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Astronomical Data Analysis
and Sparsity: From Wavelets
to Compressed Sensing
Correct interpretation of astronomical images can usually be achieved by examining

and analyzing a relatively small sample of those images.

By Jean-Luc Starck and Jérôme Bobin

ABSTRACT | Wavelets have been used extensively for several

years now in astronomy for many purposes, ranging from data

filtering and deconvolution to star and galaxy detection or

cosmic-ray removal. More recent sparse representations such

as ridgelets or curvelets have also been proposed for the

detection of anisotropic features such as cosmic strings in the

cosmic microwave background. We review in this paper a range

of methods based on sparsity that have been proposed for

astronomical data analysis. We also discuss the impact of

compressed sensing, the new sampling theory, in astronomy

for collecting the data, transferring them to earth or recon-

structing an image from incomplete measurements.
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I . INTRODUCTION

The wavelet transform (WT) has been extensively used

in astronomical data analysis during the last ten years. A
quick search with the NASA Astrophysics Data System1

shows that around 1000 papers contain the keyword

Bwavelet[ in their abstract, and this holds for all astro-

physical domains, from study of the sun through to

cosmic microwave background (CMB) analysis [29]. This

broad success of the wavelet transform is due to the fact

that astronomical data generally gives rise to complex

hierarchical structures, often described as fractals. Using
multiscale approaches such as the wavelet transform, an

image can be decomposed into components at different

scales, and the wavelet transform is therefore well

adapted to the study of astronomical data. Furthermore,

since noise in the physical sciences is often not

Gaussian, modeling in wavelet space of many kinds of

noiseVPoisson noise, combination of Gaussian and

Poisson noise components, nonstationary noise, and so
onVhas been a key motivation for the use of wavelets in

astrophysics.

If wavelets represent isotropic features well, they are

far from optimal for analyzing anisotropic objects. This has

motived other constructions such as the curvelet transform

[9]. More generally, the best data decomposition is the one

that leads to the sparsest representation, i.e., few coeffi-

cients have a large magnitude, while most of them are
close to zero. Hence, for specific astronomical data sets

containing edges (planetary images, cosmic strings, etc.),

curvelets should be preferred to wavelets.

In this paper, we review a range of astronomical data

analysis methods based on sparse representations. We first

introduce the isotropic undecimated wavelet transform

(IUWT), which is the most popular WT algorithm in as-

tronomy. We show how the signal of interest can be de-
tected in wavelet space using noise modeling, allowing us

to build the so-called multiresolution support. Then we pre-

sent in Section III how this multiresolution support can be

used for restoration applications. In Section IV, another

representation, the curvelet transform, is introduced, which

is well adapted to anisotropic structure analysis. Combined

together, the wavelet and the curvelet transforms are very
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powerful to detect and discriminate very faint features. We
give an example of application for cosmic string detection.

Section V describes the compressed sensing theory, which is

strongly related to sparsity, and presents its impacts in

astronomy, especially for spatial data compression.

II . THE ISOTROPIC UNDECIMATED
WAVELET TRANSFORM

The IUWT [25] decomposes an n� n image c0 into a

coefficient set W ¼ fw1; . . . ;wJ; cJg as a superposition of

the form

c0½k; l� ¼ cJ½k; l� þ
XJ

j¼1

wj½k; l�

where cJ is a coarse or smooth version of the original image

c0 and wj represents the details of c0 at scale 2�j (see [28]

and [30] for more information). Thus, the algorithm

outputs J þ 1 subband arrays of size n� n. (The present

indexing is such that j ¼ 1 corresponds to the finest scale

or high frequencies.)

Hence, we have a multiscale pixel representation, i.e.,

each pixel of the input image is associated with a set of
pixels of the multiscale transform. This wavelet transform

is very well adapted to the detection of isotropic features.

This explains its success for astronomical image proces-

sing, where the data contain mostly isotropic or quasi-

isotropic objects, such as stars, galaxies, or galaxy clusters.

