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all-optical switches.
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ABSTRACT | Silicon nanocrystals (Si-nc) is an enabling

material for silicon photonics, which is no longer an emerging

field of research but an available technology with the first

commercial products available on the market. In this paper,

properties and applications of Si-nc in silicon photonics are

reviewed. After a brief history of silicon photonics, the

limitations of silicon as a light emitter are discussed and the

strategies to overcome them are briefly treated, with particular

attention to the recent achievements. Emphasis is given to the

visible optical gain properties of Si-nc and to its sensitization

effect on Er ions to achieve infrared light amplification. The

state of the art of Si-nc applied in a few photonic components is

reviewed and discussed. The possibility to exploit Si-nc for

solar cells is also presented. In addition, nonlinear optical

effects, which enable fast all-optical switches, are described.

KEYWORDS | Amplification; nanosilicon; nonlinear properties;

photonics

I . INTRODUCTION

Photonics is becoming increasingly important in electron-

ics since it can keep pace with both the Bmore-Moore[

(higher performances by increasing integration and

parallelism) and Bbeyond-Moore[ (new computation

principles) evolution trends of electronics. Silicon pho-

tonics, pioneered by Soref in the 1980s [1], [2], is a

technology that can merge both electronics and photonics

in a single chip to take advantage of both technologies: the

high computation capability of electronics and the high

communication bandwidth of photonics. The main interest
of silicon photonics is associated with the possibility of

adding new functionalities to electronic components such

as low propagation losses, high bandwidth, wavelength

multiplexing, and immunity to electromagnetic noise. The

main strength of this technology is that the silicon

properties of low cost, nontoxicity, and sophisticated

ultra-large-scale integrated (ULSI) circuit fabrication

technology, that were responsible of the great success of
silicon in electronics, can be put to the best use. Silicon

photonics is not only a promising research field but also a

reality with the presence of the first commercial devices

that can be applied to a wide range of application fields [3].

Since silicon is a good optical material but is a poor

light emitter, the discovery of light emission from porous

silicon at room temperature in 1990 [4] boosted the

research on all silicon-based light sources. At the same
time, the concept of silicon microphotonics or optoelec-

tronics emerged impetuously [5]–[7]. At the end of the last

century, the heterogrowth of germanium on silicon was

mastered, allowing the development of high-speed com-

plementary metal–oxide–semiconductor (CMOS) com-

patible optical receivers [8], [9]. At the same time,

silicon-based waveguides were shrinking in size: from

more than 100 �m2 typical of waveguides based on refrac-
tive index contrast given by different doping levels during

Manuscript received December 1, 2008. Current version published June 12, 2009. This

work was supported by the European Commission under the PHOLOGIC (FP6-017158),

LANCER (FP6-033574), POLYCERNET (MCRTN-019601), WADIMOS (FP7-216405) and

HELIOS (FP7-224312) projects, by PAT under the HCSC and NAOMI projects, and by Intel.

Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, A. Pitanti, R. Spano, and L. Pavesi
are with the Nanoscience Laboratory, Department of Physics, University of Trento,

38100 Povo-Trento, Italy (e-mail: ryanyuan@science.unitn.it;

anopchenko@science.unitn.it; daldosso@science.unitn.it; guider@science.unitn.it;

pitanti@science.unitn.it; spano@science.unitn.it; pavesi@science.unitn.it).

D. Navarro-Urrios is with the Departament d’Electrònica, Universitat de Barcelona,
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the 1980s to 5 �m2 size of rib waveguides, where Si/SiO2

was used to give index contrast.

Since 2000, silicon photonics has boomed and

tremendous efforts have been invested in this field.

Many important breakthroughs have been obtained on

light emitters [10]–[15], waveguides [16]–[21], modulators

[22], [23], microcavities and resonators [24]–[26], and

detectors [27], [28].

Silicon photonics is also attracting the attention of
industry. Many companies are eager to perform research

and get actual commercial opportunities [29], [30]. In

2002, ST-microelectronics [31] in Italy reported highly

efficient electroluminescence (EL) from an Er-doped

device. In 2003, photonic bandgap waveguides with low

losses were demonstrated by IBM [32]. In 2004, low-loss

silicon wire waveguides and a 30 GHz SiGe photodetector

were fabricated at IBM [33], [34]. A modulator with
modulation bandwidth exceeding 1 GHz was fabricated at

Intel [35]. Moreover, wavelength conversion [36] and all-

optical switching in silicon were proposed [37], [38]. In

2005, a continuous wavelength (CW) silicon Raman laser

was introduced by Intel [39], and a 10 Gbps modulator was

demonstrated independently both by Intel [40] and

Luxtera [41]. In 2006, a hybrid silicon evanescent laser

was invented by the University of California Santa Barbara
and Intel [42], and a broadband amplifier based on

Raman gain was introduced by Cornell [43]. Furthermore,

the electrooptical effect in strained silicon was demon-

strated [44]. Up to 16 cascade ring add/drop filters were

produced by IBM [45]. A microdisk laser was coupled to

silicon waveguides by IMEC and LETI [46]. In 2007, the

device performances reached 40 Gbps for active silicon

photonics devices at Intel: a mode-locked silicon evanes-
cent laser [47], a fast Ge photo-detector [48], and a

modulator [49]. Luxtera launched its first photoreceiver:

a four-channel 10 Gbps monolithic optical receiver in

130 nm CMOS with integrated Ge waveguide photo-

detectors [50]. The IBM team demonstrated optical

buffering of 10 bits at 20 Gbps in 100 cascaded ring

resonators [51] and, recently, fast optical switching [52].

In 2008, Lightwire launched high-speed interconnects
project based on its patented silicon photonics-based

optical application specific integrated circuit interconnect

platform. Kotura realized the first example of a successful

silicon photonics-based product: the UltraVOA array,

which provides simple current-controlled optical attenu-

ation (0–40 dB) and enables ultrafast (300 ns) power

management in optical networks.

We can see that silicon photonics is really booming. It
involves the invention of new structures and, more

importantly, the application of new materials or of new

phenomena in existing materials. Silicon nanocrystal (Si-nc,

Si-ncs) embedded in a dielectric matrix (in most cases,

silicon oxide) is one of the important materials, which has

already made great contributions to these breakthroughs

mentioned above and will continue to improve the

performance of various kinds of devices. Therefore, the
fundamental physics and applications of Si-nc as an enabling

material for silicon photonics are reviewed in this paper.

First, we will look at the main obstacles for bulk silicon to be

an efficient light emitter and list some important approaches

to enhance the light emission from silicon. Then, we address

Si-nc as light emitters and, more importantly, the main

achievements so far to get optical gain from this system. In

the sixth section, we will give a brief introduction on
applications of Si-nc other than light emitters, such as

waveguides, resonant cavities and solar cells, etc., and we

will also address the nonlinear effect of Si-nc. Lastly, we will

draw conclusions and point out future perspectives.

II . WHY CAN SILICON NOT BE USED AS A
LASER MATERIAL?

