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An Information Based Approach to Sensor
Management in Large Dynamic Networks
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Abstract— This paper addresses the problem of sensor manage- actions, including where to move, which direction to emit
ment for a large network of agile sensors. Sensor management, energy, what mode to use, what waveform to transmit (if
as defined here, refers to the process of dynamically retasking gctive) or which direction to listen (if passive). The goal
agile sensors in response to an evolving environment. Sensors f network tis to devel thodol
may be agile in a variety of ways, e.g., the ability to reposition, of network sensor _managemen IS 10 deve OP a m_e odo 0_9Y
point an antenna, choose sensing mode, or waveform. The goalwhere _eaCh node in the sensor net_Work adjusts its beh?flV'OV
of sensor management in a large network is to choose actionsdynamically so that the overall utility of the network is
for individual sensors dynamically so as to maximize overall maximized.
network utility. An effective sensor management algorithm must Sensor management in large agile networks is challenging

combine prior knowledge, sensor models, environment models,f host of First the stat ired to ch
and measurements to predict the best actions to take. Or a host of reasons. HIrst, the siateé space required 1o charac-

Sensor management in the multiplatform setting is a challeng- terize the region under surveillance is typically of extremely
ing problem for several reasons. First, the state space required to high dimension and is poorly represented by a parametric
characterize an environment is typically of very high dimension form (e.g., a Gaussian or a sum of Gaussians). It is this
and poorly represented by a parametric form. Second, the net- giate space that the network of nodes is to estimate, so proper
work must simultaneously address a humber of competing goals. . - L ) ..

Third, the number of potential taskings grows exponentially mqthe_matlcal formulation and efficient algonthml(_: implemen-
with the number of sensors. Fina”y, in low communication tation Is key Second, the sensor netWOI’k must Slmu|taneOUS|y
environments, decentralized methods are required. address many competing goals (e.g., detection of new areas of

The approach we present in this paper addresses these chal-interest while monitoring known areas of interest), and so the
lenges through a novel combination of particle filtering for non-  gcpeduling metric must be suitably chosen to appropriately
parametric density estimation, information theory for comparing balance between these goals. Third, exact maximization of
actions, and physicomimetics for computational tractability. The o ) ! ;
efficacy of the method is illustrated in a realistic surveillance ©Overall network utility is intractable as the number of actions
application by simulation, where an unknown number of ground available to the network at each decision epoch is expo-
targets are to be detected and tracked by a network of mobile nential in the number of nodes and the number of actions
Sensors. each node can take. Therefore, a principled approximation

Index Terms— multiplatform sensor management, information  to simultaneous multiplatform scheduling must be employed.
theory, particle filtering, joint multitarget probability density,  This method must be robust and, while not solving the
multitarget tracking. joint optimization problem exactly, encourage collaboration

between sensor nodes in the manner that joint optimization
|. INTRODUCTION would if it were practical to implement. Fourth, there must be

_ . . information sharing between the individual sensor nodes (or
Large networks of inexpensive sensors provide a me

including habitat monitoring, the biomedical arena, industri 'Je

robotics, and defense. In this paper, we address the probl ure that characterizes the knowledge of the system under

of managing the resources of a network consisting of a lar frveillance. This fused picture must then drive the actions of
number (i.e., tens to thousands) of agile sensors. Agility, ?Es

defined here, refers to any property of a sensor that can $ sensors at the next decision epoch.
. ’ . n this paper, we describe a method of scheduling the
dynamically tasked so that the network of sensors will bﬁ pap 9

. . des in a large agile network that addresses each of the
better able to perform surveillance on a region. In the generﬂfa

ither centrally or at each node individually) to yield a single

case. each sensor in the network is capable of a variet challenges outlined above. This method is a novel combination
' P Yot adaptive importance density particle filtering for nonpara-
Manuscript received xxx metric density estimation, information theoretic measures for
Chris Kreucher (Christopher.Kreucher@gd-ais.com, 734 480 5203) a@stimating the value of possible future actions, and physi-

Keith Kastella (Keith.Kastella@gd-ais.com, 734 480 5184) are with Gegpmimetics for providing a tractable approximation to the joint
eral Dynamics Advanced Information Systems, 1200 Joe Hall Drive, Yp-

silanti MI 48197. Al Hero (hero@umich.edu, 734 763 0564) is with th@Ptimization. An outline of the paper is as follows. .
University of Michigan Department of Electrical Engineering and Com- First, in Section Il, we describe a mathematical formulation

puter Science, 1301 Beal Avenue, Ann Arbor, Ml 48109. Mark Moreland@a”ed the Joint Multitarget Probability Density (JMPD). This
(m.morelande@ee.unimelb.edu.au, +61 3 8344 4672) is with the Univers

it . . .
of Melbourne, Department of Electrical and Electronic Engineering, Gratté[??/(.)rk has been rep.orted previously [1], [2] and is reV'eV\_’ed
St. Parkville VIC 3010, Australia. briefly here as required background material for the following



PROC. OF IEEE SPECIAL ISSUE ON MODELING, IDENTIFICATION, & CONTROL OF LARGE-SCALE DYNAMICAL SYSTEMS 2

sections. The JMPD is used to capture the estimate of ten can be written as a sum of single platform optimizations
state of the surveillance area, and is constructed on-limed a correction term. The correction term can be explicitly
using models of how the surveillance area evolves coupleditten for a limiting case of the &uyi Divergence, but it
with models of how sensors work and actual measuremertan be qualitatively described in the general case. A physi-
This method is related to the approach of others, includimgmimetic term is used to approximate the correction term and
Stone [3], Srivastava and Miller [4], and others [5], [6]properly enforce collaboration and cooperation between the
[7] as discussed in [1]. Our model problem consists of large number of sensor nodes. Physicomimetics (or “artificial
surveillance area encompassing a number of moving grouplgysics”) [30] refers to a class of approximation methods moti-
targets. The number of targets, their positions, velocities amated by natural physical forces, e.g., the intermolecular forces
classes are unknown at startup and (potentially) time varyiog liquids. Due to the exponential explosion in the number of
from then on. The JMPD is a single probabilistic entity thgtossible actions the network can take at any decision epoch,
simultaneously describes uncertainty about the number ibfis impractical to enumerate all possible combinations of
targets, as well as the positions, velocities, and identificatiossnsing actions for the nodes in the network and choose the
of those targets. The JMPD is estimated on-line using best. The physicomimetic approach is a tractable and robust
novel multitarget particle filtering technique, which relies oapproximation that allows each sensor to be scheduled locally
an importance density specifically designed for this problemwhile providing an impetus for working together with the
Others have used particle filtering approaches for multitargether sensors. While this does not precisely get at the globally
filtering, including Orton [8], Maskell [9], and others [10],optimum sensor management solution, it provides a tractable
[11], [12], [13]. approximation with robust performance. Others have used

Second, in Section Ill, a method of using an informatiophysicomimetic approaches for multiplatform scheduling [31],
theoretic measure called theéRyi Divergence for sensorbut to our knowledge this is the first time this approach has
management is discussed. Portions of this work have bdsren combined with information theory, and more importantly
reported previously in [14]. The repetition here is minimal anthe first time this approach has been directly related to a
serves to establish the required background and notation émnstrained joint information theoretic optimization.
the following sections. Specifically, the quality of a proposed Fourth, we show that by having each sensor compute a
action (be it moving the sensor to another location, or pointingcal estimate of the JMPD, the method can be decentralized.
an antenna in a particular direction) is measured by the amoiihierefore, it is possible to implement this method with no
of information that is expected to be gained by its executiopentralized controller, where each sensor is responsible for
This approach is related to that of others, including Zhao [15haking its own sensor management decisions. When band-
Hintz [16], Schmaedeke [17], and others [18], [19], [20] as disvidth is limited, only a subset of measurements may be shared
cussed in [14] and elsewhere. At each epoch when a decis@nong sensors, leaving each local estimate of the JMPD sub-
is to be made, the uncertainty about the surveillance region (ggimal. However, it is shown by simulation that adequate
captured by the JMPD) is used to compute the value of egsbrformance is still achieved as each sensor has a very good
of the possible sensing actions using an information theorelizal estimate of the JMPD.
measure called the &yi (alpha-) Divergence. Information Finally, we give a series of simulations in Section V that
theoretic metrics have the compelling property that differeshow the performance of the method in detecting and tracking
types of information (e.g., information about the presence an unknown number of moving ground targets in a model
absence of targets, the position, velocity, and identification pfoblem. We consider large-scale problems involving tens
targets) can all be compared on an equal footing. For exampte, hundreds of platforms cooperating together to perform
by using an information based approach, the value of an actisurveillance on a large region. The simulations illustrate sev-
that extracts information about the class of a firm target canal key features of the approach: (a) Theni Divergence
be compared directly to the value of an action that is meantrgetric combined with the JIMPD estimate of uncertainty allows
search for new targets. We restrict our attention in this papsiatforms to trade between the competing goals of detection
to single-stage (myopic) scheduling. Multi-stage extensions4@d tracking, resulting in a system that performs well under
the Rényi Divergence approach using a partially observablmth criteria, (b) As the amount of communication available
Markov decision process (POMDP) [21], [22] approach and the system changes, different behavior patters emerge from
approximation techniques have been discussed elsewhere [&#,collection of platforms — although the platforms are always
[24]. Others have used POMDP approaches with other metrigstrolled by maximization of information flow through the
and approximation methods for related problems, e.g., [2%ktwork, and (c) the combination of a physicomimetic force
[26], [27], [28]. Of course, the most general dynamic sensahd a (single-platform) information seeking force properly
scheduling problem is a partially observed stochastic contigdlances the exploitation and exploration goals in a manner
problem over a finite or infinite horizon. Such problems amhat the individual forces themselves cannot.
formulated in terms of the information state and therefore
gxactly solv'mg the_ resulting Qynamlc programming problem Il. THE JOINT MULTITARGET PROBABILITY DENSITY
is computationally intractable in most cases [29]. (JMPD)

