
University of Massachusetts Amherst

From the SelectedWorks of Ramesh Sitaraman

September, 2004

A Transport Layer for Live Streaming in a Content
Delivery Network
Leonidas Kontothanassis
Ramesh Sitaraman, University of Massachusetts - Amherst
Joel Wein
Duke Hong
Robert Kleinberg, et al.

Available at: https://works.bepress.com/ramesh_sitaraman/18/

http://www.umass.edu
https://works.bepress.com/ramesh_sitaraman/
https://works.bepress.com/ramesh_sitaraman/18/

PROCEEDINGS OF THE IEEE 1

A Transport Layer for Live Streaming in a Content
Delivery Network

Leonidas Kontothanassis†, Ramesh Sitaraman‡, Joel Wein‡,
Duke Hong‡, Robert Kleinberg‡§, Brian Mancuso‡

David Shaw‡, Daniel Stodolsky‡
† HP Cambridge Research Lab ‡ Akamai Technologies § MIT Department of Mathematics

One Cambridge Center Eight Cambridge Center 77 Massachusetts Avenue

Cambridge, MA, 02139 Cambridge, MA, 02139 Cambridge, MA, 02139

Abstract— Streaming media on the internet has experienced
rapid growth over the last few years and will continue to increase
in importance as broadband technologies and authoring tools
continue to improve. As the internet becomes an increasingly
popular alternative to traditional communications media, internet
streaming will become a significant component of many content
providers’ communications strategy. Internet streaming, however,
poses significant challenges for content providers since it has
significant distribution problems. Scalability, quality, reliability,
and cost are all issues that have to be addressed in a successful
streaming media offering.

Streaming Content Delivery Networks attempt to provide so-
lutions to the bottlenecks encountered by streaming applications
on the internet. However only a small number of them has been
deployed and little is known about the internal organization of
these systems. In this paper we discuss the design choices made
during the evolution of Akamai’s Content Delivery Network for
Streaming Media. In particular we look at the design choices
made to ensure the network’s scalability, quality of delivered
content, and reliability while keeping costs low. Performance
studies conducted on the evolving system indicate that our design
scores highly on all of the above categories.

Index Terms— content delivery, streaming, performance, fault
tolerance

I. INTRODUCTION

The internet broadband revolution is likely to significantly
change the way that we interact with computers and the
internet as a whole. Internet streaming is expected to play
an increasingly important role in an on-line world with high-
bandwidth connections. However even when end-users have
high-bandwidth connections to the Internet, the problem of
distributing the content to them will be a limiting factor for
any content provider that wants to reach that audience.

Streaming media content delivery networks (Streaming
CDNs) [1], [2] attempt to address the stream distribution
problem much the same way that Content Delivery Networks
(CDNs) [3], [4] address the object distribution problem for
regular HTTP traffic. However, there exist significant differ-
ences between the two spaces. Streaming objects are typically
much larger than web objects and can impose significantly

†This work was done while the author was with Akamai Technologies
§Partially supported by a Fannie and John Hertz Foundation Fellowship.

This work was done while the author was with Akamai Technologies.

higher pressure on caches. Furthermore, live streaming does
not lend itself to caching at all, and requires much tighter
cooperation between the producers of the content and the
content delivery network. Finally, latency between servers and
clients is less of a concern in the context of streaming than
it is in the context of HTTP content delivery. This is due
to the fact that stream startup times (typically 2-5 seconds)
are relatively high compared to the latency between servers
and clients which rarely exceeds a few hundred milliseconds
in the worst of cases. Given these differences there is much
debate on whether and how much the architecture of streaming
CDNs should resemble that of CDNs for HTTP delivery.
The most successful CDNs for HTTP delivery employ a
geographically distributed structure, while in the streaming
space a number of commercial CDNs have adopted more
centralized solutions. Akamai Technologies [5] has adopted
the distributed approach. While we present in Section II some
of the data that motivates this design choice, the goal of this
paper is not to justify this decision; rather, given the choice
of a distributed architecture, we describe the architectural
challenges it presents, the solutions we implemented, and the
results achieved, focusing almost entirely on live streaming.

While designing and implementing the network we have
kept the following goals in mind: scalability, high quality,
availability, and low cost. From a business perspective a
content delivery network has to score well in all four of the
above categories, in order to attract customers, but additional
characteristics are also required. For example customers need
to maintain a sense of control over their streams, be able
to purge content from the network as if it was located in a
single centralized server, have both historical and real-time
statistics on their traffic, be able to control their cost structure
by determining how many streams to serve, and finally be able
to effect admission control of end users to their streams. While
undeniably important, and covered by our CDN solution, these
other characteristics of a streaming CDN are not covered in
this paper.

Scalability: We would like to have a system where capacity
constraints can be resolved simply with additional
hardware deployment. This implies that the design
can not have any inherent bottlenecks either on the

PROCEEDINGS OF THE IEEE 2

Entrypoint Entrypoint

Encoder

Failover

Ann
Ann

Edge Region

Set Reflector Set Reflector Set Reflector......................

Subscribe Subscribe
(if necessary)

Subscribe
(if necessary)

Data

Data Data Data

Data Data

Data Data Data

Ann
Sub

Sub

Sub

Multicast Communication

Ann = Announcement
Sub = Subscription
Data = Stream Data Transmission

Point to Point (Unicast) communication

Data Subscribe Data Subscribe

edge reflector edge reflector edge reflector

streaming server streaming server streaming server streaming server

To end users

Fig. 1. High level diagram of a streaming CDN

number of streams that it can carry, or the popularity
(i.e. number of end users) for any of the streams.
In this context we introduce a mechanism called
portsets that allows us to virtualize the concept of a
streaming CDN. Using this design we can allocate a
large number of virtual CDNs–enough to handle any
anticipated streaming growth–but we can multiplex
them over the same physical infrastructure to reduce
cost when the additional capacity is not needed.

Quality: The network should deliver quality that is equal
to or better than any streaming solution based on
centralized client-server architectures. The basic idea
behind our approach is to reflect a stream across
multiple intermediate locations and reassemble it on
the edge of the network before transmitting it to
end users. Retransmissions of lost packets, and rapid
transmission of early packets (a technique we call
prebursting) allow us to improve quality even further.