The most difficult optical device to be made from silicon is

a light emitter. Let us try to understand why silicon is not a

good light emitting material [53].

Fig. 1 is a simplified energy band diagram of silicon.

The main limitation to using silicon as a light source is

related to its indirect bandgap structure, which implies low

radiative recombination efficiency due to the need of the

assistance of a phonon to fulfill momentum conservation.
This in turn means that electron-hole (e-h) pairs have very

long radiative lifetimes, in the millisecond range. This is

Fig. 1. Schematic energy band diagram of silicon. The various arrows

indicate the recombination paths for an excited electron and

absorption processes. Black arrows: indirect absorption.

Red arrows: indirect radiative recombination with the assistance

of a phonon. Blue arrow: nonradiative recombination. Green arrows:

Auger recombination. Orange arrows: free-carrier absorption.
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not a problem per se for light emission. The problem comes
from the fact that e-h pairs in silicon move freely, on

average a distance of a few micrometers, before recombin-

ing. Thus, the probability of encountering defects or

luminescence killer centers is high, even in electronic

grade silicon. Consequently, the nonradiative recombina-

tion lifetime in silicon is a few nanoseconds long, i.e., most

of the excited e-h pairs recombine nonradiatively. This

translates into very low internal quantum efficiency at
room temperature, �10�6. Moreover, when population

inversion is needed to achieve lasing, high excitation is

needed. Under this condition, fast nonradiative processes

turn on such as Auger recombination (participation of

three particles in nonradiative processes, green arrows in

Fig. 1) or free carrier absorption (orange arrows in Fig. 1).

Both these processes deplete the excited population and

provide loss mechanisms. Therefore, silicon is considered
out of the list of light emitter candidates.

III . DIFFERENT APPROACHES TO
OVERCOME SILICON’S LIMITATIONS

Taking into account these limitations, many strategies

have been proposed to improve the light emission from

silicon [3], [54], [55].
1) Porous silicon [4], [56], [57]: it can be fabricated

electrochemically by dissolving silicon into HF

solution.

2) Nanosized silicon or silicon p-n junctions: for the

former, stimulated emission at 1.28 �m was

obtained at cryogenic temperature [58]. For the

latter, large quantities of carriers were confined

and stimulated light emission was achieved [14].
3) Bulk silicon p-n junction: extremely pure bulk

silicon was used to fabricate a p-n junction with

solar cell characteristics to eliminate most of the

nonradiative centers and get more photons out of

the front surface of the device [59]. Another kind

of efficient bulk silicon p-n junction light emitter is

based on dislocation loops, which are resulted

from ion implantation and annealing [60]–[63].
Carriers are confined at edges of dislocation loops

and cannot diffuse to nonradiative centers, and

thus the radiative recombination can be enhanced.

4) Brillouin zone folding and band structure engi-

neering. It can be achieved by using group IV

elements to alloy with Si or to fabricate nano-

structures [3], such as SiGe quantum wells, Si/Ge

superlattices, GeSi and SiC alloys, etc. Moreover,
high gain and luminescence intensity in strained

Ge on Si at room temperature was predicted [64].

5) Dislocation-related luminescence: the carriers

recombine radiatively at specific type of disloca-

tions [65], [66].

6) Incorporating a direct bandgap compound, for

example, �-FeSi2 [67], [68], into silicon.

7) Raman laser: an all-silicon Raman laser has
been successfully fabricated [39], [69] by stan-

dard CMOS techniques.

8) III–V compound laser bound to silicon

substrate [42].

9) Rare-earth ions as luminescence centers [18],

[70]–[73].

10) Si-nc based light emitters, which will be intro-

duced in detail in the next section.

IV. Si -nc BASED LIGHT EMITTERS

The realization of a silicon-based light emitter via Si-nc was

motivated by the discovery of light emission from porous

silicon. It has been greatly advanced by different kinds of

fabrication techniques. Its study is actually focused on two

directions: photoluminescence (PL), with the aim to
distinguish the origin of the light emission where some

issues are still controversial; and EL with injection-based

devices, which still suffer from low efficiency.

There are various techniques to fabricate Si-nc, whose

size can be tailored to a few nanometers. The choice among

them depends on the particular application one is interested

in. Bottom-up approaches rely on the direct chemical syn-

thesis of Si-nc by chemical reactions of suitable precursors
[74]. Since the precursors are usually in a liquid phase, these

methods are mostly suitable for bioapplications. On the

contrary, other methods are based on a thermodynamically

induced self-aggregation of Si-nc in nonstoichiometric

dielectrics [53]. It starts from an Si-rich oxide (SRO)

film, which can be produced by deposition, sputtering, ion

implantation, cluster evaporation, or sol-gel synthesis. The

substochiometric SiOx film is transformed into a composite
film of Si-nc embedded SiO2 by a partial phase separation

mechanism, triggered by thermal annealing. The duration of

the thermal treatment, the annealing temperature, and the

Si excess content ðSiexcÞ in the SRO film determine the final

size, size dispersion, and crystalline nature of Si-ncs. As a

rule of thumb, greater silicon excess, higher annealing

temperature, and longer annealing produce larger and more

crystallized Si-ncs. The phase separation mechanism is also
valid for the fabrication of Si-nc embedded in silicon nitride

[75]–[77] and silicon carbide [78].

Generally, Si-ncs possess two remarkable PL features:

high efficiency and tunable emission wavelength. And these

features are direct consequences of quantum confinement

effects. The emission band can be adjusted by simply changing

the Si-nc size [53], while the improved efficiency has many

causes. First, when the e-h wavefunctions are squeezed in real
space due to the small size of the Si-nc, they broaden in

momentum space, which causes a larger overlap of them and

thus increases the radiative recombination probability (quasi-

direct transitions) [79]. Secondly, the spatial constrictions of

e-h pairs in Si-nc means that they are no longer free to diffuse

as in bulk silicon, and thus the probability of finding non-

radiative recombination centers is reduced significantly.
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Thirdly, the decrease of the average refractive index of the
material, an average value between those of Si-nc and SiO2,

increases the light extraction efficiency from the material

itself by reducing the internal reflections.

So far, however, the physical origin of the PL property

of Si-ncs is still under debate. The size dispersion of Si-ncs

is usually claimed as the source of the broad emission line

shape of the Si-nc emission spectra at room temperature.

However, both size-selected deposition [80] and single
Si-nc luminescence experiments [81] demonstrate that

most of the luminescence broadening is intrinsic in nature,

indicating that the PL spectrum has many contributions. In

the Si-nc embedded SiO2 system, the light emission is

often characterized by a wide band in the wavelength

range of 600–900 nm. This emission band red-shifts with

the increase of the Si-nc mean size, which is qualitatively

in agreement with the quantum confinement model and
allows attributing this band to e-h recombination in Si-nc.

Often, a second band, centered at 500 nm, can be

observed. It is different from the Si-nc related band

because it does not shift by changing crystallites’ size. This

band can be related to recombinations in matrix defects

[82], which can be quenched by postgrowth annealing

treatment, such as hydrogen passivation. There are other

Si-nc and matrix interface defect-related luminescence
bands that have been reported; interestingly, some of them

depend on nanocrystal size [83]–[85].