The decomposition is achieved using the filter bank

(h2D; g2D ¼ � � h2D, ~h2D ¼ �, ~g2D ¼ �) where h2D is the

tensor product of two one-dimensional (1-D) filters h1D

and � is the Dirac function. The passage from one

resolution to the next one is obtained using the Bà trous[
algorithm [30]

cjþ1½k; l� ¼
X

m

X
n

h1D½m�h1D½n�cj½kþ2jm; lþ2jn�

wjþ1½k; l� ¼ cj½k; l� � cjþ1½k; l� (1)

where h1D is typically a symmetric low-pass filter such as the

B3 spline filter h1D¼ fð1=16Þ; ð1=4Þ; ð3=8Þ; ð1=4Þ; ð1=16Þg.
Fig. 2 shows IUWT of the galaxy NGC 2997 displayed

in Fig. 1. Five wavelet scales are shown and the final

smoothed plane (lower right). The original image is given

exactly by the sum of these six images.

A. Example: Dynamic Range Compression
Using the IUWT

Since some features in an image may be hard to detect

by the human eye due to low contrast, we often process the

image before visualization. Histogram equalization is cer-

tainly one the most well-known methods for contrast

enhancement. Images with a high dynamic range are also

difficult to analyze. For example, astronomers generally

visualize their images using a logarithmic lookup-table

conversion.

Wavelets can be used to compress the dynamic range at
all scales and therefore allow us to clearly see some very

faint features. For instance, the wavelet-log representation

consists of replacing wj½k; l� by sgnðwj½k; l�Þ logðjwj½k; l�jÞ,
leading to the alternative image

Ik;l ¼ logðcJ;k;lÞ þ
XJ

j¼1

sgn wj½k; l�
� �

log wj½k; l�
�� ��þ �� �

(2)

where � is a small number (for example, � ¼ 10�3). Fig. 3

shows a Hale–Bopp Comet image (logarithmic represen-

tation) (top), its histogram equalization (bottom left), and

its wavelet-log representation (bottom right). Jets clearly

appear in the last representation of the Hale–Bopp Comet
image.

B. Signal Detection in the Wavelet Space
Observed data Y in the physical sciences are generally

corrupted by noise, which is often additive and follows in

many cases a Gaussian distribution, a Poisson distribution,

or a combination of both. It is important to detect the

wavelet coefficients that are Bsignificant,[ i.e., the wavelet
coefficients that have an absolute value too large to be due

to noise. We defined the multiresolution support M of an

image Y by

Mj½k; l� ¼ 1; if wj½k; l� is significant

0; if wj½k; l� is not significant

�
(3)

Fig. 1. Galaxy NGC 2997.
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where wj½k; l� is the wavelet coefficient of Y at scale j and at

position ðk; lÞ. We need now to determine when a wavelet

coefficient is significant. For Gaussian noise, it is easy to
derive an estimation of the noise standard deviation �j at

scale j from the noise standard deviation, which can be

evaluated with good accuracy in an automated way [27]. To

detect the significant wavelet coefficients, it suffices to

compare the wavelet coefficients wj½k; l� to a threshold

level tj. tj is generally taken equal to K�j and K is chosen

between three and five. The value of three corresponds to a

probability of false detection of 0.27%. If wj½k; l� is small,

then it is not significant and could be due to noise. If wj½k; l�
is large, it is significant

if wj½k; l�
�� �� � tj then wj½k; l� is significant

if wj½k; l�
�� �� G tj then wj½k; l� is not significant: (4)

When the noise is not Gaussian, other strategies may
be used.

• Poisson noise: If the noise in the data Y is Poisson,

the transformation [3] AðYÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iþ ð3=8Þ

p
acts

as if the data arose from a Gaussian white noise

model, with � ¼ 1, under the assumption that the

mean value of I is sufficiently large. However, this

transform has some limits, and it has been shown

that it cannot be applied for data with less than
20 photons per pixel. So for X-ray or gamma-ray

data, other solutions have to be chosen, which

manage the case of a reduced number of events or

photons under assumptions of Poisson statistics.