The method of multiplatform information based sensor man-
agement that is the central contribution of this paper is given inThis section describes the Joint Multitarget Probability
Section V. It is shown therein that the multiplatform optimizabensity (JMPD) and its Particle Filter (PF) implementation.
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The JMPD is a single probabilistic entity that captures all Each of the xt in the density
of the uncertainty about a surveillance region. This includegz}, %, - ,xz_l,xﬂTk,zo;k) is a vector quantity.

uncertainty about the number of targets present in the regidide will typically use the two-dimensional target state
as well as the kinematic state, class, and mode of each. Tthealization [z, 4, y, y] when providing concrete examples in
JMPD is computed recursively by fusing measurements, targleis paper, although the notation will be kept general until
models, sensor models, and ancillary information such asamples are presented. In other problems where the mode is
roadway and terrain elevation maps. This nonlinear filterirtg be estimated [36], we have uséd z,y,y, m| and when
approach is appropriate rather than other methods such astlieeclass is to be estimated [37] we have uked:, y, v, c].
MHT [32] because it captures all uncertainty (i.e., uncertainty For convenience, the JMPD will be written more compactly
about target number, kinematic state, and class) under an¢he traditional manner ag Xy, Tk |z0.x ), Which implies that
framework, and linear/Gaussian assumptions typically do ribie system state-vectdf; represents a collection @f, targets
apply in this setting. As will be discussed in Sections lleach possessing their own state vector. This can be viewed as
and 1V, the method of multiplatform sensor managemeathybrid stochastic system where the discrete random variable
advocated here uses reduction in uncertainty as measufgdgoverns the dimensionality ofy.
by the JMPD to drive future sensing actions. A high level The number of targets at time, Ty, is a variable to be
overview of this process is illustrated in Figure 1. estimated simultaneously with the states of Theargets. The
The material in this section is largely drawn from a series dMPD is defined for alll},, T, = 0---co. We abuse termi-
previously published papers [34], [1], [33], [2]. More detail omology by calling the IMPDy(z}, 27, ..x{ ', xf, Tk|20.1) @
the formulation and implementation can be found therein. Tldensity sincel}, is a discrete valued random variable. In fact,
summary discussion here is provided as background matedaleq. (1) shows, the IMPD is a continuous discrete hybrid as it
necessary before introducing the main topic of this papds,a product of the probability mass functip(il’ |zo.;.) and the
multiplatform sensor resource allocation via maximizing inprobability density funCtionp(x}c,xi,...xg_l,x£|Tk,20:k).
formation flow. As discussed in [1] and elsewhere, the JMPTherefore the normalization condition that the JMPD must
approach presented is related to the approach of others, esgtisfy is

[, [35], [7], [6]. o0
Z/dz1~~d:17Tp(z1,~~ a2l T)z) =1, )]
T=0

A. Formulation of the JMPD . . L .
where the single integral sign is used to denotefhiategra-
Recursive estimation of the JMPD provides a means f@bns required (note that we have dropped the time subscripts
simultaneously estimating the number of targets and theiére to lighten the notation). This can alternatively be written
kinematic states by fusing models and measurements. The jginthe shorthand notation
multitarget conditional probability density

(o)
_ dXp(X,T|z) =1, ©)
play, xp,af hah, Tilzon) = (1) Tz—:o/
p(leml"ia---xf_lvl"g\TkaZO:k)p(Tk|ZO:k) where it is understood again thdt determines the dimen-

sionality of X and the single integral sign represents fhe
integrations required.
" The likelihood p(z|X,T) and the joint multitarget prob-

is the probability density for exactlyf’ targets with states
b, 22, .. 2771, 2T at time k based on a set of past obser

Vat'?]nszg"“' ) ‘ h llect ¢ ability density p(X,T|z) are conventional Bayesian objects
The o servagqn ‘Teﬁ’ik refers to the o ection of measure-aninulated by the usual rules of probability and statistics.
ments up to and including tine i.e.,zo.x = {20, 21, -+ 2}, Specifically, the temporal update of the posterior likelihood

Where.each of the;; may be a smgle.r.neasurement OF Yroceeds according to the usual rules of Bayesian filtering.
collection of measurements made at timge.g., a vector, 11 odel of how the JMPD evolves over time is given
matrix, or cube of measurements from a single sensor O;ki%p(xk,THXk_th—l) and will be referred to as the
concatenann.of measurements from multiple sensors m ematic prior (KP). The kinematic prior includes models of
at the same t|me). We will refer to measurements ma_detQFget motion, target birth and death, and any additional prior
a specific timei as z;, all measurements made from iMe 5 ation on kinematics that may exist such as terrain and
0 to t|me_: k as zo.x, and a generic measurement set (e't_h%adway maps. In the case where target identification is part
a coIIectl(_)n of measurements or a measurement at a Singf&he state being estimated, different kinematic models may
time) as simplyz, which will be clear by context. Furthermore,be used for different target types.

in future sections we will also find it necessary to explicitly 1,4 time-updated (prediction) density is computed via the
include the sensing action (e.g., the choice of sensor modemodel updatequation as

or sensor movement) that resulted in the measurement

In this case, the JMPD will be more explicitly written as

T—1

p(xh, i, xy L al, Tl zom, Touk) andTmleasurement likeli- P(Xk: Til2os—1) = “)

; i 1,2 T >°
h.OOd.V\.”" be.W”tten aqo(zk|xk_, Lo Lk ’xk’Tk.’rk’)' For Z /ka—lp(leTk‘Xk—hTk—l)p(Xk—th—l‘ZO:kfl) )
simplicity, this extended notation is suppressed in the present™<,

discussion.
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Fig. 1. An illustration of the recursive state estimation and sensor management process described in this paper. In general, one performs state estimation
to capture the uncertainty about the surveillance region. The state of the surveillance region is captured by the joint multitarget probability density, which
is approximated using a particular method of state estimation based on particle filtering. This estimate is passed to a sensor management algorithm which
decides what action(s) to take next. Our method of sensor management is based on a constrained joint information theoretic optimization. This action is then
executed, resulting in a measurement of the environment which is used to update the state estimate.