It has been proposed that interface radiative states

associated with oxygen atoms play a crucial role. They can

be found either in the formation of silicon dimers [86] or

in the form of Si ¼ O bonds [87] at the interface between

the Si-nc and the oxide or within the oxide matrix. X-ray

measurements and ab initio calculations [88] show the
presence around the Si-nc of a strained SiO2 region (about

1 nm) participating in the light emission process. The

spatial distribution of the highest occupied and lowest

unoccupied Kohn–Sham orbitals is totally confined in the

Si-nc region with some weight on the interface O atoms,

confirming the dot-nature of the near band-edge states but

showing also the contribution of the surrounding SiO2

shell. The calculation of the absorption spectrum shows
that these new states originate strong features in the

optical region, which can be at the origin of the PL

observed for Si-nc immersed in a SiO2 cage. Similar results

have been obtained also by Monte Carlo simulations [84].

The role of the chemical passivation of the Si-nc has been

pointed out in a recent experimental work [89], where the

coupling between surface vibrations and fundamental gap as

well as the increase of interaction between them in the
strong confinement regime are proposed to interpret light

emission. A recent study [90] shows that it is possible to

switch between a quantum confinement nature of the

emission to a recombination at defects by using hydrogen

passivation: hydrogen passivates the defects and the PL is

mainly due to quantum confinement effect, whereas

ultraviolet illumination of the sample reactivates the defects,

resulting in a defect-dominated emission. The understand-
ing of the PL is even more complicated for Si-nc embedded

in the silicon nitride system since more defect states and

band tail states are involved [91], [92].

Achieving an efficient electrical injection and hence

efficient Si-nc light-emitting devices (LEDs) has been the

subject of several studies [93]–[95]. Interesting results

have been obtained in ion implanted samples, showing

maximum external quantum efficiency of about 3� 10�5

[96]. Similar data have been obtained in plasma-enhanced

chemical vapor deposition (PECVD) Si-nc [97]. Field-

effect luminescence has been achieved by alternative

injection of electrons and holes into Si-ncs with external

quantum efficiencies of 0.03% [98].

Electrical injection into the Si-nc is a delicate task by

itself. Different tunneling mechanisms in an Si-nc embedded

SiO2 film are reported schematically in Fig. 2. Indeed, in
most of the reported devices, the EL is produced either by

black-body radiation (the electrical power is converted into

heat, which raises the sample temperature and then the

device radiates) or by impact excitation of e-h pairs in the

Si-nc by energetic electrons, which tunnel through the di-

electric by, for example, a Fowler–Nordheim (F–N) process

(see the left side of Fig. 2). Electron-hole pairs excited in this

way recombine radiatively with an emission spectrum that is
very similar to that obtained by PL. The problem with impact

excitation and F–N tunneling is low efficiency and the

damage to the oxide. To get high EL efficiency, one should try

to get bipolar injection. However, bipolar injection is ex-

tremely difficult to achieve since the effective barrier for

tunnelling of electrons is much smaller than that for holes.

However, the bipolar injection can be easily achieved if direct

tunneling occurs (see the right side of Fig. 2). Moreover, the
voltage required for direct tunneling is usually lower than

3 V, whereas the voltage is higher than 3 V for F–N tunneling.

We have adopted an MOS device structure to optimize

bipolar injection to Si-ncs [99], [100]. Fig. 3 shows the

Fig. 2. Schematic view of the process of generation of e-h pairs in

silicon nanocrystals by impact excitation or direct tunneling:

cb or vb refer to the conduction or valence band-edges.
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schematic cross-section structure of an LED with Si-nc/

SiO2 multilayer as active layer. A transmission electron

microscope (TEM) cross-section image of the active layer
is shown in the bottom left of Fig. 3. The top view of the

LED is presented in the bottom right of Fig. 3. The active

layer of the device is a multilayer structure composed of

alternating Si-nc and SiO2 layers on p-type silicon

substrate. A 100-nm-thick n-type polycrystalline silicon

(polysilicon) gate layer was deposited on the active layer,

followed by deposition of an Al grid (500 nm thick). The

metal-free region of the poly-Si layer has been covered by
an antireflective coating (ARC; a 50-nm-thick Si3N4 layer

and a 120-nm-thick SiO2 layer).

The conductivity of the multilayer Si-nc LED is

controlled by direct tunneling of electrical charges between

Si-ncs [101]. Current–voltage (I–V) characteristics of such

devices are shown in Fig. 4. The gate voltage means the

voltage applied to the n-type polysilicon gate layer while the
substrate is grounded (see Fig. 3). An I–V hysteresis loop was

found, which is due to the charge accumulation or trapping

in the device [100]. At these very low voltages, the current is

due to the (inelastic) tunneling into the Si-nc/SiO2 interface

states [102]. The presence of the subbandgap interface states

has been reported recently by us [103]. At higher voltages,

the current has the same value under forward and reverse

bias, which might indicate a bulk-limited nature of the
measured current, controlled by the direct tunneling of

electrical charges between the Si-ncs [104].

The current (voltage) values at which the EL signal was

recorded are marked with the dots in Fig. 4. It is important

to note that EL emission can occur at low voltages, lower

than 3.2 V, corresponding to the height of the energy

barriers at the silicon-oxide interface for electrons [105].

When high biases (> 3.2 V) are applied, then F–N tun-
neling of electrons into silicon oxide conduction band

occurs. So these observations indicate that direct tunneling

of electrons and holes into the Si-nc is the predominant

mechanism of excitation of EL in our devices under low

biases. Moreover, the carrier injection is more efficient in

sample with 4 nm SRO than that in sample with 3 nm SRO.

This is due to the fact that the size and interdot distance of

Si-ncs, key parameters for charge injection, depend on
SRO thickness. Very weak EL emission was observed

under reverse bias, which could be explain by the fact that

hole tunneling current is negligible under reverse bias and

the conduction band electron current is dominant over the

entire voltage range [106].

The direct tunneling is not only less destructive than

the F–N tunneling but also presents a more efficient way

of injecting charges into the nanocrystals. This is evident
from Fig. 5, which compares two Si-nc LEDs: multilayer

Fig. 3. (Top) Schematic cross-section and (bottom right) top view of the

LED. (Bottom left) TEM image of the Si-nc/SiO2 multilayer (annealed

structure of 4 nm SRO/2 nm SiO2 multilayer, five periods) [99], [100].

Fig. 4. Current-voltage characteristics of Si-nc/SiO2 multilayer LEDs.

The dots indicate the gate voltages (currents) at which EL signal was

recorded. Very weak EL emission was observed under a high reverse

bias and no emission when the bias was at the hysteresis loop region.