• Gaussian + Poisson noise: The generalization of

variance stabilization [18] is

G ðY½k; l�ð Þ ¼ 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Y½k; l� þ 3

8
�2 þ �2 � �g

r

where � is the gain of the detector and g and � are
the mean and the standard deviation of the readout

noise.
Fig. 3. (Top) Hale–Bopp Comet image. (Bottom left) Histogram

equalization results. (Bottom right) Wavelet-log representations.

Fig. 2. Wavelet transform of NGC 2997 by the IUWT. The coaddition of these six images reproduces exactly the original image.
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• Poisson noise with few events using the MS-VST: For
images with very few photons, one solution con-

sists in using the multiscale variance stabilization

transform (MSVST) [32]. The MSVST combines

both the Anscombe transform and the IUWT in

order to produce stabilized wavelet coefficients,

i.e., coefficients corrupted by a Gaussian noise with

a standard deviation equal to one. In this frame-

work, wavelet coefficients are now calculated by

IUWTþMS-VST

cj ¼
P

m

P
n h1D½m�h1D½n�

cj�1½kþ 2j�1m; lþ 2j�1n�
wj ¼ Aj�1ðcj�1Þ � AjðcjÞ

8<
: (5)

where Aj is the VST operator at scale j defined by

AjðcjÞ ¼ bðjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cj þ eðjÞ
�� ��q

(6)

where the variance stabilization constants bðjÞ and

eðjÞ only depend on the filter h1D and the scale level

j. They can all be precomputed once for any given
h1D [32]. The multiresolution support is computed

from the MSVST coefficients, considering a

Gaussian noise with a standard deviation equal to

one. This stabilization procedure is also invertible,

as we have

c0 ¼ A�1
0 AJðaJÞ þ

XJ

j¼1

wj

" #
: (7)

For other kinds of noise (correlated, nonstationary, etc.),
other solutions have been proposed to derive the multi-

resolution support [29]. In the next section, we show how

the multiresolution support can be used for denoising and

deconvolution.

III . RESTORATION USING THE
WAVELET TRANSFORM

A. Denoising
The most used filtering method is the hard threshold-

ing, which consists of setting to zero all wavelet coefficients

of Y that have an absolute value lower than a threshold tj

~wj½k; l� ¼ wj½k; l�; if wj½k; l�
�� �� > tj

0; otherwise.

�
(8)

More generally, for a given sparse representation (wavelet,

curvelet, etc.) with its associated fast transform T w and

fast reconstruction Rw, we can derive a hard thresholding
denoising solution X from the data Y by first estimating the

multiresolution support M using a given noise model and

then calculating

X ¼ RwMT wY: (9)

We transform the data, multiply the coefficients by the

support, and reconstruct the solution.

The solution can however be improved considering the

following optimization problem minX kMðT wY � T wXÞk2
2,

where M is the multiresolution support of Y. A solution

can be obtained using the Landweber iterative scheme

[22], [30]

Xnþ1 ¼ Xn þRwM½T wY � T wXn�: (10)

If the solution is known to be positive, the positivity con-

straint can be introduced using the following equation:

Xnþ1 ¼ Pþ Xn þRwM½T wY � T wXn�ð Þ (11)

where Pþ is the projection on the cone of nonnegative

images.

This algorithm allows us to constrain the residual to

have a zero value inside the multiresolution support [30].

For astronomical image filtering, iterating improves signi-
ficantly the results, especially for the photometry (i.e., the

integrated number of photons in a given object).

B. Deconvolution
In a deconvolution problem Y ¼ HX þ N, when the

sensor is linear, H is the block Toeplitz matrix. Similarly

to the denoising problem, the solution can be obtained

minimizing minX kMT wðY � HXÞk2
2 under a positivity

constraint, leading to the Landweber iterative scheme

[22], [30]

Xnþ1 ¼ Pþ Xn þ HtRwMT w½Y � HXn�ð Þ: (12)

Only coefficients that belong to the multiresolution sup-

port are kept, while the others are set to zero [22]. At each

iteration, the multiresolution support M can be updated by

selecting new coefficients in the wavelet transform of the

residual that have an absolute value larger than a given

threshold.

