It is now
available at http://www.cs.ccu.edu.tw/~pahsiung/sgm/. A
graphical user interface is also supported.

H. MOCHA

MOCHA [4], [19] is a joint project among the University
of California, Berkeley, the University of Pennsylvania, and
the State University of New York, Stony Brook. The model
of MOCHA consists of discrete-time reactive modules
[17]. The specification formulas are given in alternating
temporal logic (ATL), designed to specify collaborative and
adversary interactions in concurrency. The popular CTL
is a subclass of ATL. ATL model checking is achieved
with the BDD engine VIS [50] developed at the Univer-
sity of California, Berkeley. Other than that, MOCHA
also supports automated refinement checking and coun-
terexample generation. The tool can be downloaded at
http://www-cad.eecs.berkeley.edu/~mocha/.

1. 10A Toolset

The IOA toolset [90], [91] is a platform for the develop-
ment of reliable complex distributed systems modeled with
I/O automata [133]. The toolset accepts timed and hybrid
system descriptions with FIFO message channels. In the
toolset, the following functions are supported.

* A simulator that lets the users observe sample execu-
tions of IOA programs.

* Interface programs that extract axioms and proof obli-
gations from IOA specifications so that users can con-
veniently use theorem provers like Larch Prover [100]
and Isabelle/HOL [176] to verify their system designs.

e The Daikon invariants detector that examines the
output of the simulator and proposes properties that
are likely to be invariants of the IOA program.

* A code generator that synthesizes programs in lan-
guages like C++ and Java from IOA programs.

The toolset is available at http://theory.lcs.mit.edu/tds/ioa

J. TReX

TReX [23] is a tool for automatic analysis of infinite-state
systems. Its input language is timed automata extended with
parameters, counters, and lossy channels. It uses simple
regular expressions (SRE) [2], [22], constrained parametric
DBMs [21], and first-order arithmetic formulas to represent
state spaces. Its core is a forward/backward exploration
algorithm for the construction of state space, although ter-
mination is not guaranteed. It uses efficient extrapolation
techniques to approximate the state-space representations.

Specification is given as an observer automaton. Coun-
terexample traces for diagnosis can be generated and used to
synthesize constraints to remedy the system. Constraints for
liveness properties can also be analyzed and synthesized. The
tool can be downloaded at http://www-verimag.imag.fr/~an-
nichini/trex/.

K CcMC

CMC [142] is a compositional model checker [144] for
networks of timed automata. An extension to hybrid systems
is also available [54]. Like UPPAAL, CMC only supports
the verification of safety properties and time-bounded live-
ness properties. The tool is available at http://www.Isv.ens-
cachan.fr/~fl/cmcweb.html.

L. RED

RED is a project to design a TCTL model-checker with
BDD-like data structures for representation and manipula-
tion of dense-time state spaces. In the beginning, it used data
structure RED (the same name as the tool) for symmetric
systems [213]. The project went on to the development
of a new data structure, CRD, for asymmetric systems
[216]-[218]. Now RED supports symbolic simulation with
a graphical user interface and code and region coverage
estimations [226]. It is also equiped with the capability for
full TCTL model checking, counter example generation,
forward/backward analysis, a C-like model-description
language, comment-line assertion checking, and symmetry
reduction. RED was developed at both Academia Sinica
and National Taiwan University, Taiwan, ROC and can be
downloaded for free at http://cc.ee.ntu.edu.tw/~val. Re-
cent extensions include a BDD-like data structure for the
parametric safety analysis of linear hybrid systems [221],
a model-checking algorithm with weak and strong fairness
assumptions, and a specification language for both states
and events for distributed real-time semantics [220].
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M. PRISM

PRISM [139] stands for probabilistic symbolic model
checker. Users can reason with the probability that a spec-
ification can be satisfied in a probabilistic system [140].
The project has been carried out in the University of Birm-
ingham, Birmingham, U.K. The tool set supports both
discrete-time and dense-time system analysis and is avail-
able at http://www.cs.bham.ac.uk/~dxp/prism/. Please check
Section IX-D for more references.