Fig. 5. Total EL intensity as a function of injected current and gate

voltage. The dotted line is the corresponding EL emission from a LED

with single layer as the active layer (�50 nm thick), which has the same

composition as the SRO layer of multilayer LEDs.
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LEDs with the dominant direct tunneling and single-layer
LED with the dominant F–N tunneling. This figure also

shows a typical dependence of EL emission intensity on the

injected current, which is a linear function in bi-log

coordinates.

V. STATE OF THE ART ON THE WAY TO
MAKING AN INJECTION LASER BY
USING Si-nc

Here we show that Si-nc is itself an active laser material at

visible wavelengths and the way that it can efficiently

sensitize Er ions for light amplification in the infrared (IR)

region.

A. Optical Gain in Si-nc (Visible Range)
Optically pumped gain in Si-nc thin films has been

reported by several research groups, including us [10], [107],

[108]. We have shown amplified spontaneous emission

(ASE) from Si-ncs grown by different techniques (PECVD,

superlattices, magnetron sputtering) and by means of the

variable stripe length (VSL) technique in the CW and time-

resolved (TR) regime, where the luminescence of Si-nc is

used as a probe beam and one looks for enhancement as it

propagates in an optically pumped waveguide. Fig. 6 shows
representative results on Si-nc samples prepared by PECVD

method. Loss or gain depends on the pump power and

pumping length [Fig. 6(a)], which can be measured by the

VSL technique [a schematic setup of the method is shown in

the inset of Fig. 6(b)]. The TR ASE for various values of

pump power and excited volume is shown in Fig. 6(b). By

modeling the system within a one-dimensional amplifier

scheme, the gain spectrum can be obtained. A summary of
the emission, absorption, and gain spectra for a represen-

tative Si-nc sample is shown in Fig. 6(c). Absorption in-

creases strongly at short wavelengths while emission (both

spontaneous and stimulated) occurs at long wavelength.

This is also called the Stokes shift between absorption and

emission and is a characteristic of Si-nc. At the same time,

the gain and luminescence spectra peak at different wave-

lengths, which indicates that either only the small Si-nc have
strong gain or gain and luminescence have different origins.

In the TR ASE spectra obtained by the VSL method, a fast

recombination component appears in the decay dynamics

[Fig. 6(b)], which disappears when either the excitation

length l is decreased at a fixed pump density power ðJpumpÞ
or when Jpump is decreased for a fixed l. These observations

rule out the nonradiative Auger processes as the origin of the

observed fast component, since the intensity does not
depend on l, whereas the fast recombination peaks are cri-

tically dependent on the pumping length, keeping fixed the

excitation conditions.

The gain has also been observed in signal amplification

(i.e., pump and probe) experiments [Fig. 6(d) and (e)]. A

red signal beam is transmitted through a thin (200 nm)

layer of Si-nc on a quartz substrate and, at the same time, a

blue pump beam is exciting the Si-nc. When the power
density of the pump beam is weak, the transmission

though the Si-nc is mostly unaffected by the presence of

the pump beam. On the contrary, when the pump power

density is increased enough, the transmission through

Si-ncs gets larger than unity. This means that the pump

beam drives the Si-nc to the condition of population in-

version where positive optical gain is observed.

Although a full theoretical model of the stimulated
emission process in Si-nc is still lacking and the observed

characteristics cannot be explained only on the basis of

electron localization in the nanocrystals, a model to ex-

plain all these phenomena has been proposed, as shown in

Fig. 7. The gain is associated with a four-level system,

which can treat qualitatively the strong competition among

losses, Auger recombinations, and stimulated emissions on

the basis of rate equations of the relaxation dynamics
[Fig. 7(a)]. In Fig. 7(b), absorption of a photon occurs as a

vertical electronic transition between the ground state

(level 1) and the excited state (level 2) of Si-nc. The excited

cluster then relaxes to a new minimum energy configu-

ration (level 3). Emission (either stimulated or spon-

taneous) is represented in this diagram by a downward

electronic vertical transition to the level 4. Once the Si-nc

is in its ground state, it relaxes again to the minimum
energy configuration, which corresponds to level 1. Thus,

by considering this interplay between ground and excited

configurations, we find four levels associated with the

absorption and emission processes. Note that this scheme

implies that absorption (transition between level 1 and 2)

occurs at shorter wavelengths than those of emission

(transition between level 3 and 4) as observed expe-

rimentally. It is also worth noting that strong lattice
relaxation (bond deformation) occurs when the Si-nc is

excited.

One important characteristic of the optical gain in Si-

ncs is the fact that stimulated emission occurs at a very fast

(nanosecond) rate. This is a consequence of the delicate

balance among stimulated emission and other nonradiative

recombination processes, which quickly deplete the

population inversion in Si-ncs. The typical lifetimes
associated with these processes are [108]

�se ¼
4

3
�R3

NS

1

��gcnph

�A ¼
1

2CAN3

�CC ¼
1

2CCCN3

where �se, �A, and �cc are lifetime of stimulated emission,

nonradiative Auger, and free-carrier absorption, respec-

tively. RNS is the Si-nc radius, � the Si-nc packaging

density, �g the emission cross-section, nph the photon flux
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density, CA the Auger coefficient, N3 the population

density in the metastable level 3, and CCC the excited

carrier coefficient. It is clear that to have optical gain, �se

must be smaller than �A and �cc. Since various parameters

are strongly sample and configuration dependent, this

tradeoff explains the difficulty in obtaining high optical

gain in a systematic manner in Si-ncs.

B. Er-Doped Si-nc Amplifiers (IR Range)
Erbium-doped fiber amplifiers (EDFAs) are well

established in long-haul transmission. However, there
are difficulties, such as ion pair interactions and the small

excitation cross-section of the Er ion, in reducing the size

and cost of EDFA devices for widespread integration. In

fact, EDFA devices are based on long and lightly doped

Fig. 6. (a) ASE versus the pumping length for two pumping powers at 800 nm. (b) TR ASE for various pump powers and excited volumes.

The inset shows a scheme of the VSL method. (c) Summary of the optical properties of Si-ncs. (d) Transmitted intensity versus the wavelength

for different power densities by pump and probe measurements. The dark line refers to the transmission of the sample without pump.

The inset shows the scheme of the experiment. (e) Pump and probe experiments with chopped probe signal at (top panel) 2 kW/cm2 and

(bottom panel) 50 W/cm2 pump intensity.
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fibers where high-power laser diodes are used as a pump.

Clearly, a breakthrough would be a new gain medium that

enables broadband optical or electrical excitation of rare-

earth ions [109], with a potential of hundredfold reduction

in pump costs. In addition, the new gain medium could

provide order-of-magnitude enhancements in effective

absorption cross-sections, with corresponding reductions
of amplifier length dimensions. An Er-doped waveguide

amplifier (EDWA) with an Si-nc based waveguide can be a

candidate. First, Si-ncs have broadband optical absorption

spectra, which mainly depend on the average size of the

Si-nc and which are appreciable near 600 nm growing

towards shorter wavelengths. Secondly, the absorption

cross-sections of Si-ncs are on the order of 10�16 cm2 in

the 488 nm region, which is five orders of magnitude
higher than that of Er3þ in stoichiometric silica [110],

[111]. This value is also conserved when Si-nc is excited by

electrical injection. Thirdly, the pump laser can be a high-

power LED or, even, an electrical excitation circuit [112].