Example: A simulated Hubble Space Telescope image of
a distant cluster of galaxies is shown in Fig. 4(b). The

simulated data are shown in Fig. 4(a) and the wavelet
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deconvolution solution Fig. 4(c). The method is stable for

any kind of point spread function, and any kind of noise

modeling can be considered.

C. Inpainting
Missing data are a standard problem in astronomy.

They can be due to bad pixels, or to image area we consider

as problematic due to calibration or observational prob-
lems. These masked areas lead to many difficulties for

postprocessing, especially to estimate statistical informa-

tion such as the power spectrum or the bispectrum. The

inpainting technique consists in filling the gaps. The

classical image inpainting problem can be defined as

follows. Let X be the ideal complete image, Y the observed

incomplete image, and L the binary mask (i.e., L½k; l� ¼ 1 if

we have information at pixel ðk; lÞ; L½k; l� ¼ 0 otherwise).
In short, we have Y ¼ LX. Inpainting consists in recover-

ing X knowing Y and L.

Denoting kzk0 the l0 pseudonorm, i.e., the number of

nonzero entries in z, and kzk the classical l2 norm (i.e.,

kzk2 ¼
P

kðzkÞ2), we thus want to minimize

min
X
k�TXk0 subject to kY � LXk‘2

� � (13)

where � stands for the noise standard deviation in the

noisy case. It has also been shown that if X is sparse

enough, the l0 pseudonorm can also be replaced by the

convex l1 norm (i.e., kzk1 ¼
P

k jzkj) [14]. The solution of
such an optimization task can be obtained through an

iterative thresholding algorithm called MCA [15], [16]

Xnþ1 ¼ ��;�n
ðXn þ Y � LXnÞ (14)

where the nonlinear operator ��;�ðZÞ consists in the

following.

• Decomposing the signal Z on the dictionary � to

derive the coefficients � ¼ �TZ.

• Threshold the coefficients ~� ¼ �ð�; �Þ, where

the thresholding operator � can either be a hard

thresholding (i.e., �ð�i; �Þ ¼ �i if j�ij > � and

zero otherwise) or a soft thresholding (i.e.,

�ð�i; �Þ ¼ signð�iÞmaxð0; j�ij � �Þ). The hard

thresholding corresponds to the l0 optimization

problem while the soft-threshold solves that

for l1.
• Reconstruct ~Z from the thresholds coefficients ~�.

The threshold parameter �n decreases with the iteration

number and plays a role similar to the cooling parameter of

the simulated annealing techniques, i.e., it allows the

solution to escape from local minima. More details relative

to this optimization problem can be found in [12] and [16].

For many dictionaries such as wavelets or Fourier, fast

operators exist to decompose the signal so that the
iteration of (14) is very fast. It requires only performing

at each iteration a forward transform, a thresholding of the

coefficients, and an inverse transform.

Example: The experiment was conducted on a simulated

weak lensing mass map masked by a typical mask pattern

(see Fig. 5). Fig. 5(a) shows the simulated mass map and

(b) shows the masked map. The result of the inpainting

method is shown in (c). We note that the gaps are un-
distinguishable by the eye. More interestingly, it has been

shown that, using the inpainted map, we can reach an

accuracy of about 1% for the power spectrum and 3% for

the bispectrum [19].

IV. FROM WAVELET TO CURVELET

The two-dimensinoal (2-D) curvelet transform [9] was
developed in an attempt to overcome some limitations

inherent in former multiscale methods, e.g., the 2-D

wavelet, when handling smooth images with edges, i.e.,

singularities along smooth curves. Basically, the curvelet

dictionary is a multiscale pyramid of localized directional

functions with anisotropic support obeying a specific

parabolic scaling such that, at scale 2�j, its length is 2�j=2

Fig. 4. Simulated Hubble Space Telescope image of a distant cluster of galaxies. (a) Original, unaberrated, and noise-free.