Note that the formulation of the time evolution of the The multitarget state vector foF' targets is simply the
JMPD given in eq. (4) makes several assumptions. Firspncatenation of’ single target state vectors (again here the
as is commonly done, we assume that state evolution tigie subscript is dropped for notational simplicity):

Markov. Furthermore, we assume the action at tilne 1 1 9 o1 T
does not influence state evolution, i.e., if the sensing action X=[z'a% e et 6)
performed at timek — 1 is denotedr;,_, then by assump- A particlei is similarly expressed as a concatenatiof'6#
tion p(Xg, Te| Xp—1,Th—1,7%-1) = p(Xk, Tk|Xx—1,Tk-1). state estimates as

In some situations this assumption is not valid, including the , , 4 o o

“smart” target problem [38]. If either of these assumptions is X0 = [x(z)(l)vl“(l)@)y e ax(l)(T(l)_l)ax(l)(T(i))] (M)

invalid in a particular setting, eq. (4) would be generalize\glhich says particle estimates there arg(®) targets, where

appropriately. . , T can be any non-negative integer, and in general is different
The measurement updatequation uses Bayes’ rule tofor different particles

update the posterior density with a new measuremgrats To formalize, letép denote the ordinary Dirac delta, and

X T (2| X, Tr)p( X, T | 20:8—1) 5 define a delta function between_ tHetarget state vectoX
P(Xk, Tilz0:1) = (25|20 —1) - ) and theT'(i)-target state vectoX ™ as
. (4)
@y _ ) 0 T#T
B. The Particle Filter Implementation of the JMPD oX - X = { Sp(X — X®)  otherwise ®

The sample space of the JMPD is very large since jhen the particle filter approximation to the JMPD is given

contains all possible configurations of state vectdis = py a set of particlest®) and corresponding weights(¥) as
{z},- - ,azf’“} for all possible values of,. Thus, for com-

putational tractability, a sophisticated approximation method
is required. This section briefly describes our particle filter
implementation with special attention given to the adaptive
importance density that allows tracability. Measurements ofwherezfi1 w® =1.
the computational complexity of this estimation algorithm The JMPD is defined for all possible numbers of targets,
versus number of targets in the surveillance area on standaré= 0,1,2,---. As each of the particles is a sample drawn
equipment are given in [1]. from the JMPD, a particle may estimatel,2,--- targets.

1) Notation: In particle filtering, the probability density of Here, different particles in the approximation may correspond
interest (here the JMPD) is represented by a sé{ @feighted to different estimates of the number of targets.
samples (particles). Since a particle is a sample from the PDR2) Multitarget SIR: With these definitions, the traditional
of interest, here a particle is more than just the estimate of th@mpling importance resampling (SIR) particle filter extends
state of a target; it is an estimate of the state of the surveillandieectly to filtering with the JMPD. The method is to simply
region. In particular, it incorporates both an estimate of th@opose new particles at time from the particles at time
states of all of the targets as well as an estimate of the numléer1 by projecting through the kinematic prior. This kinematic
of targets. model includes both the dynamics of persistent targets (e.g., a

N
p(X,T|z) = > w?s(X — X0) 9)
=1
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nearly constant velocity model) and the model of how targeBayes’ rule. In our application, we have chosen to use a
enter and exit the surveillance region (e.g., a spatially uniforspatially and temporally constant arrival and removal rate.
birth/death process). Specifically, targets entering or leaviitpese simplifications make the existence grid computationally
the surveillance region are accounted for as the proposgchple to maintain.
particle X ,(j) may have either fewer targets or more targets To handle target birth, new targets are preferentially added
than X}Ei_)l (i.e., T,f’) — Téﬁl “1or T,Ei) - T;EZ +1). The inlocations according to the rate dictated by the existence grid.
weight update when particles are proposed in this mannerTigis bias is removed during the weight update process so that
simply the Bayesian recursions are still exactly implemented. This
w,(j) _ w;gﬁlp(ZHX;gl)) ) (10 |mplgmentat|onal technique allows partlcle_s to_be used more
efficiently as new targets are only added in highly probable
3) The Inefficiency of the SIR Methodhe SIR particle areas. Target death is handled analogously.
filter has the benefit of being simple to describe and easy to5) Importance Density Design for Persistent Targetéhe
implement. However, SIR is too numerically inefficient fokinematic prior does not take advantage of the fact that the
multitarget problems. JMPD state vector is made up of individual target state vectors.
Assume for discussion that the sensor is pixelated, returniirgparticular, targets that are far apart in measurement space are
energy in one of” sensor cells. Target birth may occur in anyincoupled and should be treated as such. Furthermore, similar
unoccupied cell at any time step. Target death may occurtn that of the uniformed birth/death proposal, the current
any occupied cell at any time step. One method of handlimgeasurements are not used when proposing new particles.
this would be to have a very large number of particles, capalifaese two considerations taken together result in an inefficient
of encoding all possibilities of the next state, i.e., no newse of particles and therefore require a large number of
target, one new target (in each of the possible unoccupipdrticles to successfully track. Empirical results illustrating
cells), two new targets (in each possible pair of unoccupi¢his assertion are given in [1].
cells), etc. and likewise with target removal. This must still To overcome these deficiencies, we use a technique which
retain the particle diversity required for efficient filteringbiases proposals towards measurements and allows for fac-
This method requires an enormous number of particles farization of the multitarget state when permissible. These
successful approximation. strategies propose each target (or cluster of coupled targets,
Furthermore, even with no birth and death, target proposals will be clarified later) in a particle separately, and form
using kinematics are too inefficient for multitarget problemsiew particles as the combination of the proposed clusters.
Consider the simple case where there @rdargets in the We describe the use of two sample-based methods here, the
surveillance region, and this is known to the filter. In ordandependent partitions (IP) method of [8] and the coupled
for a particle to be a “good” estimate of the multitarget stat@artitions (CP) method. The basic idea of both CP and IP is to
all T targets must be proposed to “good” locations. Withowonstruct particle proposals at the target (or group-of-targets)
knowledge of measurements, the probability an individuldvel, incorporating measurements to bias proposals toward
target is proposed to a “good” location és< 1. Therefore, the optimal importance density. This bias is removed in the
as the number of targets grows, the probability of a “goodieight update stage, and therefore the Bayes recursions are
multitarget proposal becomes significantly less than one (ga#l exactly implemented. We advocate an adaptive partition
as a®). Hence, the number of particles required to perforgAP) method which performs a clustering on targets and au-
adequate tracking with high probability grows exponentiallytomatically switches between the two methods as appropriate.
Both of these problems are remedied via an importan&énally, we mention an improved method of target (or group-
density that more closely approximates the optimal importanoétargets) proposal that is based on directly sampling from
density (i.e., uses current measurements to direct proposalshi® optimal importance density. This method is applicable in
higher likelihood multitarget states). In the following subsesome situations (as discussed in [2]) and has been shown to
tions, we briefly summarize the importance density. Additionaicreases algorithm efficiency significantly in those cases. All
detail can be found in [1], [2]. of the methods are performed only on the persistent targets,
4) Importance Density Design for Target Birth/Deatin and the algorithm is done in conjunction with the addition and
order to reach the efficiency required for tractable detectiosamoval of targets as described in the preceding section.
of multiple targets, we advocate a measurement directed sam¥he Independent-Partition (IP) Method. The independent
pling scheme for target birth and death. As described in detpartition (IP) method given by Orton [8] is a convenient way
in [2], the key idea in the development of a tractable method to propose particles when part or all of the joint multitarget
handle target birth and death is an existence grid. The existedemsity factors. As employed here, the IP method proposes
grid contains the probability that a single target is in ¢edt a new target as follows. For a targeteach particle at time
time k given the measurements made up to and including tinke-1 has it'sp'” partition proposed via the kinematic prior and
k. Qualitatively, the existence grid describes those regionswéighted by the measurements. From this seiVoifveighted
the measurement space that deserve attention. The existestenates of the state of thé" target, we seleciV samples
grid cells are initialized with a prior probability which maywith replacement to form thg*" partition of the particles at
be spatially varying. The probability of target existence itime k.
each cell is propagated forward via a simple addition/removalWith well separated targets, this method allows many targets
model, and updated with new measurements accordingttobe tracked with the same number of particles needed to
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track a single target (although each particle is larger). Indeed, Ill. | NFORMATION THEORY FORSINGLE SENSOR
in the case of well separated targets, the multitarget tracking MANAGEMENT

problem breaks down into many single-target problems. TheThis section describes a method of sensor management
IP method is useful for just this case, as it allows the targgigsed on maximizing information flow. We focus here on the
to be treated independently when their relative spacing dee{.;ri1,§g|e platform case and describe the multiplatform case in
that appropriate. Note, however, that applying this methqfe following section. Sensor management, as defined here,
on a target by target basis is not appropriate when thereyégers to choosing the best action for an agile sensor to take.
any measurement-to-target association ambiguity. Therefofg,g may include where to point, what mode to use, or where
when targets are close together in sensor space, an alterngfive,ove. In this method of sensor management, actions are
approach must be used. ranked based on the amount of information expected to be
The Coupled Partition (CP) Proposal Method.When the gained from their execution. In principle, this is accomplished
posterior distributions on target position begin to overlap, W&y computing the expected gain in information between the
call the corresponding partitions coupled. In these instancesfrent JMPD and the JMPD that would result after taking
another method of particle proposal such as Coupled Partitiaxgion and making a measurement, for all feasibleThen
(CP) must be used. An alternative method would be to uiee sensor management decision is to select thesbasing
the IP strategy on groups of partitions as alluded to in [8]. Asxpected information gain as the metric. The method presented
discussed below, the CP method proposes multiple possililethis section is generic with respect to whatepresents —
future realizations for each partition (as opposed to the IR.,» may represent the choice of a waveform, the choice of
method which proposes a single future realization for eaahpointing direction, or the choice movement for the platform
particle). This additional sampling fidelity can be viewed as @r all three).
better approximation to the optimal importance density than aThe material in the first half of this section is largely drawn
method that simply proposes one possible realization for edcbm a series of previously published papers [14], [40], [37]. It
particle. In practice, we find that the CP method providesmovides the background and notational conventions necessary
benefit by giving extra computation at those points where it lefore introducing the main topic of this paper, multiplatform
most necessary. sensor resource allocation via maximizing information flow.