Reliability: Our network should have no single points of
failure. Software, machine, and even wide area net-
work failures should be dealt with transparently when
possible and should result in graceful degradation of
service. (Obviously delivering a stream to an end
user inside a failed network is not possible.) Our
approach relies on placing redundant components
of our streaming CDN in multiple networks and

implementing a failover scheme in the presence of
failures.

Cost: The network should minimize the cost of stream-
ing delivery for customers. While this is a well
understood priority in business environments it is
often at odds with the preceding goals. It is only
through detailed analysis of the system and careful
engineering that all of the mentioned goals can be
reconciled.

The mechanisms described in this paper are implemented on
a commercial streaming CDN spanning thousands of servers,
and tens of countries and networks. It is integrated with the
three dominant streaming formats in the marketplace today
(Windows Media, Real, QuickTime) [6], [7], [8] and is actively
serving millions of streams per day. Large streaming events
are handled on a regular basis with the largest events serving
more than 80,000 concurrent users, and delivering more than
16Gbits/sec of concurrent streams.

The rest of this paper is organized as follows: Section II
discusses the original design of our live streaming CDN.
The goal of that design was the reliable delivery of a small
number of highly popular events. Section III presents the
design modifications necessary to eliminate all bottlenecks
and achieve practically unlimited scalability using virtual
CDNs. Section IV presents the mechanisms used to ensure
that end-user quality is as high as possible. In particular

PROCEEDINGS OF THE IEEE 3

 0

 10

 20

 30

 40

 50

 60

 0 3 6 9 12 15 18 21 24 27 30

Pe
rce

nt f
ailu

res

Day of the month

Centralized System
Decentralized System

Fig. 2. Failure rates for centralized vs. decentralized stream delivery.

we present three different techniques used to enhance end-
user experience: lost packet recovery, redundant delivery, and
prebursting. We also quantify the performance implications
of those techniques by presenting experimental data from our
distributed monitoring agents. Section V discusses the types of
failures possible in our system and the mechanisms we have
developed to tolerate such failures. In section VI we present a
few important performance metrics that showcase the ability of
the system to match our initial design goals. We present related
work in section VII and our conclusions in section VIII.

II. AN EARLY CONTENT DELIVERY NETWORK FOR LIVE

STREAMING MEDIA

Figure 1 depicts a high level view of our streaming CDN
as it is used in the context of live streaming; in this paper
we omit all discussion of issues arising in our CDN for on-
demand streaming media. Historically our initial focus was
the design of a streaming CDN that could be used for very
popular events. As can be seen from the figure there exist two
types of machines in the system: streaming servers that serve
end users, and transport servers that consist of entrypoints and
refelctors that distribute a stream from a customer’s encoder
to the streaming servers.

Streaming servers are organized in groups deployed in
individual data centers that are tied together by a private local
area network. We often refer to such a collection of streaming
servers as a region. Regions are deployed widely so as to
provide good geographical and network coverage. They also
provide fault tolerance through redundancy at many levels.
Since each region contains multiple servers the failure of any
one server can be detected and traffic directed to other servers
in the region. End users are directed to a particular edge region
by the Akamai mapping system, which maps end users to
regions to which they have good connectivity. Network failures
that may isolate entire regions are also detected by mapping
and traffic is redirected to alternate, better connected regions.
The details of the mapping system are beyond the scope of
this paper.

Our choice of a wide distribution of edge regions was par-
tially motivated by studies we have conducted suggesting that
centralized solutions, due to varying network conditions, can

suffer significant outages and other problems when monitored
over extended periods of time. Figure 2 portrays one such
experiment, in which we monitored the failure rate of a stream
served from just one of our US-based edge regions as opposed
to that of the same stream served from our entire distributed
network. The stream was being accessed by approximately 30
agents distributed 70% in the US, 20% in Europe and 10% in
Asia and the experiment covers a monitoring period of 30 days
and 15,000 data points. While for many days the failure rate
experienced by the centralized solution is equivalent to that
of the decentralized one, there exist days during which the
centralized solution exhibits a large number of failures. Those
failures stem from network connectivity failures between the
agents and the centralized region, since we ensured that server
load was not an issue while the experiment was run.

The existence of fault tolerant edge regions is just the first
step towards a successful streaming CDN. The issue that we
address in this paper is the mechanisms necessary to get
live streams from an encoder to those highly distributed edge
regions with good enough quality so they can then be served
effectively to end users.

Streams typically originate in a customer’s encoder. A
collection of machines, termed entrypoints acts as origin
proxies of customer’s encoders. Encoders are required to either
connect to, or accept connections from entrypoint machines
and send the stream data to the entrypoints. Stream data is
then fanned out to a larger collection of machines termed set
reflectors. Set reflectors in turn propagate this data to edge
regions. The use of set reflectors is primarily motivated by
the desire for scalability – by creating a transmission tree we
can distribute streams to much larger number of edge regions
than we would have been able to otherwise. Streams arriving
at a region are multicast on the private network interface
shared by all streaming servers in that region, with a unique
multicast address associated with every stream. All servers
in an edge region can then join the appropriate multicast
addresses associated with the streams that the end users are
requesting, get the data for those streams from the shared
back end network, and serve it to the end users. Serving
data to end users is done via unicast since ip multicast in
wide are networks is largely unavailable. The entrypoint and
set reflector machines which are responsible for the stream
transport are also known as the reflector network, a term that
will be used throughout this paper.

This hierarchical design we presented has several desirable
properties:

• Stream data can be distributed in a scalable fashion to a
large number of edge regions where it can be optimally
served to end users. In addition to great scalability this
approach allows streams to be served from an edge region
to which the client has good connectivity.

• Entrypoint machines can be chosen to provide good
connectivity to a customer’s encoder, thus ensuring good
first-mile behavior.

• The intermediate layer of set reflector machines can be
placed in locations with good connectivity/peering to
ensure high quality delivery of the streaming data to edge
regions.