IX. OTHER ISSUES

A. Symbolic Simulation

Formal verification is highly complex in both time and
space. Many verification tasks are still beyond the reach of
state-of-the-art automatic verification. On the other hand,
simulation has served industry as the main tool for veri-
fication for decades. Compared with formal verification,
simulation is much more efficient and can give users a
realistic visualization of system behaviors. But now with the
realization of systems on a chip containing millions of tran-
sistors, there are not enough resources to run enough traces
to achieve sufficient functional coverage. In the foreseeable
future, it is likely that simulation and formal verification will
complement each other to assure the quality of industrial
designs.

Symbolic simulation is a balance between simulation and
formal verification. Instead of using specific recording of
concrete states, we use symbolic representations of state
spaces. Thus, intuitively, a symbolic trace may cover a huge
set of concrete traces in traditional simulation.

Symbolic simulation can be very useful in the early stage
of debugging. It is now supported in many formal verification
tool packages for timed systems [108], [183], [219]. In sim-
ulation and testing, the concept of coverage has been useful
in estimating how much of a target function has been ver-
ified and identifying coverage holes. Traditional coverage
metrics for VLSI include line coverage, finite-state automata
arc coverage, and state coverage [40]. Wang et al. presented
symbolic techniques for estimating region coverage in dense-
time state spaces [226]. Such techniques can be used to eval-
uate the progress of verification projects.

B. Parametric Analysis

Traditionally, verification problems have been formulated
to only ask for “YES” or “NO” concerning the correctness of
the system designs. In reality, engineers need more informa-
tive analysis techniques which help to mathematically char-
acterize their systems’ behaviors. Such systems are usually
specified with symbolic constants, called parameters, whose
values may engender different behaviors of the models. Set-
ting and calibrating these parameters is a crucial task for the
engineers developing hybrid systems. Parametric analysis is
a research area for deriving constraints for a model to sat-
isfy a specification. Hybrid system model checkers [2], [18],
[21]-[23], [108] naturally come with the capability of para-
metric analysis but do not guarantee termination. In [20],
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Alur et al. showed that when three clocks are compared with
parameters, the emptiness problem of parametric timed au-
tomata is undecidable. Moreover, a parameter « is called an
upper bound (or lower bound) if it is used in a constraint like
r < aorz < o (respectively x > o or z > «), assuming
that all negations have been pushed into the inequality op-
erators of clock constraint atoms. A parametric timed au-
tomaton is bipartite iff none of its parameters are both upper
bound and lower bound. In [121], it is shown that the empti-
ness problem of bipartite parametric timed automata is de-
cidable. A parametric timed automaton is an upper-bound
(or lower-bound) timed automaton iff all its parameters are
upper bounds (lower bounds). In [230], it is shown that the
shape of the parameter valuation spaces of upper-bound para-
metric timed automata are computable in double exponential
time, while the ones of lower-bound parametric timed au-
tomata are in PSPACE.

In the parametric TCTL model-checking framework with
parameters in TCTL formulas and no parameters in the timed
automata, Wang et al. presented algorithms to compute the
characterizations for the parameter solutions [211], [215],
[229].

Emerson and Trefler worked on parametric analysis al-
gorithms in the framework of discrete-time model checking
with branching-time logic PRTCTL, which allows para-
metric quantification of event counts and timing constraints
[85].

Alur et al. pursued the parametric analysis problem in
the framework of discrete-time systems with parameterized
linear-time temporal logic [13]. Especially they researched
the emptiness, universality, and finiteness problems of the
satisfying parameter valuation set. They also discussed the
optimization problem according to certain criteria.

Wang reported a speed-up technique for parametric safety
analysis of hybrid systems [221]. The observation is that
while exploring the state space of hybrid systems, once a pa-
rameter constraint (i.e., one which involves only parameters)
is derived along a computation, it must be satisfied from then
on. Thus, while we are constructing the state-space represen-
tation, we can also keep a recording of the parameter space
representation (which is usually much simpler). If a newly
constructed state subspace does not increase the parameter
space, then we can prune the exploration. It is reported that
for some benchmarks, the technique can significantly en-
hance the performance of parametric analysis. Moreover, in
some cases, the parameter space converges, while the state
space does not.

C. Controller Synthesis

Following the seminal work of Ramadge and Wonham
[186], the use of automata and formal languages to reason
about controllability of discrete event dynamic systems has
received much attention in the control community in the past
decade. The controller synthesis problem, simply speaking,
is to find out whether, for a given system, there is a controller
through which the interaction between the system and the
controller results in only computations of “good” behavior.
(If such a controller exists, it is also desirable to construct it
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effectively.) Brandin and Wonham also extended the work to
discrete-time models [49].