Fourthly, it has been demonstrated that Er3þ-doped silica

containing Si-nc exhibits a strong energy coupling be-

tween Si-nc and Er3þ. Quantum efficiencies greater than

60% and fast (100 ns) Si-nc to Er3þ transfer rates have
been measured. Moreover, in addition to the increase of

effective excitation cross section ð�excÞ of the indirectly

excited, Si-ncs increase the average refractive index of the

dielectric matrix, allowing good light confinement and

high electrical current, which opens the route to elec-

trically pumped optical amplifiers.

Let us first summarize various mechanisms, although

some of them are still controversial, and define the related
cross sections for the Si-nc and Er3þ interaction system, as

shown in Fig. 8. The excitation of Er3þ occurs via an

energy transfer from e-h pairs that are photoexcited in the

Si-nc: the overall efficiency of light generation at 1.535 �m

from Er3þ through direct absorption in the Si-nc is de-

scribed by an effective Er3þ excitation cross-section ð�excÞ.
On the other hand, the direct absorption of the Er3þ ion

and the direct emission from the Er ions, without the
mediation of the Si-nc, are described by absorption ð�absÞ
and emission ð�emÞ cross-section, respectively. The typical

radiative lifetime of Er3þ is about 9 ms, which is similar to

that of Er3þ in pure SiO2. Several authors have suggested

different channels for quenching of the Er3þ emission such

as cooperative up-conversion [113], excited state absorp-

tion (ESA) [114], and Auger de-excitation [115]. We can

see that, to optimize the system and achieve net optical
gain in the amplifier, these detrimental processes must be

avoided or reduced. More importantly, carrier absorption

(CA) losses and the low number of Er3þ ions coupled to

Si-nc (few percent) are main obstacles to achieving net

optical amplification in Si-nc based EDWA. As for the

former, a faster exciton recombination in small nanocrys-

tals and/or faster carrier population depletion (due, for

example, to a transfer mechanism) can reduce CA [116]
because CA induced losses are proportional to the exciton

population density in Si-nc. As for the latter, several reports

revealed what seemed to be an intrinsic limit of the

material itself [107], [117], [118].

A few groups have performed pump and probe mea-

surements to look for optical amplification. The most

successful result of 7dB/cm has been reported [18], where

a very low Si-nc concentration was used. A successful
experiment of top pumping with a 470 nm LED array was

also reported, showing full inversion with maximum gain of

3 dB/cm [119]. In our laboratory, cosputtered samples [120]

have been integrated into 10-�m-wide rib-loaded wave-

guides, as can be seen in Fig. 9. The scanning electron

microscope (SEM) image of the waveguide is shown in the

inset of Fig. 9. We infer an absorption loss coefficient at

1535 nm of about 4 dB/cm, while material losses at 1600 nm
(out of absorption spectrum of Er ions) have been assessed

about 1–2 dB/cm by the shift excitation spot technique [117].

We roughly estimate the percent of Er3þ coupled to Si-nc in

our system to be 25% of optically active Er ions. This

represents by far the largest improvement from a few percent

reported in previous literature. The Auger back-transfer

possibility was studied by using fast (nanosecond) TR IR

Fig. 8. Diagram of the excitation process of Er3þ ions via an Si-nc, with

the main related cross-sections.

Fig. 7. (a) Energy diagram for a four level system. The various

transitions are indicated by different lines; those with wavy lines are

nonradiative. (b) Configuration coordinate diagram associated with

atomic relaxation.
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spectroscopic measurements in our group. This combination

of fast temporal and spectral analysis allowed us to separate

different contributions to the PL signal. We found that the

fast PL signal is associated with amorphous Si-nc or defects in

the matrix, while only the slow one is characteristic of Er3þ.

Moreover, no sign of Auger back-transfer has been detected.

This allows us to conclude that the coupling among Si-nc and
Er3þ is only ruled by geometrical effects [104] and that Auger

back-transfer is not a real issue in high-quality samples.

VI. OTHER APPLICATIONS OF Si-nc
IN SILICON PHOTONICS DEVICES

In this section, we will address applications of Si-nc in

waveguides, optical resonant microcavities, and solar cells.
The nonlinear optical property of Si-nc is also summarized.

We will review recent results from our group [121] and

make a comparison with the state of the art in each field.

A. Waveguides
Si-nc embedded SiO2 has tunable refractive indexes

[122] that are higher than that of SiO2 (1.45). Therefore, it

may have the advantage to form the core region of wave-
guides where the cladding is made of SiO2. In these

waveguides, optical losses can have different origins, both

intrinsic [absorption, excited carrier absorption (ECA),

Mie scattering] and extrinsic (scattering losses due to im-

perfections, sidewall scattering, radiation into the sub-

strate). Optical losses of 120–160 dB/cm have been

reported in the visible range [123], [124]. Lower values

(about 10 dB/cm) have been reported for thick slab
waveguides at 780 nm and �3.5 dB/cm at 1000 nm, where

Rayleigh scattering is decreased according to the well-
known 1=�6 law [125]. Recently, optical loss as a function

of the probe wavelength has been investigated [126].

Results show that propagation losses decrease with

increasing the wavelength, from about 73 dB/cm (at

785 nm) to 2 dB/cm (at 1630 nm). Also, the absorption

cross-section is about 3:5� 10�18 cm2 at 830 nm, in-

creasing with decreasing wavelength.

In addition to linear losses, nonlinear optical losses are
significant in Si-nc waveguides when using IR light. In

Section VI-D, we will discuss the nonlinear absorption due to

two photon absorptions. Here we will discuss ECA. Free-

carrier absorption has been extensively studied in bulk

silicon [127], while few works deal with that in Si-nc [128],

[129]. An extensive study of the ECA mechanism in multi-

layer Si-nc rib waveguides has been reported [130]. A pump

(532 nm) and probe (1535 nm) technique was used to assess
the loss. The ECA loss coefficient can be written as a func-

tion of signal enhancement (SE), the ratio between the

transmitted signal when the waveguide is pumped to the one

when the waveguide is not pumped, in the following way:

�CANCarr ¼ �
lnðSEÞ
�Lpump

where � is the optical mode confinement factor and Lpump is

the length of the waveguide that is actually excited by the
pump; NCarr is the number of excited carriers and �CA is the

absorption cross-section of the waveguide at the signal

wavelength.