We apply the CP method as follows. To propose partitior?—shese references also include measurements of the computa-
p1---pu Of particled, CP proposesk possible realizations tional complexity of the algorithms on standard equipment.
of the future state using the kinematic prior. TReproposed The information-based approach presented here lis related. to
futures are then given weights according to the current méle approach of others, e.g., [17], [41], [18] as discussed in
surements and a single representative is selected. This pro¢édkand elsewhere.
is repeated for each particle until the partitions for all particles
has been formed. As in the IP method, the final partick. The Rnyi Divergence

weights are adjusted for this biased sampling. In our approach, the calculation of information gain between
Adaptive Particle Proposal Method. A more efficient two densitiesp; andpg is done using the &yi information

method is to use a hybrid of the IP and CP method, callelivergence [42], also known as thedivergence:

the Adaptive-Partition (AP) method [34], [1]. The adaptive- 1

partition method again considers each target separately. Those Da(p1llpo) = —In / pf(z)

targets sufficiently well separated from all other targets are ) ) ) )

treated as independent and proposed using the IP method.N€a parameter adjusts how heavily the metric emphasizes

When targets are not sufficiently distant, the CP method Y€ t@ils of the two distributiong, and po. In the limiting

used on those groups (clusters) of targets that are couple@Se ofc — 1 the Renyi divergence becomes the commonly

To determine when targets are sufficiently separated, we (§iized Kullback-Leibler (KL) discrimination

filter estimate of targets states and then perform a clustering L D B ! po(x) d 12

procedure based on distance in sensor space between the Jim, Do (palpo) */pO(x) S i@ (12)

estimated target states. If « = 0.5, the Renyi information divergence becomes the
An Improvement. In certain circumstances, the optimalellinger affinity 2 In [ \/p1(x)po(x)dz, which is related to

importance density can be more efficiently approximated thgie Hellinger-Battacharya distance squared [42] via

the sample based approach discussed here. In particular, if

target dynamics are linear/Gaussian and measurements Ay c1inger (P1||P0) = 2(1 — exp (.5D1(p1||p0)>> . (13)

made on a grid, the optimal proposal involves sampling from :

truncated normals [33], [2]. In this case, a similar AP approach o _ )

is used wherein partitions are first separated into groups tfat Renyi Divergence Between the Prior and Posterior JMPD

are uncoupled and then each group is treated by sampling fronThe function D, in eq. (11) is a measure of the diver-

the optimal importance density. In the more generic case, agence between the densities and p;. In our application,

does not have a convenient (semi-) closed form and instemd wish to compute the divergence between the predic-

relies on the purely sample driven methods of IP and CP tsn density p( X, Tk|20.k—1, 70:k—1) and the updated den-

described above. sity after a measurement, when taking action, denoted

po *(x)dz . (11)
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(X, Tklz0:k—1,T0:k—1, 2k, Tk ). Notice that we now include In practice, certain, are infeasible. There ardnematic
the action taken at timé, r;, and the history of actions constraints of the platform which make certain locations
ro.x—1 €xplicitly into the notation for clarity. This divergenceunreachable in a single time step, including maximum platform
measures the amount of information that the new measuremegiocity and maximum platform acceleration. Also there are
has provided and allows us to rank the utility of differenphysical constraintsvhich prevent certain motions, including
actions according to the information flow they produce. Thie topology of the surveillance region (i.e., a sensor should
relevant divergence for our setting is thus given by not collide with anything). Therefore, we actually need the

constrained optimization
D, (p('\Zo:k—hTo:k—l,zk,Tk-)||P('|Zo:k-—1,To:k-—1)) = (14)

1
a—1

hlz /pa(kaTHZo:k—lﬂ"o:k—h 2k, Th) X 7l = argmax (18)
T r,eC

' ( Xk, T 20:0-1, Tok—1)d X
where the integral is interpreted as in eq. (3).

Using Bayes’ formula applied to the JMPD (eq. (5)), we
obtain

E |:Da (p("ZO:kfh T0:k—1, 2ks Tk)||P(-] 20:6—15 To;kq))

Zo:k—l,To:k—lﬂ”k] >

D, <p(.|20:k_1,710:k_1,Zk,,«k)||p(.|zo:k_17r0:k_1)) = (15) whereC is the set of actions that meet both the kinematic
1 1 and physical constraints. For single sensor scheduling, these
n X constraints are handled in practice by simply removing those
a—1" p*(zr|z0:k—1,7T0:k—1,Tk)

actions that violate the constraints from consideration.
Z/pa(2k|Xk,Tk,Tk)P(Xk,Tk\Zo:k—uTo:k—l)ka ;
T

D. Theoretical Motivation For the Information Gain Metric
which shows that the ingredients to computing the diver-

gence are the prediction IMPR{ X}, Tk |20.5—1,T0:k—1), the
measurement likelihoog(zx| Xk, Tk, ) and the received
measurements;,.

Consider a situation where a target is to be detected,
tracked and identified using observations acquired sequentially
according to a given sensor selection policy. In this situation
one might look for a policy that is “universal” in the sense that

C. The Expected @i Divergence for a Sensing Action  the generated sensor sequence is optimal for all three tasks. A

To determine the best action to take next, we must in fatrg ly universal policy is not likely to exist since no single

redict the value of taking actior, before actually receivin policy can be expected to simultaneously minimize target
b 9 o y 9 tracking MSE and target miss-classification probability, for
the measurement;. Therefore, we calculate thexpected

. ) . example. Remarkably, policies that optimize information gain
value of the divergence for each possible action and use this . i o

: ! : are near universal: they perform nearly as well as task-specific
to select the next action. The expectation may be written as

. . . . optimal policies for a wide range of tasks. In this sense the
an integral over all possible outcomeg when taking action . ; . .
0 as information gain can be considered as a proxy for performance
k

for any of these tasks. The fundamental role of information
o _ o . gain as a near universal proxy has been demonstrated both

E[Da (p( [20:k-1: o1, 7k )1 ‘Zo'k_hro'k_l)) (16) by simulation and by analysis in [37][43]. The key result is

a bound that shows any bounded risk function is sandwiched

between two weighted alpha divergences. This inequality is

a rigorous theoretical result that suggests that the expected
/dzkp(zk‘z():k*b’“Orkflﬂrk)x information gain is a near universal proxy for arbitrary risk
functions.

Zo:k—h?”o:k—h?”k] =

Da(p('|20:kflaTO:kflaZk»rk)||p('|20:k7177"0:k71)) )

The expectation in eq. (16) is across the measurement
outcomez;, and is to be interpreted as a conditional expecta- ]
tion where the past sensor measuremepts_;, past sensor  When there are only a small number of actions to choose
actionsro.,_1, and current sensing action are known. from, application of this method is straightforward. For each

Then the method of scheduling we advocate is to choose f#RSSible action, we compute the expected gain in information

best action®, as the one that maximizes the expected gain # 9iven by eq. (16). This computation /) where M
information, i.e., is the (small) number of (discrete) actions possible for the

sensor to take. Of course, each of thé computations has
complexity that scales with the number of particles used in the
patrticle filter approximation to the JIMPDV() and the number
E{Da (p(-|20;k_1,7‘0;k_1,Zk,rk)||p(~|zo;k-_1,To;k-_1)) of targets predicted to be in the surveillance regidh. (
Furthermore, when the measuremeid continuous (or multi-
dimensional), advanced numerical techniques are required to
evaluate the expectation.