PROCEEDINGS OF THE IEEE 4

1 2 3 4 p 5 6 p

7

8

lost

p = 1 ^ 2 ^ 3 ^ 4 7 = 5 ^ 6 ^ 8 ^ p
Fig. 3. Partity scheme across a single stream.

From a business perspective this design is ideally suited to
serve a small number of very popular streams. The overheads
associated with the transport of streams between encoders
and edge regions can be amortized over a large number of
end users. Furthermore, dealing with a small number of very
popular streams has significantly less operational risk since
encoders and entrypoints can be under human supervision
for fault tolerance purposes. Out goal however, was broader
than this design could meet. We were interested in scalability
both across popular and unpopular streams, low costs of data
transport regardless of stream popularity, and low packet loss
across our transport layer. We explain these issues and our
solutions to them in detail, in the coming sections.

III. SCALABILITY ENHANCEMENTS

Scalability limitations of the first design were detected early
on as the amount of traffic on the system increased. While
our initial design was targetted at highly popular live streams,
we discovered that at any point in time many streams were
not very popular. Delivering those streams to edge regions
where they were not needed overloaded the set reflectors and
increased the cost of the system unnecessarily. Solving this
problem required the development of a subscription system
which is described in section III-A.

Even after the development of a subscription system we
discovered that certain set reflector machines could get over-
loaded due to large load imbalances. Commonly, certain edge
regions would become very active and request a large number
of streams. If all popular edge regions happened to talk to the
same set reflector they could overload that machine or set of
machines, even though the set reflector subsystem as a whole
had plenty of spare capacity. Our solution to this problem
was to group streams in buckets that we termed portsets. We
could then assign different portsets to different set reflectors
ensuring that the load on any one set reflector machine did not
exceed the machine’s capabilities. The details of the solution
are described in section III-B

A. The Reflector Subscription System

In order to implement subscriptions we had to start by
modifying the commercial streaming servers to propagate
end-user requests to the transport layer of our CDN. Since
all commercial servers support plugin extensions we simply
created plugins that trap stream requests from end users and

 0

 20

 40

 60

 80

 100

 0 10 20 30 40

Los
s R

eco
ver

y (%
)

Overhead (%)

Trace1
Trace2
Trace3
Trace4

Fig. 4. Overhead and recovery rates of parity scheme across a single stream.

propagate them to our transport layer. However, instead of
having each streaming server propagate stream subscriptions
independently, we have set up our plugins to multicast all
stream requests on their region’s private network. Those re-
quests are then picked up by a separate, in-region process
called an edge reflector. Edge reflectors keep track of which
servers are requesting a stream, aggregate the requests and
propagate the aggregated requests upstream to the set reflector
machines. While all edge reflectors in a region accept subscrip-
tion requests, only a small subset of them (in the simplest case,
one edge reflector) take any action on behalf of those requests.
This small subset is selected via a leader election process and
is often referred to as the set of lead edge reflectors.

When edge reflectors from a region propagate stream re-
quests to set reflectors they decide which set reflector machine
to propagate to by looking up a domain name uniquely associ-
ated with the region where the requests originate. For example
the number one leader edge reflector in region 1283 would
look up the name n1.r1283.reflector.net to find its parent set
reflector. The use of DNS as the mechanism for determining
the parent set reflector of a region provides tremendous flexi-
bility. It allows us to remap an edge region to a different parent
set reflector when connectivity between them deteriorates, or
when the parent machine suffers a hardware failure, without
having to manage configuration files on individual machines.
Furthermore we get all the scalability and reliability properties
of DNS for free.

Once a subscription request for a certain stream has been
received by a set reflector, it still needs to be propagated to
the appropriate entrypoint machine where the stream enters
the content delivery network. This is slightly more compli-
cated, since set reflectors do not have a-priori knowledge
of a stream’s origin. The way this knowledge is built, is
by requiring entrypoints to announce to set reflectors which
streams are active on a particular entrypoint. Set reflectors can
then use this announced information to chain a subscription
to the appropriate entrypoint.

Our experimentation with the system shows that the cost of
the subscription and announcement metadata communication
is negligible when compared to the volume of the actual stream
data being transmitted. Furthermore the latency associated

PROCEEDINGS OF THE IEEE 5

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 lost

17 18 19 20 21 22 23 24

p p p p p p p p

Fig. 5. Partity scheme across multiple streams.

with propagating the subscription is on the order of tens of
milliseconds and is completely overshadowed by the normal
startup times associated with streaming players.

B. Multiple Virtual Reflector Networks: Portsets

Subscriptions and announcements ensure that only watched
streams get propagated to edge regions. However, they do not
adequately control the path that those streams take through the
reflector network. Edge regions simply look up their parent set
reflectors and request streams through them. The downside of
this approach is that it is hard to bound the number of streams
that can be requested through an individual set reflector. Set
reflector traffic scales proportionally to two parameters; the
number of unique streams it is serving and the number of
edge regions to which it is serving them.

Limiting the number of edge regions served per set reflector
is relatively straightforward. We can organize set reflectors in
set reflector regions which behave similarly to edge regions.
A set reflector receiving a request from an edge region simply
multicasts that request on its own region’s private back end.
A lead set reflector aggregates all requests from the region
and propagates them to the appropriate entrypoints. Incoming
data to the lead set reflector from the entrypoints is also
multicasted on the private back end, where it is picked up by
non-leader set reflectors and then relayed to the edge regions.
This way we can scale the number of edge regions we can
serve by increasing the size of a set reflector region. However,
managing how many unique streams a set reflector region can
handle remains to be addressed.