In Fig. 10(a), the transmitted signal is shown when the

pump is switched on. A rapid decrease in the transmission

is observed. The dynamics of the decrease is characterized

by two time scales: one fast (order of microseconds) and

one slow (order of seconds). The slow one is due to
thermal effects while the other is due to ECA. Fig. 10(b)

shows the maximum of the ECA loss as a function of the

pump photon flux �p. ECA losses increase with �p, up to

6 dB/cm for �p ¼ 3� 1020 ph/cm2s. A square root de-

pendence of �CANCarr on �p is observed. Since �CA is

independent of �p, so NCarr depends on �1=2
p . This is an

indication of Auger dominated recombination processes in

the Si-nc, possibly between adjacent Si-ncs due to their
particular close distribution in multilayer samples. If we

assume one excited carrier per Si-nc at high pumping rate

from �CANCarr ¼ 1:4 cm�1, we get �CA ¼ 4� 10�19 cm2

at 1535 nm, when NCarr ¼ 3:5� 1018 cm�3. In addition,

the ECA has the same characteristic dynamics of the

recombination of exciton luminescence in large Si-nc [see

the inset of Fig. 10(b)]. This indicates that the way to

reduce the excited carrier absorption is to decrease the
Si-nc size in the waveguide.

As Si-nc embedded SiO2 has a relatively low refraction

index, its application in conventional stripe waveguides

Fig. 9. (Bottom) Absorption and emission spectrum of a Si-nc and Er3þ

ions coupled rib waveguide (SEM picture in the inset) and (top left)

simulated and (top right) measured output optical mode.
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would result in a large cross-section and weak light con-
finement. So, a new waveguide architecture, the slot

waveguide [19], has been proposed, which uses the

electric-field discontinuity at the interfaces between

different dielectric materials and where light propagates

mostly in the low index medium. This kind of device is

often designed as a sandwich-like structure with the low

index medium in the center. Due to the high index con-

trast, modes with strong field intensity at the two low/high
index medium interfaces of the slot are formed. The

overlap of the evanescent tail of the modes in the central

slot leads to a strong light confinement in the low index

region. Examples of such structures are shown schemat-

ically in Fig. 11: an SRO slot (100–150 nm) sandwiched by

two silicon waveguides (width of 500 nm and height of

200–300 nm) [131]. Both vertical [Fig. 11(a)] and

horizontal [Fig. 11(b)] configurations have been proposed.
The vertical approach has some difficulties for fabrication

since it is difficult for the standard technique to fill the slot

with SRO, while the horizontal or sandwich slot structure

allows one to overcome this problem and to fulfill the tight

requirements for mass production. These slot waveguides

show propagation loss as low as 4 dB/cm at 1550 nm.

B. Optical Resonant Microcavities
In the past few years, a series of achievements has been

made in the fabrication of optical micro- and nanocavities

[132], where the light is confined in a small modal volume

by resonant recirculation with low round-trip optical loss.

Such optical structures are used to achieve lasing action: as

an example, Er-doped microspheres and microtoroids were

realized [133]. However, the disadvantage of these devices

is that they are not planar, making them difficult to

incorporate into CMOS technology. Therefore, planar
optical cavities, such as ring resonators or photonic crystal

waveguides, as well as Btraditional[ linear optical

resonators, such as Fabry–Perot and distributed feedback

cavities, are preferred for CMOS compatibility.

In the following, we will provide a brief assessment of

the main optical properties of microcavities enhanced by

Si-ncs. In particular, the application of Si-ncs in slow wave

structures is worth noting.

1) Ring Resonators: Ring resonators (RRs) are versatile

building blocks with various applications, from telecom-

munication and sensing to basic scientific research. They

are also widely used in photonics to shrink the size of

modulators and to route the light and allow high-speed

optical buffering [134]. In a common RR layout, a light

beam travels through a waveguide in close proximity to a
ring, so that the evanescent fields of the optical modes

overlap, and optical energy transferred to the ring and back

to the waveguide may occur. The strength of the coupling

in the RR can be controlled by adjusting the gap distance

between the waveguide and the ring. The smaller the gap,

the larger the coupling efficiency.

A resonance requires that the optical path length in the

ring be a multiple of the wavelength of the input photons,
or m�m ¼ 2�R neff , where R is the ring radius, neff is the

effective refractive index of the waveguide, �m is the

resonance wavelength, and m is an arbitrary integer. A

change in R or neff would shift the resonant wavelength.

Fig. 10. Direct measurement of the intensity of a 1535 nm signal for

different pump photon fluxes: (a) full temporal dynamics and

(b) carrier absorption losses of 1535 nm signal as a function of the

photon flux. A square root fit to the experimental data is also shown

(solid line) [130].

Fig. 11. Schematic structures of (a) vertical and (b) horizontal slot

waveguides. The light propagates in the x–direction.

Yuan et al. : Silicon Nanocrystals as an Enabling Material for Silicon Photonics

Vol. 97, No. 7, July 2009 | Proceedings of the IEEE 1259



The cavity field enhancement effect is also an important
characteristic in such devices, which makes it possible to

build up the intensity inside resonators.

The confinement could be enhanced if we introduce

Si-nc into the waveguide and the ring. Such a device has

been fabricated, as shown in Fig. 12. Also, the horizontal

slot waveguide is adopted. These can be used to enhance

the nonlinear interaction in the arms of a Mach–Zehnder

interferometer and reduce the power threshold to induce a
refractive index variation, for switching applications. The

ring radius has been varied from 10 to 40 �m and the

resonant wavelength is changed accordingly. The highest

quality factor (Q) has been found in a sample with a gap

distance of 250 nm and a ring radius of 20 �m. Large Q

factors allow using these systems for active all-optical

devices based on Si-nc [135].

2) Slow Wave Devices: The slow wave phenomenon,

reducing the speed of light during its propagation, can

enhance nonlinear effects. In principle, slow wave

structures can be implemented in several ways, such as

coupled cavities in photonic crystals, coupled ring

microresonators, stacks of dielectric disks, etc., since the

existence of evenly spaced strongly confined cavities is the

unique requirement [136]. Slow wave technology is
nowadays widely used in various devices such as optical

fibers [137] and photonic crystals [138]. In waveguide

technology, coupled resonator optical waveguides

(CROWs) are used [136], where the group velocity of the

photons resonant with the cavity optical modes can be

controlled by adjusting the spacing between consecutive

cavities, effectively Bslowing[ or Bstoring[ light within the

device for a longer time. With this kind of device, a delay
as high as 500 ps has been demonstrated [139]. One such

device is consecutive cavity waveguide (CCW), where the

main advantage is that the central frequency region of the

CCW guided mode is dispersionless. On the other hand,

the main drawback is that a CCW is inherently lossy in the

dispersionless region, although low losses can be obtained

by a proper design of the CCW. A recent approach is the

realization of slow wave devices based on slot waveguide
structures, in which the group velocity of light can be

controlled and, at the same time, the electric field can be

localized in the low index slotted material. Structures

based on photonic crystals waveguides [140] and channel

waveguides [141], [142] have been designed and realized.

To exploit the slow wave effect in Si-nc waveguides, a

CROW-based slot waveguide working at 1.55 �m has been

designed [141]. For the horizontal configuration, the
optimum system consists of a one-dimensional photonic

crystal formed by air-slabs. The SEM top-view image of

the device consisting of one cavity between two Bragg

mirrors and its cross-section illustration are shown in

Fig. 13(a) [142]. It can be seen that the device is com-

posed of one SRO layer sandwiched by two silicon layers.