Computational Method

T = arg max a7
Tk

|Zo:k—1, T0:k—1,Tk
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However, when the action space is continuous, simple ertafrm is then approximated to produce a tractable method
meration is not feasible. We now specialize to the case wha@mputationally. Finally, if we allow each sensor to compute a
the actionr refers to a new positioning of the sensor (i.e., thiocal estimate of the JMPD and use limited message passing
platform is mobile and the sensor management problem is dmgtween neighboring sensors, we show the entire procedure
of deciding where to move the platform). The new position can be done in a decentralized manner.
of the sensor is in principle & dimensional vector from the
continuumR? specifying the(z, y, z) coordinates of the next
platform position. In this situation, we use ideas from earlig{  optimal Multisensor Information Theoretic Scheduling
works that employ “virtual force” or “potential field” methods
[44], [31], [45]. In the field approach, one computes a force Information theoretic scheduling for a collection @
that compels a sensor to move rather than explicitly calculatipgatforms requires choosing the set Bfnext-actions for the
the value of all possible next positions and choosing the begt.platforms. The formulation for the multiple platform case

In our method, the value of a potential next position is givetan be given as a direct extension of the single sensor case.
by the expected information gain (eq. (16)). Therefore, thérst, letr andz; denote the sensing action and measurement
force that drives platform action in the continuous action spaceceived, respectively, for thé" sensor at timé:. Next, let7,
case is the gradient of the information gain field at the curreahd z;, denote the sensing actions (here the new positioning

location, as given by of the P platforms) and measurements for tReplatforms at
Fi(ry) = —0Y,, (19) time k, respectively. That is, let
E {Da (p('\z():k—l,?“o:k—h ZkaTk)||P('|ZO:k—177“0:k—1)> Fo= [t rh Tk (20)
and

|20:k—15T0:k—1, Tk |
> 1,2 P-1 _P

. . . . . Zk:[zkvzk7"'7zk azk] . (21)
where 3 is simply a scaling constant. This force then drives

the sensor to move in the manner that maximally provides

information flow (subject to the constraints discussed abov%%.Then multisensor information theoretic scheduling seeks to

d the best choice of sensor actiansas given by eq. (22),
where the integral is to be interpreted as performing the

IV. MULTIPLATFORM INFORMATION BASED SENSOR integrations required.

MANAGEMENT

In this section, we present our method of informatio, — arg max (22)
based multiplatform sensor management. The method works  7.ec’
by maximizing the expected information gain between the oL
posterior JMPD and the JMPD after a new set of measure- E{DO‘ (p('|20¢’f—1’r0¢"~‘—1’Z’“r’“)"p("zO:’“—l’mk”D
ments are made by the platforms. It builds on the ideas and
notation developed in Section Il for the single sensor case |Zo;k1,To;k1,Fk]
but now has the additional constraints imposed by multiple
sensors in a single surveillance area (i.e., the sensors should- arg max/dé’tp(,?ﬂzo:k_l,ro:k_l,f'k)x
not collide and sensors should not be redundantly tasked  7+€¢’
unless there is compelling reason to do so). Additionally, it is D, (p(.|zo:k717ro:k71)||p(.|202k71,ro:kfl, Z, Fk)) )
ultimately desired to employ the technique in a decentralized
o ment 20 i e ShoUd e analogously 1o eq. (16, the expectton n eq. (22) i

) {fken over the measurement outcomgsand is conditioned

previous conference papers [45], [46]. As mentioned earh%rn knowing the past measurements, ,, the past actions

gtger[slg?va%pproached this problem from a similar wewpon;;%,:k_l, and the current action set,.
This section proceeds by first giving the formulation of opti- Note th?;\j;rect cqtr)r:putatlo_n of th? quar_wtlti/hrequwes Cr(]) m-
mal multisensor information theoretic scheduling assuming t grison o possible sensing actions (In the case where

scheduler is centralized. This is seen to be a joint constraint §re arel/ discrete actions for each of thiéplatforms). This

information theoretic optimization by natural extension of cler_slrly not tractab!e for larg€, and therefore approximate
the ideas in Section lll, but the constraint set has changé‘taflc.:hmqueS are requwe.d. . . o
Furthermore, the optimization is now seen to be combinatoricNOté further that this is also a constrained optimization.
in nature (i.e., the joint action space grows exponentially witfl the multisensor case, the constraint €€tis expanded
the number of sensors) so relaxation is required. We next shBgyond the single sensor constraint set to now include both
that the joint constrained information theoretic optimizatiol{'® riginal constraints of and a new constraint that sensors
can be written as a sum of single sensor optimizations and'@ ot collide with each other. That is

correction term. The correction term can be explicitly written ) _

in a limiting case of the Bnyi Divergence. The correction ~ €' =Cn{|lr' —77|| > d Vi, j wherei #j } .  (23)
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B. Connection to Single Sensor Optimization the Lagrangian
The joint optimization can be rewritten as a sum of singlel(7x) = (26)
sensor optimizations plus a correction factor as E[Da (p('|201k71’rozk71, 5k,Fk)l\p(-\z():kqﬂ“o:kq))
arg max (24) |20:6-1, T0:k -1, Fk} + A f(7%)
R €C’

P
P o

i = E|:D P 120:k—1,T0:k— )2177,1 P 120:k—1,T0:k—
ZE[Da(p('|ZO:k71aTO:k71aZ;zg,T;Z)Hp<'|2’0:k71;7“0:k71)> Z a(p( 2061, o1 MipCz0s-1:r0-1))
i=1

=1
|ZO:k71aT0:k71aFk}+
B [h(Zk, Ty 20:k—1, To:k—1) | + A (Pr)

where the functionf is a term that penalizes action sets that

o ) . . ~ move the sensors too close together. The joint optimization
where the functiorh is an “information coupling” term which then pecomes an unconstrained optimization

accounts for the fact (among other things) that the gain in )

information for two sensors taking the same action is not T = arg max L(7) (27)

double the information gain for a single sensor taking the T

action. In the limiting case aa — 1, the correction term  This optimization can be looked at as a sum of three terms:

can be written explicitly and the simplification becomes  a collection of single-sensor optimizations, an information
coupling (or correction) term, and a collision avoidance term.

|20:k7177’0:k71»7"k] +

E{h(zk»rkaZO:k—h7”0:k—1)|20:k—17r0:k—1ark} .

arg max (25) In our methoq, we sim_ultane_ously approxima_lte both the infor-
FREC mation coupling term involving the expectation bfand the
p collision prevention termf by introducing a function which
ZE[DQ (p(-|20k—15 T0:sk—1, 2p T IP(-|20:k—15 TO:k—1) ) reduces the value of action sets that involve sensors moving
i=1 close together. We have chosen to use a physicomimetic force

[31] to provide this approximation, although other similar

) A P approximations are also valid. Evaluating this force has a very

E[ ( P2 2 [Tkt 5Tl 2006=1,T0:k—1) ) small computational burden, and requires only that a node
p(zhThs 20ik—1,To:k—1) - - - P(2E |rf s 20.0-1,T0:k—1)/ know the positions of its neighbors. Different approximation

methods may be more appropriate in other settings. For exam-

ple, in cases where teams of sensors must work to interrogate

_ ) o ) o a single target one may use a second order expansion of the
i.e., the multisensor optimization can be written explicitly agformation gain and a third order correction term. If there

a sum of single sensor optimizations and a correction terpe additional obstacles in the region (e.g., buildings or no-

which is simply the expected value of the log of the joinfiy zones) the collision avoidance term would be suitably
measurement likelihood over the product of the IndIVIdeTlﬁ/odiﬁed_

measurement likelihoods. The proof of this statement is givenye provide an empirical comparison between the correction
in the Appendix. term (exactly computed at a small number of points) and
The correction term has this intuitive form related to mutuahe Lennard-Jones force used as the approximation for the
information when the KL divergencen(— 1) is used. It correction term and the relaxation term on a model problem
reflects the utility that other sensor measurements provigeSection V-A.2.
in predicting a sensors measurement. In the limiting case ofSince we remain in a continuous action space environment,
independent actions, this term vanishes. we must cast this approximation term via a vector force as
The correction term is stilD(M*) to compute, wheré//  well. We use a generalization of the Lennard-Jones potential
is the number of potential actions each platform could taktkat serves as a zeroth order model of the intermolecular forces
and P is the number of platforms, and therefore must bef liquids [48]. The Lennard-Jones force for a pair of platforms
approximated. Note also, that it is this correction term thatj separated by a distancg ; is radial with magnitude
hinders distributed implementation.

|20:k—1,T0:k—1, Fk} +

|Zo:k—177“0:k—177?k] .