Our mechanism for managing the number of unique streams
per set reflector region is a stream bucketing concept called a
portset. A portset is no more than a collection of streams that
is supposed to be transported through the same set reflectors.
We have achieved this by modifying the DNS names that edge
reflectors use, to look up their parent set reflectors. Those
DNS names contain an additional component that is the portset
identifier. For example a lead edge reflector in region 1283,
trying to get a stream in portset 4096 would look up the name
n1.r1283.s4096.reflector.net. Once again the flexibility of the
DNS system has proven invaluable for our system. If traffic
on particular portsets is low then the DNS names for those
portsets can resolve to the same set reflector. As traffic grows
then the DNS names can be changed to resolve to different
set reflectors for different portsets allowing us to scale up or

 0

 20

 40

 60

 80

 100

 0 10 20 30 40

Los
s R

eco
ver

y (%
)

Overhead (%)

Trace1
Trace2

Fig. 6. Overhead and recovery rates of parity scheme across multiple streams.

down the reflector network based on customer demand, rather
than having to size it based on peak demand.

IV. QUALITY ENHANCEMENTS

Having a distributed, scalable content delivery network is
only useful if data can be transported to the edge servers
reliably and with high quality. Live streaming is a particularly
vexing problem since there is little margin for error when
sending a stream from an encoder to the edge servers. Edge
servers typically keep a buffer of a few seconds’ worth of
stream data. Data arriving at the server gets appended to the
end of the buffer while data at the front of the buffer gets
streamed to end users. The window of opportunity during
which one can recover lost packets is determined by the size
of this buffer and is therefore only a few seconds wide.

We use two different techniques to ensure relatively loss
free delivery of data to edge servers while incurring minimal
additional overhead/cost. . The first technique seeks to make
each link in our reflector system as reliable as possible,
while the second technique attempts to synthesize data across
multiple paths to stitch together a complete, lossless stream. To
further improve stream quality we use a third technique called
prebursting that attempts to address stream startup issues that
arise in a distributed streaming network in which streaming
server only get a stream feed in response to end user requests.

A. Packet loss recovery

When an end user requests a live stream from an edge
server, that server has to in turn get the stream from the
encoder that is producing it. Chaining the subscription requests
is described in section III-A, but after a request has been
propagated to the stream’s entrypoint and data is flowing to
the edge server we need to make sure that the data flows with
as little packet loss as possible. One possibility would be to
use TCP as the transport layer between the entrypoints, set
reflectors, and edge reflectors but TCP’s recovery mechanism
from packet loss has undesirable properties like backoff and
bandwidth throttling than can harm an end user’s experience.
We therefore decided to explore recovery schemes on top of
a UDP transport layer.

PROCEEDINGS OF THE IEEE 6

Encoder

p1

p2

p3

p4

EP

m1

m2 m3

m4

Reflector
Set Set Set Set

Reflector Reflector Reflector

Fig. 7. Multipath error correction scheme.

While a number of researchers has looked into packet-
loss recovery techniques, our goal was to look at actual
traces collected from our early streaming network and focus
on recovery techniques that introduced minimal overhead.
We collected traces of packet flows that were at least one
hour long (some are longer), and span a million packets or
more each. We looked at four different mechanisms for lost
packet recovery: parity packets within a stream, parity packets
across a combination of streams, a variation of Reed-Solomon
codes [9], and plain retransmits.

Figure 3 shows the idea behind a stream parity scheme. For
every k packets of the stream, the entrypoint in our system
would introduce a parity packet that is computed as the XOR
of the previous k packets. Since packets are not of fixed
size we can assume that smaller packets are padded to the
maximum packet size with zeroes. Recovering a lost packet
within a parity window is as simple as taking the XOR of the
k packets that have arrived at the edge. Clearly loss of two or
more packets within a parity window implies that recovery is
no longer possible. A tuning parameter for this scheme is the
frequency at which parity packets are inserted into the stream.
We evaluated four different variations that incurred overhead
of 3.125% (1 parity packet every 32 regular packets), 6.25%
(1 parity packet every 16 regular packets), 12.5% (1 parity
packet every 8 regular packets), and 25% (1 parity packet
every 4 regular packets).

Figure 4 shows the percentage of lost packets that is
recovered as a function of the number of parity packets
introduced into the packet flow for four different stream traces.
Surprisingly enough the substantially higher overhead schemes
do not provide much of an additional benefit. The reason for
this is that lossiness tends to be bursty rather than random.
Therefore even high overhead schemes are unlikely to be able
to recover when a number of contiguous packets is lost.

The second scheme we evaluated was parity packets across
multiple streams. The idea is depicted graphically in figure 5.
Instead of thinking of packets as a one dimensional structure
we organize them logically in two dimensions. Parity packets
then take the form of a row inserted along the second dimen-
sion. For example in our figure we show packets organized in
rows of 8 packets and a parity row inserted for every three data

TraceId Overhead Loss Recovery
r1003-0411 50% 93.9%

100% 98.9%
r419-0331 50% 89.2%

100% 91.9%
r421-0322 50% 96.2%

100% 98.7%
r686-0322 50% 98.7%

100% 99.5%

TABLE I

OVERHEAD AND RECOVERY RATES OF MULTIPATH ERROR CORRECTION

SCHEME.

rows. This allows us to tolerate bursty losses of contiguous
data packets since the parity packets are introduced along the
second (non-contiguous) dimension. The disadvantage of this
approach is that parity packets are relatively far away from
the data packets that they complement and thus recovery of
a packet can take longer and may not happen in time for the
recovered packet to be useful. However this problem can be
mitigated by implementing this parity scheme across packets
from multiple streams rather than a single stream. Combining
packets from multiple streams implies a higher packet rate and
thus less wait time before a lost packet can be recovered. This
way recovery can happen within the timeframe allowed for
any single stream while maintaining the property that bursty
packet loss can be tolerated.

Figure 6 shows the efficacy of this approach in recovering
lost packets for two different multiple-stream traces that we
have collected. As can be seen it is almost twice as successful
than the simple parity scheme in recovering packets for
comparable amounts of overhead.