Moreover, the distance and the cavity length can be

adjusted to optimize the slow wave effect. The measured
transmission spectra of such a device in quasi-TM

polarization and normalized to the wavelength in the

center of the optical bandgap can be seen in Fig. 13(b). It

is possible to recognize the bandgap and the Bloch mode

peak for the wavelength resonant with the cavities mode.

The spectra simulated with a three-dimensional finite-

difference time-domain (3D-FDTD) algorithm are shown

in Fig. 13(c). A shift of about 100 nm is present between
the simulated and experimental data due to a difference

between the nominal and real photonic structure. Never-

theless, the spectral features of the photonic gap are quite

similar. Since the coupling between the cavities is not

strong enough, it is not possible to resolve the five

different cavity peaks, which appear as a single, broadened

peak, clearly visible around 1.5 �m in Fig. 13(b) and (c).

The measured extinction rate of the stop band is more than
15 dB. Although the results are still preliminary, such

photonic structures seem very promising to get efficient

slow wave photonic linear waveguides based on Si-ncs.

3) Microdisk Resonators: The microdisk resonator is a

kind of optical device that produces optical modes called

whispering gallery modes (WGMs) [143], which are

Fig. 12. (a) SEM top view image of an RR coupled to a bus waveguide

and (b) cross-sectional TEM view of the horizontal slot waveguide

structure.
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circularly propagating optical modes suffering continuous
total internal reflection inside the resonator. Optically

passive microdisks, based on transparent materials with

negligible absorption losses, have high Q factors ð106–

1010Þ, while active resonator systems, such as III–V

semiconductor quantum dot microdisk lasers, report active

Q factors of 103–104 in the visible and near IR wavelength

range [144], [145]. Such high-Q cavities can be employed

in a wide range of applications, like frequency comb
generators [146], optomechanics [147], and environmental

sensors [148]. Lately, they are widely used as experimental

platforms to study fundamental physics of cavity-quantum

electrodynamics [149].

So far, only a few works on Si-nc based microdisks have

been published, where Q factors of a few hundred have been

reported [132], [150]. It has been reported [151] that Si-nc

embedded SiO2 film microdisks were fabricated on top of an
Si wafer. Then the wafers were photolithographically

patterned and dry-etched anisotropically to form arrays of

microdisks with diameters ranging from 2 to 10 �m. The

crystalline wafer was finally wet-etched isotropically to form

the mushroom-like microdisks, as can been seen in

Fig. 14(a). The PL signal of a single microdisk was collected

in its plane and the WGM emission observed.

In Fig. 14(b), one can observe the WGM structure of

the single microdisk: subnanometer emission lines,
corresponding to Q factors of almost 3� 103. Both 3D-

FDTD simulations and experimental results confirm that

such thin microdisks do not support guided TM modes

because of the very low effective index for this polarization

ðneff ¼ 1:08Þ. Thus, all the observed spectral peaks are

TE-polarized and belong to the same radial family, with

corresponding azimuthal mode numbers (m) extending

from m ¼ 42 (710.5 nm) to m ¼ 29 (928 nm) and an
average mode spacing of �15 nm.

Q values of a microdisk can be affected by pump power.

Fig. 15 shows the dependence of the measured Q values of

a thin microdisk on incident light pump power (P), where

three distinct resonances at � ¼ 754, 768, and 849 nm

(m ¼ 39, 38, and 33, respectively) were used. It was found

that the wavelength of incident light has limited effects on

the Q factor, while the Q factor decreases as the pump
power increases. This can be attributed to the fact that at

high excitation powers, we either introduce an additional

loss source or enhance the existing ones due to ECA.

Thermal heating effects have been ruled out by the absence

of a relative spectral shift of the resonances or a modification

Fig. 14. (a) SEM images of the array and the single disk resonator.

(b) Measured TE-polarized WGM spectrum of an 8 �m diameter

microdisk is plotted together with the simulated peak positions

for the first radial mode family (o). (Inset) The bright spot in the

photograph is the direct image of the visible PL emission of

Si-nc from a single disk resonator.

Fig. 13. (a) Scheme and SEM image of the photonic crystal structure

processed on a horizontal slot waveguide (top view). Inset: schematic

cross-section of the device. (b) Experimental measurement of the

coupled resonance optical waveguide structure ð�0 ¼ 1:45 �mÞ
for quasi-TM polarized light. The arrow shows the cavity peaks

(inset-insertion losses of the device). (c) 3D-FDTD simulation of the

device with a single cavity and the Bragg mirror ð�0 ¼ 1:55 �mÞ.
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of the mode spacing [130]. Such absorption events will

enhance the cavity losses, causing the observed WGM

broadening. The situation gets more complicated when the

spontaneous emission signal gets strong enough to affect the

exciton population, as in the case of stimulated emission.

When this becomes the dominant mechanism, one can expect

that the absorption grows sublinearly with pump power

(increasing transparency), leading to an inversion in the
tendency of the Q-P curve (mode narrowing at high powers);

hence, it would be possible to achieve net gain and eventual

lasing at higher pump powers.

It should be pointed out that the observed Q factors

can be further enhanced by the optimization of the SRO

material. Microdisk resonators could hopefully allow for

a low-threshold laser action even with the low

inhomogeneously-broadened gain spectrum of Si-nc in a
similar way as in III–V semiconductor microdisk devices.

C. Solar Cells
Recent results have shown the possibility of using Si-nc

to develop third generation photovoltaics [152], [153],

where the theoretical efficiency is well beyond the

Shockley–Quiesser efficiency limit [154]. There are

many applications of Si-nc in solar cells. One of them is
the all-silicon tandem cell [155], where the Si-nc has larger

and tunable bandgap than bulk silicon and can absorb

more efficiently the photons with high energy. The other is

the hot carrier solar cell [105], where photoexcited carriers

with high energy (hot carrier) can be collected while they

are still at elevated energies and thus allowing higher

voltages to be achieved. Ideally this collection would be

isoentropic using monoenergetic contact, which has been
attempted experimentally by a structure with a single layer

of Si-nc sandwiched by SiO2 [156].

All-silicon tandem cell is mostly fabricated by a super-

lattice approach, where the phase separation is the main

mechanism to fabricate Si-ncs [80]. For solar cell applications,
the main challenge for this structure is to achieve sufficient

carrier mobility and hence a reasonable conductivity. This

generally requires formation of a true superlattice with

overlap of the wave function for adjacent quantum wells or

quantum dots, which in turn requires either close spacing

between Si-ncs or a low barrier height. That is to say that the

inter Si-nc distance is more important than Si-nc size [157].

However, the transport can be affected by the matrix in which
the Si-nc embedded. It has been found that SiC and Si3N4

matrices give lower barrier heights [105] and also longer

distance between Si-ncs for significant wave function over-

lapping [158] than those of SiO2. The conductivity can also

been improved by using a lateral multilayer Si-nc/SiO2

structure [159]. This means that the carrier extraction takes

place parallel to the Si/SiO2 interfaces of two-dimensional

Si-ncs while growth confinement is sustained in the vertical
direction. It was shown that the lateral contact scheme is

able to provide four orders of magnitude enhanced con-

ductivity compared to a Si-nc/SiO2 multilayer with standard

vertical contacts where the charge transport is limited by

insulating SiO2 barriers [160].