,.ym ,.Yn
Y J
C. Computational Method For the standard Lennard-Jones potential = 12 and

n = 6, and is referred to as the 6-12 potential. Observe
The new constraint that sensors cannot collide deals withat this is strongly repulsive as the radius between sensors
action sets and not simply with individual actions and so it; ; gets small. The terms and ¢ are chosen based on
cannot be handled by simply censoring actions that violate thitform kinematic properties. The total force platfofifeels
constraint. Therefore, we address this constraint by definirggsimply the vector sum of the forces from all other platforms.
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To compute the total force, a platform need only know theithin the communication radius can hear the transmission,
positions of the other nodes; in fact, since the force falls ofind no sensor outside can. This results in a nice practical
so rapidly those sensors that are much more distantthave situation where no static interconnection of nodes is required.
negligible effect on the computation. Therefore, for practicéfl a node does not hear from another, it knows the other is
purposes, a node only needs to know the positions of neadutside of range and therefore should have no bearing on
neighbors. current decisions.

Denote byF”, () the vector force nodéfeels from nodg Therefore, in practice the distributed version of this opti-
when positioned at' (which is radial in direction with magni- mization works as follows. Each sensor collects measurements
tude given by eq. (28)). Then the total force nadeels from at its current position. Selected measurements (based on the
all other nodes when positioned =t is simply i ;(r') = likelihood they originate from a target as determined by the
>z F7(r"). Using this approximation approach to the joinfocal estimate of the JMPD) are broadcast along with an
constrained information theoretic optimization of eq. (22stimate of platform position. Those platforms within the
results in the final approximate multiplatform optimization communication radius receive this transmission, and likewise
a platform receives the transmission from all other platforms
for which it is in the communication radius. The locally made
N measurements and measurements received from neighbors are
Z {E{Da (P(-|20:0—1, Tok—15 25, Ti) | [P (| 20:1—1, ro:k_l))} used to update the local IMPD as described in Section Il. Each
=1 platform than computes the greedy (single-sensor) information

P based utility for future positionings and corrects this impetus
"MFLJ(TIC)} ’ with the repulsive Lennard-Jones force. The platform then
oves and the process starts anew.

i, = arg max (29)
T

This approximation can be viewed as driving sensors {8
compute greedy actions (i.e., ignoring the actions of other
sensors) and correcting over-zealous information seeking be-
havior by compelling sensors to stay away from others. These

two forces are balanced through the choice Xofwhich | this section, we present two simulation case studies that
when properly chosen, allows sensors to come near when fiigstrate the efficacy of the sensor management method given
situation warrants (i.e., in cases where the maximal joint utilify section IV.

is gained from close positioning of sensors), while staying The first case study uses a small numbes) (of very

apart in general. capable platforms to provide region surveillance. This sim-
ulation implements the decentralized version of the algorithm
D. Distributed Implementation by (a) estimating the (local) JMPD at each platform from local
Notice that the method eq. (29) allows each sensor feasurements and measurements received from neighbors (if
compute its next action in a completely distributed manneany), and (b) computing platform movements by combining
assuming each sensor has (a) knowledge of the other senagsglly computed information theoretic forces with locally
positions, and (b) knowledge of the JIMPD (or alternatively h@omputed physicomimetic forces. The simulation analyzes
access to all measurements the network has made). The figformance in terms of detection and tracking capabilities
portion of the term in simply requires the expected informatioas a function of communication radius.
gain computed at each node without regard to the actions ofThe second case study focusses on a large number (as many
other nodes. The second portion of the term requires only tlest 500) of platforms with very limited sensing capabilities.
each node know of the position of the nearby nodes. For the purposes of simulation, the centralized version of
We are further interested here in a low communicatiahe algorithm is used. Although simulation of the entire
version of this optimization. Therefore, only selected measumecentralized algorithm is near real-time on a per-platform
ments may be transmitted by the network. What results in thiasis (as would be required for implementation), simulation of
case is that each sensor in the network has an approximaie platforms requires significantly longer than real-tiraé((
JMPD, computed only using locally made measurements atities the single platform simulation time). The centralized
measurements shared by nearby neighbors. There are malgprithm is significantly cheaper computationally, owing to
reasonable ways a node may decide what measuremeéhesfact that only one IMPD must be estimated (rather than 500
should be transmitted to its neighbors and many reasonabéparate JMPDs). The communication burden is significantly
ways to define a neighborhood. In this work, we employcreased, however. This simulation illustrates surveillance
a method where a node sends measurements based onp#rrmance in a similar model problem, and also compares
likelihood that they originate from a target. This informatiothe performance of the proposed algorithm with an algorithm
is directly calculable from the (locally estimated) JMPD byhat uses only the physicomimetic force and one that only
marginalization. Furthermore, when a node transmits meases the information gain force. It is shown that the proposed
surements, it also must also share its position so that talgorithm, which combines these two forces as motivated
physicomimetic force may be computed by its neighbor. Oby the joint constrained information theoretic optimization
simulation studies assume a “radius of communication” whicpproximation, significantly outperforms algorithms based on
defines the neighborhood of a sensor. It is assumed all senshesconstituent forces alone.

V. SIMULATION RESULTS
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Fig. 2. Left: The model problem setup. The network is to determine the number and kinematic states of a group of moving ground targets. Each node
stares directly down making measurements of the surveillance region. The sensor management algorithm described here provides a distributed, decentralizec
low communication method for controlling the motion of nodes over time so as to best learn the contents of the surveillancRigbgidach node in

the network repeatedly follows the procedure of generating measurements, transmitting them to neighbors, receiving measurements, updating its probability
density, and finally computing the information theoretic and physicomimetic forces to decide where to move next.

A. A Simulation With a Small Number of Very Capableargets are modeled in the JMPD time evolution using a simple
Platforms nearly constant velocity approach, which is in fact mismatched
1) Description of the Model Problenithe following simu- 10 the actual targets as they rou_tinely perform move-stop-move
lation usesl5 platforms with decentralized control to provideand other maneuvers. Target birth and death is modeled in the
surveillance on a large region. The model problem usesI¥PD time evolution as spatially and temporally constant.
5000m x 5000m surveillance area that contain® moving Each platform is idealized to hover above the surveillance
ground targets (the number of targets, their positions afegion and has an imaging sensor that stares directly down. At
velocities are initially unknown). Each sensor has an imagi@fich time step, the imager measures cells in the surveillance
sensor with a wide field of view that provides evidence &yea by making measurements on a grid witldrmn x 100m
to the presence or absence of targets in a subsection of @eéection cell resolution. The model problem setup is illus-
region at any time. The goal is for the network of sensors ttated in Figure 2.
collaborate together in a low communication setting so thatWhen measuring a cell, the imager returns eithdr @o
the number of targets and their individual states is learned @atection) or d (detection) which is governed by a probability
quickly and accurately as possible. of detection p4) and a per-cell false alarm ratg#). Both
Target trajectories for the simulation come directly from are assumed to be temporally and spatially constant in this
set of recorded data based on GPS measurements of vehsaeulation. The signal to noise rati§ V R) links these values
positions over time collected as part of a battle training exengether. The sensor is modeled to have a field of view with
cise at the Army’s National Training Center. Targets routineliadius5 cells from its center and hence measures a circular
come within sensor cell resolution (i.e., cross). Persistgoatch on the ground. The effectivV R is maximum at the
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center and falls off as? at the periphery. We fs§ NR, .o, = Sensor and Target Locations
TavE L 5000
16dB, py = 0.01, and usepg = p;~*"", which is a standard 1
model for thresholded detection of Rayleigh returns [49]. 3
When there arel’ targets in the same cell, the detection 40001
1
probability increases according 1Q(7) = p}*S”R*T. Figure
3 illustrates theSN R andp, as a function of distance from S 3000p 7 ;
field of view center. § ==
Ny 2000@
0 1000+ o
g s ¢ L e ()
%] /I' \\ 0 1000 2000 3000 4000 5000
&g -10 X position
T s Time 1
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(b) The configuration of the sensors aff0 time steps.
0 0
-5 -5 Fig. 4. The random positioning of this platforms at initialization (left) and
Y (cells) X (cells) after some time (right). The platform position is given by the blue number

and its field of view is described by the circle surrounding the number. The
true position of each of the ten moving ground targets is shown by the green
numbered circles. The estimate of the position for the targets (taken from
. e . S . the omniscient fuser) is given by the red covariance ellipses. Qualitatively,
Fig. 3. A description of the capability of the sensors used in this S|mulat|05ﬂer some time, the platforms have preferentially aligned themselves over

Each sensor has a footprint on the ground of radius 5 cells. The effect A ’ ) . ;
SNR (and hencepy) is modeled to fall off asT% from the field of view tﬁ%vbe)lr?a?;se\tl;h”e still allocating some network resources to look for incoming

center.