The third scheme we evaluated took advantage of the fact
that our system allows for delivery of packets across multiple
paths. Rather than trying to introduce redundant packets within
a single link we rely on a variation of Reed-Solomon codes
to compute m derivative packets from k original packets. The
new derivative packets are derived from the original k packets
through simple linear functions and have the property that
the presence of at least k out of the m derivative packets
is sufficient to compute the k original packets by solving
a simple system of linear equations. The scheme is shown
graphically in figure 7. We evaluated two different versions
of this scheme where we compute three (50% overhead) and
four (100% overhead) derivative packets for every two original
packets. Schemes with larger k and m value result in more
complex equations and can end up being too computationally
intensive for edge servers to be successful. As we can see
in table I taking advantage of multipath delivery and Reed-
Solomon encoding is quite effective in recovering lost packets
with recovery percentages ranging between 91.9% and 99.5%.
Nontheless the fact that this scheme requires at least 50%
overhead makes it an unlikely candidate for packet recovery.

The last scheme we evaluated was a best-effort retransmit
system. We modified our transport system to keep a buffer of
the most recent n packets it had forwarded to each destina-
tion. Destinations examine the sequence numbers of received
packets and decide that a packet with sequence number i

PROCEEDINGS OF THE IEEE 7

 0

 2

 4

 6

 8

 10

 0 1 2 3 4 5 6 7 8 9 10

Re
xm

it p
kts

 (%
)

Link loss(%)

"oothresh1"
"oothresh2"
"oothresh4"
"oothresh8"

Fig. 8. Retransmit overhead as function of packet loss for different out of
order tolerance thresholds.

is lost if they receive packet i + k without having received
packet i. They then simply request the lost packet from their
upstream parent which will send it to them if it exists in its
buffer of recently sent packets. Notice that this is a best effort
approach; a child node will not wait for a missing packet
indefinitely and parent nodes only promise that they will hold
packets for retransmits for a short time period. An important
tuning parameter for this scheme is the out-of-order tolerance
k that receiving nodes need to have. Clearly packet re-ordering
is a common phenomenon on the Internet and we need to
ensure that we do not request and resend packets simply
because they have arrived out of order. On the other hand
having a very large out-of-order window could result in lost
packets being requested and resent too late to be useful to the
streaming server. The retransmit scheme is extremely effective
in recovering lost packets. More than 99% of all lost packets
are recovered using this scheme. Figure 8 shows the overhead
incurred by the retransmit scheme for four different values of
the out-of-order window. As can be seen from the figure, a
window that only tolerates simple packet transpositions (i.e.
packet n+1 arrives before packet n) can occasionally result in
relatively high retransmission costs. Fortunately the overhead
diminishes quickly for window sizes of 2 or more and thus
we can have both quick loss detection and low retransmit
overhead.

Given the evaluation results presented we decided in the end
to go with a retransmit scheme in our CDN. It provided good
loss recovery properties (as good or better than the other three
schemes), and had the additional advantage that it induced
overhead only when packets were indeed lost, rather than all
the time.

B. Adaptive multipath transmission

Even with retransmits it is possible for a particular link
in our transport layer to remain lossy, or even worse to be
down. In order to address this failure case we took advantage
of the fact that our system can easily support multipath
transmission. Packets originating from a particular entrypoint
can be replicated and sent across multiple set reflectors to a
single edge region. The packets are then recombined at the

edge region, duplicates are removed, and the clean, lossless
stream is handed to the streaming server that can then send
it to end users. While multipath transmission can provide
extremely high quality and virtually loss-free transmission of
live streams, it has one great disadvantage. It is exceedingly
costly, especially for unpopular streams. Imagine a case where
a single user requests a live stream from an edge server. That
stream has to leave the entrypoint, arrive at a number of set
reflectors equal to the number of paths that we want to use, and
then be forwarded to the edge region so it can be recombined
before being streamed to the end user. If we assume three
transmission paths to ensure lossless delivery, then 6 copies
of the stream have to travel through the reflector network
for the single copy served to the end user. Unfortunately the
economics of a such a scheme are unacceptable, especially
since the additional paths are needed only rarely.

We have modified the subscription system described in III-A
to allow us to use multiple path transmission only when it is
necessary. The modifications were relatively straightforward
with one notable exception described below. We started by
modifying the streaming servers to provide stream quality
information to the edge reflectors. Therefore it is possible
for the streaming servers to tell the reflector system whether
they are getting a good quality stream or not. The edge
reflectors can then adapt the number of paths used in fetching
the stream to a region based on this quality information. As
described in section III-A edge reflectors elect a small number
of leaders responsible for fetching streams into the region. We
can change the number of leaders to be elected (and thus the
number of copies of a stream fetched into the region) based
on the quality information provided by the streaming servers.
A long time period of good quality information triggers a
reduction in the number of leaders and consequently the
number of paths in use. A short time period of bad quality
information triggers an increase in number of leaders and
consequently the number of paths in use. Clearly the lowest
possible number of paths in use is one, while we have capped
the maximum number of paths that can be in use to three.

A complication to this system arises when the edge region
has determined that a single path provides sufficient data
quality but the path through which the data is arriving suddenly
goes down 1. In that case we need to rapidly detect the
loss of the one active link and recover by bringing into
use the secondary and/or tertiary paths for that edge region.
Detection has to happen quickly enough to ensure that end
user experience is not affected.

In order to achieve this kind of rapid detection we have
modified our entrypoint nodes to ensure that each stream has
at least one packet per second. For requested streams that fail
to deliver a packet for two seconds in a row and are using
a single path, the edge reflector processes assume that the
primary link is dead and initiate subscription requests through
the secondary and tertiary links in order to recover. Experi-
ence running the adaptive multipath transmission system in
conjunction with retransmits indicates that it results in close

1A path can go down either because the upstream node has died, because
the network link between the upstream node and the edge region has gone
down, or because the downstream node within the edge region has died

PROCEEDINGS OF THE IEEE 8

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 3 6 9

Re
buf

fers
 pe

r M
inu

te

Day

Prebursting
No Prebursting

Fig. 9. Effect of prebursting on stream rebuffering.

to lossless streaming at relatively low cost. Packet loss for
streams reconstructed at edge regions is almost always below
0.1%, while the average number of fetch paths used per stream
varies between 1.1 and 1.2 across the network. The fact that the
average number of paths is greater than one indicates that some
kind of multipath transmission is necessary in order to achieve
high quality under all circumstances, but it is important to
make it adaptive in order to keep costs under control.