Another problem for this multilayer structure is the

precise control of the Si-nc size by the thickness of SRO

layer. It has been found that in Si-nc/SiO2 multilayers, a
crystallinity of �5% for the 2-nm-thick and �25% for the

5-nm-thick SRO layers was obtained [161]. This is mainly

influenced by stress, which depends on the periods of the

multilayer, substrate, and annealing processes [162].

Some interesting photoresponse features for photovol-

taics of Si-nc embedded SiO2 layers were also found. For

example, multiple exciton generation [163]–[165] was

recently reported in an MOS-like device, where the oxide
is an Si-nc embedded silicon oxide. This will enhance the

current in the solar cell. The device structure is shown in

Fig. 16. A clear photovoltaic effect is observed with an open

Fig. 15. The measured Q factors at increasing pump power are plotted

at three different wavelengths, reporting an order of magnitude

variation between two extreme pump powers. The inset shows the

WGM mode at � ¼ 849 nm at two different pump powers.

Fig. 16. Short circuit current as a function of incident light power

for two different wavelengths. Inset: schematic cross-sectional

structure of the device.
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circuit voltage of �600 mV. This particular cell configura-
tion is characterized by a small filling factor, which accounts

for the low efficiency of the cell (�12%) [100], [103].

What is more relevant here is the observation of a

superlinear photovoltaic effect at low light incident power.

This is illustrated in Fig. 16, where the short circuit current

increases according to a power law with exponent larger

than two as a function of the incident power. It seems

that for each photon, two or more electrons contribute to
the current. Since the energy of the absorbed photon

(633/488 nm) is much larger than the nanocrystal band-

gap, the photogenerated electron has extra kinetic energy

that can be released by impact excitation of the trapped

electron at nitrogen-related midbandgap states [166],

which was confirmed by the IR response. This mechanism

generates a current of secondary carriers, which sum up to

the photocurrent, and explains the super linear photovol-
taic effects. In fact, with illumination of solely high energy

photons, secondary carrier generation works as a mecha-

nism that recovers electrons relaxed into the subbandgap

states. When subbandgap excitons are generated directly

by IR illumination, secondary carrier generation works as

an amplification mechanism for the IR photocurrent com-

ponent. For this reason, the adoption of SRO in silicon-

based solar cells could offer the opportunity to exploit
efficiently the subbandgap photons present in the solar

spectrum.

D. Nonlinear Optical Properties of Si-nc
Injection-based devices, either based on the electro-

optical effects or on free-carrier effects, do not seem

suitable for power efficient high-speed optical networks

(40 Gbps and beyond). Therefore, all-optical devices,
where an optical signal traveling through a circuit is

controlled by another external optical signal by means of

nonlinear interaction in a Mach–Zehnder interferometer,

are getting more and more attention. In such devices,

nonlinear photonic materials are vital.

Different physical mechanisms like bound electrons, free

carriers, and local heating can contribute to Si-nc optical

nonlinearities, which are differentiated by their response
time. The bound electronic response is very fast and involves

a distortion by the optical field of the electronic cloud around

an atom. Moreover, the electronic nonlinearity ðn2beÞ can be

greatly enhanced if the atom is highly polarizable. Single- or

two-photon absorption processes can excite free carriers in a

semiconductor. In turn, these free carriers absorb the

incident radiation and result in an effect that is related by

Kramers–Kronig relation to a change of the refractive index.
Thus the nonlinear refractive index ðn2frÞ can be enhanced by

excitation of a significant population via one- or two-photon

absorption. The induced free-carrier refraction occurs on a

time scale typical of carrier generation and their recombina-

tion, i.e., in a time scale of hundreds of microseconds. The

thermalization of excited carriers via nonradiative recombi-

nation is responsible for the heating of the material and

constitutes one of the sources of the thermal lensing effect
ðn2thÞ. Thus, the nonlinear index n2 of a semiconductor is the

result of three terms: n2 ¼ n2be þ n2fr þ n2th.

Si-nc has a rich phenomenology for nonlinear appli-

cations. If one compares the results found for n2 in Si-nc

at 1550 nm [167] with the data of other materials such as

silica [168], silicon [169], and GaAs [170], it can be found

that Si-nc is as good as III–V materials in nonlinear

applications, thus opening the route to all optical
modulation.

The n2 of Si-nc can be measured by using the nonlinear

transmission z-scan method [171] with a 1550 nm pump

laser. Results show that n2 ranges from 10�9 to

10�8 cm2=W and nonlinear absorption coefficient � varies

from 10�7 to 10�6 cm/W, as the Siexc increases up to

24 at.%. The obtained nonlinear coefficients are consider-

ably high, leading to a nonlinear contribution to n2 and �,
which are comparable to the linear ones (n and 	). On the

other hand, the results of the z-scan measurements showed

a change of the nonlinear refractive index when changing

from nano- or picsosecond-long pulses to femtosecond

short pulses, as depicted in Fig. 17. Also the magnitude of

the nonlinear response changed. In fact, in the femto-

second regime, a positive nonlinear refractive index (valley-

peak curve) on the order of n2 � 10�13 cm2=W was detected
for a peak intensity ðIpÞ in the range of 1011–1012 W/ cm2,

which is due to the bound electronic response. In the

picosecond excitation regime, a stronger negative nonlinear

Fig. 17. Comparison between z-scan measurements for (a) fast and low

repetition rate exciting pulses and (b) high repetition rate exciting

pulses on the sample with 21 at.% of Siexc annealed at 800 �C.
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response (peak–valley curve) was detected on the order
of �10�11 cm2=W for Ip ¼ 109–1010 W/cm2. This nega-

tive nonlinear response is due to free-carrier refractive

effects.

It was also found that the n2be is a function of both the

annealing temperature ðTannÞ and Siexc. In particular, a

strong n2be is obtained from the sample with low Siexc and

annealed at low Tann. These parameters mean a small Si-nc

size, and hence this is evidence of a quantum confinement
effect. This has been proved by some experimental results

[167], [172]. Moreover, a theoretical calculation shows

that for Si-nc with a diameter smaller than 2 nm, the

quantum confinement effect strongly enhances the non-

linear response of the system [173].

VII. CONCLUSION

As an enabling material for silicon photonics, Si-nc has

proved its importance to a wide scope of photonic devices

such as light emitters, waveguides, resonators, and solar

cells. It has greatly improved the performance of these
devices. However, there is still plenty of room to get Si-nc

precisely controlled, device parameters optimized, and

new phenomena discovered and utilized. Also, further

breakthroughs can be foreseen in the near future with the

investigation and demonstration of a wide spectrum of

new photonic devices, in which Si-nc will continue to

make key contributions. h
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