(b) pq as a function of distance from the center of the field of view
for SNR = 16dB with py = .01 in the Rayleigh model.

Each platform computes a local estimate of the IMPD using
measurements it has made and measurements received fi@ni constrained information theoretic optimization is rewrit-
neighbors. Platforms then use the joint constrained informatiteén as a sum of single information theoretic optimizations,
theoretic optimization approximation described in the previows correction term, and a relaxation term. These last two
section to compute next best movements. terms are approximated with a physicomimetic term resulting
Figure 4 shows an initial (random) positioning of thge in a computationally tractable approach. In this section, we
sensors and the position after some time. As can be sd¥favide a comparison between the approximation term and
from the figure, over time the sensors preferentially a|igff|1’le correction term in the model problem as motivation for its
themselves around the targets (which were discovered throlt§i¢-
repeated interrogation of the ground) while still allocating We consider two sensors that are each able to measure cells
some resources to look for new targets. in the surveillance region as described above. Of interest is the
2) A Comparison of the Correction Term and the Physdifference between the information gain for a pair of actions
comimetic Approximation:As described in Section IV, the (r!,r?) when evaluated jointly as compared to the sum of
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Fig. 5. Two platforms are a distandeapart. Whend is large, their fields of view do not overlap, and the sum of individual information gains is close to the
joint information gain. Conversely, when the platforms are close, the joint information gain differs significantly from the sum of individual information gains.

individual information gains (i.e., the correction term). We&onversely, in the low communication radius setting, platforms
can examine the discrepancy as a function of the distanceend to cluster near targets. This is because a platform does
between the platforms. This is illustrated in Figure 5. not know where other platforms are unless they are close
When the platforms are far apart, there is very little diffwithin the communication radius) and furthermore does not
ference between the sum of individual platform informatioknow if targets are being effectively maintained by other
gains and the full joint information gain. As the platformgplatforms until they are nearby. Despite this difference in
move closer, the sum of individual information gain termbehavior, in both cases the number and position of targets
overestimates the value actions by “double-counting” informaas been correctly learned by the network. However, in the
tion (among other things). Figure 6 illustrates the discrepanbigh communication radius case, each individual sensor knows
in information gain estimation (i.e., the difference between thmauch more. The net effect of this additional knowledge is that
full joint optimization and the sum of individual optimizations)if a platform were to fail, its duties would be picked up by
as a function of platform distaneg Additionally, the (scaled) another platform in the network much more quickly.
Lennard-Jones force is superimposed to provide motivation for4) Monte Carlo Simulation of PerformanceFigure 8
its use. presents the results of a Monte Carlo simulation of per-
formance in this model problem. We illustrate the network
= : knowledge in three ways:
— Correction Term

— Physicomimetic Approximation | « At the Average Sensor Each sensor has a local estimate
of the JMPD whose fidelity is governed by the commu-
nication radius. Therefore, at low communication radius,
each sensor only has knowledge only of the local area,
and hence will only provide estimates of nearby targets.
As communication radius increases, sensors become more
aware of the entire region.

o At the Track Fuser: Aperiodically, individual sensor
estimates must be coalesced to provide a single picture
of the surveillance region. We assume for bandwidth
conservation purposes that sensors transmit estimates
about confirmed targets only to a base station rather than
the entire (local) JMPD estimate. The base station then
fuses these tracks to provide an estimate of the entire

Fig. 6. A comparison of the correction term and the physicomimetic approx-  surveillance region.

imation as a function of distance between two platforms. o At the (hypothetical) Omniscient Fuser To benchmark

performance, we also include a (hypothetical) omniscient
3) Emergent Behavior as a Function of Communication fuser that receives all measurements made by all nodes in

Radius: Figure 7 illustrates the effect of communication radius  the network and constructs the optimal JMPD estimate.

on network behavior. When the communication radius is Note: this entity is used only for constructing the figure

high, platforms spread out nearly evenly (while preferentially and is not used in the simulation in any way. In particular,
staying with targets) as each platform knows where (most of) all sensor management decisions are computed locally
the others are and that the existing targets are being covered. using the local estimate of the JMPD.

Difference between joint and individual gains

Distance
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(a) Steady-state behavior when the communication radius is low (b) Steady-state behavior when the communication radius is high
(r=500m). (r=5000m).

Fig. 7. The qualitative behavior of the platforms as a function of communication radius. In each graphic, the top plot shows the position of the platforms and
targets in the surveillance region. The bottom plot shows which sensors (1...15) know about which of the ten targets. The omniscient fuser and track fuser
performance are included for reference. In both cases, all targets are successfully detected and tracked with no false targets at the displayed time. However
the behavior of the system as communication radius changes is markedly different. In the low communication radius case (top-left), platforms tend group
heavily around existing targets, while in the high communication radius case (top-right), platforms spread out more. Furthermore, as the bottom plots indicate,
in the low communication radius case (bot-left) platforms tend to only know about nearby targets, whereas in the high communication radius case (bot-right),
platforms have a very global picture.

The performance of the network is measured in two ways: Additionally, we look at theCommunication Require-
ments of the method in terms of the percent of measurements
that each node transmits. A node measures some number

« The number offrue Targets detected and tracked. Thisgf cells at each time step. It then uses the (local) JMPD

measures the number, of ten possible, of actual targegscompute the likelihood that each measurement originated
that have been successfully detected and tracked (ifom a target. Those measurements (along with the platform
have position estimates that are within some allowabisition) that have likely originated from a target are broadcast
amount). to be received by any neighbor within the broadcast radius .
« The number of-alse Targetsincorrectly thought to exist. Since the target density in this experiment is low, the number
This measures the number of targets that are thougit measurements truly originating from targets is also low.

to exist when in fact they do not. Sensors receive falsgherefore it is to be expected that the number of transmitted
alarms (detections when in fact no target exists) accordiggeasurements will be small.

the false alarm ratg;. When a number of false alarms
occur in a row or when the sensor does not properly Each simulation run250 time steps. Figure 8 presents the
reinterrogate, a false target may be created. results of the average number of true targets, average number
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Fig. 8. Monte Carlo performance results for the 15 sensor region surveillance application.

of false targets from time stef0 on (after the burn-in time  2) Emergent Behavior With Different Scheduling Methods:
where the initially ignorant network has been able to leain Section IV, we saw that the optimal multiplatform informa-
about the surveillance region) for each of the three entitiéien theoretic scheduling criteria was in fact a joint constrained
(the average sensor, the track fuser, and the omniscient fusifprmation theoretic optimization. Through algebraic manip-
Figure ?? presents the number of measurements transmittaldtion, Lagrangian relaxation, and direct approximation we
by the sensors as a fraction of total measurements made. proposed a method of approximate scheduling that ultimately
] ) _ o results in a sensor being compelled to move by two competing

B. A Simulation With a Large Number of Very Limited Capgprces: One based on greedily maximizing information gain,
bility Platforms and one based on physicomimetics that acts to keep sensors

1) Description of the Model Problemin this subsection, apart and promote region exploration in just the correct
we turn our attention to a setting where surveillance is t@anner.
be performed with a large number (hundreds or thousands)n this section, we illustrate how the combination of these
of inexpensive low-capability sensors. The simulation useso forces promotes just the correct platform behavior and that
the same region size and target motion data as the previgus individual forces themselves are not sufficient. Specifically,
simulation. Again, the platforms are idealized to hover abowge compare both qualitatively and quantitatively the surveil-
the surveillance region and stare directly down. However, Jance performance of a network of sensors with three different
this simulation each sensor is capable of only measuringseheduling algorithms:
single detection cell immediately below the platform and has
degraded detection capabilitie§ YR = 10dB). Figure 9
shows a typical (random) initial deployment of sensing assets.

« The proposedCombination of Information Theoretic
Forces and Physicomimetic Forceswhich provides
a balance between information seeking behavior and
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explorative behavior and is connected directly with the
optimal multiplatform scheduling method.

« A purely Information Theoretic Method, which tasks
sensors to take actions that maximize information gain
(only).

o A purely Physicomimetic Method which maintains sep-
aration between sensors using the repulsive force (only).