C. Prebursting

The final technique used in our transport layer in order to
improve quality is prebursting. The idea behind prebursting is
to deliver a stream to a server at a higher rate than the encoded
rate for the first few seconds of the streaming session’s life.
We conducted studies showing that such a delivery behavior
results in better end user experience mostly through reduced
buffering time. The reason that prebursting reduces rebuffering
and initial buffering times is that it allows the streaming server
to build its own buffer of the stream rather quickly. It is thus
able to tolerate small fluctuations in the delivery of packets by
the reflector network and avoid buffer underflows (a situation
where the server needs to send the next packet to the end
user but has not received it from our transport layer). Note
that the latest WMS server[6] uses a similar technique in the
communications path between the server and end users.

Clearly it is not possible to deliver data at a higher rate than
the encoder is producing it, unless we save some data that the
encoder has produced in the past and we start delivery with
this previously produced data. This is exactly the approach we
have taken. We take advantage of the fact that we already keep
data around for retransmit purposes and reuse the retransmit
buffers as the prebursting buffers. When a request first arrives
at a set reflector or entrypoint for a particular stream, instead of
sending the most recently received packet, we send the oldest
received packet for that stream that is still in the retransmit
buffer. We then continue to send packets out of the retransmit
buffer at a rate that is a multiple of the rate at which packets
arrive from the encoder. Once all packets in the retransmit
buffer have been sent, we simply forward packets as they arrive
from the encoder.

Encoder

Entrypoint

Fault tolerant
entrypoint

Set Reflectors

Voting Information

Voting Information

Fig. 10. Fault tolerant entrypoint diagram.

One nice side-effect of the prebursting approach is that
it makes recovery from failed paths seamless. When the
adaptive multipath transmission system notices that a link has
gone down and starts a new subscription request through a
secondary or tertiary path, it expects to receive a preburst
from those paths. Given that the preburst starts with a packet
from some time in the past rather than the most recent packet
produced by the encoder, packets that were missed during
the fault detection interval will be received as a part of the
preburst and assembled into a lossless stream that can be
delivered to the streaming server. Figure 9 shows the amount
of rebuffering experienced by end users both in the presence
and in the absence of prebursting. As can be seen prebursting
is instrumental in reducing rebuffering effects and greatly
increases the quality of the end user experience. We have
also seen comparable improvements in the stream startup times
experienced by end users. Overall, prebursting allowed us to
improve end-user quality with only a modest engineering effort
since we were able to leverage the same mechanisms used in
lost packet recovery.

V. RELIABILITY ENHANCEMENTS

The system that we have presented so far is fault tolerant
in almost all of its aspects. Edge regions are interchangeable,
and the mapping and load balancing system ensures that only
live edge regions with good connectivity are being used to
serve end users. The reflector system has 3-way redundancy
and can be reconfigured to exclude dead machines with simple
DNS changes. The only parts of the system that are vulnerable
to machine and network failures are the entrypoints. Since an
encoder connects to a particular entrypoint to provide data, it
is possible for that entrypoint to die or lose connectivity to
the encoder.2 To recover from this type of failure we have
modified our system to tolerate entrypoint faults. The solution
we have adopted is described in the following section.

A. Fault tolerant entrypoints

Our fault tolerant entrypoint solution relies on a distributed
leader election algorithm. The main difference between typical

2It is also possible for the encoder to die but since this is a machine not
in our control there is little we can do to recover from this kind of failure.

PROCEEDINGS OF THE IEEE 9

leader election algorithms and our approach, is that in our
case the candidates for leader do not actually communicate
with each other. Rather they rely on outside observers (the
set reflectors) to provide the voting information as to who
should be the leader. This has the benefit of leveraging existing
communication paths between entrypoints and set reflectors,
while supplying redundant paths for entrypoints to obtain
leadership information about each other. Figure 10 depicts the
data flow between set reflectors and entrypoints.

The system starts by distributing a configuration file to every
entrypoint and set reflector that contains an ordered list of
candidate entrypoints for every stream in the system. The first
entry in that list is the default entrypoint pulling the stream
from the encoder, while the secondary and tertiary entries are
the fallback choices, should the primary choice fail.

Entrypoints provide a heartbeat packet each second, and pe-
riodically announce which streams they can pull from encoders
to the set reflectors. The set reflectors themselves ensure that
the lead entrypoint for every stream in the configuration file
is both alive and can actually can pull the streams for which
it is leader.

Failures fall in two categories. The first category is the death
of the entrypoint machine itself. When an entrypoint machine
dies, its heartbeat ceases to arrive at set reflectors. The set
reflectors then produce a list of the streams for which the
dead entrypoint was a leader and publish it to the secondary
and tertiary entrypoints for those streams. The secondary and
tertiary entrypoints for those streams notice the information
published by the set reflectors and attempt to pull the orphaned
streams from their encoders. In order to ensure that only one of
the backup entrypoints ends up pulling the orphaned streams,
there is a delay built into the system for the tertiary entrypoint.
If the secondary entrypoint succeeds in pulling the stream it
will start announcing its existence to the set reflectors. They in
turn will modify the information that they publish to indicate
that the primary entrypoint is dead, and that the secondary
entrypoint has successfully assumed its duties. The tertiary
entrypoint will notice this change in information and will cease
any efforts to pull the stream.

The second fault category is the loss of connectivity between
the primary entrypoint and the encoder. Detection of this
failure happens when the primary entrypoint stops announcing
the existence of the stream originating at the unreachable
encoder. The set reflectors notice the absence of the an-
nouncement and publish the relevant information. Failures
of this type are detected less rapidly than entrypoint deaths,
because the mechanism relies on announcements which are
sent less frequently than the heartbeat packets. However, in
all other respects the mechanism for dealing with this failure
is identical to the one described above, with the secondary and
tertiary entrypoint leader attempting to assume the duties of the
primary leader with respect to the problematic stream. If either
the secondary or the tertiary entrypoint have connectivity to
the encoder, the stream will resume shortly after the fault is
noticed.