(b) Input, aberrated, noise added. (c) Wavelet restoration wavelet.
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and its width is 2�j. This is motivated by the parabolic

scaling property of smooth curves. Other properties of the

curvelet transform as well as decisive optimality results in

approximation theory are reported in [8]. Notably,

curvelets provide optimally sparse representations of

manifolds that are smooth away from edge singularities

along smooth curves. Several digital curvelet transforms
[7], [23] have been proposed that attempt to preserve the

essential properties of the continuous curvelet transform,

and several papers report on their successful application in

astrophysical experiments [21], [24], [26].

Fig. 6 shows a few curvelets at different scales,

orientations, and locations.

A. Application to the Detection of Cosmic Strings
Some applications require the use of sophisticated

statistical tools in order to detect a very faint signal, em-

bedded in noise. An interesting case is the detection of

non-Gaussian signatures in CMB, which is of great

interest for cosmologists. Indeed, the non-Gaussian

signatures in the CMB can be related to very fundamental

questions such as the global topology of the universe [20],

superstring theory, topological defects such as cosmic

strings [6], and multifield inflation [4]. The non-Gaussian

signatures can, however, have a different but still cosmo-

logical origin. They can be associated with the Sunyaev–
Zel’dovich (SZ) effect [31] (inverse Compton effect) of

the hot and ionized intracluster gas of galaxy clusters [1],

with the gravitational lensing by large-scale structures, or

with the reionization of the universe [1]. They may also

be simply due to foreground emission or to non-Gaussian

instrumental noise and systematics.

All these sources of non-Gaussian signatures might

have different origins and thus different statistical and
morphological characteristics. It is therefore not surprising

that a large number of studies have recently been devoted

to the subject of the detection of non-Gaussian signatures.

In [2] and [21], it was shown that the wavelet transform

Fig. 6. A few first-generation curvelets. Backprojections of a few curvelet coefficients at different positions and scales.

Fig. 5. (a) Simulated weak lensing mass map, (b) simulated mass map with a standard mask pattern, and (c) inpainted mass map.

The region shown is 1�� 1�.
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was a very powerful tool to detect the non-Gaussian

signatures. Indeed, the excess kurtosis (fourth moment) of

the wavelet coefficients outperformed all the other

methods (when the signal is characterized by a nonzero

fourth moment).

Lastly, a major issue of the non-Gaussian studies in

CMB remains our ability to disentangle all the sources of
non-Gaussianity from one another. It has been shown that

it was possible to separate the non-Gaussian signatures

associated with topological defects (cosmic strings) from

those due to the Doppler effect of moving clusters of

galaxies (i.e., the kinetic SZ effect), both dominated by a

Gaussian CMB field, by combining the excess kurtosis

derived from both the wavelet and the curvelet trans-

forms [21].
The wavelet transform is suited to spherical-like

sources of non-Gaussianity, and a curvelet transform is

suited to structures representing sharp and elongated

structures such as cosmic strings. The combination of

these transforms highlights the presence of the cosmic

strings in a mixture CMB þ SZ þ CS. Such a com-

bination gives information about the nature of the non-

Gaussian signals. The sensitivity of each transform to a
particular shape makes it a very strong discriminating tool

[17], [21].

In order to illustrate this, we show in Fig. 7 a set of

simulated maps. Primary CMB, kinetic SZ, and cosmic

string maps are shown, respectively, in the top left, top

right, and bottom left of Fig. 7. The Bsimulated observed
map,[ containing the three previous components, is dis-

played in the bottom right of Fig. 7. The primary CMB

anisotropies dominate all the signals except at very high

multipoles (very small angular scales). The wavelet

function is overplotted on the kinetic Sunyaev–Zel’dovich

map, and the curvelet function is overplotted on a cosmic

string map.