Figure 10 shows the steady-state platform positioning of
0 platforms under each of the three methods.
3) Monte Carlo Simulation of PerformanceWWe again

display the performance of the scheduling algorithm based on
(a) the number of true targets detected, and (b) the number

false targets reported. Figure 11 shows the performance
the proposed scheduling algorithm versus the number of

Fig. 9. The (random) initial deployment &0 platforms in a surveillance platforms in comparison to the behavior of the two constituent

region. The position of each of the platforms is shown by a red dot. The tr
location of the ground targets is shown by the green dots (of course, both
number of targets and their kinematic states are unknown at initialization).

ﬁfg,mponents alone.

This figure shows that the proposed method effectively

Each platform has a low-capability sensor that merely measures a sing§mbines the strengths of the constituent methods. The physi-

100m x 100m pixel immediately below for the presence or absence of target(s:,o

mimetic method enforces collaboration and explorative be-

havior by encouraging platforms to maintain spatial separation.
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(a) Steady-state positioning of platforms confb) Steady-state positioning of platforms con{c) Steady-state positioning of platforms con-
trolled by the physicomimetic force only. Noticetrolled by the information theoretic force only.trolled by the combination physicomimetic and
that the platforms simply spread out in the regioiNotice that the platforms over-cluster near théformation theoretic forces. Here, platforms both

to avoid collision. true target positions and have large regions thakplore the entire region and preferentially clus-

are not explored. ter near real targets.

Fig. 10. The combination of information theoretic forces and physicomimetic forces drives the sensors to behave in a manner that combines the explorative

nature of physicomimetics and the exploitative nature of information theoretic optimization.
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When used alone, this results in good detection capability but
poor tracking capability, as once a target is found there is
no impetus to continue to follow its motion. Furthermore,
spurious detections that are the result of the false alarm
process are not tracked down through reinterrogation, resulting
in more false targets. Conversely, the information theoretic
method encourages exploitative behavior. When used alone,
this results in poor detection capability but good tracking
capability. Platforms tend to cluster around known targets and
track them very well but do not have the impetus to look for
new targets in unsurveyed regions. False targets are minimized
but real targets are less likely to be found. The proposed
method, which combines these two forces, as motivated by the
approximation to the joint constrained information theoretic
optimization, manages to use the strengths of both of the
constituent methods by both exploring and exploiting in just
the right ratio.

VI. CONCLUSION

This paper has addressed the problem of sensor management
for a large network of dynamic sensors. The method presented
is a novel combination of particle filtering for nonparametric
density estimation, information theoretic measures for com-
paring possible action sequences, and artificial physics for
providing approximate cooperation between sensor nodes.

This paper has provided three main contributions. First, it
has described a mathematical formulation for estimation of
the state of the surveillance region based on recursive esti-
mation of the joint multitarget probability density. Numerical
estimation of this high dimensional non-parametric density

Fig. 11. Performance of the proposed method versus number of platforms’in

terms of true targets detected and false targets reported. For comparison udone online via a novel multitarget particle filter. Second,
poses, the performance of each of the constituent forces (the physicomimtlitis paper has presented a new method of sensor management

force_ and the informgtion theoretic force_) are included. As can be seenﬂgr large dynamic networks that combines information theory
the figures, the combined force method significantly outperforms each of the . . . . . .
constituent methods. In fact, the performance of the constituent methods*d physicomimetics. Use of information theory allows this
500 platforms is similar to the combined method wiih-100 platforms. method to have the property that potential actions which
provide different types of information can be compared on
a common footing, that of information gain. Use of physi-
comimetics provides a tractable and robust approximation to
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the joint optimization problem. As the number of possible Both log terms can expanded giving
network actions grows exponentially with the number of

sensors and number of actions each sensor can take, finding In <p(zl|20:k_1) o p(2F | 20k—1) X (34)
the globally optimum action set is not tractable. Finally, this

paper has shown that the method can be decentralized method p(2t, - 2P|zt )

wherein each sensor generates a picture of the surveillance T 5 -

region based on its own measurements and measurements p(2Hzok-1) -+ p(2" |20n-1)

received from neighboring nodes. This local picture then drives Z_/p X, Tie|200—1)
the actions of each sensor at the next decision epoch, and also ’ '
drives which measurements are sent to other sensors.

Future work in this area includes the extension of the In <p(zl|Xk,Tk)--~p(zP|Xk,Tk)><
methods to long-term (non-myopic) scheduling. In a man-
ner analogous to multisensor scheduling, (haive) multi-step p(zt, - 2P X5, Th)
scheduling results in an exponential explosion of potential X0 T8) - pP X0 T )>ka
actions. Therefore, principled approximation methods (perhaps A A A

domain-specific) must be developed for tractable implemeand distributing the logs, the multisensor KLD becomes
tation. As alluded to earlier, some work has been done in

P
extending the information theoretic scheduling metrics to tHBP (=" [20:6—1) + -+ + I p(2"|200-1) + (35)
multi-step setting, but has focussed mainly on the single p(z!, -, 2P 200-1)
platform setting. p(z'20:6—1) - - - p(2F | z0:6-1)

=3 [ P Tz Il X, T~ -
APPENDIX

In this appendix, we show how the multisensor divergence ~ Z/p(kaTHZU:’C*l) Inp(2"| X, T)dXi
can be written as sum of single sensor divergences and an ’* ) »
explicit correction term. As in the text, we specialize to the _ Z/p(Xk Tilzom1) In (2L, 2P| Xk, Th)
case of the Rnyi Divergence where: — 1 which becomes ’ (21 Xy, Ty) - p(2F | Xy, Ty,)
the Kullback-Leibler Divergence [42].

The Kullback Leibler (KL) divergence between two densi- Recognizing theicomponents as the individual sensor diver-
ties po(z) andp: (z) is defined as gences by comparison to eq. (33), we have

pol) KLD(p(- |01, 2)[p(|0:6-1)) + -+ (36)
KLD(pllpm) = [ m@) ™ @0)
p1(z) +KLD (p('\zo:k—h ZP)\|p('|Zo:k—1))+
In the JIMPD setting, the divergence between the prediction In p(z's - 20 |z00-1)
density and the updated density after Alkensors have made p(zY20.6-1) - - p(2F | z0:6-1)
measurements?, - - - , 2 is from the definition p(zt, o 2P| Xk, Th)
*Z P(Xk, Tkl20:-1) In —— 7
1 P T (Z |Xk7Tk)"'p(Z ‘Xk’Tk)
KLD(p('|ZO:k71aZ SERRE- )|\P('|20:k71)) = (31) -

The integral term i9) since

> [ o060 Tl LT,
p( ks k|ZO:k7172 IR ) p(Zl,"' ,ZP‘X}C,T]@)
. _ . p(2" | Xk, Th) - - - p(27| X, Tk)
(Note that we omit from the notation 1cond|t|(1)3n|ng on past P Xk, Ti)p(22| X, Ty 21) - - p(2F | Xy Thoy 251, -, 21
:;:)iaalsiusri?nmﬁ::]itfojk_l and current actiom!,--- . 7¥ for nota- = e 1\Xk7Tk)~~~p(zP|Xk7Tk)
Using BPayeZ rule (5) on the denominator of the log term=p(zl‘Xk’Tk) Dz | X, Te)
! p(Zl‘Xk,Tk) (ZP|Xk,Tk)

this can be simplified to

1 ... P .
Z/P(XmTHZo:kq)ln Pz, 27 ok-1) d X,
Ty

=1.

p(zt, - 2P| Xy, Tk) ' i.e., as the likelihood in the numerator is conditioned on the
(32) truth at the current timéXy, T), the additional measurements

Further simplifying algebraically on the log term, we havdrom other platforms add no information. Note the subtlety
that this isnot the case with the likelihood conditioned on

Inp(2t, -+, 27 |z0m1)— (33) past measurements. Here knowing other sensor measurements
) » does add additional information.
Z/p(Xk,TkIZo;kA)lDP(Z b 2 | Xy, T )d X, Therefore, the result is that the Kullback-Leibler Divergence

between the prediction JIMPD and the JMPD affesensors
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have made measurements - - 2 is simply the sum of the®

(19]

single sensor divergences and a correction term, given explic-
itly by the log ratio of “informed” likelihoods to “uninformed”

likelihoods, i.e.,

KLD(p(-lz00-1, 2"+ .20l Ip(-|0:6-1))

[20]

(38) [21]

P
ZKLD(p('|ZO:k71aZi)||p('|ZO¢k*1))+ [22]
i=1

1 p(zla"' aZP|Z0:k:—1)

(2 zo—1) - p(2F |20 -1)

(23]

By taking the expected value of both sides and recognizing
that the Fenyi Divergence becomes the Kullback Leiblefz4]
Divergence agx — 1, we have the desired result.
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