Returning to regular operational mode once a fault has been
repaired is also straightforward. When the primary entrypoint
comes back to life or can reconnect to an encoder it starts

providing the necessary heartbeat and announcement infor-
mation to the set reflectors. They then stop publishing the
information indicating that action needs to be taken by the
backup entrypoints. The absence of this information causes the
secondary and tertiary entrypoints to stop pulling the stream
from the encoder and the primary leader resumes its regular
role.

It is possible for the system to transiently be in states
where more than one entrypoint is connected to an encoder
and pulling a stream. Set reflectors (and edge reflectors)
have knowledge of the relative ordering of entrypoints with
respect to each stream. When they see packets for a particular
stream originating from multiple entrypoints within a short
configurable period of time, they will select the one with
the highest leader number and ignore packets from the lower
leader numbers.

We have tested the behavior of the system by inducing both
types of faults and checking the impact on an end users watch-
ing a stream. Death of an entrypoint is almost unnoticeable
from an end user’s perspective. Most times streams continue
to play with no problems, while occasionally a rebuffering
event may be noticed by the end user. The main reason for this
benign behavior is that heartbeats occur every 1 second and
thus death of an entrypoint is noticed and recovered quickly
enough to prevent the streaming server’s and/or client’s stream
buffer from draining. Loss of connectivity between an entry-
point and an encoder takes a little longer to be noticed and
often results in a rebuffering event, or even a disconnect for
an end user. However the stream becomes available again with
only a few seconds of downtime and no manual intervention
is necessary.

With the introduction of fault-tolerant entrypoints we have
eliminated the last single point of failure of our system. Even
when machines and network connections fail, streams will
continue to be available for end-users who are outside the
failed networks. Furthermore in most cases, existing users in
non-failed networks will remain unaware that a fault even
occurred. This solution is extremely attractive from a cus-
tomer’s perspective, since it ensure reliable stream delivery
with no modifications to their encoding infrastructure, and
guarantees automatic handling of faults without the need for
human intervention.

VI. PERFORMANCE MEASUREMENTS

While there is no standard for performance measurements
with respect to streaming, a number of streaming session
attributes can be shown to be important to an end-user’s experi-
ence. Akamai has developed a proprietary agent technology to
measure streaming performance, and has deployed a network
of over fifty agents to take performance measurements. All
measurements discussed in this section come from approxi-
mately 30 of these agents, testing streams delivered by the
Akamai network hourly over the course of a month, repre-
senting 14,391 data points. More detail on our performance
methodology can be found at [10]

Our first metric is failure rate – how often an end-user’s
attempt to play a stream is successful or not. Figure 11 shows

PROCEEDINGS OF THE IEEE 10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 3 6 9 12 15 18 21 24 27 30

Pe
rce

nt f
ailu

res

Day of the month

% Failed

Fig. 11. Failure rate over a period of a month.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 3 6 9 12 15 18 21 24 27 30

Re
buf

fers
 pe

r M
inu

te

Day of the month

Rebuffer rate

Fig. 12. Rebuffer rate over a period of a month.

the failure rate of our system over a period of a month.
We have aimed for a failure rate of less than 0.1% and the
current architecture meets or exceeds this goal comfortably.
A second important metric is number of rebuffers per minute.
This metric captures how often an end-user’s experience is
interrupted by a frozen stream while the player waits for data
to arrive from the server. Figure 12 shows the rebuffer rate of
our system over a period of a month. We aimed for a rebuffer
rate of less than 1 rebuffer per hour. Once again the current
architecture comfortably meets or exceeds this goal.

We have also chosen to measure one additional attribute
of streaming sessions: thinning/loss as a percent of ideal
bandwidth. Streams are typically generated by an encoder at a
bandwidth rate determined by the stream’s producer. However,
servers do not have to deliver streams to end users at the rate
at which they were encoded. A server that is overload or has
poor connectivity to the client can choose to “thin” a stream
by not sending certain frames and thus putting less stress on
both the server and the link that connects it to its clients.
This effect does not manifest itself as packet loss since all
packets sent by the server are received by the client. Thinning
results in suboptimal user experience in ways similar to those
caused by regular packet loss. By looking at the rate of the
stream as received by the client vs the rate at which the
stream was encoded we can combine both effect into a single

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 3 6 9 12 15 18 21 24 27 30

Thi
nni

ng
and

 Lo
ss

Pe
rce

nta
ge

Day of the month

Thinning and Loss Percent

Fig. 13. Thinning/Loss percentage over a period of a month.

metric that is easier to measure and is more informative than
either metric in isolation. Figure 13 shows how our system
performs with respect to the thinning/loss metric. As can be
seen thinning/loss is consistently less than 0.1% of the stream’s
intended encoding rate.

VII. RELATED WORK

Content delivery networks have received substantial atten-
tion from both industry and academia. A number of commer-
cial systems are operational (including our own) and many
academic and other research institutions have studied them in
some detail both in the context of static web content[3], [4]
and streaming content[1], [2].

In the context of streaming CDNs a number of studies have
sought to address the issue of effective media file caching.
SOCCER[12], Mocha[13], and Middleman[11] all address the
problem of effective media caching on streaming servers.
These systems use segmentation techniques, prefetching of
data, and cooperative caching among multiple server to im-
prove media server caching performance. Merwe et al [14]
and Cherkasova and Gupta[15] also present characterizations
of streaming video traffic and show that various parts of a
clip have different probabilities of being viewed. Thus they
conclude that content segmentation and caching of selective
segments is more cost effective and offers better performance
than caching of whole media files. While our system deals with
Video On Demand content in ways similar to those described
by these studies, the focus of this paper is live streams that
obviously do not lend themselves to caching.