V. COMPRESSED SENSING

A. Compressed Sensing in a Nutshell
Compressed sensing (CS) [10], [13] is a new

sampling/compression theory based on the revelation

that one can exploit sparsity or compressibility when ac-

quiring signals of general interest and that one can design

nonadaptive sampling techniques that condense the

information in a compressible signal into a small amount

of data. The gist of CS relies on two fundamental

properties.

1) Compressibility of the data: The signal X is said
to be compressible if there exists a dictionary �
where the coefficients � ¼ �TX, obtained after

decomposing X on �, are sparsely distributed.

2) Acquiring incoherent measurements: In the CS

framework, the signal X is not acquired directly;

one then acquires a signal X by collecting data of

the form Y ¼ AX þ �: A is an m� n (with the

number of measurements m smaller than the
number of samples n in X: m G n, and A is a

random matrix) Bsampling[ or measurement ma-

trix and � is a noise term. Assuming X to be sparse,

the incoherence of A and � (e.g., the Fourier basis

and the Dirac basis) entails that the information

carried by X is diluted in all the measurements Y.

Combining the incoherence of A and � with the

sparsity of X in � makes the decoding problem
tractable.

In the following, we choose the measurement matrix A to

be a submatrix of an orthogonal matrix �: the resulting

measurement matrix is denoted �� and obtained by

picking a set of columns of � indexed by �; �� is obtained

by subsampling the transformed signal �X. In practice,

when � admits a fast implicit transform (i.e., discrete

Fourier transform, Hadamard transform, noiselet trans-
form), the compression step is very fast and made reliable

for onboard satellite implementation.

A standard approach in CS attempts to reconstruct X by

solving

min
�
k�k‘1

such that kY �����k‘2
G � (15)

where �2 is an estimated upper bound on the noise

power.

Fig. 7. (Top) (left) Primary CMB anisotropies and (right) kinetic

Sunyaev-Zel’dovich fluctuations. (Bottom) (left) Cosmic string

simulated map and (right) simulated observation containing the

previous three components. The wavelet function is overplotted

on the SZ map, and the curvelet function is overplotted on the

cosmic string map.
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B. Compressed Sensing for the Herschel Data
The Herschel/PACS mission of the European Space

Agency (ESA)2 is faced with a strenuous compression

dilemma: it needs a compression rate equal to � ¼ 1=N
with N ¼ 6. A first approach has been proposed that

consists in averaging N ¼ 6 consecutive images of a raster

scan and transmitting the final average image. Neverthe-

less, doing so with high-speed raster scanning leads to a

dramatic loss in resolution. In [5], we emphasized the
redundancy of raster scan data: two consecutive images are

almost the same images up to a small shift d. Then, jointly

compressing/decompressing consecutive images of the

same raster scan has been put forward to alleviate the

Herchel/PACS compression dilemma. The problem then

consists in recovering a single image X from N compressed

and shifted noisy versions of X

8i 2 f1; . . . ;Ng; Xi ¼ Sdi
ðXÞ þ �i (16)

where Sdi
is an operator that shifts the original image X

with a shift di. The term �i models instrumental noise or

model imperfections. According to the compressed sensing

framework, each signal is projected onto the subspace

ranged by �. Each compressed observation is then ob-

tained as follows:

8i 2 f1; . . . ;Ng; Yi ¼ �i�i
Xi (17)

where the sets f�ig are such that the union of all the

measurement matrices ½��1
; . . . ;��1

� spans R
n. In prac-

tice, the subsets �i are disjoint and have a cardinality

m ¼ bn=Nc, where m is the coefficients we transfer, n is

the number of pixels of each observed image, and N is
number of images (here N ¼ 6). When there is no shift

between consecutive images, these conditions guarantee

that the signal X can be reconstructed uniquely from

fYigi¼1;...;N, up to noise. The decoding step amounts to

seeking the signal x as follows:

min
�
k�k‘1

such that
XN

i¼1

Yi ���i
��k k‘2

G
ffiffiffiffi
N
p

�: (18)

The solution of this optimization problem can be found via

an iterative thresholding algorithm (see [5])

Xnþ1 ¼ ��;�n
Xn þ 	�

XN

i¼1

S�1
di

�T
�i

Yi���i
Sdi
ðXnÞð Þ

� � !