Interested readers are also referred to [28] for a symbolic
approach for controller synthesis in the framework of timed
automata. As opposed to providing only yes/no answers in
the conventional framework of controller synthesis, recent
papers [27], [29] dealt with quantitative properties of behav-
iors for controllable timed automata.

In [229], Wang and Yen presented a unified framework for
controller synthesis and parametric analysis. They developed
an algorithm to compute the parametric characterization for
the synthesis of controllers.

D. Probabilistic Analysis

The idea of probabilistic model checking is to attach prob-
ability distribution to transitions so that we know how prob-
able it is that a specification can be satisfied [6], [140], [204].
Kwiatkowska et al. proposed probabilistic TCTL to put down
statements like [140]

z. [ready VU (x < 3 A run)] ¢

which means that the probability of transiting from state
ready to run within 3 s is greater than 0.6. Note here that
the clock constraint is used with a reading freezing modal
operator [15], [113].

Sproston discussed the model-checking problem for prob-
abilistic hybrid systems [204].

E. WCET Analysis

Verification frameworks like TCTL model checking as-
sume the timing constants used in transitions and specifica-
tions are given by users. But in practice, to come up with
precise estimation of such timing constants can be a diffi-
cult task. The research on WCET analysis [86] focuses on
the execution time analysis of program implementations. The
cycle times of machine instructions and hardware features
like cache lookahead and interrupt handling all have to be
taken into consideration in the analysis.

In [212], Wang has proposed an algebraic framework to
compute the characterization of execution times of dynamic,
recursive, and concurrent systems.

X. SUMMARY AND PERSPECTIVES

This is a survey of the rapid development of formal
verification technology for real-time systems. Theoretically
speaking, formal verification has the advantage of functional
completeness. That is, if a formal verification tool tells you
that a system description is correct, then the design is indeed
free of bugs in the abstraction level of the description. In
contrast, it is usually difficult to know when a verification
task is complete with simulation and testing. But at this
moment, with its intrinsic high complexity, formal verifi-
cation still presents one of the most formidable challenges
to computer science, engineering, and human intelligence.
As a consequence, people usually have to accept much
more abstract system models in formal verification than in
simulation and testing. Such high-level abstractions usually

lead to insufficient description power for real-world systems
and false negations as verification results.

Yet, through the effort of many researchers around the
world in the last two decades, we feel that in the future,
formal verification will become an indispensible technology
in guaranteeing the quality of real-time system designs.
Moreover, even though fully automatic formal verification
may still be beyond the reach of the state of the art for the
foreseeable future, the technology we have accrued in the
research of formal verification of real-time systems will
still be a valuable asset in automating the verification of
large-scale systems. Instead of promoting formal verification
as an ultimate solution, which can only answer YES/NO if
the computers are fortunate enough to complete the formal
verification tasks after several months, formal methods for
fast and incremental feedback to engineers and managers
should be better appreciated. For fast feedback, we feel
that abstraction techniques will be important. If verification
tools can quickly respond albeit with imprecise results,
engineers can use the response as a guideline to revise
their industrial designs. As for incremental feedback, at
this moment, there is a lack of such devices for verification
management by numbers. We propose the use of symbolic
coverage estimation techniques [226] for this purpose, since
coverage techniques have already been proven valuable in
the past few decades in industry. For example, it would
be difficult to argue for the value of your work when after
three months, the computer is still running the PSPACE
verification problem without termination. But if the formal
verification tool can tell you that after three months’ work,
60% functional coverage has been achieved, then you can
perhaps guide the tool to work on coverage holes for better
verification efficiency. Moreover, management will have a
better appreciation for your effort and a rough estimation of
the resources needed to obtain sufficient confidence in the
project. For example, we may very well integrate coverage
techniques with reachability analysis of timed automata as
follows [226].

Compute the numerical estimationsv and f,
respectively, of the initially covered portions
and the whole target function.

for(n=1A®;v/f < threshold;) {
n=nV®oAtine(® A\ _pxtion(n,e));
Compute the new numerical estimation v

of the covered portions of the target function.

Typical coverage metrics include visited-state coverage,
line coverage, region coverage [226], etc. In this framework,
the managers and engineers have better numerical decision
support in deciding when to stop the verification session by
setting a goal threshold of functional coverage.
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