Yajnik et al[16] present a study of packet loss character-
istics for streaming media and show the temporal correlation
between loss. Veloso et al show similar findings in [17]. Our
work verifies their finding on the burstiness and autocorrelation
of packet loss. However we also present a study on a number
of correction schemes and show that the simplest scheme for
packet recovery (retransmits) has the best properties when
both overhead and recovery percentage are taken into account.
Using multiple paths for media delivery is also a concept that
has been studied in detail [18], [19], [20], [21]. However,
most of those systems make the assumption that they can
control the coding scheme for the content that they transport.
In our case, encoders are part of commercial offerings and we

PROCEEDINGS OF THE IEEE 11

have little control over them. Therefore we can not prioritize
between packets being delivered, and must deliver all packets
produced by an encoder at reasonable transport costs. Our
experience indicates that adaptive redundant paths coupled
with a retransmit scheme provide the desired functionality at
a very reasonable cost.

VIII. CONCLUSIONS

In this paper we have discussed the design decisions we
have made while building an content delivery network for live
streaming. We have described how to achieve high degrees of
scalability, quality, and reliability by focusing on modular de-
sign and eliminating single points of failure. We have evaluated
multiple techniques for delivering data to edge servers before
deciding on a combination of retransmits and multiple paths
as our approach of choice. Furthermore we have shown that
delivery of stream data at rates higher than the encoded rate for
the first few seconds of a session, can significantly improve an
end user’s quality. Finally we have introduced a mechanism
for eliminating single points of failure at the entrypoints of
our system. The described system currently serves millions of
streams per day to end users across the world, and has scaled
to 80,000+ concurrent users and 16 gigabits per second of
traffic.

Despite the success of the developed system a number of
issues remain as interesting technical questions. We would
like to determine whether the reflector hierarchy itself can
be bypassed altogether for unpopular streams and how the
system would have to be modified to handle the transition of
a stream from the unpopular to the popular category and vice-
versa. It would also be interesting to have edge regions choose
their parent set reflectors in a completely dynamic fashion and
not have to rely on bucketing techniques for load balancing.
The multipath transmission system can potentially benefit from
modifications that would allow it to pick the best path amongst
its choices, rather than the number of paths necessary to
provide good quality. Finally the fault tolerant system can be
further tuned to ensure fault recovery transitions go completely
unnoticeable by end users. Those questions notwithstanding,
the existing system offers tremendous benefits over both
centralized and naive distributed CDN implementations, and
we believe it is a good compromise between engineering and
operations cost, and customer benefit.

REFERENCES

[1] C. Cranor, M. Green, C. Kalmanek, D. Shur, S. Sibal, and J. V. der
Merwe, “Enhanced streaming services in a content distribution network,”
in IEEE Internet Computing, August 2001, pp. 66–75.

[2] S. Wee, W. Tan, J. Apostolopoulos, and S. Roy, “System design and
architecture of a mobile streaming media content delivery network (msd-
cdn),” Streaming Media Systems Group, HP-Labs, Tech. Rep., 2003.

[3] I. Lazar and W. Terrill, “Exploring content delivering networking,” in
IT Professional, August 2001.

[4] K. L. Johnson, J. F. Carr, M. S. Day, and M. F. Kaashoek, “The mea-
sured performance of content distribution networks,” in IEEE Internet
Computing, August 2001, pp. 66–75.

[5] “http://www.akamai.com.”
[6] Microsoft Corporation, An Introduction to Windows Media Services

9 Series, http://download.microsoft.com/download/winmediatech40/wp-
/1a/W9X2KMeXP/EN-US/wms9sintro.exe, 2003.

[7] Helix Community, Helix DNA Server Architecture Overview, https://-
helix-server.helixcommunity.org/2003/devdocs/architecture.html, 2002.

[8] Apple Computer Inc, Quicktime Server Administrator Guide, http://-
www.apple.com/quicktime/products/qtss/pdf/qtss admin guide.pdf,
2002.

[9] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics (J. SIAM),
vol. 8, no. 2, pp. 300–304, June 1960.

[10] Akamai Technologies, Akamai Streaming: When Performance Matters,
2002, http://www.akamai.com/en/resources/pdf/Streaming Akamai.pdf.

[11] S. Acharya and B. Smith, “Middleman: A video caching proxy server,”
in NOSSDAV’00, Chapel Hill, NC, 2000.

[12] E. Bommaiah, K. Guo, M. Hofmann, and S. Paul, “Design and imple-
mentation of a caching system for streaming media over the internet,”
in IEEE Real Time Technology and Applications Symposium, 2000.

[13] R. Rejaie and J. Kangasharju, “Mocha: A quality adaptive multimedia
proxy cache for internet streaming,” in NOSSDAV’01, Port Jefferson,
NY, 2001.

[14] J. van der Merwe, S. Sen, and C. Kalmanek, “Streaming video traffic:
Characterization and network impact,” in Workshop on Web Content
Caching and Distribution (WCW), Boulder, CO, August 2002.

[15] L. Cherkasova and M. Gupta, “Characterizing locality, evolution, and life
span of accesses in enterprise media server workload,” in NOSSDAV’02,
Miami Beach, FL, May 2002.

[16] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measurement and
modelling of the temporal dependence in packet loss,” in INFOCOM,
1999.

[17] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and S. Jin, “A hier-
archical characterization of a live streaming media workload,” Boston
University, Tech. Rep., 2002.

[18] J. G. Apostolopoulos, “Reliable video communication over lossy packet
networks using multiple state encoding and path diversity,” in Proc. SPIE
Conf. Visual Communications and Image Processing, January 2001, pp.
392–409.

[19] N. Gogate, D.-M. Chung, S. S. Panwar, and Y. Wang, “Supporting
images and video applications in a multihop radio environment using
path diversity and multiple description coding,” IEEE Transactions on
Circuits and Systems for Video Technologies, vol. 12, no. 9, September
2002.

[20] T. Nguyen and A. Zakhor, “Path diversity with forward error correc-
tion (pdf) system for packet switched networks,” in INFOCOM, San
Francisco, CA, 2003.

[21] J. Chakareski and B. Girod, “Rate-distortion optimized packet schedul-
ing and routing for media streaming with path diversity,” in Proc. IEEE
Data Compression Conference, Snowbird, UT, April 2003.

	University of Massachusetts Amherst
	From the SelectedWorks of Ramesh Sitaraman
	September, 2004

	A Transport Layer for Live Streaming in a Content Delivery Network
	tmp55s3E_.pdf