(19)

where the nonlinear operator ��;�ðZÞ is defined in (14)

and the step-size 	��
G 2=

P
i k�T

�i
��i
k2. Similarly to the

MCA algorithm, the threshold �n decreases with the

iteration number towards the final value �f ; a typical value
is �f ¼ 2� 3�. This algorithm has been shown to be very

efficient for solving the problem in [5, (15)].

a) Illustration: We compare two approaches to solve

the Herschel/PACS compression problem: i) transmitting

the average of six consecutive images (MO6) and ii) com-

pressing six consecutive images of a raster scan and

decompressing using CS. Real Herschel/PACS data are

complex: the original datum X is contaminated with a
slowly varying Bflat field[ component cf . In a short se-

quence of six consecutive images, the flat-field component

is almost fixed. In this context, the data fxigi¼0;...;1 can then

be modeled as follows:

Xi ¼ Sdi
ðXÞ þ �i þ cf : (20)

If cf is known, Sdi
ðXðnÞÞ is replaced by Sdi

ðXðnÞÞ þ cf in

(19). The data have been designed by adding realistic

pointwise sources to real calibration measurements per-

formed in mid-2007. In the following experiment, the

sparsifying dictionary � is an undecimated wavelet tight

frame and the measurement matrices are submatrices of
the noiselet basis [11].

The top-left picture of Fig. 8 features the original

signal X. In the top-right panel of Fig. 8, we can see a

simulated observed image of X. The flat-field component

overwhelms the useful part of the data so that Xi has at

best a level that is 30 times lower than the flat-field

component. The MO6 solution (respectively, the CS-based

solution) is shown on the left (respectively, right) and at
the bottom of Fig. 8. We showed in [5] that compressed

sensing provides a resolution enhancement that can reach

30% of the full width at half-maximum of the instrument’s

2The Photodetector Array Camera and Spectrometer (PACS) is one of
the three instruments onboard ESA’s Herschel Space Observatory.
Herschel is a space telescope observing in the far-infrared and submilli-
meter wavelength region. It was launched on May 14, 2009.

Fig. 8. (Top left) Original image. (Top right) Example of noisy map.

(Bottom left) Mean of the six noisy images (see text fore more details).

(Bottom right) Reconstruction from noiselet-based CS projections.

The iterative algorithm has been used with 100 iterations.
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point spread function for a wide range of signal intensities
(i.e., flux of X).

This experiment illustrates the reliability of the CS-

based compression to deal with real-world data compres-

sion. The efficiency of compressed sensing applied to the

Herschel/PACS data compression relies also on the

redundancy of the data: consecutive images of a raster

scan are fairly shifted versions of a reference image. The

good performance of CS is obtained by merging the
information of consecutive images. The same data fusion
scheme could be used to reconstruct with high accuracy

wide sky areas from full raster scans.

VI. CONCLUSION

By establishing a direct link between sampling and

sparsity, compressed sensing had a huge impact in many
scientific fields, especially in astronomy. We have seen

that CS could offer an elegant solution to the Herschel

data-transfer problem. By emphasizing so rigorously the

importance of sparsity, compressed sensing also has
shed light on all work related to sparse data represen-

tation (such as the wavelet transform, curvelet trans-

form, etc.). Indeed, a signal is generally not sparse in

direct space (i.e., pixel space) but can be very sparse

after being decomposed on a specific set of functions.

For inverse problems, compressed sensing gives a strong

theoretical support for methods that seek a sparse

solution, since such a solution may be (under appropri-
ate conditions) the exact one. Similar results are hardly

accessible with other regularization methods. This

explains why wavelets and curvelets are so successful

for astronomical image denoising, deconvolution, and

inpainting. h
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